1 /* 2 * Extensible Firmware Interface 3 * Based on 'Extensible Firmware Interface Specification' version 0.9, 4 * April 30, 1999 5 * 6 * Copyright (C) 1999 VA Linux Systems 7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 8 * Copyright (C) 1999, 2002-2003 Hewlett-Packard Co. 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * Stephane Eranian <eranian@hpl.hp.com> 11 * 12 * From include/linux/efi.h in kernel 4.1 with some additions/subtractions 13 */ 14 15 #ifndef _EFI_H 16 #define _EFI_H 17 18 #include <linux/linkage.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 22 /* 23 * EFI on x86_64 uses the Microsoft ABI which is not the default for GCC. 24 * 25 * There are two scenarios for EFI on x86_64: building a 64-bit EFI stub 26 * codes (CONFIG_EFI_STUB_64BIT) and building a 64-bit U-Boot (CONFIG_X86_64). 27 * Either needs to be properly built with the '-m64' compiler flag, and hence 28 * it is enough to only check the compiler provided define __x86_64__ here. 29 */ 30 #ifdef __x86_64__ 31 #define EFIAPI __attribute__((ms_abi)) 32 #else 33 #define EFIAPI asmlinkage 34 #endif /* __x86_64__ */ 35 36 struct efi_device_path; 37 38 typedef struct { 39 u8 b[16]; 40 } efi_guid_t; 41 42 #define EFI_BITS_PER_LONG (sizeof(long) * 8) 43 44 /* Bit mask for EFI status code with error */ 45 #define EFI_ERROR_MASK (1UL << (EFI_BITS_PER_LONG - 1)) 46 /* Status codes returned by EFI protocols */ 47 #define EFI_SUCCESS 0 48 #define EFI_LOAD_ERROR (EFI_ERROR_MASK | 1) 49 #define EFI_INVALID_PARAMETER (EFI_ERROR_MASK | 2) 50 #define EFI_UNSUPPORTED (EFI_ERROR_MASK | 3) 51 #define EFI_BAD_BUFFER_SIZE (EFI_ERROR_MASK | 4) 52 #define EFI_BUFFER_TOO_SMALL (EFI_ERROR_MASK | 5) 53 #define EFI_NOT_READY (EFI_ERROR_MASK | 6) 54 #define EFI_DEVICE_ERROR (EFI_ERROR_MASK | 7) 55 #define EFI_WRITE_PROTECTED (EFI_ERROR_MASK | 8) 56 #define EFI_OUT_OF_RESOURCES (EFI_ERROR_MASK | 9) 57 #define EFI_VOLUME_CORRUPTED (EFI_ERROR_MASK | 10) 58 #define EFI_VOLUME_FULL (EFI_ERROR_MASK | 11) 59 #define EFI_NO_MEDIA (EFI_ERROR_MASK | 12) 60 #define EFI_MEDIA_CHANGED (EFI_ERROR_MASK | 13) 61 #define EFI_NOT_FOUND (EFI_ERROR_MASK | 14) 62 #define EFI_ACCESS_DENIED (EFI_ERROR_MASK | 15) 63 #define EFI_NO_RESPONSE (EFI_ERROR_MASK | 16) 64 #define EFI_NO_MAPPING (EFI_ERROR_MASK | 17) 65 #define EFI_TIMEOUT (EFI_ERROR_MASK | 18) 66 #define EFI_NOT_STARTED (EFI_ERROR_MASK | 19) 67 #define EFI_ALREADY_STARTED (EFI_ERROR_MASK | 20) 68 #define EFI_ABORTED (EFI_ERROR_MASK | 21) 69 #define EFI_ICMP_ERROR (EFI_ERROR_MASK | 22) 70 #define EFI_TFTP_ERROR (EFI_ERROR_MASK | 23) 71 #define EFI_PROTOCOL_ERROR (EFI_ERROR_MASK | 24) 72 #define EFI_INCOMPATIBLE_VERSION (EFI_ERROR_MASK | 25) 73 #define EFI_SECURITY_VIOLATION (EFI_ERROR_MASK | 26) 74 #define EFI_CRC_ERROR (EFI_ERROR_MASK | 27) 75 #define EFI_END_OF_MEDIA (EFI_ERROR_MASK | 28) 76 #define EFI_END_OF_FILE (EFI_ERROR_MASK | 31) 77 #define EFI_INVALID_LANGUAGE (EFI_ERROR_MASK | 32) 78 #define EFI_COMPROMISED_DATA (EFI_ERROR_MASK | 33) 79 #define EFI_IP_ADDRESS_CONFLICT (EFI_ERROR_MASK | 34) 80 #define EFI_HTTP_ERROR (EFI_ERROR_MASK | 35) 81 82 #define EFI_WARN_DELETE_FAILURE 2 83 84 typedef unsigned long efi_status_t; 85 typedef u64 efi_physical_addr_t; 86 typedef u64 efi_virtual_addr_t; 87 typedef void *efi_handle_t; 88 89 #define EFI_GUID(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 90 {{ (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, \ 91 ((a) >> 24) & 0xff, \ 92 (b) & 0xff, ((b) >> 8) & 0xff, \ 93 (c) & 0xff, ((c) >> 8) & 0xff, \ 94 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } } 95 96 /* Generic EFI table header */ 97 struct efi_table_hdr { 98 u64 signature; 99 u32 revision; 100 u32 headersize; 101 u32 crc32; 102 u32 reserved; 103 }; 104 105 /* Enumeration of memory types introduced in UEFI */ 106 enum efi_mem_type { 107 EFI_RESERVED_MEMORY_TYPE, 108 /* 109 * The code portions of a loaded application. 110 * (Note that UEFI OS loaders are UEFI applications.) 111 */ 112 EFI_LOADER_CODE, 113 /* 114 * The data portions of a loaded application and 115 * the default data allocation type used by an application 116 * to allocate pool memory. 117 */ 118 EFI_LOADER_DATA, 119 /* The code portions of a loaded Boot Services Driver */ 120 EFI_BOOT_SERVICES_CODE, 121 /* 122 * The data portions of a loaded Boot Services Driver and 123 * the default data allocation type used by a Boot Services 124 * Driver to allocate pool memory. 125 */ 126 EFI_BOOT_SERVICES_DATA, 127 /* The code portions of a loaded Runtime Services Driver */ 128 EFI_RUNTIME_SERVICES_CODE, 129 /* 130 * The data portions of a loaded Runtime Services Driver and 131 * the default data allocation type used by a Runtime Services 132 * Driver to allocate pool memory. 133 */ 134 EFI_RUNTIME_SERVICES_DATA, 135 /* Free (unallocated) memory */ 136 EFI_CONVENTIONAL_MEMORY, 137 /* Memory in which errors have been detected */ 138 EFI_UNUSABLE_MEMORY, 139 /* Memory that holds the ACPI tables */ 140 EFI_ACPI_RECLAIM_MEMORY, 141 /* Address space reserved for use by the firmware */ 142 EFI_ACPI_MEMORY_NVS, 143 /* 144 * Used by system firmware to request that a memory-mapped IO region 145 * be mapped by the OS to a virtual address so it can be accessed by 146 * EFI runtime services. 147 */ 148 EFI_MMAP_IO, 149 /* 150 * System memory-mapped IO region that is used to translate 151 * memory cycles to IO cycles by the processor. 152 */ 153 EFI_MMAP_IO_PORT, 154 /* 155 * Address space reserved by the firmware for code that is 156 * part of the processor. 157 */ 158 EFI_PAL_CODE, 159 160 EFI_MAX_MEMORY_TYPE, 161 EFI_TABLE_END, /* For efi_build_mem_table() */ 162 }; 163 164 /* Attribute values */ 165 enum { 166 EFI_MEMORY_UC_SHIFT = 0, /* uncached */ 167 EFI_MEMORY_WC_SHIFT = 1, /* write-coalescing */ 168 EFI_MEMORY_WT_SHIFT = 2, /* write-through */ 169 EFI_MEMORY_WB_SHIFT = 3, /* write-back */ 170 EFI_MEMORY_UCE_SHIFT = 4, /* uncached, exported */ 171 EFI_MEMORY_WP_SHIFT = 12, /* write-protect */ 172 EFI_MEMORY_RP_SHIFT = 13, /* read-protect */ 173 EFI_MEMORY_XP_SHIFT = 14, /* execute-protect */ 174 EFI_MEMORY_RUNTIME_SHIFT = 63, /* range requires runtime mapping */ 175 176 EFI_MEMORY_RUNTIME = 1ULL << EFI_MEMORY_RUNTIME_SHIFT, 177 EFI_MEM_DESC_VERSION = 1, 178 }; 179 180 #define EFI_PAGE_SHIFT 12 181 #define EFI_PAGE_SIZE (1UL << EFI_PAGE_SHIFT) 182 #define EFI_PAGE_MASK (EFI_PAGE_SIZE - 1) 183 184 struct efi_mem_desc { 185 u32 type; 186 u32 reserved; 187 efi_physical_addr_t physical_start; 188 efi_virtual_addr_t virtual_start; 189 u64 num_pages; 190 u64 attribute; 191 }; 192 193 #define EFI_MEMORY_DESCRIPTOR_VERSION 1 194 195 /* Allocation types for calls to boottime->allocate_pages*/ 196 #define EFI_ALLOCATE_ANY_PAGES 0 197 #define EFI_ALLOCATE_MAX_ADDRESS 1 198 #define EFI_ALLOCATE_ADDRESS 2 199 #define EFI_MAX_ALLOCATE_TYPE 3 200 201 /* Types and defines for Time Services */ 202 #define EFI_TIME_ADJUST_DAYLIGHT 0x1 203 #define EFI_TIME_IN_DAYLIGHT 0x2 204 #define EFI_UNSPECIFIED_TIMEZONE 0x07ff 205 206 struct efi_time { 207 u16 year; 208 u8 month; 209 u8 day; 210 u8 hour; 211 u8 minute; 212 u8 second; 213 u8 pad1; 214 u32 nanosecond; 215 s16 timezone; 216 u8 daylight; 217 u8 pad2; 218 }; 219 220 struct efi_time_cap { 221 u32 resolution; 222 u32 accuracy; 223 u8 sets_to_zero; 224 }; 225 226 enum efi_locate_search_type { 227 ALL_HANDLES, 228 BY_REGISTER_NOTIFY, 229 BY_PROTOCOL 230 }; 231 232 struct efi_open_protocol_info_entry { 233 efi_handle_t agent_handle; 234 efi_handle_t controller_handle; 235 u32 attributes; 236 u32 open_count; 237 }; 238 239 enum efi_entry_t { 240 EFIET_END, /* Signals this is the last (empty) entry */ 241 EFIET_MEMORY_MAP, 242 EFIET_GOP_MODE, 243 244 /* Number of entries */ 245 EFIET_MEMORY_COUNT, 246 }; 247 248 #define EFI_TABLE_VERSION 1 249 250 /** 251 * struct efi_info_hdr - Header for the EFI info table 252 * 253 * @version: EFI_TABLE_VERSION 254 * @hdr_size: Size of this struct in bytes 255 * @total_size: Total size of this header plus following data 256 * @spare: Spare space for expansion 257 */ 258 struct efi_info_hdr { 259 u32 version; 260 u32 hdr_size; 261 u32 total_size; 262 u32 spare[5]; 263 }; 264 265 /** 266 * struct efi_entry_hdr - Header for a table entry 267 * 268 * @type: enum eft_entry_t 269 * @size size of entry bytes excluding header and padding 270 * @addr: address of this entry (0 if it follows the header ) 271 * @link: size of entry including header and padding 272 * @spare1: Spare space for expansion 273 * @spare2: Spare space for expansion 274 */ 275 struct efi_entry_hdr { 276 u32 type; 277 u32 size; 278 u64 addr; 279 u32 link; 280 u32 spare1; 281 u64 spare2; 282 }; 283 284 /** 285 * struct efi_entry_memmap - a memory map table passed to U-Boot 286 * 287 * @version: EFI's memory map table version 288 * @desc_size: EFI's size of each memory descriptor 289 * @spare: Spare space for expansion 290 * @desc: An array of descriptors, each @desc_size bytes apart 291 */ 292 struct efi_entry_memmap { 293 u32 version; 294 u32 desc_size; 295 u64 spare; 296 struct efi_mem_desc desc[]; 297 }; 298 299 /** 300 * struct efi_entry_gopmode - a GOP mode table passed to U-Boot 301 * 302 * @fb_base: EFI's framebuffer base address 303 * @fb_size: EFI's framebuffer size 304 * @info_size: GOP mode info structure size 305 * @info: Start address of the GOP mode info structure 306 */ 307 struct efi_entry_gopmode { 308 efi_physical_addr_t fb_base; 309 /* 310 * Not like the ones in 'struct efi_gop_mode' which are 'unsigned 311 * long', @fb_size and @info_size have to be 'u64' here. As the EFI 312 * stub codes may have different bit size from the U-Boot payload, 313 * using 'long' will cause mismatch between the producer (stub) and 314 * the consumer (payload). 315 */ 316 u64 fb_size; 317 u64 info_size; 318 /* 319 * We cannot directly use 'struct efi_gop_mode_info info[]' here as 320 * it causes compiler to complain: array type has incomplete element 321 * type 'struct efi_gop_mode_info'. 322 */ 323 struct /* efi_gop_mode_info */ { 324 u32 version; 325 u32 width; 326 u32 height; 327 u32 pixel_format; 328 u32 pixel_bitmask[4]; 329 u32 pixels_per_scanline; 330 } info[]; 331 }; 332 333 static inline struct efi_mem_desc *efi_get_next_mem_desc( 334 struct efi_entry_memmap *map, struct efi_mem_desc *desc) 335 { 336 return (struct efi_mem_desc *)((ulong)desc + map->desc_size); 337 } 338 339 struct efi_priv { 340 efi_handle_t parent_image; 341 struct efi_device_path *device_path; 342 struct efi_system_table *sys_table; 343 struct efi_boot_services *boot; 344 struct efi_runtime_services *run; 345 bool use_pool_for_malloc; 346 unsigned long ram_base; 347 unsigned int image_data_type; 348 struct efi_info_hdr *info; 349 unsigned int info_size; 350 void *next_hdr; 351 }; 352 353 /* Base address of the EFI image */ 354 extern char image_base[]; 355 356 /* Start and end of U-Boot image (for payload) */ 357 extern char _binary_u_boot_bin_start[], _binary_u_boot_bin_end[]; 358 359 /* 360 * Variable Attributes 361 */ 362 #define EFI_VARIABLE_NON_VOLATILE 0x0000000000000001 363 #define EFI_VARIABLE_BOOTSERVICE_ACCESS 0x0000000000000002 364 #define EFI_VARIABLE_RUNTIME_ACCESS 0x0000000000000004 365 #define EFI_VARIABLE_HARDWARE_ERROR_RECORD 0x0000000000000008 366 #define EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS 0x0000000000000010 367 #define EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS 0x0000000000000020 368 #define EFI_VARIABLE_APPEND_WRITE 0x0000000000000040 369 370 #define EFI_VARIABLE_MASK (EFI_VARIABLE_NON_VOLATILE | \ 371 EFI_VARIABLE_BOOTSERVICE_ACCESS | \ 372 EFI_VARIABLE_RUNTIME_ACCESS | \ 373 EFI_VARIABLE_HARDWARE_ERROR_RECORD | \ 374 EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS | \ 375 EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS | \ 376 EFI_VARIABLE_APPEND_WRITE) 377 378 /** 379 * efi_get_sys_table() - Get access to the main EFI system table 380 * 381 * @return pointer to EFI system table 382 */ 383 384 struct efi_system_table *efi_get_sys_table(void); 385 386 /** 387 * efi_get_ram_base() - Find the base of RAM 388 * 389 * This is used when U-Boot is built as an EFI application. 390 * 391 * @return the base of RAM as known to U-Boot 392 */ 393 unsigned long efi_get_ram_base(void); 394 395 /** 396 * efi_init() - Set up ready for use of EFI boot services 397 * 398 * @priv: Pointer to our private EFI structure to fill in 399 * @banner: Banner to display when starting 400 * @image: The image handle passed to efi_main() 401 * @sys_table: The EFI system table pointer passed to efi_main() 402 */ 403 int efi_init(struct efi_priv *priv, const char *banner, efi_handle_t image, 404 struct efi_system_table *sys_table); 405 406 /** 407 * efi_malloc() - Allocate some memory from EFI 408 * 409 * @priv: Pointer to private EFI structure 410 * @size: Number of bytes to allocate 411 * @retp: Return EFI status result 412 * @return pointer to memory allocated, or NULL on error 413 */ 414 void *efi_malloc(struct efi_priv *priv, int size, efi_status_t *retp); 415 416 /** 417 * efi_free() - Free memory allocated from EFI 418 * 419 * @priv: Pointer to private EFI structure 420 * @ptr: Pointer to memory to free 421 */ 422 void efi_free(struct efi_priv *priv, void *ptr); 423 424 /** 425 * efi_puts() - Write out a string to the EFI console 426 * 427 * @priv: Pointer to private EFI structure 428 * @str: String to write (note this is a ASCII, not unicode) 429 */ 430 void efi_puts(struct efi_priv *priv, const char *str); 431 432 /** 433 * efi_putc() - Write out a character to the EFI console 434 * 435 * @priv: Pointer to private EFI structure 436 * @ch: Character to write (note this is not unicode) 437 */ 438 void efi_putc(struct efi_priv *priv, const char ch); 439 440 /** 441 * efi_info_get() - get an entry from an EFI table 442 * 443 * @type: Entry type to search for 444 * @datap: Returns pointer to entry data 445 * @sizep: Returns pointer to entry size 446 * @return 0 if OK, -ENODATA if there is no table, -ENOENT if there is no entry 447 * of the requested type, -EPROTONOSUPPORT if the table has the wrong version 448 */ 449 int efi_info_get(enum efi_entry_t type, void **datap, int *sizep); 450 451 /** 452 * efi_build_mem_table() - make a sorted copy of the memory table 453 * 454 * @map: Pointer to EFI memory map table 455 * @size: Size of table in bytes 456 * @skip_bs: True to skip boot-time memory and merge it with conventional 457 * memory. This will significantly reduce the number of table 458 * entries. 459 * @return pointer to the new table. It should be freed with free() by the 460 * caller 461 */ 462 void *efi_build_mem_table(struct efi_entry_memmap *map, int size, bool skip_bs); 463 464 #endif /* _LINUX_EFI_H */ 465