1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 4 * 5 */ 6 7 #ifndef __MTD_MTD_H__ 8 #define __MTD_MTD_H__ 9 10 #ifndef __UBOOT__ 11 #include <linux/types.h> 12 #include <linux/uio.h> 13 #include <linux/notifier.h> 14 #include <linux/device.h> 15 16 #include <mtd/mtd-abi.h> 17 18 #include <asm/div64.h> 19 #else 20 #include <linux/compat.h> 21 #include <mtd/mtd-abi.h> 22 #include <linux/errno.h> 23 #include <div64.h> 24 25 #define MAX_MTD_DEVICES 32 26 #endif 27 28 #define MTD_ERASE_PENDING 0x01 29 #define MTD_ERASING 0x02 30 #define MTD_ERASE_SUSPEND 0x04 31 #define MTD_ERASE_DONE 0x08 32 #define MTD_ERASE_FAILED 0x10 33 34 #define MTD_FAIL_ADDR_UNKNOWN -1LL 35 36 /* 37 * If the erase fails, fail_addr might indicate exactly which block failed. If 38 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 39 * or was not specific to any particular block. 40 */ 41 struct erase_info { 42 struct mtd_info *mtd; 43 uint64_t addr; 44 uint64_t len; 45 uint64_t fail_addr; 46 u_long time; 47 u_long retries; 48 unsigned dev; 49 unsigned cell; 50 void (*callback) (struct erase_info *self); 51 u_long priv; 52 u_char state; 53 struct erase_info *next; 54 int scrub; 55 }; 56 57 struct mtd_erase_region_info { 58 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 59 uint32_t erasesize; /* For this region */ 60 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 61 unsigned long *lockmap; /* If keeping bitmap of locks */ 62 }; 63 64 /** 65 * struct mtd_oob_ops - oob operation operands 66 * @mode: operation mode 67 * 68 * @len: number of data bytes to write/read 69 * 70 * @retlen: number of data bytes written/read 71 * 72 * @ooblen: number of oob bytes to write/read 73 * @oobretlen: number of oob bytes written/read 74 * @ooboffs: offset of oob data in the oob area (only relevant when 75 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 76 * @datbuf: data buffer - if NULL only oob data are read/written 77 * @oobbuf: oob data buffer 78 * 79 * Note, it is allowed to read more than one OOB area at one go, but not write. 80 * The interface assumes that the OOB write requests program only one page's 81 * OOB area. 82 */ 83 struct mtd_oob_ops { 84 unsigned int mode; 85 size_t len; 86 size_t retlen; 87 size_t ooblen; 88 size_t oobretlen; 89 uint32_t ooboffs; 90 uint8_t *datbuf; 91 uint8_t *oobbuf; 92 }; 93 94 #ifdef CONFIG_SYS_NAND_MAX_OOBFREE 95 #define MTD_MAX_OOBFREE_ENTRIES_LARGE CONFIG_SYS_NAND_MAX_OOBFREE 96 #else 97 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 98 #endif 99 100 #ifdef CONFIG_SYS_NAND_MAX_ECCPOS 101 #define MTD_MAX_ECCPOS_ENTRIES_LARGE CONFIG_SYS_NAND_MAX_ECCPOS 102 #else 103 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 680 104 #endif 105 /** 106 * struct mtd_oob_region - oob region definition 107 * @offset: region offset 108 * @length: region length 109 * 110 * This structure describes a region of the OOB area, and is used 111 * to retrieve ECC or free bytes sections. 112 * Each section is defined by an offset within the OOB area and a 113 * length. 114 */ 115 struct mtd_oob_region { 116 u32 offset; 117 u32 length; 118 }; 119 120 /* 121 * struct mtd_ooblayout_ops - NAND OOB layout operations 122 * @ecc: function returning an ECC region in the OOB area. 123 * Should return -ERANGE if %section exceeds the total number of 124 * ECC sections. 125 * @free: function returning a free region in the OOB area. 126 * Should return -ERANGE if %section exceeds the total number of 127 * free sections. 128 */ 129 struct mtd_ooblayout_ops { 130 int (*ecc)(struct mtd_info *mtd, int section, 131 struct mtd_oob_region *oobecc); 132 int (*free)(struct mtd_info *mtd, int section, 133 struct mtd_oob_region *oobfree); 134 }; 135 136 /* 137 * Internal ECC layout control structure. For historical reasons, there is a 138 * similar, smaller struct nand_ecclayout_user (in mtd-abi.h) that is retained 139 * for export to user-space via the ECCGETLAYOUT ioctl. 140 * nand_ecclayout should be expandable in the future simply by the above macros. 141 */ 142 struct nand_ecclayout { 143 __u32 eccbytes; 144 __u32 eccpos[MTD_MAX_ECCPOS_ENTRIES_LARGE]; 145 __u32 oobavail; 146 struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES_LARGE]; 147 }; 148 149 struct module; /* only needed for owner field in mtd_info */ 150 151 struct mtd_info { 152 u_char type; 153 uint32_t flags; 154 uint64_t size; // Total size of the MTD 155 156 /* "Major" erase size for the device. Naïve users may take this 157 * to be the only erase size available, or may use the more detailed 158 * information below if they desire 159 */ 160 uint32_t erasesize; 161 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 162 * though individual bits can be cleared), in case of NAND flash it is 163 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 164 * it is of ECC block size, etc. It is illegal to have writesize = 0. 165 * Any driver registering a struct mtd_info must ensure a writesize of 166 * 1 or larger. 167 */ 168 uint32_t writesize; 169 170 /* 171 * Size of the write buffer used by the MTD. MTD devices having a write 172 * buffer can write multiple writesize chunks at a time. E.g. while 173 * writing 4 * writesize bytes to a device with 2 * writesize bytes 174 * buffer the MTD driver can (but doesn't have to) do 2 writesize 175 * operations, but not 4. Currently, all NANDs have writebufsize 176 * equivalent to writesize (NAND page size). Some NOR flashes do have 177 * writebufsize greater than writesize. 178 */ 179 uint32_t writebufsize; 180 181 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 182 uint32_t oobavail; // Available OOB bytes per block 183 184 /* 185 * If erasesize is a power of 2 then the shift is stored in 186 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 187 */ 188 unsigned int erasesize_shift; 189 unsigned int writesize_shift; 190 /* Masks based on erasesize_shift and writesize_shift */ 191 unsigned int erasesize_mask; 192 unsigned int writesize_mask; 193 194 /* 195 * read ops return -EUCLEAN if max number of bitflips corrected on any 196 * one region comprising an ecc step equals or exceeds this value. 197 * Settable by driver, else defaults to ecc_strength. User can override 198 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 199 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 200 */ 201 unsigned int bitflip_threshold; 202 203 // Kernel-only stuff starts here. 204 #ifndef __UBOOT__ 205 const char *name; 206 #else 207 char *name; 208 #endif 209 int index; 210 211 /* OOB layout description */ 212 const struct mtd_ooblayout_ops *ooblayout; 213 214 /* ECC layout structure pointer - read only! */ 215 struct nand_ecclayout *ecclayout; 216 217 /* the ecc step size. */ 218 unsigned int ecc_step_size; 219 220 /* max number of correctible bit errors per ecc step */ 221 unsigned int ecc_strength; 222 223 /* Data for variable erase regions. If numeraseregions is zero, 224 * it means that the whole device has erasesize as given above. 225 */ 226 int numeraseregions; 227 struct mtd_erase_region_info *eraseregions; 228 229 /* 230 * Do not call via these pointers, use corresponding mtd_*() 231 * wrappers instead. 232 */ 233 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 234 #ifndef __UBOOT__ 235 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 236 size_t *retlen, void **virt, resource_size_t *phys); 237 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 238 #endif 239 unsigned long (*_get_unmapped_area) (struct mtd_info *mtd, 240 unsigned long len, 241 unsigned long offset, 242 unsigned long flags); 243 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 244 size_t *retlen, u_char *buf); 245 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 246 size_t *retlen, const u_char *buf); 247 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 248 size_t *retlen, const u_char *buf); 249 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 250 struct mtd_oob_ops *ops); 251 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 252 struct mtd_oob_ops *ops); 253 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 254 size_t *retlen, struct otp_info *buf); 255 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 256 size_t len, size_t *retlen, u_char *buf); 257 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 258 size_t *retlen, struct otp_info *buf); 259 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 260 size_t len, size_t *retlen, u_char *buf); 261 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 262 size_t len, size_t *retlen, u_char *buf); 263 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 264 size_t len); 265 #ifndef __UBOOT__ 266 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 267 unsigned long count, loff_t to, size_t *retlen); 268 #endif 269 void (*_sync) (struct mtd_info *mtd); 270 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 271 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 272 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 273 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 274 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 275 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 276 #ifndef __UBOOT__ 277 int (*_suspend) (struct mtd_info *mtd); 278 void (*_resume) (struct mtd_info *mtd); 279 void (*_reboot) (struct mtd_info *mtd); 280 #endif 281 /* 282 * If the driver is something smart, like UBI, it may need to maintain 283 * its own reference counting. The below functions are only for driver. 284 */ 285 int (*_get_device) (struct mtd_info *mtd); 286 void (*_put_device) (struct mtd_info *mtd); 287 288 #ifndef __UBOOT__ 289 /* Backing device capabilities for this device 290 * - provides mmap capabilities 291 */ 292 struct backing_dev_info *backing_dev_info; 293 294 struct notifier_block reboot_notifier; /* default mode before reboot */ 295 #endif 296 297 /* ECC status information */ 298 struct mtd_ecc_stats ecc_stats; 299 /* Subpage shift (NAND) */ 300 int subpage_sft; 301 302 void *priv; 303 304 struct module *owner; 305 #ifndef __UBOOT__ 306 struct device dev; 307 #else 308 struct udevice *dev; 309 #endif 310 int usecount; 311 }; 312 313 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 314 struct mtd_oob_region *oobecc); 315 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 316 int *section, 317 struct mtd_oob_region *oobregion); 318 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 319 const u8 *oobbuf, int start, int nbytes); 320 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 321 u8 *oobbuf, int start, int nbytes); 322 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 323 struct mtd_oob_region *oobfree); 324 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 325 const u8 *oobbuf, int start, int nbytes); 326 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 327 u8 *oobbuf, int start, int nbytes); 328 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 329 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 330 331 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 332 const struct mtd_ooblayout_ops *ooblayout) 333 { 334 mtd->ooblayout = ooblayout; 335 } 336 337 static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 338 { 339 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 340 } 341 342 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 343 #ifndef __UBOOT__ 344 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 345 void **virt, resource_size_t *phys); 346 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 347 #endif 348 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 349 unsigned long offset, unsigned long flags); 350 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 351 u_char *buf); 352 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 353 const u_char *buf); 354 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 355 const u_char *buf); 356 357 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 358 359 static inline int mtd_write_oob(struct mtd_info *mtd, loff_t to, 360 struct mtd_oob_ops *ops) 361 { 362 ops->retlen = ops->oobretlen = 0; 363 if (!mtd->_write_oob) 364 return -EOPNOTSUPP; 365 if (!(mtd->flags & MTD_WRITEABLE)) 366 return -EROFS; 367 return mtd->_write_oob(mtd, to, ops); 368 } 369 370 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 371 struct otp_info *buf); 372 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 373 size_t *retlen, u_char *buf); 374 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 375 struct otp_info *buf); 376 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 377 size_t *retlen, u_char *buf); 378 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 379 size_t *retlen, u_char *buf); 380 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 381 382 #ifndef __UBOOT__ 383 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 384 unsigned long count, loff_t to, size_t *retlen); 385 #endif 386 387 static inline void mtd_sync(struct mtd_info *mtd) 388 { 389 if (mtd->_sync) 390 mtd->_sync(mtd); 391 } 392 393 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 394 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 395 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 396 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 397 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 398 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 399 400 #ifndef __UBOOT__ 401 static inline int mtd_suspend(struct mtd_info *mtd) 402 { 403 return mtd->_suspend ? mtd->_suspend(mtd) : 0; 404 } 405 406 static inline void mtd_resume(struct mtd_info *mtd) 407 { 408 if (mtd->_resume) 409 mtd->_resume(mtd); 410 } 411 #endif 412 413 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 414 { 415 if (mtd->erasesize_shift) 416 return sz >> mtd->erasesize_shift; 417 do_div(sz, mtd->erasesize); 418 return sz; 419 } 420 421 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 422 { 423 if (mtd->erasesize_shift) 424 return sz & mtd->erasesize_mask; 425 return do_div(sz, mtd->erasesize); 426 } 427 428 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 429 { 430 if (mtd->writesize_shift) 431 return sz >> mtd->writesize_shift; 432 do_div(sz, mtd->writesize); 433 return sz; 434 } 435 436 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 437 { 438 if (mtd->writesize_shift) 439 return sz & mtd->writesize_mask; 440 return do_div(sz, mtd->writesize); 441 } 442 443 static inline int mtd_has_oob(const struct mtd_info *mtd) 444 { 445 return mtd->_read_oob && mtd->_write_oob; 446 } 447 448 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 449 { 450 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 451 } 452 453 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 454 { 455 return !!mtd->_block_isbad; 456 } 457 458 /* Kernel-side ioctl definitions */ 459 460 struct mtd_partition; 461 struct mtd_part_parser_data; 462 463 extern int mtd_device_parse_register(struct mtd_info *mtd, 464 const char * const *part_probe_types, 465 struct mtd_part_parser_data *parser_data, 466 const struct mtd_partition *defparts, 467 int defnr_parts); 468 #define mtd_device_register(master, parts, nr_parts) \ 469 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 470 extern int mtd_device_unregister(struct mtd_info *master); 471 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 472 extern int __get_mtd_device(struct mtd_info *mtd); 473 extern void __put_mtd_device(struct mtd_info *mtd); 474 extern struct mtd_info *get_mtd_device_nm(const char *name); 475 extern void put_mtd_device(struct mtd_info *mtd); 476 477 478 #ifndef __UBOOT__ 479 struct mtd_notifier { 480 void (*add)(struct mtd_info *mtd); 481 void (*remove)(struct mtd_info *mtd); 482 struct list_head list; 483 }; 484 485 486 extern void register_mtd_user (struct mtd_notifier *new); 487 extern int unregister_mtd_user (struct mtd_notifier *old); 488 #endif 489 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 490 491 #ifdef CONFIG_MTD_PARTITIONS 492 void mtd_erase_callback(struct erase_info *instr); 493 #else 494 static inline void mtd_erase_callback(struct erase_info *instr) 495 { 496 if (instr->callback) 497 instr->callback(instr); 498 } 499 #endif 500 501 static inline int mtd_is_bitflip(int err) { 502 return err == -EUCLEAN; 503 } 504 505 static inline int mtd_is_eccerr(int err) { 506 return err == -EBADMSG; 507 } 508 509 static inline int mtd_is_bitflip_or_eccerr(int err) { 510 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 511 } 512 513 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 514 515 #ifdef __UBOOT__ 516 /* drivers/mtd/mtdcore.h */ 517 int add_mtd_device(struct mtd_info *mtd); 518 int del_mtd_device(struct mtd_info *mtd); 519 int add_mtd_partitions(struct mtd_info *, const struct mtd_partition *, int); 520 int del_mtd_partitions(struct mtd_info *); 521 522 int mtd_arg_off(const char *arg, int *idx, loff_t *off, loff_t *size, 523 loff_t *maxsize, int devtype, uint64_t chipsize); 524 int mtd_arg_off_size(int argc, char *const argv[], int *idx, loff_t *off, 525 loff_t *size, loff_t *maxsize, int devtype, 526 uint64_t chipsize); 527 528 /* drivers/mtd/mtdcore.c */ 529 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 530 const uint64_t length, uint64_t *len_incl_bad, 531 int *truncated); 532 #endif 533 #endif /* __MTD_MTD_H__ */ 534