1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright 2017 - Free Electrons 4 * 5 * Authors: 6 * Boris Brezillon <boris.brezillon@free-electrons.com> 7 * Peter Pan <peterpandong@micron.com> 8 */ 9 10 #ifndef __LINUX_MTD_NAND_H 11 #define __LINUX_MTD_NAND_H 12 13 #include <linux/mtd/mtd.h> 14 15 /** 16 * struct nand_memory_organization - Memory organization structure 17 * @bits_per_cell: number of bits per NAND cell 18 * @pagesize: page size 19 * @oobsize: OOB area size 20 * @pages_per_eraseblock: number of pages per eraseblock 21 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number) 22 * @planes_per_lun: number of planes per LUN 23 * @luns_per_target: number of LUN per target (target is a synonym for die) 24 * @ntargets: total number of targets exposed by the NAND device 25 */ 26 struct nand_memory_organization { 27 unsigned int bits_per_cell; 28 unsigned int pagesize; 29 unsigned int oobsize; 30 unsigned int pages_per_eraseblock; 31 unsigned int eraseblocks_per_lun; 32 unsigned int planes_per_lun; 33 unsigned int luns_per_target; 34 unsigned int ntargets; 35 }; 36 37 #define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt) \ 38 { \ 39 .bits_per_cell = (bpc), \ 40 .pagesize = (ps), \ 41 .oobsize = (os), \ 42 .pages_per_eraseblock = (ppe), \ 43 .eraseblocks_per_lun = (epl), \ 44 .planes_per_lun = (ppl), \ 45 .luns_per_target = (lpt), \ 46 .ntargets = (nt), \ 47 } 48 49 /** 50 * struct nand_row_converter - Information needed to convert an absolute offset 51 * into a row address 52 * @lun_addr_shift: position of the LUN identifier in the row address 53 * @eraseblock_addr_shift: position of the eraseblock identifier in the row 54 * address 55 */ 56 struct nand_row_converter { 57 unsigned int lun_addr_shift; 58 unsigned int eraseblock_addr_shift; 59 }; 60 61 /** 62 * struct nand_pos - NAND position object 63 * @target: the NAND target/die 64 * @lun: the LUN identifier 65 * @plane: the plane within the LUN 66 * @eraseblock: the eraseblock within the LUN 67 * @page: the page within the LUN 68 * 69 * These information are usually used by specific sub-layers to select the 70 * appropriate target/die and generate a row address to pass to the device. 71 */ 72 struct nand_pos { 73 unsigned int target; 74 unsigned int lun; 75 unsigned int plane; 76 unsigned int eraseblock; 77 unsigned int page; 78 }; 79 80 /** 81 * struct nand_page_io_req - NAND I/O request object 82 * @pos: the position this I/O request is targeting 83 * @dataoffs: the offset within the page 84 * @datalen: number of data bytes to read from/write to this page 85 * @databuf: buffer to store data in or get data from 86 * @ooboffs: the OOB offset within the page 87 * @ooblen: the number of OOB bytes to read from/write to this page 88 * @oobbuf: buffer to store OOB data in or get OOB data from 89 * @mode: one of the %MTD_OPS_XXX mode 90 * 91 * This object is used to pass per-page I/O requests to NAND sub-layers. This 92 * way all useful information are already formatted in a useful way and 93 * specific NAND layers can focus on translating these information into 94 * specific commands/operations. 95 */ 96 struct nand_page_io_req { 97 struct nand_pos pos; 98 unsigned int dataoffs; 99 unsigned int datalen; 100 union { 101 const void *out; 102 void *in; 103 } databuf; 104 unsigned int ooboffs; 105 unsigned int ooblen; 106 union { 107 const void *out; 108 void *in; 109 } oobbuf; 110 int mode; 111 }; 112 113 /** 114 * struct nand_ecc_req - NAND ECC requirements 115 * @strength: ECC strength 116 * @step_size: ECC step/block size 117 */ 118 struct nand_ecc_req { 119 unsigned int strength; 120 unsigned int step_size; 121 }; 122 123 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) } 124 125 /** 126 * struct nand_bbt - bad block table object 127 * @cache: in memory BBT cache 128 */ 129 struct nand_bbt { 130 unsigned long *cache; 131 }; 132 133 struct nand_device; 134 135 /** 136 * struct nand_ops - NAND operations 137 * @erase: erase a specific block. No need to check if the block is bad before 138 * erasing, this has been taken care of by the generic NAND layer 139 * @markbad: mark a specific block bad. No need to check if the block is 140 * already marked bad, this has been taken care of by the generic 141 * NAND layer. This method should just write the BBM (Bad Block 142 * Marker) so that future call to struct_nand_ops->isbad() return 143 * true 144 * @isbad: check whether a block is bad or not. This method should just read 145 * the BBM and return whether the block is bad or not based on what it 146 * reads 147 * 148 * These are all low level operations that should be implemented by specialized 149 * NAND layers (SPI NAND, raw NAND, ...). 150 */ 151 struct nand_ops { 152 int (*erase)(struct nand_device *nand, const struct nand_pos *pos); 153 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos); 154 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos); 155 }; 156 157 /** 158 * struct nand_device - NAND device 159 * @mtd: MTD instance attached to the NAND device 160 * @memorg: memory layout 161 * @eccreq: ECC requirements 162 * @rowconv: position to row address converter 163 * @bbt: bad block table info 164 * @ops: NAND operations attached to the NAND device 165 * 166 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND) 167 * should declare their own NAND object embedding a nand_device struct (that's 168 * how inheritance is done). 169 * struct_nand_device->memorg and struct_nand_device->eccreq should be filled 170 * at device detection time to reflect the NAND device 171 * capabilities/requirements. Once this is done nanddev_init() can be called. 172 * It will take care of converting NAND information into MTD ones, which means 173 * the specialized NAND layers should never manually tweak 174 * struct_nand_device->mtd except for the ->_read/write() hooks. 175 */ 176 struct nand_device { 177 struct mtd_info *mtd; 178 struct nand_memory_organization memorg; 179 struct nand_ecc_req eccreq; 180 struct nand_row_converter rowconv; 181 struct nand_bbt bbt; 182 const struct nand_ops *ops; 183 }; 184 185 /** 186 * struct nand_io_iter - NAND I/O iterator 187 * @req: current I/O request 188 * @oobbytes_per_page: maximum number of OOB bytes per page 189 * @dataleft: remaining number of data bytes to read/write 190 * @oobleft: remaining number of OOB bytes to read/write 191 * 192 * Can be used by specialized NAND layers to iterate over all pages covered 193 * by an MTD I/O request, which should greatly simplifies the boiler-plate 194 * code needed to read/write data from/to a NAND device. 195 */ 196 struct nand_io_iter { 197 struct nand_page_io_req req; 198 unsigned int oobbytes_per_page; 199 unsigned int dataleft; 200 unsigned int oobleft; 201 }; 202 203 /** 204 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance 205 * @mtd: MTD instance 206 * 207 * Return: the NAND device embedding @mtd. 208 */ 209 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd) 210 { 211 return mtd->priv; 212 } 213 214 /** 215 * nanddev_to_mtd() - Get the MTD device attached to a NAND device 216 * @nand: NAND device 217 * 218 * Return: the MTD device embedded in @nand. 219 */ 220 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand) 221 { 222 return nand->mtd; 223 } 224 225 /* 226 * nanddev_bits_per_cell() - Get the number of bits per cell 227 * @nand: NAND device 228 * 229 * Return: the number of bits per cell. 230 */ 231 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand) 232 { 233 return nand->memorg.bits_per_cell; 234 } 235 236 /** 237 * nanddev_page_size() - Get NAND page size 238 * @nand: NAND device 239 * 240 * Return: the page size. 241 */ 242 static inline size_t nanddev_page_size(const struct nand_device *nand) 243 { 244 return nand->memorg.pagesize; 245 } 246 247 /** 248 * nanddev_per_page_oobsize() - Get NAND OOB size 249 * @nand: NAND device 250 * 251 * Return: the OOB size. 252 */ 253 static inline unsigned int 254 nanddev_per_page_oobsize(const struct nand_device *nand) 255 { 256 return nand->memorg.oobsize; 257 } 258 259 /** 260 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock 261 * @nand: NAND device 262 * 263 * Return: the number of pages per eraseblock. 264 */ 265 static inline unsigned int 266 nanddev_pages_per_eraseblock(const struct nand_device *nand) 267 { 268 return nand->memorg.pages_per_eraseblock; 269 } 270 271 /** 272 * nanddev_per_page_oobsize() - Get NAND erase block size 273 * @nand: NAND device 274 * 275 * Return: the eraseblock size. 276 */ 277 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand) 278 { 279 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock; 280 } 281 282 /** 283 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN 284 * @nand: NAND device 285 * 286 * Return: the number of eraseblocks per LUN. 287 */ 288 static inline unsigned int 289 nanddev_eraseblocks_per_lun(const struct nand_device *nand) 290 { 291 return nand->memorg.eraseblocks_per_lun; 292 } 293 294 /** 295 * nanddev_target_size() - Get the total size provided by a single target/die 296 * @nand: NAND device 297 * 298 * Return: the total size exposed by a single target/die in bytes. 299 */ 300 static inline u64 nanddev_target_size(const struct nand_device *nand) 301 { 302 return (u64)nand->memorg.luns_per_target * 303 nand->memorg.eraseblocks_per_lun * 304 nand->memorg.pages_per_eraseblock * 305 nand->memorg.pagesize; 306 } 307 308 /** 309 * nanddev_ntarget() - Get the total of targets 310 * @nand: NAND device 311 * 312 * Return: the number of targets/dies exposed by @nand. 313 */ 314 static inline unsigned int nanddev_ntargets(const struct nand_device *nand) 315 { 316 return nand->memorg.ntargets; 317 } 318 319 /** 320 * nanddev_neraseblocks() - Get the total number of erasablocks 321 * @nand: NAND device 322 * 323 * Return: the total number of eraseblocks exposed by @nand. 324 */ 325 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand) 326 { 327 return (u64)nand->memorg.luns_per_target * 328 nand->memorg.eraseblocks_per_lun * 329 nand->memorg.pages_per_eraseblock; 330 } 331 332 /** 333 * nanddev_size() - Get NAND size 334 * @nand: NAND device 335 * 336 * Return: the total size (in bytes) exposed by @nand. 337 */ 338 static inline u64 nanddev_size(const struct nand_device *nand) 339 { 340 return nanddev_target_size(nand) * nanddev_ntargets(nand); 341 } 342 343 /** 344 * nanddev_get_memorg() - Extract memory organization info from a NAND device 345 * @nand: NAND device 346 * 347 * This can be used by the upper layer to fill the memorg info before calling 348 * nanddev_init(). 349 * 350 * Return: the memorg object embedded in the NAND device. 351 */ 352 static inline struct nand_memory_organization * 353 nanddev_get_memorg(struct nand_device *nand) 354 { 355 return &nand->memorg; 356 } 357 358 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, 359 struct module *owner); 360 void nanddev_cleanup(struct nand_device *nand); 361 362 /** 363 * nanddev_register() - Register a NAND device 364 * @nand: NAND device 365 * 366 * Register a NAND device. 367 * This function is just a wrapper around mtd_device_register() 368 * registering the MTD device embedded in @nand. 369 * 370 * Return: 0 in case of success, a negative error code otherwise. 371 */ 372 static inline int nanddev_register(struct nand_device *nand) 373 { 374 return mtd_device_register(nand->mtd, NULL, 0); 375 } 376 377 /** 378 * nanddev_unregister() - Unregister a NAND device 379 * @nand: NAND device 380 * 381 * Unregister a NAND device. 382 * This function is just a wrapper around mtd_device_unregister() 383 * unregistering the MTD device embedded in @nand. 384 * 385 * Return: 0 in case of success, a negative error code otherwise. 386 */ 387 static inline int nanddev_unregister(struct nand_device *nand) 388 { 389 return mtd_device_unregister(nand->mtd); 390 } 391 392 /** 393 * nanddev_set_of_node() - Attach a DT node to a NAND device 394 * @nand: NAND device 395 * @np: DT node 396 * 397 * Attach a DT node to a NAND device. 398 */ 399 static inline void nanddev_set_of_node(struct nand_device *nand, 400 const struct device_node *np) 401 { 402 mtd_set_of_node(nand->mtd, np); 403 } 404 405 /** 406 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device 407 * @nand: NAND device 408 * 409 * Return: the DT node attached to @nand. 410 */ 411 static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand) 412 { 413 return mtd_get_of_node(nand->mtd); 414 } 415 416 /** 417 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position 418 * @nand: NAND device 419 * @offs: absolute NAND offset (usually passed by the MTD layer) 420 * @pos: a NAND position object to fill in 421 * 422 * Converts @offs into a nand_pos representation. 423 * 424 * Return: the offset within the NAND page pointed by @pos. 425 */ 426 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand, 427 loff_t offs, 428 struct nand_pos *pos) 429 { 430 unsigned int pageoffs; 431 u64 tmp = offs; 432 433 pageoffs = do_div(tmp, nand->memorg.pagesize); 434 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock); 435 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun); 436 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 437 pos->lun = do_div(tmp, nand->memorg.luns_per_target); 438 pos->target = tmp; 439 440 return pageoffs; 441 } 442 443 /** 444 * nanddev_pos_cmp() - Compare two NAND positions 445 * @a: First NAND position 446 * @b: Second NAND position 447 * 448 * Compares two NAND positions. 449 * 450 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b. 451 */ 452 static inline int nanddev_pos_cmp(const struct nand_pos *a, 453 const struct nand_pos *b) 454 { 455 if (a->target != b->target) 456 return a->target < b->target ? -1 : 1; 457 458 if (a->lun != b->lun) 459 return a->lun < b->lun ? -1 : 1; 460 461 if (a->eraseblock != b->eraseblock) 462 return a->eraseblock < b->eraseblock ? -1 : 1; 463 464 if (a->page != b->page) 465 return a->page < b->page ? -1 : 1; 466 467 return 0; 468 } 469 470 /** 471 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset 472 * @nand: NAND device 473 * @pos: the NAND position to convert 474 * 475 * Converts @pos NAND position into an absolute offset. 476 * 477 * Return: the absolute offset. Note that @pos points to the beginning of a 478 * page, if one wants to point to a specific offset within this page 479 * the returned offset has to be adjusted manually. 480 */ 481 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand, 482 const struct nand_pos *pos) 483 { 484 unsigned int npages; 485 486 npages = pos->page + 487 ((pos->eraseblock + 488 (pos->lun + 489 (pos->target * nand->memorg.luns_per_target)) * 490 nand->memorg.eraseblocks_per_lun) * 491 nand->memorg.pages_per_eraseblock); 492 493 return (loff_t)npages * nand->memorg.pagesize; 494 } 495 496 /** 497 * nanddev_pos_to_row() - Extract a row address from a NAND position 498 * @nand: NAND device 499 * @pos: the position to convert 500 * 501 * Converts a NAND position into a row address that can then be passed to the 502 * device. 503 * 504 * Return: the row address extracted from @pos. 505 */ 506 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand, 507 const struct nand_pos *pos) 508 { 509 return (pos->lun << nand->rowconv.lun_addr_shift) | 510 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) | 511 pos->page; 512 } 513 514 /** 515 * nanddev_pos_next_target() - Move a position to the next target/die 516 * @nand: NAND device 517 * @pos: the position to update 518 * 519 * Updates @pos to point to the start of the next target/die. Useful when you 520 * want to iterate over all targets/dies of a NAND device. 521 */ 522 static inline void nanddev_pos_next_target(struct nand_device *nand, 523 struct nand_pos *pos) 524 { 525 pos->page = 0; 526 pos->plane = 0; 527 pos->eraseblock = 0; 528 pos->lun = 0; 529 pos->target++; 530 } 531 532 /** 533 * nanddev_pos_next_lun() - Move a position to the next LUN 534 * @nand: NAND device 535 * @pos: the position to update 536 * 537 * Updates @pos to point to the start of the next LUN. Useful when you want to 538 * iterate over all LUNs of a NAND device. 539 */ 540 static inline void nanddev_pos_next_lun(struct nand_device *nand, 541 struct nand_pos *pos) 542 { 543 if (pos->lun >= nand->memorg.luns_per_target - 1) 544 return nanddev_pos_next_target(nand, pos); 545 546 pos->lun++; 547 pos->page = 0; 548 pos->plane = 0; 549 pos->eraseblock = 0; 550 } 551 552 /** 553 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock 554 * @nand: NAND device 555 * @pos: the position to update 556 * 557 * Updates @pos to point to the start of the next eraseblock. Useful when you 558 * want to iterate over all eraseblocks of a NAND device. 559 */ 560 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand, 561 struct nand_pos *pos) 562 { 563 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1) 564 return nanddev_pos_next_lun(nand, pos); 565 566 pos->eraseblock++; 567 pos->page = 0; 568 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 569 } 570 571 /** 572 * nanddev_pos_next_eraseblock() - Move a position to the next page 573 * @nand: NAND device 574 * @pos: the position to update 575 * 576 * Updates @pos to point to the start of the next page. Useful when you want to 577 * iterate over all pages of a NAND device. 578 */ 579 static inline void nanddev_pos_next_page(struct nand_device *nand, 580 struct nand_pos *pos) 581 { 582 if (pos->page >= nand->memorg.pages_per_eraseblock - 1) 583 return nanddev_pos_next_eraseblock(nand, pos); 584 585 pos->page++; 586 } 587 588 /** 589 * nand_io_iter_init - Initialize a NAND I/O iterator 590 * @nand: NAND device 591 * @offs: absolute offset 592 * @req: MTD request 593 * @iter: NAND I/O iterator 594 * 595 * Initializes a NAND iterator based on the information passed by the MTD 596 * layer. 597 */ 598 static inline void nanddev_io_iter_init(struct nand_device *nand, 599 loff_t offs, struct mtd_oob_ops *req, 600 struct nand_io_iter *iter) 601 { 602 struct mtd_info *mtd = nanddev_to_mtd(nand); 603 604 iter->req.mode = req->mode; 605 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos); 606 iter->req.ooboffs = req->ooboffs; 607 iter->oobbytes_per_page = mtd_oobavail(mtd, req); 608 iter->dataleft = req->len; 609 iter->oobleft = req->ooblen; 610 iter->req.databuf.in = req->datbuf; 611 iter->req.datalen = min_t(unsigned int, 612 nand->memorg.pagesize - iter->req.dataoffs, 613 iter->dataleft); 614 iter->req.oobbuf.in = req->oobbuf; 615 iter->req.ooblen = min_t(unsigned int, 616 iter->oobbytes_per_page - iter->req.ooboffs, 617 iter->oobleft); 618 } 619 620 /** 621 * nand_io_iter_next_page - Move to the next page 622 * @nand: NAND device 623 * @iter: NAND I/O iterator 624 * 625 * Updates the @iter to point to the next page. 626 */ 627 static inline void nanddev_io_iter_next_page(struct nand_device *nand, 628 struct nand_io_iter *iter) 629 { 630 nanddev_pos_next_page(nand, &iter->req.pos); 631 iter->dataleft -= iter->req.datalen; 632 iter->req.databuf.in += iter->req.datalen; 633 iter->oobleft -= iter->req.ooblen; 634 iter->req.oobbuf.in += iter->req.ooblen; 635 iter->req.dataoffs = 0; 636 iter->req.ooboffs = 0; 637 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize, 638 iter->dataleft); 639 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page, 640 iter->oobleft); 641 } 642 643 /** 644 * nand_io_iter_end - Should end iteration or not 645 * @nand: NAND device 646 * @iter: NAND I/O iterator 647 * 648 * Check whether @iter has reached the end of the NAND portion it was asked to 649 * iterate on or not. 650 * 651 * Return: true if @iter has reached the end of the iteration request, false 652 * otherwise. 653 */ 654 static inline bool nanddev_io_iter_end(struct nand_device *nand, 655 const struct nand_io_iter *iter) 656 { 657 if (iter->dataleft || iter->oobleft) 658 return false; 659 660 return true; 661 } 662 663 /** 664 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O 665 * request 666 * @nand: NAND device 667 * @start: start address to read/write from 668 * @req: MTD I/O request 669 * @iter: NAND I/O iterator 670 * 671 * Should be used for iterate over pages that are contained in an MTD request. 672 */ 673 #define nanddev_io_for_each_page(nand, start, req, iter) \ 674 for (nanddev_io_iter_init(nand, start, req, iter); \ 675 !nanddev_io_iter_end(nand, iter); \ 676 nanddev_io_iter_next_page(nand, iter)) 677 678 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos); 679 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos); 680 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos); 681 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos); 682 683 /* BBT related functions */ 684 enum nand_bbt_block_status { 685 NAND_BBT_BLOCK_STATUS_UNKNOWN, 686 NAND_BBT_BLOCK_GOOD, 687 NAND_BBT_BLOCK_WORN, 688 NAND_BBT_BLOCK_RESERVED, 689 NAND_BBT_BLOCK_FACTORY_BAD, 690 NAND_BBT_BLOCK_NUM_STATUS, 691 }; 692 693 int nanddev_bbt_init(struct nand_device *nand); 694 void nanddev_bbt_cleanup(struct nand_device *nand); 695 int nanddev_bbt_update(struct nand_device *nand); 696 int nanddev_bbt_get_block_status(const struct nand_device *nand, 697 unsigned int entry); 698 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry, 699 enum nand_bbt_block_status status); 700 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block); 701 702 /** 703 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry 704 * @nand: NAND device 705 * @pos: the NAND position we want to get BBT entry for 706 * 707 * Return the BBT entry used to store information about the eraseblock pointed 708 * by @pos. 709 * 710 * Return: the BBT entry storing information about eraseblock pointed by @pos. 711 */ 712 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand, 713 const struct nand_pos *pos) 714 { 715 return pos->eraseblock + 716 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) * 717 nand->memorg.eraseblocks_per_lun); 718 } 719 720 /** 721 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized 722 * @nand: NAND device 723 * 724 * Return: true if the BBT has been initialized, false otherwise. 725 */ 726 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand) 727 { 728 return !!nand->bbt.cache; 729 } 730 731 /* MTD -> NAND helper functions. */ 732 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo); 733 734 #endif /* __LINUX_MTD_NAND_H */ 735