1 /* 2 * Copyright (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> et al. 3 * 4 * Released under GPL 5 */ 6 7 #ifndef __MTD_MTD_H__ 8 #define __MTD_MTD_H__ 9 10 #include <linux/types.h> 11 #include <div64.h> 12 #include <linux/mtd/mtd-abi.h> 13 14 #define MTD_CHAR_MAJOR 90 15 #define MTD_BLOCK_MAJOR 31 16 #define MAX_MTD_DEVICES 32 17 18 #define MTD_ERASE_PENDING 0x01 19 #define MTD_ERASING 0x02 20 #define MTD_ERASE_SUSPEND 0x04 21 #define MTD_ERASE_DONE 0x08 22 #define MTD_ERASE_FAILED 0x10 23 24 #define MTD_FAIL_ADDR_UNKNOWN -1LL 25 26 /* 27 * Enumeration for NAND/OneNAND flash chip state 28 */ 29 enum { 30 FL_READY, 31 FL_READING, 32 FL_WRITING, 33 FL_ERASING, 34 FL_SYNCING, 35 FL_CACHEDPRG, 36 FL_RESETING, 37 FL_UNLOCKING, 38 FL_LOCKING, 39 FL_PM_SUSPENDED, 40 }; 41 42 /* If the erase fails, fail_addr might indicate exactly which block failed. If 43 fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level or was not 44 specific to any particular block. */ 45 struct erase_info { 46 struct mtd_info *mtd; 47 uint64_t addr; 48 uint64_t len; 49 uint64_t fail_addr; 50 u_long time; 51 u_long retries; 52 u_int dev; 53 u_int cell; 54 void (*callback) (struct erase_info *self); 55 u_long priv; 56 u_char state; 57 struct erase_info *next; 58 }; 59 60 struct mtd_erase_region_info { 61 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 62 u_int32_t erasesize; /* For this region */ 63 u_int32_t numblocks; /* Number of blocks of erasesize in this region */ 64 unsigned long *lockmap; /* If keeping bitmap of locks */ 65 }; 66 67 /* 68 * oob operation modes 69 * 70 * MTD_OOB_PLACE: oob data are placed at the given offset 71 * MTD_OOB_AUTO: oob data are automatically placed at the free areas 72 * which are defined by the ecclayout 73 * MTD_OOB_RAW: mode to read raw data+oob in one chunk. The oob data 74 * is inserted into the data. Thats a raw image of the 75 * flash contents. 76 */ 77 typedef enum { 78 MTD_OOB_PLACE, 79 MTD_OOB_AUTO, 80 MTD_OOB_RAW, 81 } mtd_oob_mode_t; 82 83 /** 84 * struct mtd_oob_ops - oob operation operands 85 * @mode: operation mode 86 * 87 * @len: number of data bytes to write/read 88 * 89 * @retlen: number of data bytes written/read 90 * 91 * @ooblen: number of oob bytes to write/read 92 * @oobretlen: number of oob bytes written/read 93 * @ooboffs: offset of oob data in the oob area (only relevant when 94 * mode = MTD_OOB_PLACE) 95 * @datbuf: data buffer - if NULL only oob data are read/written 96 * @oobbuf: oob data buffer 97 * 98 * Note, it is allowed to read more then one OOB area at one go, but not write. 99 * The interface assumes that the OOB write requests program only one page's 100 * OOB area. 101 */ 102 struct mtd_oob_ops { 103 mtd_oob_mode_t mode; 104 size_t len; 105 size_t retlen; 106 size_t ooblen; 107 size_t oobretlen; 108 uint32_t ooboffs; 109 uint8_t *datbuf; 110 uint8_t *oobbuf; 111 }; 112 113 struct mtd_info { 114 u_char type; 115 u_int32_t flags; 116 uint64_t size; /* Total size of the MTD */ 117 118 /* "Major" erase size for the device. Na�ve users may take this 119 * to be the only erase size available, or may use the more detailed 120 * information below if they desire 121 */ 122 u_int32_t erasesize; 123 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 124 * though individual bits can be cleared), in case of NAND flash it is 125 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 126 * it is of ECC block size, etc. It is illegal to have writesize = 0. 127 * Any driver registering a struct mtd_info must ensure a writesize of 128 * 1 or larger. 129 */ 130 u_int32_t writesize; 131 132 u_int32_t oobsize; /* Amount of OOB data per block (e.g. 16) */ 133 u_int32_t oobavail; /* Available OOB bytes per block */ 134 135 /* Kernel-only stuff starts here. */ 136 const char *name; 137 int index; 138 139 /* ecc layout structure pointer - read only ! */ 140 struct nand_ecclayout *ecclayout; 141 142 /* Data for variable erase regions. If numeraseregions is zero, 143 * it means that the whole device has erasesize as given above. 144 */ 145 int numeraseregions; 146 struct mtd_erase_region_info *eraseregions; 147 148 /* 149 * Erase is an asynchronous operation. Device drivers are supposed 150 * to call instr->callback() whenever the operation completes, even 151 * if it completes with a failure. 152 * Callers are supposed to pass a callback function and wait for it 153 * to be called before writing to the block. 154 */ 155 int (*erase) (struct mtd_info *mtd, struct erase_info *instr); 156 157 /* This stuff for eXecute-In-Place */ 158 /* phys is optional and may be set to NULL */ 159 int (*point) (struct mtd_info *mtd, loff_t from, size_t len, 160 size_t *retlen, void **virt, phys_addr_t *phys); 161 162 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 163 void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 164 165 166 int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 167 int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); 168 169 /* In blackbox flight recorder like scenarios we want to make successful 170 writes in interrupt context. panic_write() is only intended to be 171 called when its known the kernel is about to panic and we need the 172 write to succeed. Since the kernel is not going to be running for much 173 longer, this function can break locks and delay to ensure the write 174 succeeds (but not sleep). */ 175 176 int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); 177 178 int (*read_oob) (struct mtd_info *mtd, loff_t from, 179 struct mtd_oob_ops *ops); 180 int (*write_oob) (struct mtd_info *mtd, loff_t to, 181 struct mtd_oob_ops *ops); 182 183 /* 184 * Methods to access the protection register area, present in some 185 * flash devices. The user data is one time programmable but the 186 * factory data is read only. 187 */ 188 int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len); 189 int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 190 int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len); 191 int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 192 int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 193 int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len); 194 195 /* XXX U-BOOT XXX */ 196 #if 0 197 /* kvec-based read/write methods. 198 NB: The 'count' parameter is the number of _vectors_, each of 199 which contains an (ofs, len) tuple. 200 */ 201 int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen); 202 #endif 203 204 /* Sync */ 205 void (*sync) (struct mtd_info *mtd); 206 207 /* Chip-supported device locking */ 208 int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 209 int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 210 211 /* Bad block management functions */ 212 int (*block_isbad) (struct mtd_info *mtd, loff_t ofs); 213 int (*block_markbad) (struct mtd_info *mtd, loff_t ofs); 214 215 /* XXX U-BOOT XXX */ 216 #if 0 217 struct notifier_block reboot_notifier; /* default mode before reboot */ 218 #endif 219 220 /* ECC status information */ 221 struct mtd_ecc_stats ecc_stats; 222 /* Subpage shift (NAND) */ 223 int subpage_sft; 224 225 void *priv; 226 227 struct module *owner; 228 int usecount; 229 230 /* If the driver is something smart, like UBI, it may need to maintain 231 * its own reference counting. The below functions are only for driver. 232 * The driver may register its callbacks. These callbacks are not 233 * supposed to be called by MTD users */ 234 int (*get_device) (struct mtd_info *mtd); 235 void (*put_device) (struct mtd_info *mtd); 236 }; 237 238 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 239 { 240 do_div(sz, mtd->erasesize); 241 return sz; 242 } 243 244 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 245 { 246 return do_div(sz, mtd->erasesize); 247 } 248 249 /* Kernel-side ioctl definitions */ 250 251 extern int add_mtd_device(struct mtd_info *mtd); 252 extern int del_mtd_device (struct mtd_info *mtd); 253 254 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 255 extern struct mtd_info *get_mtd_device_nm(const char *name); 256 257 extern void put_mtd_device(struct mtd_info *mtd); 258 extern void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 259 const uint64_t length, uint64_t *len_incl_bad, 260 int *truncated); 261 /* XXX U-BOOT XXX */ 262 #if 0 263 struct mtd_notifier { 264 void (*add)(struct mtd_info *mtd); 265 void (*remove)(struct mtd_info *mtd); 266 struct list_head list; 267 }; 268 269 extern void register_mtd_user (struct mtd_notifier *new); 270 extern int unregister_mtd_user (struct mtd_notifier *old); 271 272 int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 273 unsigned long count, loff_t to, size_t *retlen); 274 275 int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs, 276 unsigned long count, loff_t from, size_t *retlen); 277 #endif 278 279 #ifdef CONFIG_MTD_PARTITIONS 280 void mtd_erase_callback(struct erase_info *instr); 281 #else 282 static inline void mtd_erase_callback(struct erase_info *instr) 283 { 284 if (instr->callback) 285 instr->callback(instr); 286 } 287 #endif 288 289 /* 290 * Debugging macro and defines 291 */ 292 #define MTD_DEBUG_LEVEL0 (0) /* Quiet */ 293 #define MTD_DEBUG_LEVEL1 (1) /* Audible */ 294 #define MTD_DEBUG_LEVEL2 (2) /* Loud */ 295 #define MTD_DEBUG_LEVEL3 (3) /* Noisy */ 296 297 #ifdef CONFIG_MTD_DEBUG 298 #define MTDDEBUG(n, args...) \ 299 do { \ 300 if (n <= CONFIG_MTD_DEBUG_VERBOSE) \ 301 printk(KERN_INFO args); \ 302 } while(0) 303 #else /* CONFIG_MTD_DEBUG */ 304 #define MTDDEBUG(n, args...) \ 305 do { \ 306 if (0) \ 307 printk(KERN_INFO args); \ 308 } while(0) 309 #endif /* CONFIG_MTD_DEBUG */ 310 311 #endif /* __MTD_MTD_H__ */ 312