xref: /openbmc/u-boot/include/linux/kernel.h (revision abb1678c)
1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3 
4 
5 #include <linux/types.h>
6 
7 #define USHRT_MAX	((u16)(~0U))
8 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
9 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
10 #define INT_MAX		((int)(~0U>>1))
11 #define INT_MIN		(-INT_MAX - 1)
12 #define UINT_MAX	(~0U)
13 #define LONG_MAX	((long)(~0UL>>1))
14 #define LONG_MIN	(-LONG_MAX - 1)
15 #define ULONG_MAX	(~0UL)
16 #define LLONG_MAX	((long long)(~0ULL>>1))
17 #define LLONG_MIN	(-LLONG_MAX - 1)
18 #define ULLONG_MAX	(~0ULL)
19 #define SIZE_MAX	(~(size_t)0)
20 
21 #define U8_MAX		((u8)~0U)
22 #define S8_MAX		((s8)(U8_MAX>>1))
23 #define S8_MIN		((s8)(-S8_MAX - 1))
24 #define U16_MAX		((u16)~0U)
25 #define S16_MAX		((s16)(U16_MAX>>1))
26 #define S16_MIN		((s16)(-S16_MAX - 1))
27 #define U32_MAX		((u32)~0U)
28 #define S32_MAX		((s32)(U32_MAX>>1))
29 #define S32_MIN		((s32)(-S32_MAX - 1))
30 #define U64_MAX		((u64)~0ULL)
31 #define S64_MAX		((s64)(U64_MAX>>1))
32 #define S64_MIN		((s64)(-S64_MAX - 1))
33 
34 #define STACK_MAGIC	0xdeadbeef
35 
36 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
37 
38 #define ALIGN(x,a)		__ALIGN_MASK((x),(typeof(x))(a)-1)
39 #define __ALIGN_MASK(x,mask)	(((x)+(mask))&~(mask))
40 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
41 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
42 
43 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
44 
45 /*
46  * This looks more complex than it should be. But we need to
47  * get the type for the ~ right in round_down (it needs to be
48  * as wide as the result!), and we want to evaluate the macro
49  * arguments just once each.
50  */
51 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
52 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
53 #define round_down(x, y) ((x) & ~__round_mask(x, y))
54 
55 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
56 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
57 
58 #if BITS_PER_LONG == 32
59 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
60 #else
61 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
62 #endif
63 
64 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
65 #define roundup(x, y) (					\
66 {							\
67 	const typeof(y) __y = y;			\
68 	(((x) + (__y - 1)) / __y) * __y;		\
69 }							\
70 )
71 #define rounddown(x, y) (				\
72 {							\
73 	typeof(x) __x = (x);				\
74 	__x - (__x % (y));				\
75 }							\
76 )
77 
78 /*
79  * Divide positive or negative dividend by positive divisor and round
80  * to closest integer. Result is undefined for negative divisors and
81  * for negative dividends if the divisor variable type is unsigned.
82  */
83 #define DIV_ROUND_CLOSEST(x, divisor)(			\
84 {							\
85 	typeof(x) __x = x;				\
86 	typeof(divisor) __d = divisor;			\
87 	(((typeof(x))-1) > 0 ||				\
88 	 ((typeof(divisor))-1) > 0 || (__x) > 0) ?	\
89 		(((__x) + ((__d) / 2)) / (__d)) :	\
90 		(((__x) - ((__d) / 2)) / (__d));	\
91 }							\
92 )
93 
94 /*
95  * Multiplies an integer by a fraction, while avoiding unnecessary
96  * overflow or loss of precision.
97  */
98 #define mult_frac(x, numer, denom)(			\
99 {							\
100 	typeof(x) quot = (x) / (denom);			\
101 	typeof(x) rem  = (x) % (denom);			\
102 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
103 }							\
104 )
105 
106 /**
107  * upper_32_bits - return bits 32-63 of a number
108  * @n: the number we're accessing
109  *
110  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
111  * the "right shift count >= width of type" warning when that quantity is
112  * 32-bits.
113  */
114 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
115 
116 /**
117  * lower_32_bits - return bits 0-31 of a number
118  * @n: the number we're accessing
119  */
120 #define lower_32_bits(n) ((u32)(n))
121 
122 /*
123  * abs() handles unsigned and signed longs, ints, shorts and chars.  For all
124  * input types abs() returns a signed long.
125  * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()
126  * for those.
127  */
128 #define abs(x) ({						\
129 		long ret;					\
130 		if (sizeof(x) == sizeof(long)) {		\
131 			long __x = (x);				\
132 			ret = (__x < 0) ? -__x : __x;		\
133 		} else {					\
134 			int __x = (x);				\
135 			ret = (__x < 0) ? -__x : __x;		\
136 		}						\
137 		ret;						\
138 	})
139 
140 #define abs64(x) ({				\
141 		s64 __x = (x);			\
142 		(__x < 0) ? -__x : __x;		\
143 	})
144 
145 /*
146  * min()/max()/clamp() macros that also do
147  * strict type-checking.. See the
148  * "unnecessary" pointer comparison.
149  */
150 #define min(x, y) ({				\
151 	typeof(x) _min1 = (x);			\
152 	typeof(y) _min2 = (y);			\
153 	(void) (&_min1 == &_min2);		\
154 	_min1 < _min2 ? _min1 : _min2; })
155 
156 #define max(x, y) ({				\
157 	typeof(x) _max1 = (x);			\
158 	typeof(y) _max2 = (y);			\
159 	(void) (&_max1 == &_max2);		\
160 	_max1 > _max2 ? _max1 : _max2; })
161 
162 #define min3(x, y, z) min((typeof(x))min(x, y), z)
163 #define max3(x, y, z) max((typeof(x))max(x, y), z)
164 
165 /**
166  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
167  * @x: value1
168  * @y: value2
169  */
170 #define min_not_zero(x, y) ({			\
171 	typeof(x) __x = (x);			\
172 	typeof(y) __y = (y);			\
173 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
174 
175 /**
176  * clamp - return a value clamped to a given range with strict typechecking
177  * @val: current value
178  * @lo: lowest allowable value
179  * @hi: highest allowable value
180  *
181  * This macro does strict typechecking of lo/hi to make sure they are of the
182  * same type as val.  See the unnecessary pointer comparisons.
183  */
184 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
185 
186 /*
187  * ..and if you can't take the strict
188  * types, you can specify one yourself.
189  *
190  * Or not use min/max/clamp at all, of course.
191  */
192 #define min_t(type, x, y) ({			\
193 	type __min1 = (x);			\
194 	type __min2 = (y);			\
195 	__min1 < __min2 ? __min1: __min2; })
196 
197 #define max_t(type, x, y) ({			\
198 	type __max1 = (x);			\
199 	type __max2 = (y);			\
200 	__max1 > __max2 ? __max1: __max2; })
201 
202 /**
203  * clamp_t - return a value clamped to a given range using a given type
204  * @type: the type of variable to use
205  * @val: current value
206  * @lo: minimum allowable value
207  * @hi: maximum allowable value
208  *
209  * This macro does no typechecking and uses temporary variables of type
210  * 'type' to make all the comparisons.
211  */
212 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
213 
214 /**
215  * clamp_val - return a value clamped to a given range using val's type
216  * @val: current value
217  * @lo: minimum allowable value
218  * @hi: maximum allowable value
219  *
220  * This macro does no typechecking and uses temporary variables of whatever
221  * type the input argument 'val' is.  This is useful when val is an unsigned
222  * type and min and max are literals that will otherwise be assigned a signed
223  * integer type.
224  */
225 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
226 
227 
228 /*
229  * swap - swap value of @a and @b
230  */
231 #define swap(a, b) \
232 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
233 
234 /**
235  * container_of - cast a member of a structure out to the containing structure
236  * @ptr:	the pointer to the member.
237  * @type:	the type of the container struct this is embedded in.
238  * @member:	the name of the member within the struct.
239  *
240  */
241 #define container_of(ptr, type, member) ({			\
242 	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
243 	(type *)( (char *)__mptr - offsetof(type,member) );})
244 
245 #endif
246