1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BYTEORDER_GENERIC_H 3 #define _LINUX_BYTEORDER_GENERIC_H 4 5 /* 6 * linux/byteorder/generic.h 7 * Generic Byte-reordering support 8 * 9 * The "... p" macros, like le64_to_cpup, can be used with pointers 10 * to unaligned data, but there will be a performance penalty on 11 * some architectures. Use get_unaligned for unaligned data. 12 * 13 * Francois-Rene Rideau <fare@tunes.org> 19970707 14 * gathered all the good ideas from all asm-foo/byteorder.h into one file, 15 * cleaned them up. 16 * I hope it is compliant with non-GCC compilers. 17 * I decided to put __BYTEORDER_HAS_U64__ in byteorder.h, 18 * because I wasn't sure it would be ok to put it in types.h 19 * Upgraded it to 2.1.43 20 * Francois-Rene Rideau <fare@tunes.org> 19971012 21 * Upgraded it to 2.1.57 22 * to please Linus T., replaced huge #ifdef's between little/big endian 23 * by nestedly #include'd files. 24 * Francois-Rene Rideau <fare@tunes.org> 19971205 25 * Made it to 2.1.71; now a facelift: 26 * Put files under include/linux/byteorder/ 27 * Split swab from generic support. 28 * 29 * TODO: 30 * = Regular kernel maintainers could also replace all these manual 31 * byteswap macros that remain, disseminated among drivers, 32 * after some grep or the sources... 33 * = Linus might want to rename all these macros and files to fit his taste, 34 * to fit his personal naming scheme. 35 * = it seems that a few drivers would also appreciate 36 * nybble swapping support... 37 * = every architecture could add their byteswap macro in asm/byteorder.h 38 * see how some architectures already do (i386, alpha, ppc, etc) 39 * = cpu_to_beXX and beXX_to_cpu might some day need to be well 40 * distinguished throughout the kernel. This is not the case currently, 41 * since little endian, big endian, and pdp endian machines needn't it. 42 * But this might be the case for, say, a port of Linux to 20/21 bit 43 * architectures (and F21 Linux addict around?). 44 */ 45 46 /* 47 * The following macros are to be defined by <asm/byteorder.h>: 48 * 49 * Conversion of long and short int between network and host format 50 * ntohl(__u32 x) 51 * ntohs(__u16 x) 52 * htonl(__u32 x) 53 * htons(__u16 x) 54 * It seems that some programs (which? where? or perhaps a standard? POSIX?) 55 * might like the above to be functions, not macros (why?). 56 * if that's true, then detect them, and take measures. 57 * Anyway, the measure is: define only ___ntohl as a macro instead, 58 * and in a separate file, have 59 * unsigned long inline ntohl(x){return ___ntohl(x);} 60 * 61 * The same for constant arguments 62 * __constant_ntohl(__u32 x) 63 * __constant_ntohs(__u16 x) 64 * __constant_htonl(__u32 x) 65 * __constant_htons(__u16 x) 66 * 67 * Conversion of XX-bit integers (16- 32- or 64-) 68 * between native CPU format and little/big endian format 69 * 64-bit stuff only defined for proper architectures 70 * cpu_to_[bl]eXX(__uXX x) 71 * [bl]eXX_to_cpu(__uXX x) 72 * 73 * The same, but takes a pointer to the value to convert 74 * cpu_to_[bl]eXXp(__uXX x) 75 * [bl]eXX_to_cpup(__uXX x) 76 * 77 * The same, but change in situ 78 * cpu_to_[bl]eXXs(__uXX x) 79 * [bl]eXX_to_cpus(__uXX x) 80 * 81 * See asm-foo/byteorder.h for examples of how to provide 82 * architecture-optimized versions 83 * 84 */ 85 86 #define cpu_to_le64 __cpu_to_le64 87 #define le64_to_cpu __le64_to_cpu 88 #define cpu_to_le32 __cpu_to_le32 89 #define le32_to_cpu __le32_to_cpu 90 #define cpu_to_le16 __cpu_to_le16 91 #define le16_to_cpu __le16_to_cpu 92 #define cpu_to_be64 __cpu_to_be64 93 #define be64_to_cpu __be64_to_cpu 94 #define cpu_to_be32 __cpu_to_be32 95 #define be32_to_cpu __be32_to_cpu 96 #define cpu_to_be16 __cpu_to_be16 97 #define be16_to_cpu __be16_to_cpu 98 #define cpu_to_le64p __cpu_to_le64p 99 #define le64_to_cpup __le64_to_cpup 100 #define cpu_to_le32p __cpu_to_le32p 101 #define le32_to_cpup __le32_to_cpup 102 #define cpu_to_le16p __cpu_to_le16p 103 #define le16_to_cpup __le16_to_cpup 104 #define cpu_to_be64p __cpu_to_be64p 105 #define be64_to_cpup __be64_to_cpup 106 #define cpu_to_be32p __cpu_to_be32p 107 #define be32_to_cpup __be32_to_cpup 108 #define cpu_to_be16p __cpu_to_be16p 109 #define be16_to_cpup __be16_to_cpup 110 #define cpu_to_le64s __cpu_to_le64s 111 #define le64_to_cpus __le64_to_cpus 112 #define cpu_to_le32s __cpu_to_le32s 113 #define le32_to_cpus __le32_to_cpus 114 #define cpu_to_le16s __cpu_to_le16s 115 #define le16_to_cpus __le16_to_cpus 116 #define cpu_to_be64s __cpu_to_be64s 117 #define be64_to_cpus __be64_to_cpus 118 #define cpu_to_be32s __cpu_to_be32s 119 #define be32_to_cpus __be32_to_cpus 120 #define cpu_to_be16s __cpu_to_be16s 121 #define be16_to_cpus __be16_to_cpus 122 123 /* 124 * They have to be macros in order to do the constant folding 125 * correctly - if the argument passed into a inline function 126 * it is no longer constant according to gcc.. 127 */ 128 129 #undef ntohl 130 #undef ntohs 131 #undef htonl 132 #undef htons 133 134 #define ___htonl(x) __cpu_to_be32(x) 135 #define ___htons(x) __cpu_to_be16(x) 136 #define ___ntohl(x) __be32_to_cpu(x) 137 #define ___ntohs(x) __be16_to_cpu(x) 138 139 #define htonl(x) ___htonl(x) 140 #define ntohl(x) ___ntohl(x) 141 #define htons(x) ___htons(x) 142 #define ntohs(x) ___ntohs(x) 143 144 static inline void le16_add_cpu(__le16 *var, u16 val) 145 { 146 *var = cpu_to_le16(le16_to_cpu(*var) + val); 147 } 148 149 static inline void le32_add_cpu(__le32 *var, u32 val) 150 { 151 *var = cpu_to_le32(le32_to_cpu(*var) + val); 152 } 153 154 static inline void le64_add_cpu(__le64 *var, u64 val) 155 { 156 *var = cpu_to_le64(le64_to_cpu(*var) + val); 157 } 158 159 /* XXX: this stuff can be optimized */ 160 static inline void le32_to_cpu_array(u32 *buf, unsigned int words) 161 { 162 while (words--) { 163 __le32_to_cpus(buf); 164 buf++; 165 } 166 } 167 168 static inline void cpu_to_le32_array(u32 *buf, unsigned int words) 169 { 170 while (words--) { 171 __cpu_to_le32s(buf); 172 buf++; 173 } 174 } 175 176 static inline void be16_add_cpu(__be16 *var, u16 val) 177 { 178 *var = cpu_to_be16(be16_to_cpu(*var) + val); 179 } 180 181 static inline void be32_add_cpu(__be32 *var, u32 val) 182 { 183 *var = cpu_to_be32(be32_to_cpu(*var) + val); 184 } 185 186 static inline void be64_add_cpu(__be64 *var, u64 val) 187 { 188 *var = cpu_to_be64(be64_to_cpu(*var) + val); 189 } 190 191 static inline void cpu_to_be32_array(__be32 *dst, const u32 *src, size_t len) 192 { 193 int i; 194 195 for (i = 0; i < len; i++) 196 dst[i] = cpu_to_be32(src[i]); 197 } 198 199 static inline void be32_to_cpu_array(u32 *dst, const __be32 *src, size_t len) 200 { 201 int i; 202 203 for (i = 0; i < len; i++) 204 dst[i] = be32_to_cpu(src[i]); 205 } 206 207 #endif /* _LINUX_BYTEORDER_GENERIC_H */ 208