1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 */ 8 #ifndef __LINUX_MTD_SPINAND_H 9 #define __LINUX_MTD_SPINAND_H 10 11 #ifndef __UBOOT__ 12 #include <linux/mutex.h> 13 #include <linux/bitops.h> 14 #include <linux/device.h> 15 #include <linux/mtd/mtd.h> 16 #include <linux/mtd/nand.h> 17 #include <linux/spi/spi.h> 18 #include <linux/spi/spi-mem.h> 19 #else 20 #include <common.h> 21 #include <spi.h> 22 #include <spi-mem.h> 23 #include <linux/mtd/nand.h> 24 #endif 25 26 /** 27 * Standard SPI NAND flash operations 28 */ 29 30 #define SPINAND_RESET_OP \ 31 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \ 32 SPI_MEM_OP_NO_ADDR, \ 33 SPI_MEM_OP_NO_DUMMY, \ 34 SPI_MEM_OP_NO_DATA) 35 36 #define SPINAND_WR_EN_DIS_OP(enable) \ 37 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \ 38 SPI_MEM_OP_NO_ADDR, \ 39 SPI_MEM_OP_NO_DUMMY, \ 40 SPI_MEM_OP_NO_DATA) 41 42 #define SPINAND_READID_OP(ndummy, buf, len) \ 43 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \ 44 SPI_MEM_OP_NO_ADDR, \ 45 SPI_MEM_OP_DUMMY(ndummy, 1), \ 46 SPI_MEM_OP_DATA_IN(len, buf, 1)) 47 48 #define SPINAND_SET_FEATURE_OP(reg, valptr) \ 49 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \ 50 SPI_MEM_OP_ADDR(1, reg, 1), \ 51 SPI_MEM_OP_NO_DUMMY, \ 52 SPI_MEM_OP_DATA_OUT(1, valptr, 1)) 53 54 #define SPINAND_GET_FEATURE_OP(reg, valptr) \ 55 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \ 56 SPI_MEM_OP_ADDR(1, reg, 1), \ 57 SPI_MEM_OP_NO_DUMMY, \ 58 SPI_MEM_OP_DATA_IN(1, valptr, 1)) 59 60 #define SPINAND_BLK_ERASE_OP(addr) \ 61 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \ 62 SPI_MEM_OP_ADDR(3, addr, 1), \ 63 SPI_MEM_OP_NO_DUMMY, \ 64 SPI_MEM_OP_NO_DATA) 65 66 #define SPINAND_PAGE_READ_OP(addr) \ 67 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \ 68 SPI_MEM_OP_ADDR(3, addr, 1), \ 69 SPI_MEM_OP_NO_DUMMY, \ 70 SPI_MEM_OP_NO_DATA) 71 72 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \ 73 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ 74 SPI_MEM_OP_ADDR(2, addr, 1), \ 75 SPI_MEM_OP_DUMMY(ndummy, 1), \ 76 SPI_MEM_OP_DATA_IN(len, buf, 1)) 77 78 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \ 79 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 80 SPI_MEM_OP_ADDR(2, addr, 1), \ 81 SPI_MEM_OP_DUMMY(ndummy, 1), \ 82 SPI_MEM_OP_DATA_IN(len, buf, 2)) 83 84 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \ 85 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 86 SPI_MEM_OP_ADDR(2, addr, 1), \ 87 SPI_MEM_OP_DUMMY(ndummy, 1), \ 88 SPI_MEM_OP_DATA_IN(len, buf, 4)) 89 90 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \ 91 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 92 SPI_MEM_OP_ADDR(2, addr, 2), \ 93 SPI_MEM_OP_DUMMY(ndummy, 2), \ 94 SPI_MEM_OP_DATA_IN(len, buf, 2)) 95 96 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \ 97 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 98 SPI_MEM_OP_ADDR(2, addr, 4), \ 99 SPI_MEM_OP_DUMMY(ndummy, 4), \ 100 SPI_MEM_OP_DATA_IN(len, buf, 4)) 101 102 #define SPINAND_PROG_EXEC_OP(addr) \ 103 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \ 104 SPI_MEM_OP_ADDR(3, addr, 1), \ 105 SPI_MEM_OP_NO_DUMMY, \ 106 SPI_MEM_OP_NO_DATA) 107 108 #define SPINAND_PROG_LOAD(reset, addr, buf, len) \ 109 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \ 110 SPI_MEM_OP_ADDR(2, addr, 1), \ 111 SPI_MEM_OP_NO_DUMMY, \ 112 SPI_MEM_OP_DATA_OUT(len, buf, 1)) 113 114 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \ 115 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \ 116 SPI_MEM_OP_ADDR(2, addr, 1), \ 117 SPI_MEM_OP_NO_DUMMY, \ 118 SPI_MEM_OP_DATA_OUT(len, buf, 4)) 119 120 /** 121 * Standard SPI NAND flash commands 122 */ 123 #define SPINAND_CMD_PROG_LOAD_X4 0x32 124 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34 125 126 /* feature register */ 127 #define REG_BLOCK_LOCK 0xa0 128 #define BL_ALL_UNLOCKED 0x00 129 130 /* configuration register */ 131 #define REG_CFG 0xb0 132 #define CFG_OTP_ENABLE BIT(6) 133 #define CFG_ECC_ENABLE BIT(4) 134 #define CFG_QUAD_ENABLE BIT(0) 135 136 /* status register */ 137 #define REG_STATUS 0xc0 138 #define STATUS_BUSY BIT(0) 139 #define STATUS_ERASE_FAILED BIT(2) 140 #define STATUS_PROG_FAILED BIT(3) 141 #define STATUS_ECC_MASK GENMASK(5, 4) 142 #define STATUS_ECC_NO_BITFLIPS (0 << 4) 143 #define STATUS_ECC_HAS_BITFLIPS (1 << 4) 144 #define STATUS_ECC_UNCOR_ERROR (2 << 4) 145 146 struct spinand_op; 147 struct spinand_device; 148 149 #define SPINAND_MAX_ID_LEN 4 150 151 /** 152 * struct spinand_id - SPI NAND id structure 153 * @data: buffer containing the id bytes. Currently 4 bytes large, but can 154 * be extended if required 155 * @len: ID length 156 * 157 * struct_spinand_id->data contains all bytes returned after a READ_ID command, 158 * including dummy bytes if the chip does not emit ID bytes right after the 159 * READ_ID command. The responsibility to extract real ID bytes is left to 160 * struct_manufacurer_ops->detect(). 161 */ 162 struct spinand_id { 163 u8 data[SPINAND_MAX_ID_LEN]; 164 int len; 165 }; 166 167 /** 168 * struct manufacurer_ops - SPI NAND manufacturer specific operations 169 * @detect: detect a SPI NAND device. Every time a SPI NAND device is probed 170 * the core calls the struct_manufacurer_ops->detect() hook of each 171 * registered manufacturer until one of them return 1. Note that 172 * the first thing to check in this hook is that the manufacturer ID 173 * in struct_spinand_device->id matches the manufacturer whose 174 * ->detect() hook has been called. Should return 1 if there's a 175 * match, 0 if the manufacturer ID does not match and a negative 176 * error code otherwise. When true is returned, the core assumes 177 * that properties of the NAND chip (spinand->base.memorg and 178 * spinand->base.eccreq) have been filled 179 * @init: initialize a SPI NAND device 180 * @cleanup: cleanup a SPI NAND device 181 * 182 * Each SPI NAND manufacturer driver should implement this interface so that 183 * NAND chips coming from this vendor can be detected and initialized properly. 184 */ 185 struct spinand_manufacturer_ops { 186 int (*detect)(struct spinand_device *spinand); 187 int (*init)(struct spinand_device *spinand); 188 void (*cleanup)(struct spinand_device *spinand); 189 }; 190 191 /** 192 * struct spinand_manufacturer - SPI NAND manufacturer instance 193 * @id: manufacturer ID 194 * @name: manufacturer name 195 * @ops: manufacturer operations 196 */ 197 struct spinand_manufacturer { 198 u8 id; 199 char *name; 200 const struct spinand_manufacturer_ops *ops; 201 }; 202 203 /* SPI NAND manufacturers */ 204 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer; 205 extern const struct spinand_manufacturer macronix_spinand_manufacturer; 206 extern const struct spinand_manufacturer micron_spinand_manufacturer; 207 extern const struct spinand_manufacturer winbond_spinand_manufacturer; 208 209 /** 210 * struct spinand_op_variants - SPI NAND operation variants 211 * @ops: the list of variants for a given operation 212 * @nops: the number of variants 213 * 214 * Some operations like read-from-cache/write-to-cache have several variants 215 * depending on the number of IO lines you use to transfer data or address 216 * cycles. This structure is a way to describe the different variants supported 217 * by a chip and let the core pick the best one based on the SPI mem controller 218 * capabilities. 219 */ 220 struct spinand_op_variants { 221 const struct spi_mem_op *ops; 222 unsigned int nops; 223 }; 224 225 #define SPINAND_OP_VARIANTS(name, ...) \ 226 const struct spinand_op_variants name = { \ 227 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \ 228 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \ 229 sizeof(struct spi_mem_op), \ 230 } 231 232 /** 233 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND 234 * chip 235 * @get_status: get the ECC status. Should return a positive number encoding 236 * the number of corrected bitflips if correction was possible or 237 * -EBADMSG if there are uncorrectable errors. I can also return 238 * other negative error codes if the error is not caused by 239 * uncorrectable bitflips 240 * @ooblayout: the OOB layout used by the on-die ECC implementation 241 */ 242 struct spinand_ecc_info { 243 int (*get_status)(struct spinand_device *spinand, u8 status); 244 const struct mtd_ooblayout_ops *ooblayout; 245 }; 246 247 #define SPINAND_HAS_QE_BIT BIT(0) 248 249 /** 250 * struct spinand_info - Structure used to describe SPI NAND chips 251 * @model: model name 252 * @devid: device ID 253 * @flags: OR-ing of the SPINAND_XXX flags 254 * @memorg: memory organization 255 * @eccreq: ECC requirements 256 * @eccinfo: on-die ECC info 257 * @op_variants: operations variants 258 * @op_variants.read_cache: variants of the read-cache operation 259 * @op_variants.write_cache: variants of the write-cache operation 260 * @op_variants.update_cache: variants of the update-cache operation 261 * @select_target: function used to select a target/die. Required only for 262 * multi-die chips 263 * 264 * Each SPI NAND manufacturer driver should have a spinand_info table 265 * describing all the chips supported by the driver. 266 */ 267 struct spinand_info { 268 const char *model; 269 u8 devid; 270 u32 flags; 271 struct nand_memory_organization memorg; 272 struct nand_ecc_req eccreq; 273 struct spinand_ecc_info eccinfo; 274 struct { 275 const struct spinand_op_variants *read_cache; 276 const struct spinand_op_variants *write_cache; 277 const struct spinand_op_variants *update_cache; 278 } op_variants; 279 int (*select_target)(struct spinand_device *spinand, 280 unsigned int target); 281 }; 282 283 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \ 284 { \ 285 .read_cache = __read, \ 286 .write_cache = __write, \ 287 .update_cache = __update, \ 288 } 289 290 #define SPINAND_ECCINFO(__ooblayout, __get_status) \ 291 .eccinfo = { \ 292 .ooblayout = __ooblayout, \ 293 .get_status = __get_status, \ 294 } 295 296 #define SPINAND_SELECT_TARGET(__func) \ 297 .select_target = __func, 298 299 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \ 300 __flags, ...) \ 301 { \ 302 .model = __model, \ 303 .devid = __id, \ 304 .memorg = __memorg, \ 305 .eccreq = __eccreq, \ 306 .op_variants = __op_variants, \ 307 .flags = __flags, \ 308 __VA_ARGS__ \ 309 } 310 311 /** 312 * struct spinand_device - SPI NAND device instance 313 * @base: NAND device instance 314 * @slave: pointer to the SPI slave object 315 * @lock: lock used to serialize accesses to the NAND 316 * @id: NAND ID as returned by READ_ID 317 * @flags: NAND flags 318 * @op_templates: various SPI mem op templates 319 * @op_templates.read_cache: read cache op template 320 * @op_templates.write_cache: write cache op template 321 * @op_templates.update_cache: update cache op template 322 * @select_target: select a specific target/die. Usually called before sending 323 * a command addressing a page or an eraseblock embedded in 324 * this die. Only required if your chip exposes several dies 325 * @cur_target: currently selected target/die 326 * @eccinfo: on-die ECC information 327 * @cfg_cache: config register cache. One entry per die 328 * @databuf: bounce buffer for data 329 * @oobbuf: bounce buffer for OOB data 330 * @scratchbuf: buffer used for everything but page accesses. This is needed 331 * because the spi-mem interface explicitly requests that buffers 332 * passed in spi_mem_op be DMA-able, so we can't based the bufs on 333 * the stack 334 * @manufacturer: SPI NAND manufacturer information 335 * @priv: manufacturer private data 336 */ 337 struct spinand_device { 338 struct nand_device base; 339 #ifndef __UBOOT__ 340 struct spi_mem *spimem; 341 struct mutex lock; 342 #else 343 struct spi_slave *slave; 344 #endif 345 struct spinand_id id; 346 u32 flags; 347 348 struct { 349 const struct spi_mem_op *read_cache; 350 const struct spi_mem_op *write_cache; 351 const struct spi_mem_op *update_cache; 352 } op_templates; 353 354 int (*select_target)(struct spinand_device *spinand, 355 unsigned int target); 356 unsigned int cur_target; 357 358 struct spinand_ecc_info eccinfo; 359 360 u8 *cfg_cache; 361 u8 *databuf; 362 u8 *oobbuf; 363 u8 *scratchbuf; 364 const struct spinand_manufacturer *manufacturer; 365 void *priv; 366 }; 367 368 /** 369 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance 370 * @mtd: MTD instance 371 * 372 * Return: the SPI NAND device attached to @mtd. 373 */ 374 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd) 375 { 376 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base); 377 } 378 379 /** 380 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device 381 * @spinand: SPI NAND device 382 * 383 * Return: the MTD device embedded in @spinand. 384 */ 385 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand) 386 { 387 return nanddev_to_mtd(&spinand->base); 388 } 389 390 /** 391 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object 392 * @nand: NAND object 393 * 394 * Return: the SPI NAND device embedding @nand. 395 */ 396 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand) 397 { 398 return container_of(nand, struct spinand_device, base); 399 } 400 401 /** 402 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object 403 * @spinand: SPI NAND device 404 * 405 * Return: the NAND device embedded in @spinand. 406 */ 407 static inline struct nand_device * 408 spinand_to_nand(struct spinand_device *spinand) 409 { 410 return &spinand->base; 411 } 412 413 /** 414 * spinand_set_of_node - Attach a DT node to a SPI NAND device 415 * @spinand: SPI NAND device 416 * @np: DT node 417 * 418 * Attach a DT node to a SPI NAND device. 419 */ 420 static inline void spinand_set_of_node(struct spinand_device *spinand, 421 const struct device_node *np) 422 { 423 nanddev_set_of_node(&spinand->base, np); 424 } 425 426 int spinand_match_and_init(struct spinand_device *dev, 427 const struct spinand_info *table, 428 unsigned int table_size, u8 devid); 429 430 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val); 431 int spinand_select_target(struct spinand_device *spinand, unsigned int target); 432 433 #endif /* __LINUX_MTD_SPINAND_H */ 434