xref: /openbmc/u-boot/include/linux/kernel.h (revision baefb63a)
1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3 
4 
5 #include <linux/types.h>
6 
7 #define USHRT_MAX	((u16)(~0U))
8 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
9 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
10 #define INT_MAX		((int)(~0U>>1))
11 #define INT_MIN		(-INT_MAX - 1)
12 #define UINT_MAX	(~0U)
13 #define LONG_MAX	((long)(~0UL>>1))
14 #define LONG_MIN	(-LONG_MAX - 1)
15 #define ULONG_MAX	(~0UL)
16 #define LLONG_MAX	((long long)(~0ULL>>1))
17 #define LLONG_MIN	(-LLONG_MAX - 1)
18 #define ULLONG_MAX	(~0ULL)
19 #ifndef SIZE_MAX
20 #define SIZE_MAX	(~(size_t)0)
21 #endif
22 
23 #define U8_MAX		((u8)~0U)
24 #define S8_MAX		((s8)(U8_MAX>>1))
25 #define S8_MIN		((s8)(-S8_MAX - 1))
26 #define U16_MAX		((u16)~0U)
27 #define S16_MAX		((s16)(U16_MAX>>1))
28 #define S16_MIN		((s16)(-S16_MAX - 1))
29 #define U32_MAX		((u32)~0U)
30 #define S32_MAX		((s32)(U32_MAX>>1))
31 #define S32_MIN		((s32)(-S32_MAX - 1))
32 #define U64_MAX		((u64)~0ULL)
33 #define S64_MAX		((s64)(U64_MAX>>1))
34 #define S64_MIN		((s64)(-S64_MAX - 1))
35 
36 #define STACK_MAGIC	0xdeadbeef
37 
38 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
39 
40 #define ALIGN(x,a)		__ALIGN_MASK((x),(typeof(x))(a)-1)
41 #define __ALIGN_MASK(x,mask)	(((x)+(mask))&~(mask))
42 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
43 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
44 
45 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
46 
47 /*
48  * This looks more complex than it should be. But we need to
49  * get the type for the ~ right in round_down (it needs to be
50  * as wide as the result!), and we want to evaluate the macro
51  * arguments just once each.
52  */
53 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
54 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
55 #define round_down(x, y) ((x) & ~__round_mask(x, y))
56 
57 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
58 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
59 
60 #define DIV_ROUND_DOWN_ULL(ll, d) \
61 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
62 
63 #define DIV_ROUND_UP_ULL(ll, d)		DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
64 
65 #if BITS_PER_LONG == 32
66 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
67 #else
68 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
69 #endif
70 
71 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
72 #define roundup(x, y) (					\
73 {							\
74 	const typeof(y) __y = y;			\
75 	(((x) + (__y - 1)) / __y) * __y;		\
76 }							\
77 )
78 #define rounddown(x, y) (				\
79 {							\
80 	typeof(x) __x = (x);				\
81 	__x - (__x % (y));				\
82 }							\
83 )
84 
85 /*
86  * Divide positive or negative dividend by positive divisor and round
87  * to closest integer. Result is undefined for negative divisors and
88  * for negative dividends if the divisor variable type is unsigned.
89  */
90 #define DIV_ROUND_CLOSEST(x, divisor)(			\
91 {							\
92 	typeof(x) __x = x;				\
93 	typeof(divisor) __d = divisor;			\
94 	(((typeof(x))-1) > 0 ||				\
95 	 ((typeof(divisor))-1) > 0 || (__x) > 0) ?	\
96 		(((__x) + ((__d) / 2)) / (__d)) :	\
97 		(((__x) - ((__d) / 2)) / (__d));	\
98 }							\
99 )
100 
101 /*
102  * Multiplies an integer by a fraction, while avoiding unnecessary
103  * overflow or loss of precision.
104  */
105 #define mult_frac(x, numer, denom)(			\
106 {							\
107 	typeof(x) quot = (x) / (denom);			\
108 	typeof(x) rem  = (x) % (denom);			\
109 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
110 }							\
111 )
112 
113 /**
114  * upper_32_bits - return bits 32-63 of a number
115  * @n: the number we're accessing
116  *
117  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
118  * the "right shift count >= width of type" warning when that quantity is
119  * 32-bits.
120  */
121 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
122 
123 /**
124  * lower_32_bits - return bits 0-31 of a number
125  * @n: the number we're accessing
126  */
127 #define lower_32_bits(n) ((u32)(n))
128 
129 /*
130  * abs() handles unsigned and signed longs, ints, shorts and chars.  For all
131  * input types abs() returns a signed long.
132  * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()
133  * for those.
134  */
135 #define abs(x) ({						\
136 		long ret;					\
137 		if (sizeof(x) == sizeof(long)) {		\
138 			long __x = (x);				\
139 			ret = (__x < 0) ? -__x : __x;		\
140 		} else {					\
141 			int __x = (x);				\
142 			ret = (__x < 0) ? -__x : __x;		\
143 		}						\
144 		ret;						\
145 	})
146 
147 #define abs64(x) ({				\
148 		s64 __x = (x);			\
149 		(__x < 0) ? -__x : __x;		\
150 	})
151 
152 /*
153  * min()/max()/clamp() macros that also do
154  * strict type-checking.. See the
155  * "unnecessary" pointer comparison.
156  */
157 #define min(x, y) ({				\
158 	typeof(x) _min1 = (x);			\
159 	typeof(y) _min2 = (y);			\
160 	(void) (&_min1 == &_min2);		\
161 	_min1 < _min2 ? _min1 : _min2; })
162 
163 #define max(x, y) ({				\
164 	typeof(x) _max1 = (x);			\
165 	typeof(y) _max2 = (y);			\
166 	(void) (&_max1 == &_max2);		\
167 	_max1 > _max2 ? _max1 : _max2; })
168 
169 #define min3(x, y, z) min((typeof(x))min(x, y), z)
170 #define max3(x, y, z) max((typeof(x))max(x, y), z)
171 
172 /**
173  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
174  * @x: value1
175  * @y: value2
176  */
177 #define min_not_zero(x, y) ({			\
178 	typeof(x) __x = (x);			\
179 	typeof(y) __y = (y);			\
180 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
181 
182 /**
183  * clamp - return a value clamped to a given range with strict typechecking
184  * @val: current value
185  * @lo: lowest allowable value
186  * @hi: highest allowable value
187  *
188  * This macro does strict typechecking of lo/hi to make sure they are of the
189  * same type as val.  See the unnecessary pointer comparisons.
190  */
191 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
192 
193 /*
194  * ..and if you can't take the strict
195  * types, you can specify one yourself.
196  *
197  * Or not use min/max/clamp at all, of course.
198  */
199 #define min_t(type, x, y) ({			\
200 	type __min1 = (x);			\
201 	type __min2 = (y);			\
202 	__min1 < __min2 ? __min1: __min2; })
203 
204 #define max_t(type, x, y) ({			\
205 	type __max1 = (x);			\
206 	type __max2 = (y);			\
207 	__max1 > __max2 ? __max1: __max2; })
208 
209 /**
210  * clamp_t - return a value clamped to a given range using a given type
211  * @type: the type of variable to use
212  * @val: current value
213  * @lo: minimum allowable value
214  * @hi: maximum allowable value
215  *
216  * This macro does no typechecking and uses temporary variables of type
217  * 'type' to make all the comparisons.
218  */
219 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
220 
221 /**
222  * clamp_val - return a value clamped to a given range using val's type
223  * @val: current value
224  * @lo: minimum allowable value
225  * @hi: maximum allowable value
226  *
227  * This macro does no typechecking and uses temporary variables of whatever
228  * type the input argument 'val' is.  This is useful when val is an unsigned
229  * type and min and max are literals that will otherwise be assigned a signed
230  * integer type.
231  */
232 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
233 
234 
235 /*
236  * swap - swap value of @a and @b
237  */
238 #define swap(a, b) \
239 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
240 
241 /**
242  * container_of - cast a member of a structure out to the containing structure
243  * @ptr:	the pointer to the member.
244  * @type:	the type of the container struct this is embedded in.
245  * @member:	the name of the member within the struct.
246  *
247  */
248 #define container_of(ptr, type, member) ({			\
249 	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
250 	(type *)( (char *)__mptr - offsetof(type,member) );})
251 
252 #endif
253