xref: /openbmc/u-boot/include/linux/mtd/nand.h (revision c40b6df87fc0193a7184ada9f53aaf57cdec0cdf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  Copyright 2017 - Free Electrons
4  *
5  *  Authors:
6  *	Boris Brezillon <boris.brezillon@free-electrons.com>
7  *	Peter Pan <peterpandong@micron.com>
8  */
9 
10 #ifndef __LINUX_MTD_NAND_H
11 #define __LINUX_MTD_NAND_H
12 
13 #include <linux/mtd/mtd.h>
14 
15 /**
16  * struct nand_memory_organization - Memory organization structure
17  * @bits_per_cell: number of bits per NAND cell
18  * @pagesize: page size
19  * @oobsize: OOB area size
20  * @pages_per_eraseblock: number of pages per eraseblock
21  * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
22  * @planes_per_lun: number of planes per LUN
23  * @luns_per_target: number of LUN per target (target is a synonym for die)
24  * @ntargets: total number of targets exposed by the NAND device
25  */
26 struct nand_memory_organization {
27 	unsigned int bits_per_cell;
28 	unsigned int pagesize;
29 	unsigned int oobsize;
30 	unsigned int pages_per_eraseblock;
31 	unsigned int eraseblocks_per_lun;
32 	unsigned int planes_per_lun;
33 	unsigned int luns_per_target;
34 	unsigned int ntargets;
35 };
36 
37 #define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt)	\
38 	{							\
39 		.bits_per_cell = (bpc),				\
40 		.pagesize = (ps),				\
41 		.oobsize = (os),				\
42 		.pages_per_eraseblock = (ppe),			\
43 		.eraseblocks_per_lun = (epl),			\
44 		.planes_per_lun = (ppl),			\
45 		.luns_per_target = (lpt),			\
46 		.ntargets = (nt),				\
47 	}
48 
49 /**
50  * struct nand_row_converter - Information needed to convert an absolute offset
51  *			       into a row address
52  * @lun_addr_shift: position of the LUN identifier in the row address
53  * @eraseblock_addr_shift: position of the eraseblock identifier in the row
54  *			   address
55  */
56 struct nand_row_converter {
57 	unsigned int lun_addr_shift;
58 	unsigned int eraseblock_addr_shift;
59 };
60 
61 /**
62  * struct nand_pos - NAND position object
63  * @target: the NAND target/die
64  * @lun: the LUN identifier
65  * @plane: the plane within the LUN
66  * @eraseblock: the eraseblock within the LUN
67  * @page: the page within the LUN
68  *
69  * These information are usually used by specific sub-layers to select the
70  * appropriate target/die and generate a row address to pass to the device.
71  */
72 struct nand_pos {
73 	unsigned int target;
74 	unsigned int lun;
75 	unsigned int plane;
76 	unsigned int eraseblock;
77 	unsigned int page;
78 };
79 
80 /**
81  * struct nand_page_io_req - NAND I/O request object
82  * @pos: the position this I/O request is targeting
83  * @dataoffs: the offset within the page
84  * @datalen: number of data bytes to read from/write to this page
85  * @databuf: buffer to store data in or get data from
86  * @ooboffs: the OOB offset within the page
87  * @ooblen: the number of OOB bytes to read from/write to this page
88  * @oobbuf: buffer to store OOB data in or get OOB data from
89  * @mode: one of the %MTD_OPS_XXX mode
90  *
91  * This object is used to pass per-page I/O requests to NAND sub-layers. This
92  * way all useful information are already formatted in a useful way and
93  * specific NAND layers can focus on translating these information into
94  * specific commands/operations.
95  */
96 struct nand_page_io_req {
97 	struct nand_pos pos;
98 	unsigned int dataoffs;
99 	unsigned int datalen;
100 	union {
101 		const void *out;
102 		void *in;
103 	} databuf;
104 	unsigned int ooboffs;
105 	unsigned int ooblen;
106 	union {
107 		const void *out;
108 		void *in;
109 	} oobbuf;
110 	int mode;
111 };
112 
113 /**
114  * struct nand_ecc_req - NAND ECC requirements
115  * @strength: ECC strength
116  * @step_size: ECC step/block size
117  */
118 struct nand_ecc_req {
119 	unsigned int strength;
120 	unsigned int step_size;
121 };
122 
123 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
124 
125 /**
126  * struct nand_bbt - bad block table object
127  * @cache: in memory BBT cache
128  */
129 struct nand_bbt {
130 	unsigned long *cache;
131 };
132 
133 struct nand_device;
134 
135 /**
136  * struct nand_ops - NAND operations
137  * @erase: erase a specific block. No need to check if the block is bad before
138  *	   erasing, this has been taken care of by the generic NAND layer
139  * @markbad: mark a specific block bad. No need to check if the block is
140  *	     already marked bad, this has been taken care of by the generic
141  *	     NAND layer. This method should just write the BBM (Bad Block
142  *	     Marker) so that future call to struct_nand_ops->isbad() return
143  *	     true
144  * @isbad: check whether a block is bad or not. This method should just read
145  *	   the BBM and return whether the block is bad or not based on what it
146  *	   reads
147  *
148  * These are all low level operations that should be implemented by specialized
149  * NAND layers (SPI NAND, raw NAND, ...).
150  */
151 struct nand_ops {
152 	int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
153 	int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
154 	bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
155 };
156 
157 /**
158  * struct nand_device - NAND device
159  * @mtd: MTD instance attached to the NAND device
160  * @memorg: memory layout
161  * @eccreq: ECC requirements
162  * @rowconv: position to row address converter
163  * @bbt: bad block table info
164  * @ops: NAND operations attached to the NAND device
165  *
166  * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
167  * should declare their own NAND object embedding a nand_device struct (that's
168  * how inheritance is done).
169  * struct_nand_device->memorg and struct_nand_device->eccreq should be filled
170  * at device detection time to reflect the NAND device
171  * capabilities/requirements. Once this is done nanddev_init() can be called.
172  * It will take care of converting NAND information into MTD ones, which means
173  * the specialized NAND layers should never manually tweak
174  * struct_nand_device->mtd except for the ->_read/write() hooks.
175  */
176 struct nand_device {
177 	struct mtd_info *mtd;
178 	struct nand_memory_organization memorg;
179 	struct nand_ecc_req eccreq;
180 	struct nand_row_converter rowconv;
181 	struct nand_bbt bbt;
182 	const struct nand_ops *ops;
183 };
184 
185 /**
186  * struct nand_io_iter - NAND I/O iterator
187  * @req: current I/O request
188  * @oobbytes_per_page: maximum number of OOB bytes per page
189  * @dataleft: remaining number of data bytes to read/write
190  * @oobleft: remaining number of OOB bytes to read/write
191  *
192  * Can be used by specialized NAND layers to iterate over all pages covered
193  * by an MTD I/O request, which should greatly simplifies the boiler-plate
194  * code needed to read/write data from/to a NAND device.
195  */
196 struct nand_io_iter {
197 	struct nand_page_io_req req;
198 	unsigned int oobbytes_per_page;
199 	unsigned int dataleft;
200 	unsigned int oobleft;
201 };
202 
203 /**
204  * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
205  * @mtd: MTD instance
206  *
207  * Return: the NAND device embedding @mtd.
208  */
209 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
210 {
211 	return mtd->priv;
212 }
213 
214 /**
215  * nanddev_to_mtd() - Get the MTD device attached to a NAND device
216  * @nand: NAND device
217  *
218  * Return: the MTD device embedded in @nand.
219  */
220 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
221 {
222 	return nand->mtd;
223 }
224 
225 /*
226  * nanddev_bits_per_cell() - Get the number of bits per cell
227  * @nand: NAND device
228  *
229  * Return: the number of bits per cell.
230  */
231 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
232 {
233 	return nand->memorg.bits_per_cell;
234 }
235 
236 /**
237  * nanddev_page_size() - Get NAND page size
238  * @nand: NAND device
239  *
240  * Return: the page size.
241  */
242 static inline size_t nanddev_page_size(const struct nand_device *nand)
243 {
244 	return nand->memorg.pagesize;
245 }
246 
247 /**
248  * nanddev_per_page_oobsize() - Get NAND OOB size
249  * @nand: NAND device
250  *
251  * Return: the OOB size.
252  */
253 static inline unsigned int
254 nanddev_per_page_oobsize(const struct nand_device *nand)
255 {
256 	return nand->memorg.oobsize;
257 }
258 
259 /**
260  * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
261  * @nand: NAND device
262  *
263  * Return: the number of pages per eraseblock.
264  */
265 static inline unsigned int
266 nanddev_pages_per_eraseblock(const struct nand_device *nand)
267 {
268 	return nand->memorg.pages_per_eraseblock;
269 }
270 
271 /**
272  * nanddev_per_page_oobsize() - Get NAND erase block size
273  * @nand: NAND device
274  *
275  * Return: the eraseblock size.
276  */
277 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
278 {
279 	return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
280 }
281 
282 /**
283  * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
284  * @nand: NAND device
285  *
286  * Return: the number of eraseblocks per LUN.
287  */
288 static inline unsigned int
289 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
290 {
291 	return nand->memorg.eraseblocks_per_lun;
292 }
293 
294 /**
295  * nanddev_target_size() - Get the total size provided by a single target/die
296  * @nand: NAND device
297  *
298  * Return: the total size exposed by a single target/die in bytes.
299  */
300 static inline u64 nanddev_target_size(const struct nand_device *nand)
301 {
302 	return (u64)nand->memorg.luns_per_target *
303 	       nand->memorg.eraseblocks_per_lun *
304 	       nand->memorg.pages_per_eraseblock *
305 	       nand->memorg.pagesize;
306 }
307 
308 /**
309  * nanddev_ntarget() - Get the total of targets
310  * @nand: NAND device
311  *
312  * Return: the number of targets/dies exposed by @nand.
313  */
314 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
315 {
316 	return nand->memorg.ntargets;
317 }
318 
319 /**
320  * nanddev_neraseblocks() - Get the total number of erasablocks
321  * @nand: NAND device
322  *
323  * Return: the total number of eraseblocks exposed by @nand.
324  */
325 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
326 {
327 	return (u64)nand->memorg.luns_per_target *
328 	       nand->memorg.eraseblocks_per_lun *
329 	       nand->memorg.pages_per_eraseblock;
330 }
331 
332 /**
333  * nanddev_size() - Get NAND size
334  * @nand: NAND device
335  *
336  * Return: the total size (in bytes) exposed by @nand.
337  */
338 static inline u64 nanddev_size(const struct nand_device *nand)
339 {
340 	return nanddev_target_size(nand) * nanddev_ntargets(nand);
341 }
342 
343 /**
344  * nanddev_get_memorg() - Extract memory organization info from a NAND device
345  * @nand: NAND device
346  *
347  * This can be used by the upper layer to fill the memorg info before calling
348  * nanddev_init().
349  *
350  * Return: the memorg object embedded in the NAND device.
351  */
352 static inline struct nand_memory_organization *
353 nanddev_get_memorg(struct nand_device *nand)
354 {
355 	return &nand->memorg;
356 }
357 
358 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
359 		 struct module *owner);
360 void nanddev_cleanup(struct nand_device *nand);
361 
362 /**
363  * nanddev_register() - Register a NAND device
364  * @nand: NAND device
365  *
366  * Register a NAND device.
367  * This function is just a wrapper around mtd_device_register()
368  * registering the MTD device embedded in @nand.
369  *
370  * Return: 0 in case of success, a negative error code otherwise.
371  */
372 static inline int nanddev_register(struct nand_device *nand)
373 {
374 	return mtd_device_register(nand->mtd, NULL, 0);
375 }
376 
377 /**
378  * nanddev_unregister() - Unregister a NAND device
379  * @nand: NAND device
380  *
381  * Unregister a NAND device.
382  * This function is just a wrapper around mtd_device_unregister()
383  * unregistering the MTD device embedded in @nand.
384  *
385  * Return: 0 in case of success, a negative error code otherwise.
386  */
387 static inline int nanddev_unregister(struct nand_device *nand)
388 {
389 	return mtd_device_unregister(nand->mtd);
390 }
391 
392 /**
393  * nanddev_set_of_node() - Attach a DT node to a NAND device
394  * @nand: NAND device
395  * @np: DT node
396  *
397  * Attach a DT node to a NAND device.
398  */
399 static inline void nanddev_set_of_node(struct nand_device *nand,
400 				       const struct device_node *np)
401 {
402 	mtd_set_of_node(nand->mtd, np);
403 }
404 
405 /**
406  * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
407  * @nand: NAND device
408  *
409  * Return: the DT node attached to @nand.
410  */
411 static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand)
412 {
413 	return mtd_get_of_node(nand->mtd);
414 }
415 
416 /**
417  * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
418  * @nand: NAND device
419  * @offs: absolute NAND offset (usually passed by the MTD layer)
420  * @pos: a NAND position object to fill in
421  *
422  * Converts @offs into a nand_pos representation.
423  *
424  * Return: the offset within the NAND page pointed by @pos.
425  */
426 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
427 					       loff_t offs,
428 					       struct nand_pos *pos)
429 {
430 	unsigned int pageoffs;
431 	u64 tmp = offs;
432 
433 	pageoffs = do_div(tmp, nand->memorg.pagesize);
434 	pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
435 	pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
436 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
437 	pos->lun = do_div(tmp, nand->memorg.luns_per_target);
438 	pos->target = tmp;
439 
440 	return pageoffs;
441 }
442 
443 /**
444  * nanddev_pos_cmp() - Compare two NAND positions
445  * @a: First NAND position
446  * @b: Second NAND position
447  *
448  * Compares two NAND positions.
449  *
450  * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
451  */
452 static inline int nanddev_pos_cmp(const struct nand_pos *a,
453 				  const struct nand_pos *b)
454 {
455 	if (a->target != b->target)
456 		return a->target < b->target ? -1 : 1;
457 
458 	if (a->lun != b->lun)
459 		return a->lun < b->lun ? -1 : 1;
460 
461 	if (a->eraseblock != b->eraseblock)
462 		return a->eraseblock < b->eraseblock ? -1 : 1;
463 
464 	if (a->page != b->page)
465 		return a->page < b->page ? -1 : 1;
466 
467 	return 0;
468 }
469 
470 /**
471  * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
472  * @nand: NAND device
473  * @pos: the NAND position to convert
474  *
475  * Converts @pos NAND position into an absolute offset.
476  *
477  * Return: the absolute offset. Note that @pos points to the beginning of a
478  *	   page, if one wants to point to a specific offset within this page
479  *	   the returned offset has to be adjusted manually.
480  */
481 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
482 					 const struct nand_pos *pos)
483 {
484 	unsigned int npages;
485 
486 	npages = pos->page +
487 		 ((pos->eraseblock +
488 		   (pos->lun +
489 		    (pos->target * nand->memorg.luns_per_target)) *
490 		   nand->memorg.eraseblocks_per_lun) *
491 		  nand->memorg.pages_per_eraseblock);
492 
493 	return (loff_t)npages * nand->memorg.pagesize;
494 }
495 
496 /**
497  * nanddev_pos_to_row() - Extract a row address from a NAND position
498  * @nand: NAND device
499  * @pos: the position to convert
500  *
501  * Converts a NAND position into a row address that can then be passed to the
502  * device.
503  *
504  * Return: the row address extracted from @pos.
505  */
506 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
507 					      const struct nand_pos *pos)
508 {
509 	return (pos->lun << nand->rowconv.lun_addr_shift) |
510 	       (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
511 	       pos->page;
512 }
513 
514 /**
515  * nanddev_pos_next_target() - Move a position to the next target/die
516  * @nand: NAND device
517  * @pos: the position to update
518  *
519  * Updates @pos to point to the start of the next target/die. Useful when you
520  * want to iterate over all targets/dies of a NAND device.
521  */
522 static inline void nanddev_pos_next_target(struct nand_device *nand,
523 					   struct nand_pos *pos)
524 {
525 	pos->page = 0;
526 	pos->plane = 0;
527 	pos->eraseblock = 0;
528 	pos->lun = 0;
529 	pos->target++;
530 }
531 
532 /**
533  * nanddev_pos_next_lun() - Move a position to the next LUN
534  * @nand: NAND device
535  * @pos: the position to update
536  *
537  * Updates @pos to point to the start of the next LUN. Useful when you want to
538  * iterate over all LUNs of a NAND device.
539  */
540 static inline void nanddev_pos_next_lun(struct nand_device *nand,
541 					struct nand_pos *pos)
542 {
543 	if (pos->lun >= nand->memorg.luns_per_target - 1)
544 		return nanddev_pos_next_target(nand, pos);
545 
546 	pos->lun++;
547 	pos->page = 0;
548 	pos->plane = 0;
549 	pos->eraseblock = 0;
550 }
551 
552 /**
553  * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
554  * @nand: NAND device
555  * @pos: the position to update
556  *
557  * Updates @pos to point to the start of the next eraseblock. Useful when you
558  * want to iterate over all eraseblocks of a NAND device.
559  */
560 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
561 					       struct nand_pos *pos)
562 {
563 	if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
564 		return nanddev_pos_next_lun(nand, pos);
565 
566 	pos->eraseblock++;
567 	pos->page = 0;
568 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
569 }
570 
571 /**
572  * nanddev_pos_next_eraseblock() - Move a position to the next page
573  * @nand: NAND device
574  * @pos: the position to update
575  *
576  * Updates @pos to point to the start of the next page. Useful when you want to
577  * iterate over all pages of a NAND device.
578  */
579 static inline void nanddev_pos_next_page(struct nand_device *nand,
580 					 struct nand_pos *pos)
581 {
582 	if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
583 		return nanddev_pos_next_eraseblock(nand, pos);
584 
585 	pos->page++;
586 }
587 
588 /**
589  * nand_io_iter_init - Initialize a NAND I/O iterator
590  * @nand: NAND device
591  * @offs: absolute offset
592  * @req: MTD request
593  * @iter: NAND I/O iterator
594  *
595  * Initializes a NAND iterator based on the information passed by the MTD
596  * layer.
597  */
598 static inline void nanddev_io_iter_init(struct nand_device *nand,
599 					loff_t offs, struct mtd_oob_ops *req,
600 					struct nand_io_iter *iter)
601 {
602 	struct mtd_info *mtd = nanddev_to_mtd(nand);
603 
604 	iter->req.mode = req->mode;
605 	iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
606 	iter->req.ooboffs = req->ooboffs;
607 	iter->oobbytes_per_page = mtd_oobavail(mtd, req);
608 	iter->dataleft = req->len;
609 	iter->oobleft = req->ooblen;
610 	iter->req.databuf.in = req->datbuf;
611 	iter->req.datalen = min_t(unsigned int,
612 				  nand->memorg.pagesize - iter->req.dataoffs,
613 				  iter->dataleft);
614 	iter->req.oobbuf.in = req->oobbuf;
615 	iter->req.ooblen = min_t(unsigned int,
616 				 iter->oobbytes_per_page - iter->req.ooboffs,
617 				 iter->oobleft);
618 }
619 
620 /**
621  * nand_io_iter_next_page - Move to the next page
622  * @nand: NAND device
623  * @iter: NAND I/O iterator
624  *
625  * Updates the @iter to point to the next page.
626  */
627 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
628 					     struct nand_io_iter *iter)
629 {
630 	nanddev_pos_next_page(nand, &iter->req.pos);
631 	iter->dataleft -= iter->req.datalen;
632 	iter->req.databuf.in += iter->req.datalen;
633 	iter->oobleft -= iter->req.ooblen;
634 	iter->req.oobbuf.in += iter->req.ooblen;
635 	iter->req.dataoffs = 0;
636 	iter->req.ooboffs = 0;
637 	iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
638 				  iter->dataleft);
639 	iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
640 				 iter->oobleft);
641 }
642 
643 /**
644  * nand_io_iter_end - Should end iteration or not
645  * @nand: NAND device
646  * @iter: NAND I/O iterator
647  *
648  * Check whether @iter has reached the end of the NAND portion it was asked to
649  * iterate on or not.
650  *
651  * Return: true if @iter has reached the end of the iteration request, false
652  *	   otherwise.
653  */
654 static inline bool nanddev_io_iter_end(struct nand_device *nand,
655 				       const struct nand_io_iter *iter)
656 {
657 	if (iter->dataleft || iter->oobleft)
658 		return false;
659 
660 	return true;
661 }
662 
663 /**
664  * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
665  *			   request
666  * @nand: NAND device
667  * @start: start address to read/write from
668  * @req: MTD I/O request
669  * @iter: NAND I/O iterator
670  *
671  * Should be used for iterate over pages that are contained in an MTD request.
672  */
673 #define nanddev_io_for_each_page(nand, start, req, iter)		\
674 	for (nanddev_io_iter_init(nand, start, req, iter);		\
675 	     !nanddev_io_iter_end(nand, iter);				\
676 	     nanddev_io_iter_next_page(nand, iter))
677 
678 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
679 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
680 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
681 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
682 
683 /* BBT related functions */
684 enum nand_bbt_block_status {
685 	NAND_BBT_BLOCK_STATUS_UNKNOWN,
686 	NAND_BBT_BLOCK_GOOD,
687 	NAND_BBT_BLOCK_WORN,
688 	NAND_BBT_BLOCK_RESERVED,
689 	NAND_BBT_BLOCK_FACTORY_BAD,
690 	NAND_BBT_BLOCK_NUM_STATUS,
691 };
692 
693 int nanddev_bbt_init(struct nand_device *nand);
694 void nanddev_bbt_cleanup(struct nand_device *nand);
695 int nanddev_bbt_update(struct nand_device *nand);
696 int nanddev_bbt_get_block_status(const struct nand_device *nand,
697 				 unsigned int entry);
698 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
699 				 enum nand_bbt_block_status status);
700 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
701 
702 /**
703  * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
704  * @nand: NAND device
705  * @pos: the NAND position we want to get BBT entry for
706  *
707  * Return the BBT entry used to store information about the eraseblock pointed
708  * by @pos.
709  *
710  * Return: the BBT entry storing information about eraseblock pointed by @pos.
711  */
712 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
713 						    const struct nand_pos *pos)
714 {
715 	return pos->eraseblock +
716 	       ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
717 		nand->memorg.eraseblocks_per_lun);
718 }
719 
720 /**
721  * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
722  * @nand: NAND device
723  *
724  * Return: true if the BBT has been initialized, false otherwise.
725  */
726 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
727 {
728 	return !!nand->bbt.cache;
729 }
730 
731 /* MTD -> NAND helper functions. */
732 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
733 
734 #endif /* __LINUX_MTD_NAND_H */
735