1 /* 2 * Copyright (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> et al. 3 * 4 * Released under GPL 5 */ 6 7 #ifndef __MTD_MTD_H__ 8 #define __MTD_MTD_H__ 9 10 #include <linux/types.h> 11 #include <div64.h> 12 #include <linux/mtd/mtd-abi.h> 13 14 #define MTD_CHAR_MAJOR 90 15 #define MTD_BLOCK_MAJOR 31 16 #define MAX_MTD_DEVICES 32 17 18 #define MTD_ERASE_PENDING 0x01 19 #define MTD_ERASING 0x02 20 #define MTD_ERASE_SUSPEND 0x04 21 #define MTD_ERASE_DONE 0x08 22 #define MTD_ERASE_FAILED 0x10 23 24 #define MTD_FAIL_ADDR_UNKNOWN -1LL 25 26 /* 27 * Enumeration for NAND/OneNAND flash chip state 28 */ 29 enum { 30 FL_READY, 31 FL_READING, 32 FL_WRITING, 33 FL_ERASING, 34 FL_SYNCING, 35 FL_CACHEDPRG, 36 FL_RESETING, 37 FL_UNLOCKING, 38 FL_LOCKING, 39 FL_PM_SUSPENDED, 40 }; 41 42 /* If the erase fails, fail_addr might indicate exactly which block failed. If 43 fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level or was not 44 specific to any particular block. */ 45 struct erase_info { 46 struct mtd_info *mtd; 47 uint64_t addr; 48 uint64_t len; 49 uint64_t fail_addr; 50 u_long time; 51 u_long retries; 52 u_int dev; 53 u_int cell; 54 void (*callback) (struct erase_info *self); 55 u_long priv; 56 u_char state; 57 struct erase_info *next; 58 int scrub; 59 }; 60 61 struct mtd_erase_region_info { 62 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 63 u_int32_t erasesize; /* For this region */ 64 u_int32_t numblocks; /* Number of blocks of erasesize in this region */ 65 unsigned long *lockmap; /* If keeping bitmap of locks */ 66 }; 67 68 /* 69 * oob operation modes 70 * 71 * MTD_OOB_PLACE: oob data are placed at the given offset 72 * MTD_OOB_AUTO: oob data are automatically placed at the free areas 73 * which are defined by the ecclayout 74 * MTD_OOB_RAW: mode to read raw data+oob in one chunk. The oob data 75 * is inserted into the data. Thats a raw image of the 76 * flash contents. 77 */ 78 typedef enum { 79 MTD_OOB_PLACE, 80 MTD_OOB_AUTO, 81 MTD_OOB_RAW, 82 } mtd_oob_mode_t; 83 84 /** 85 * struct mtd_oob_ops - oob operation operands 86 * @mode: operation mode 87 * 88 * @len: number of data bytes to write/read 89 * 90 * @retlen: number of data bytes written/read 91 * 92 * @ooblen: number of oob bytes to write/read 93 * @oobretlen: number of oob bytes written/read 94 * @ooboffs: offset of oob data in the oob area (only relevant when 95 * mode = MTD_OOB_PLACE) 96 * @datbuf: data buffer - if NULL only oob data are read/written 97 * @oobbuf: oob data buffer 98 * 99 * Note, it is allowed to read more then one OOB area at one go, but not write. 100 * The interface assumes that the OOB write requests program only one page's 101 * OOB area. 102 */ 103 struct mtd_oob_ops { 104 mtd_oob_mode_t mode; 105 size_t len; 106 size_t retlen; 107 size_t ooblen; 108 size_t oobretlen; 109 uint32_t ooboffs; 110 uint8_t *datbuf; 111 uint8_t *oobbuf; 112 }; 113 114 struct mtd_info { 115 u_char type; 116 u_int32_t flags; 117 uint64_t size; /* Total size of the MTD */ 118 119 /* "Major" erase size for the device. Naïve users may take this 120 * to be the only erase size available, or may use the more detailed 121 * information below if they desire 122 */ 123 u_int32_t erasesize; 124 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 125 * though individual bits can be cleared), in case of NAND flash it is 126 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 127 * it is of ECC block size, etc. It is illegal to have writesize = 0. 128 * Any driver registering a struct mtd_info must ensure a writesize of 129 * 1 or larger. 130 */ 131 u_int32_t writesize; 132 133 u_int32_t oobsize; /* Amount of OOB data per block (e.g. 16) */ 134 u_int32_t oobavail; /* Available OOB bytes per block */ 135 136 /* Kernel-only stuff starts here. */ 137 const char *name; 138 int index; 139 140 /* ecc layout structure pointer - read only ! */ 141 struct nand_ecclayout *ecclayout; 142 143 /* Data for variable erase regions. If numeraseregions is zero, 144 * it means that the whole device has erasesize as given above. 145 */ 146 int numeraseregions; 147 struct mtd_erase_region_info *eraseregions; 148 149 /* 150 * Erase is an asynchronous operation. Device drivers are supposed 151 * to call instr->callback() whenever the operation completes, even 152 * if it completes with a failure. 153 * Callers are supposed to pass a callback function and wait for it 154 * to be called before writing to the block. 155 */ 156 int (*erase) (struct mtd_info *mtd, struct erase_info *instr); 157 158 /* This stuff for eXecute-In-Place */ 159 /* phys is optional and may be set to NULL */ 160 int (*point) (struct mtd_info *mtd, loff_t from, size_t len, 161 size_t *retlen, void **virt, phys_addr_t *phys); 162 163 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 164 void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 165 166 167 int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 168 int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); 169 170 /* In blackbox flight recorder like scenarios we want to make successful 171 writes in interrupt context. panic_write() is only intended to be 172 called when its known the kernel is about to panic and we need the 173 write to succeed. Since the kernel is not going to be running for much 174 longer, this function can break locks and delay to ensure the write 175 succeeds (but not sleep). */ 176 177 int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); 178 179 int (*read_oob) (struct mtd_info *mtd, loff_t from, 180 struct mtd_oob_ops *ops); 181 int (*write_oob) (struct mtd_info *mtd, loff_t to, 182 struct mtd_oob_ops *ops); 183 184 /* 185 * Methods to access the protection register area, present in some 186 * flash devices. The user data is one time programmable but the 187 * factory data is read only. 188 */ 189 int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len); 190 int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 191 int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len); 192 int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 193 int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 194 int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len); 195 196 /* XXX U-BOOT XXX */ 197 #if 0 198 /* kvec-based read/write methods. 199 NB: The 'count' parameter is the number of _vectors_, each of 200 which contains an (ofs, len) tuple. 201 */ 202 int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen); 203 #endif 204 205 /* Sync */ 206 void (*sync) (struct mtd_info *mtd); 207 208 /* Chip-supported device locking */ 209 int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 210 int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 211 212 /* Bad block management functions */ 213 int (*block_isbad) (struct mtd_info *mtd, loff_t ofs); 214 int (*block_markbad) (struct mtd_info *mtd, loff_t ofs); 215 216 /* XXX U-BOOT XXX */ 217 #if 0 218 struct notifier_block reboot_notifier; /* default mode before reboot */ 219 #endif 220 221 /* ECC status information */ 222 struct mtd_ecc_stats ecc_stats; 223 /* Subpage shift (NAND) */ 224 int subpage_sft; 225 226 void *priv; 227 228 struct module *owner; 229 int usecount; 230 231 /* If the driver is something smart, like UBI, it may need to maintain 232 * its own reference counting. The below functions are only for driver. 233 * The driver may register its callbacks. These callbacks are not 234 * supposed to be called by MTD users */ 235 int (*get_device) (struct mtd_info *mtd); 236 void (*put_device) (struct mtd_info *mtd); 237 }; 238 239 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 240 { 241 do_div(sz, mtd->erasesize); 242 return sz; 243 } 244 245 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 246 { 247 return do_div(sz, mtd->erasesize); 248 } 249 250 /* Kernel-side ioctl definitions */ 251 252 extern int add_mtd_device(struct mtd_info *mtd); 253 extern int del_mtd_device (struct mtd_info *mtd); 254 255 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 256 extern struct mtd_info *get_mtd_device_nm(const char *name); 257 258 extern void put_mtd_device(struct mtd_info *mtd); 259 extern void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 260 const uint64_t length, uint64_t *len_incl_bad, 261 int *truncated); 262 /* XXX U-BOOT XXX */ 263 #if 0 264 struct mtd_notifier { 265 void (*add)(struct mtd_info *mtd); 266 void (*remove)(struct mtd_info *mtd); 267 struct list_head list; 268 }; 269 270 extern void register_mtd_user (struct mtd_notifier *new); 271 extern int unregister_mtd_user (struct mtd_notifier *old); 272 273 int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 274 unsigned long count, loff_t to, size_t *retlen); 275 276 int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs, 277 unsigned long count, loff_t from, size_t *retlen); 278 #endif 279 280 #ifdef CONFIG_MTD_PARTITIONS 281 void mtd_erase_callback(struct erase_info *instr); 282 #else 283 static inline void mtd_erase_callback(struct erase_info *instr) 284 { 285 if (instr->callback) 286 instr->callback(instr); 287 } 288 #endif 289 290 /* 291 * Debugging macro and defines 292 */ 293 #define MTD_DEBUG_LEVEL0 (0) /* Quiet */ 294 #define MTD_DEBUG_LEVEL1 (1) /* Audible */ 295 #define MTD_DEBUG_LEVEL2 (2) /* Loud */ 296 #define MTD_DEBUG_LEVEL3 (3) /* Noisy */ 297 298 #ifdef CONFIG_MTD_DEBUG 299 #define MTDDEBUG(n, args...) \ 300 do { \ 301 if (n <= CONFIG_MTD_DEBUG_VERBOSE) \ 302 printk(KERN_INFO args); \ 303 } while(0) 304 #else /* CONFIG_MTD_DEBUG */ 305 #define MTDDEBUG(n, args...) \ 306 do { \ 307 if (0) \ 308 printk(KERN_INFO args); \ 309 } while(0) 310 #endif /* CONFIG_MTD_DEBUG */ 311 312 #endif /* __MTD_MTD_H__ */ 313