xref: /openbmc/u-boot/include/linux/mtd/spinand.h (revision cb19c293)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2016-2017 Micron Technology, Inc.
4  *
5  *  Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  */
8 #ifndef __LINUX_MTD_SPINAND_H
9 #define __LINUX_MTD_SPINAND_H
10 
11 #ifndef __UBOOT__
12 #include <linux/mutex.h>
13 #include <linux/bitops.h>
14 #include <linux/device.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 #else
20 #include <common.h>
21 #include <spi.h>
22 #include <spi-mem.h>
23 #include <linux/mtd/nand.h>
24 #endif
25 
26 /**
27  * Standard SPI NAND flash operations
28  */
29 
30 #define SPINAND_RESET_OP						\
31 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1),				\
32 		   SPI_MEM_OP_NO_ADDR,					\
33 		   SPI_MEM_OP_NO_DUMMY,					\
34 		   SPI_MEM_OP_NO_DATA)
35 
36 #define SPINAND_WR_EN_DIS_OP(enable)					\
37 	SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1),		\
38 		   SPI_MEM_OP_NO_ADDR,					\
39 		   SPI_MEM_OP_NO_DUMMY,					\
40 		   SPI_MEM_OP_NO_DATA)
41 
42 #define SPINAND_READID_OP(ndummy, buf, len)				\
43 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1),				\
44 		   SPI_MEM_OP_NO_ADDR,					\
45 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
46 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
47 
48 #define SPINAND_SET_FEATURE_OP(reg, valptr)				\
49 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1),				\
50 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
51 		   SPI_MEM_OP_NO_DUMMY,					\
52 		   SPI_MEM_OP_DATA_OUT(1, valptr, 1))
53 
54 #define SPINAND_GET_FEATURE_OP(reg, valptr)				\
55 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1),				\
56 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
57 		   SPI_MEM_OP_NO_DUMMY,					\
58 		   SPI_MEM_OP_DATA_IN(1, valptr, 1))
59 
60 #define SPINAND_BLK_ERASE_OP(addr)					\
61 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1),				\
62 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
63 		   SPI_MEM_OP_NO_DUMMY,					\
64 		   SPI_MEM_OP_NO_DATA)
65 
66 #define SPINAND_PAGE_READ_OP(addr)					\
67 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1),				\
68 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
69 		   SPI_MEM_OP_NO_DUMMY,					\
70 		   SPI_MEM_OP_NO_DATA)
71 
72 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len)	\
73 	SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),		\
74 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
75 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
76 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
77 
78 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len)	\
79 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
80 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
81 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
82 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
83 
84 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len)	\
85 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
86 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
87 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
88 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
89 
90 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len)	\
91 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
92 		   SPI_MEM_OP_ADDR(2, addr, 2),				\
93 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
94 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
95 
96 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len)	\
97 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
98 		   SPI_MEM_OP_ADDR(2, addr, 4),				\
99 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
100 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
101 
102 #define SPINAND_PROG_EXEC_OP(addr)					\
103 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1),				\
104 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
105 		   SPI_MEM_OP_NO_DUMMY,					\
106 		   SPI_MEM_OP_NO_DATA)
107 
108 #define SPINAND_PROG_LOAD(reset, addr, buf, len)			\
109 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1),		\
110 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
111 		   SPI_MEM_OP_NO_DUMMY,					\
112 		   SPI_MEM_OP_DATA_OUT(len, buf, 1))
113 
114 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len)			\
115 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1),		\
116 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
117 		   SPI_MEM_OP_NO_DUMMY,					\
118 		   SPI_MEM_OP_DATA_OUT(len, buf, 4))
119 
120 /**
121  * Standard SPI NAND flash commands
122  */
123 #define SPINAND_CMD_PROG_LOAD_X4		0x32
124 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4	0x34
125 
126 /* feature register */
127 #define REG_BLOCK_LOCK		0xa0
128 #define BL_ALL_UNLOCKED		0x00
129 
130 /* configuration register */
131 #define REG_CFG			0xb0
132 #define CFG_OTP_ENABLE		BIT(6)
133 #define CFG_ECC_ENABLE		BIT(4)
134 #define CFG_QUAD_ENABLE		BIT(0)
135 
136 /* status register */
137 #define REG_STATUS		0xc0
138 #define STATUS_BUSY		BIT(0)
139 #define STATUS_ERASE_FAILED	BIT(2)
140 #define STATUS_PROG_FAILED	BIT(3)
141 #define STATUS_ECC_MASK		GENMASK(5, 4)
142 #define STATUS_ECC_NO_BITFLIPS	(0 << 4)
143 #define STATUS_ECC_HAS_BITFLIPS	(1 << 4)
144 #define STATUS_ECC_UNCOR_ERROR	(2 << 4)
145 
146 struct spinand_op;
147 struct spinand_device;
148 
149 #define SPINAND_MAX_ID_LEN	4
150 
151 /**
152  * struct spinand_id - SPI NAND id structure
153  * @data: buffer containing the id bytes. Currently 4 bytes large, but can
154  *	  be extended if required
155  * @len: ID length
156  *
157  * struct_spinand_id->data contains all bytes returned after a READ_ID command,
158  * including dummy bytes if the chip does not emit ID bytes right after the
159  * READ_ID command. The responsibility to extract real ID bytes is left to
160  * struct_manufacurer_ops->detect().
161  */
162 struct spinand_id {
163 	u8 data[SPINAND_MAX_ID_LEN];
164 	int len;
165 };
166 
167 /**
168  * struct manufacurer_ops - SPI NAND manufacturer specific operations
169  * @detect: detect a SPI NAND device. Every time a SPI NAND device is probed
170  *	    the core calls the struct_manufacurer_ops->detect() hook of each
171  *	    registered manufacturer until one of them return 1. Note that
172  *	    the first thing to check in this hook is that the manufacturer ID
173  *	    in struct_spinand_device->id matches the manufacturer whose
174  *	    ->detect() hook has been called. Should return 1 if there's a
175  *	    match, 0 if the manufacturer ID does not match and a negative
176  *	    error code otherwise. When true is returned, the core assumes
177  *	    that properties of the NAND chip (spinand->base.memorg and
178  *	    spinand->base.eccreq) have been filled
179  * @init: initialize a SPI NAND device
180  * @cleanup: cleanup a SPI NAND device
181  *
182  * Each SPI NAND manufacturer driver should implement this interface so that
183  * NAND chips coming from this vendor can be detected and initialized properly.
184  */
185 struct spinand_manufacturer_ops {
186 	int (*detect)(struct spinand_device *spinand);
187 	int (*init)(struct spinand_device *spinand);
188 	void (*cleanup)(struct spinand_device *spinand);
189 };
190 
191 /**
192  * struct spinand_manufacturer - SPI NAND manufacturer instance
193  * @id: manufacturer ID
194  * @name: manufacturer name
195  * @ops: manufacturer operations
196  */
197 struct spinand_manufacturer {
198 	u8 id;
199 	char *name;
200 	const struct spinand_manufacturer_ops *ops;
201 };
202 
203 /* SPI NAND manufacturers */
204 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
205 extern const struct spinand_manufacturer macronix_spinand_manufacturer;
206 extern const struct spinand_manufacturer micron_spinand_manufacturer;
207 extern const struct spinand_manufacturer winbond_spinand_manufacturer;
208 
209 /**
210  * struct spinand_op_variants - SPI NAND operation variants
211  * @ops: the list of variants for a given operation
212  * @nops: the number of variants
213  *
214  * Some operations like read-from-cache/write-to-cache have several variants
215  * depending on the number of IO lines you use to transfer data or address
216  * cycles. This structure is a way to describe the different variants supported
217  * by a chip and let the core pick the best one based on the SPI mem controller
218  * capabilities.
219  */
220 struct spinand_op_variants {
221 	const struct spi_mem_op *ops;
222 	unsigned int nops;
223 };
224 
225 #define SPINAND_OP_VARIANTS(name, ...)					\
226 	const struct spinand_op_variants name = {			\
227 		.ops = (struct spi_mem_op[]) { __VA_ARGS__ },		\
228 		.nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) /	\
229 			sizeof(struct spi_mem_op),			\
230 	}
231 
232 /**
233  * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
234  *		      chip
235  * @get_status: get the ECC status. Should return a positive number encoding
236  *		the number of corrected bitflips if correction was possible or
237  *		-EBADMSG if there are uncorrectable errors. I can also return
238  *		other negative error codes if the error is not caused by
239  *		uncorrectable bitflips
240  * @ooblayout: the OOB layout used by the on-die ECC implementation
241  */
242 struct spinand_ecc_info {
243 	int (*get_status)(struct spinand_device *spinand, u8 status);
244 	const struct mtd_ooblayout_ops *ooblayout;
245 };
246 
247 #define SPINAND_HAS_QE_BIT		BIT(0)
248 
249 /**
250  * struct spinand_info - Structure used to describe SPI NAND chips
251  * @model: model name
252  * @devid: device ID
253  * @flags: OR-ing of the SPINAND_XXX flags
254  * @memorg: memory organization
255  * @eccreq: ECC requirements
256  * @eccinfo: on-die ECC info
257  * @op_variants: operations variants
258  * @op_variants.read_cache: variants of the read-cache operation
259  * @op_variants.write_cache: variants of the write-cache operation
260  * @op_variants.update_cache: variants of the update-cache operation
261  * @select_target: function used to select a target/die. Required only for
262  *		   multi-die chips
263  *
264  * Each SPI NAND manufacturer driver should have a spinand_info table
265  * describing all the chips supported by the driver.
266  */
267 struct spinand_info {
268 	const char *model;
269 	u8 devid;
270 	u32 flags;
271 	struct nand_memory_organization memorg;
272 	struct nand_ecc_req eccreq;
273 	struct spinand_ecc_info eccinfo;
274 	struct {
275 		const struct spinand_op_variants *read_cache;
276 		const struct spinand_op_variants *write_cache;
277 		const struct spinand_op_variants *update_cache;
278 	} op_variants;
279 	int (*select_target)(struct spinand_device *spinand,
280 			     unsigned int target);
281 };
282 
283 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update)		\
284 	{								\
285 		.read_cache = __read,					\
286 		.write_cache = __write,					\
287 		.update_cache = __update,				\
288 	}
289 
290 #define SPINAND_ECCINFO(__ooblayout, __get_status)			\
291 	.eccinfo = {							\
292 		.ooblayout = __ooblayout,				\
293 		.get_status = __get_status,				\
294 	}
295 
296 #define SPINAND_SELECT_TARGET(__func)					\
297 	.select_target = __func,
298 
299 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants,	\
300 		     __flags, ...)					\
301 	{								\
302 		.model = __model,					\
303 		.devid = __id,						\
304 		.memorg = __memorg,					\
305 		.eccreq = __eccreq,					\
306 		.op_variants = __op_variants,				\
307 		.flags = __flags,					\
308 		__VA_ARGS__						\
309 	}
310 
311 /**
312  * struct spinand_device - SPI NAND device instance
313  * @base: NAND device instance
314  * @slave: pointer to the SPI slave object
315  * @lock: lock used to serialize accesses to the NAND
316  * @id: NAND ID as returned by READ_ID
317  * @flags: NAND flags
318  * @op_templates: various SPI mem op templates
319  * @op_templates.read_cache: read cache op template
320  * @op_templates.write_cache: write cache op template
321  * @op_templates.update_cache: update cache op template
322  * @select_target: select a specific target/die. Usually called before sending
323  *		   a command addressing a page or an eraseblock embedded in
324  *		   this die. Only required if your chip exposes several dies
325  * @cur_target: currently selected target/die
326  * @eccinfo: on-die ECC information
327  * @cfg_cache: config register cache. One entry per die
328  * @databuf: bounce buffer for data
329  * @oobbuf: bounce buffer for OOB data
330  * @scratchbuf: buffer used for everything but page accesses. This is needed
331  *		because the spi-mem interface explicitly requests that buffers
332  *		passed in spi_mem_op be DMA-able, so we can't based the bufs on
333  *		the stack
334  * @manufacturer: SPI NAND manufacturer information
335  * @priv: manufacturer private data
336  */
337 struct spinand_device {
338 	struct nand_device base;
339 #ifndef __UBOOT__
340 	struct spi_mem *spimem;
341 	struct mutex lock;
342 #else
343 	struct spi_slave *slave;
344 #endif
345 	struct spinand_id id;
346 	u32 flags;
347 
348 	struct {
349 		const struct spi_mem_op *read_cache;
350 		const struct spi_mem_op *write_cache;
351 		const struct spi_mem_op *update_cache;
352 	} op_templates;
353 
354 	int (*select_target)(struct spinand_device *spinand,
355 			     unsigned int target);
356 	unsigned int cur_target;
357 
358 	struct spinand_ecc_info eccinfo;
359 
360 	u8 *cfg_cache;
361 	u8 *databuf;
362 	u8 *oobbuf;
363 	u8 *scratchbuf;
364 	const struct spinand_manufacturer *manufacturer;
365 	void *priv;
366 };
367 
368 /**
369  * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
370  * @mtd: MTD instance
371  *
372  * Return: the SPI NAND device attached to @mtd.
373  */
374 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
375 {
376 	return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
377 }
378 
379 /**
380  * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
381  * @spinand: SPI NAND device
382  *
383  * Return: the MTD device embedded in @spinand.
384  */
385 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
386 {
387 	return nanddev_to_mtd(&spinand->base);
388 }
389 
390 /**
391  * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
392  * @nand: NAND object
393  *
394  * Return: the SPI NAND device embedding @nand.
395  */
396 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
397 {
398 	return container_of(nand, struct spinand_device, base);
399 }
400 
401 /**
402  * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
403  * @spinand: SPI NAND device
404  *
405  * Return: the NAND device embedded in @spinand.
406  */
407 static inline struct nand_device *
408 spinand_to_nand(struct spinand_device *spinand)
409 {
410 	return &spinand->base;
411 }
412 
413 /**
414  * spinand_set_of_node - Attach a DT node to a SPI NAND device
415  * @spinand: SPI NAND device
416  * @np: DT node
417  *
418  * Attach a DT node to a SPI NAND device.
419  */
420 static inline void spinand_set_of_node(struct spinand_device *spinand,
421 				       const struct device_node *np)
422 {
423 	nanddev_set_of_node(&spinand->base, np);
424 }
425 
426 int spinand_match_and_init(struct spinand_device *dev,
427 			   const struct spinand_info *table,
428 			   unsigned int table_size, u8 devid);
429 
430 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
431 int spinand_select_target(struct spinand_device *spinand, unsigned int target);
432 
433 #endif /* __LINUX_MTD_SPINAND_H */
434