xref: /openbmc/u-boot/include/linux/log2.h (revision 83d290c56fab2d38cd1ab4c4cc7099559c1d5046)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /* Integer base 2 logarithm calculation
3  *
4  * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #ifndef _LINUX_LOG2_H
9 #define _LINUX_LOG2_H
10 
11 #include <linux/types.h>
12 #include <linux/bitops.h>
13 
14 /*
15  * deal with unrepresentable constant logarithms
16  */
17 extern __attribute__((const, noreturn))
18 int ____ilog2_NaN(void);
19 
20 /*
21  * non-constant log of base 2 calculators
22  * - the arch may override these in asm/bitops.h if they can be implemented
23  *   more efficiently than using fls() and fls64()
24  * - the arch is not required to handle n==0 if implementing the fallback
25  */
26 #ifndef CONFIG_ARCH_HAS_ILOG2_U32
27 static inline __attribute__((const))
28 int __ilog2_u32(u32 n)
29 {
30 	return fls(n) - 1;
31 }
32 #endif
33 
34 #ifndef CONFIG_ARCH_HAS_ILOG2_U64
35 static inline __attribute__((const))
36 int __ilog2_u64(u64 n)
37 {
38 	return fls64(n) - 1;
39 }
40 #endif
41 
42 /*
43  *  Determine whether some value is a power of two, where zero is
44  * *not* considered a power of two.
45  */
46 
47 static inline __attribute__((const))
48 bool is_power_of_2(unsigned long n)
49 {
50 	return (n != 0 && ((n & (n - 1)) == 0));
51 }
52 
53 /*
54  * round up to nearest power of two
55  */
56 static inline __attribute__((const))
57 unsigned long __roundup_pow_of_two(unsigned long n)
58 {
59 	return 1UL << fls_long(n - 1);
60 }
61 
62 /*
63  * round down to nearest power of two
64  */
65 static inline __attribute__((const))
66 unsigned long __rounddown_pow_of_two(unsigned long n)
67 {
68 	return 1UL << (fls_long(n) - 1);
69 }
70 
71 /**
72  * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
73  * @n - parameter
74  *
75  * constant-capable log of base 2 calculation
76  * - this can be used to initialise global variables from constant data, hence
77  *   the massive ternary operator construction
78  *
79  * selects the appropriately-sized optimised version depending on sizeof(n)
80  */
81 #define ilog2(n)				\
82 (						\
83 	__builtin_constant_p(n) ? (		\
84 		(n) < 1 ? ____ilog2_NaN() :	\
85 		(n) & (1ULL << 63) ? 63 :	\
86 		(n) & (1ULL << 62) ? 62 :	\
87 		(n) & (1ULL << 61) ? 61 :	\
88 		(n) & (1ULL << 60) ? 60 :	\
89 		(n) & (1ULL << 59) ? 59 :	\
90 		(n) & (1ULL << 58) ? 58 :	\
91 		(n) & (1ULL << 57) ? 57 :	\
92 		(n) & (1ULL << 56) ? 56 :	\
93 		(n) & (1ULL << 55) ? 55 :	\
94 		(n) & (1ULL << 54) ? 54 :	\
95 		(n) & (1ULL << 53) ? 53 :	\
96 		(n) & (1ULL << 52) ? 52 :	\
97 		(n) & (1ULL << 51) ? 51 :	\
98 		(n) & (1ULL << 50) ? 50 :	\
99 		(n) & (1ULL << 49) ? 49 :	\
100 		(n) & (1ULL << 48) ? 48 :	\
101 		(n) & (1ULL << 47) ? 47 :	\
102 		(n) & (1ULL << 46) ? 46 :	\
103 		(n) & (1ULL << 45) ? 45 :	\
104 		(n) & (1ULL << 44) ? 44 :	\
105 		(n) & (1ULL << 43) ? 43 :	\
106 		(n) & (1ULL << 42) ? 42 :	\
107 		(n) & (1ULL << 41) ? 41 :	\
108 		(n) & (1ULL << 40) ? 40 :	\
109 		(n) & (1ULL << 39) ? 39 :	\
110 		(n) & (1ULL << 38) ? 38 :	\
111 		(n) & (1ULL << 37) ? 37 :	\
112 		(n) & (1ULL << 36) ? 36 :	\
113 		(n) & (1ULL << 35) ? 35 :	\
114 		(n) & (1ULL << 34) ? 34 :	\
115 		(n) & (1ULL << 33) ? 33 :	\
116 		(n) & (1ULL << 32) ? 32 :	\
117 		(n) & (1ULL << 31) ? 31 :	\
118 		(n) & (1ULL << 30) ? 30 :	\
119 		(n) & (1ULL << 29) ? 29 :	\
120 		(n) & (1ULL << 28) ? 28 :	\
121 		(n) & (1ULL << 27) ? 27 :	\
122 		(n) & (1ULL << 26) ? 26 :	\
123 		(n) & (1ULL << 25) ? 25 :	\
124 		(n) & (1ULL << 24) ? 24 :	\
125 		(n) & (1ULL << 23) ? 23 :	\
126 		(n) & (1ULL << 22) ? 22 :	\
127 		(n) & (1ULL << 21) ? 21 :	\
128 		(n) & (1ULL << 20) ? 20 :	\
129 		(n) & (1ULL << 19) ? 19 :	\
130 		(n) & (1ULL << 18) ? 18 :	\
131 		(n) & (1ULL << 17) ? 17 :	\
132 		(n) & (1ULL << 16) ? 16 :	\
133 		(n) & (1ULL << 15) ? 15 :	\
134 		(n) & (1ULL << 14) ? 14 :	\
135 		(n) & (1ULL << 13) ? 13 :	\
136 		(n) & (1ULL << 12) ? 12 :	\
137 		(n) & (1ULL << 11) ? 11 :	\
138 		(n) & (1ULL << 10) ? 10 :	\
139 		(n) & (1ULL <<  9) ?  9 :	\
140 		(n) & (1ULL <<  8) ?  8 :	\
141 		(n) & (1ULL <<  7) ?  7 :	\
142 		(n) & (1ULL <<  6) ?  6 :	\
143 		(n) & (1ULL <<  5) ?  5 :	\
144 		(n) & (1ULL <<  4) ?  4 :	\
145 		(n) & (1ULL <<  3) ?  3 :	\
146 		(n) & (1ULL <<  2) ?  2 :	\
147 		(n) & (1ULL <<  1) ?  1 :	\
148 		(n) & (1ULL <<  0) ?  0 :	\
149 		____ilog2_NaN()			\
150 				   ) :		\
151 	(sizeof(n) <= 4) ?			\
152 	__ilog2_u32(n) :			\
153 	__ilog2_u64(n)				\
154  )
155 
156 /**
157  * roundup_pow_of_two - round the given value up to nearest power of two
158  * @n - parameter
159  *
160  * round the given value up to the nearest power of two
161  * - the result is undefined when n == 0
162  * - this can be used to initialise global variables from constant data
163  */
164 #define roundup_pow_of_two(n)			\
165 (						\
166 	__builtin_constant_p(n) ? (		\
167 		(n == 1) ? 1 :			\
168 		(1UL << (ilog2((n) - 1) + 1))	\
169 				   ) :		\
170 	__roundup_pow_of_two(n)			\
171  )
172 
173 /**
174  * rounddown_pow_of_two - round the given value down to nearest power of two
175  * @n - parameter
176  *
177  * round the given value down to the nearest power of two
178  * - the result is undefined when n == 0
179  * - this can be used to initialise global variables from constant data
180  */
181 #define rounddown_pow_of_two(n)			\
182 (						\
183 	__builtin_constant_p(n) ? (		\
184 		(1UL << ilog2(n))) :		\
185 	__rounddown_pow_of_two(n)		\
186  )
187 
188 /**
189  * order_base_2 - calculate the (rounded up) base 2 order of the argument
190  * @n: parameter
191  *
192  * The first few values calculated by this routine:
193  *  ob2(0) = 0
194  *  ob2(1) = 0
195  *  ob2(2) = 1
196  *  ob2(3) = 2
197  *  ob2(4) = 2
198  *  ob2(5) = 3
199  *  ... and so on.
200  */
201 
202 #define order_base_2(n) ilog2(roundup_pow_of_two(n))
203 
204 #endif /* _LINUX_LOG2_H */
205