1 /* 2 * Copyright (c) 2013 Google, Inc 3 * 4 * (C) Copyright 2012 5 * Pavel Herrmann <morpheus.ibis@gmail.com> 6 * Marek Vasut <marex@denx.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #ifndef _DM_DEVICE_H 12 #define _DM_DEVICE_H 13 14 #include <dm/uclass-id.h> 15 #include <fdtdec.h> 16 #include <linker_lists.h> 17 #include <linux/compat.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 21 struct driver_info; 22 23 /* Driver is active (probed). Cleared when it is removed */ 24 #define DM_FLAG_ACTIVATED (1 << 0) 25 26 /* DM is responsible for allocating and freeing platdata */ 27 #define DM_FLAG_ALLOC_PDATA (1 << 1) 28 29 /* DM should init this device prior to relocation */ 30 #define DM_FLAG_PRE_RELOC (1 << 2) 31 32 /* DM is responsible for allocating and freeing parent_platdata */ 33 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3) 34 35 /* DM is responsible for allocating and freeing uclass_platdata */ 36 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4) 37 38 /* Allocate driver private data on a DMA boundary */ 39 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5) 40 41 /* Device is bound */ 42 #define DM_FLAG_BOUND (1 << 6) 43 44 /** 45 * struct udevice - An instance of a driver 46 * 47 * This holds information about a device, which is a driver bound to a 48 * particular port or peripheral (essentially a driver instance). 49 * 50 * A device will come into existence through a 'bind' call, either due to 51 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node 52 * in the device tree (in which case of_offset is >= 0). In the latter case 53 * we translate the device tree information into platdata in a function 54 * implemented by the driver ofdata_to_platdata method (called just before the 55 * probe method if the device has a device tree node. 56 * 57 * All three of platdata, priv and uclass_priv can be allocated by the 58 * driver, or you can use the auto_alloc_size members of struct driver and 59 * struct uclass_driver to have driver model do this automatically. 60 * 61 * @driver: The driver used by this device 62 * @name: Name of device, typically the FDT node name 63 * @platdata: Configuration data for this device 64 * @parent_platdata: The parent bus's configuration data for this device 65 * @uclass_platdata: The uclass's configuration data for this device 66 * @of_offset: Device tree node offset for this device (- for none) 67 * @driver_data: Driver data word for the entry that matched this device with 68 * its driver 69 * @parent: Parent of this device, or NULL for the top level device 70 * @priv: Private data for this device 71 * @uclass: Pointer to uclass for this device 72 * @uclass_priv: The uclass's private data for this device 73 * @parent_priv: The parent's private data for this device 74 * @uclass_node: Used by uclass to link its devices 75 * @child_head: List of children of this device 76 * @sibling_node: Next device in list of all devices 77 * @flags: Flags for this device DM_FLAG_... 78 * @req_seq: Requested sequence number for this device (-1 = any) 79 * @seq: Allocated sequence number for this device (-1 = none). This is set up 80 * when the device is probed and will be unique within the device's uclass. 81 * @devres_head: List of memory allocations associated with this device. 82 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will 83 * add to this list. Memory so-allocated will be freed 84 * automatically when the device is removed / unbound 85 */ 86 struct udevice { 87 const struct driver *driver; 88 const char *name; 89 void *platdata; 90 void *parent_platdata; 91 void *uclass_platdata; 92 int of_offset; 93 ulong driver_data; 94 struct udevice *parent; 95 void *priv; 96 struct uclass *uclass; 97 void *uclass_priv; 98 void *parent_priv; 99 struct list_head uclass_node; 100 struct list_head child_head; 101 struct list_head sibling_node; 102 uint32_t flags; 103 int req_seq; 104 int seq; 105 #ifdef CONFIG_DEVRES 106 struct list_head devres_head; 107 #endif 108 }; 109 110 /* Maximum sequence number supported */ 111 #define DM_MAX_SEQ 999 112 113 /* Returns the operations for a device */ 114 #define device_get_ops(dev) (dev->driver->ops) 115 116 /* Returns non-zero if the device is active (probed and not removed) */ 117 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED) 118 119 /** 120 * struct udevice_id - Lists the compatible strings supported by a driver 121 * @compatible: Compatible string 122 * @data: Data for this compatible string 123 */ 124 struct udevice_id { 125 const char *compatible; 126 ulong data; 127 }; 128 129 #if CONFIG_IS_ENABLED(OF_CONTROL) 130 #define of_match_ptr(_ptr) (_ptr) 131 #else 132 #define of_match_ptr(_ptr) NULL 133 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ 134 135 /** 136 * struct driver - A driver for a feature or peripheral 137 * 138 * This holds methods for setting up a new device, and also removing it. 139 * The device needs information to set itself up - this is provided either 140 * by platdata or a device tree node (which we find by looking up 141 * matching compatible strings with of_match). 142 * 143 * Drivers all belong to a uclass, representing a class of devices of the 144 * same type. Common elements of the drivers can be implemented in the uclass, 145 * or the uclass can provide a consistent interface to the drivers within 146 * it. 147 * 148 * @name: Device name 149 * @id: Identiies the uclass we belong to 150 * @of_match: List of compatible strings to match, and any identifying data 151 * for each. 152 * @bind: Called to bind a device to its driver 153 * @probe: Called to probe a device, i.e. activate it 154 * @remove: Called to remove a device, i.e. de-activate it 155 * @unbind: Called to unbind a device from its driver 156 * @ofdata_to_platdata: Called before probe to decode device tree data 157 * @child_post_bind: Called after a new child has been bound 158 * @child_pre_probe: Called before a child device is probed. The device has 159 * memory allocated but it has not yet been probed. 160 * @child_post_remove: Called after a child device is removed. The device 161 * has memory allocated but its device_remove() method has been called. 162 * @priv_auto_alloc_size: If non-zero this is the size of the private data 163 * to be allocated in the device's ->priv pointer. If zero, then the driver 164 * is responsible for allocating any data required. 165 * @platdata_auto_alloc_size: If non-zero this is the size of the 166 * platform data to be allocated in the device's ->platdata pointer. 167 * This is typically only useful for device-tree-aware drivers (those with 168 * an of_match), since drivers which use platdata will have the data 169 * provided in the U_BOOT_DEVICE() instantiation. 170 * @per_child_auto_alloc_size: Each device can hold private data owned by 171 * its parent. If required this will be automatically allocated if this 172 * value is non-zero. 173 * @per_child_platdata_auto_alloc_size: A bus likes to store information about 174 * its children. If non-zero this is the size of this data, to be allocated 175 * in the child's parent_platdata pointer. 176 * @ops: Driver-specific operations. This is typically a list of function 177 * pointers defined by the driver, to implement driver functions required by 178 * the uclass. 179 * @flags: driver flags - see DM_FLAGS_... 180 */ 181 struct driver { 182 char *name; 183 enum uclass_id id; 184 const struct udevice_id *of_match; 185 int (*bind)(struct udevice *dev); 186 int (*probe)(struct udevice *dev); 187 int (*remove)(struct udevice *dev); 188 int (*unbind)(struct udevice *dev); 189 int (*ofdata_to_platdata)(struct udevice *dev); 190 int (*child_post_bind)(struct udevice *dev); 191 int (*child_pre_probe)(struct udevice *dev); 192 int (*child_post_remove)(struct udevice *dev); 193 int priv_auto_alloc_size; 194 int platdata_auto_alloc_size; 195 int per_child_auto_alloc_size; 196 int per_child_platdata_auto_alloc_size; 197 const void *ops; /* driver-specific operations */ 198 uint32_t flags; 199 }; 200 201 /* Declare a new U-Boot driver */ 202 #define U_BOOT_DRIVER(__name) \ 203 ll_entry_declare(struct driver, __name, driver) 204 205 /** 206 * dev_get_platdata() - Get the platform data for a device 207 * 208 * This checks that dev is not NULL, but no other checks for now 209 * 210 * @dev Device to check 211 * @return platform data, or NULL if none 212 */ 213 void *dev_get_platdata(struct udevice *dev); 214 215 /** 216 * dev_get_parent_platdata() - Get the parent platform data for a device 217 * 218 * This checks that dev is not NULL, but no other checks for now 219 * 220 * @dev Device to check 221 * @return parent's platform data, or NULL if none 222 */ 223 void *dev_get_parent_platdata(struct udevice *dev); 224 225 /** 226 * dev_get_uclass_platdata() - Get the uclass platform data for a device 227 * 228 * This checks that dev is not NULL, but no other checks for now 229 * 230 * @dev Device to check 231 * @return uclass's platform data, or NULL if none 232 */ 233 void *dev_get_uclass_platdata(struct udevice *dev); 234 235 /** 236 * dev_get_priv() - Get the private data for a device 237 * 238 * This checks that dev is not NULL, but no other checks for now 239 * 240 * @dev Device to check 241 * @return private data, or NULL if none 242 */ 243 void *dev_get_priv(struct udevice *dev); 244 245 /** 246 * dev_get_parent_priv() - Get the parent private data for a device 247 * 248 * The parent private data is data stored in the device but owned by the 249 * parent. For example, a USB device may have parent data which contains 250 * information about how to talk to the device over USB. 251 * 252 * This checks that dev is not NULL, but no other checks for now 253 * 254 * @dev Device to check 255 * @return parent data, or NULL if none 256 */ 257 void *dev_get_parent_priv(struct udevice *dev); 258 259 /** 260 * dev_get_uclass_priv() - Get the private uclass data for a device 261 * 262 * This checks that dev is not NULL, but no other checks for now 263 * 264 * @dev Device to check 265 * @return private uclass data for this device, or NULL if none 266 */ 267 void *dev_get_uclass_priv(struct udevice *dev); 268 269 /** 270 * struct dev_get_parent() - Get the parent of a device 271 * 272 * @child: Child to check 273 * @return parent of child, or NULL if this is the root device 274 */ 275 struct udevice *dev_get_parent(struct udevice *child); 276 277 /** 278 * dev_get_driver_data() - get the driver data used to bind a device 279 * 280 * When a device is bound using a device tree node, it matches a 281 * particular compatible string in struct udevice_id. This function 282 * returns the associated data value for that compatible string. This is 283 * the 'data' field in struct udevice_id. 284 * 285 * As an example, consider this structure: 286 * static const struct udevice_id tegra_i2c_ids[] = { 287 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 }, 288 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD }, 289 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC }, 290 * { } 291 * }; 292 * 293 * When driver model finds a driver for this it will store the 'data' value 294 * corresponding to the compatible string it matches. This function returns 295 * that value. This allows the driver to handle several variants of a device. 296 * 297 * For USB devices, this is the driver_info field in struct usb_device_id. 298 * 299 * @dev: Device to check 300 * @return driver data (0 if none is provided) 301 */ 302 ulong dev_get_driver_data(struct udevice *dev); 303 304 /** 305 * dev_get_driver_ops() - get the device's driver's operations 306 * 307 * This checks that dev is not NULL, and returns the pointer to device's 308 * driver's operations. 309 * 310 * @dev: Device to check 311 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops 312 */ 313 const void *dev_get_driver_ops(struct udevice *dev); 314 315 /** 316 * device_get_uclass_id() - return the uclass ID of a device 317 * 318 * @dev: Device to check 319 * @return uclass ID for the device 320 */ 321 enum uclass_id device_get_uclass_id(struct udevice *dev); 322 323 /** 324 * dev_get_uclass_name() - return the uclass name of a device 325 * 326 * This checks that dev is not NULL. 327 * 328 * @dev: Device to check 329 * @return pointer to the uclass name for the device 330 */ 331 const char *dev_get_uclass_name(struct udevice *dev); 332 333 /** 334 * device_get_child() - Get the child of a device by index 335 * 336 * Returns the numbered child, 0 being the first. This does not use 337 * sequence numbers, only the natural order. 338 * 339 * @dev: Parent device to check 340 * @index: Child index 341 * @devp: Returns pointer to device 342 * @return 0 if OK, -ENODEV if no such device, other error if the device fails 343 * to probe 344 */ 345 int device_get_child(struct udevice *parent, int index, struct udevice **devp); 346 347 /** 348 * device_find_child_by_seq() - Find a child device based on a sequence 349 * 350 * This searches for a device with the given seq or req_seq. 351 * 352 * For seq, if an active device has this sequence it will be returned. 353 * If there is no such device then this will return -ENODEV. 354 * 355 * For req_seq, if a device (whether activated or not) has this req_seq 356 * value, that device will be returned. This is a strong indication that 357 * the device will receive that sequence when activated. 358 * 359 * @parent: Parent device 360 * @seq_or_req_seq: Sequence number to find (0=first) 361 * @find_req_seq: true to find req_seq, false to find seq 362 * @devp: Returns pointer to device (there is only one per for each seq). 363 * Set to NULL if none is found 364 * @return 0 if OK, -ve on error 365 */ 366 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq, 367 bool find_req_seq, struct udevice **devp); 368 369 /** 370 * device_get_child_by_seq() - Get a child device based on a sequence 371 * 372 * If an active device has this sequence it will be returned. If there is no 373 * such device then this will check for a device that is requesting this 374 * sequence. 375 * 376 * The device is probed to activate it ready for use. 377 * 378 * @parent: Parent device 379 * @seq: Sequence number to find (0=first) 380 * @devp: Returns pointer to device (there is only one per for each seq) 381 * Set to NULL if none is found 382 * @return 0 if OK, -ve on error 383 */ 384 int device_get_child_by_seq(struct udevice *parent, int seq, 385 struct udevice **devp); 386 387 /** 388 * device_find_child_by_of_offset() - Find a child device based on FDT offset 389 * 390 * Locates a child device by its device tree offset. 391 * 392 * @parent: Parent device 393 * @of_offset: Device tree offset to find 394 * @devp: Returns pointer to device if found, otherwise this is set to NULL 395 * @return 0 if OK, -ve on error 396 */ 397 int device_find_child_by_of_offset(struct udevice *parent, int of_offset, 398 struct udevice **devp); 399 400 /** 401 * device_get_child_by_of_offset() - Get a child device based on FDT offset 402 * 403 * Locates a child device by its device tree offset. 404 * 405 * The device is probed to activate it ready for use. 406 * 407 * @parent: Parent device 408 * @of_offset: Device tree offset to find 409 * @devp: Returns pointer to device if found, otherwise this is set to NULL 410 * @return 0 if OK, -ve on error 411 */ 412 int device_get_child_by_of_offset(struct udevice *parent, int of_offset, 413 struct udevice **devp); 414 415 /** 416 * device_get_global_by_of_offset() - Get a device based on FDT offset 417 * 418 * Locates a device by its device tree offset, searching globally throughout 419 * the all driver model devices. 420 * 421 * The device is probed to activate it ready for use. 422 * 423 * @of_offset: Device tree offset to find 424 * @devp: Returns pointer to device if found, otherwise this is set to NULL 425 * @return 0 if OK, -ve on error 426 */ 427 int device_get_global_by_of_offset(int of_offset, struct udevice **devp); 428 429 /** 430 * device_find_first_child() - Find the first child of a device 431 * 432 * @parent: Parent device to search 433 * @devp: Returns first child device, or NULL if none 434 * @return 0 435 */ 436 int device_find_first_child(struct udevice *parent, struct udevice **devp); 437 438 /** 439 * device_find_next_child() - Find the next child of a device 440 * 441 * @devp: Pointer to previous child device on entry. Returns pointer to next 442 * child device, or NULL if none 443 * @return 0 444 */ 445 int device_find_next_child(struct udevice **devp); 446 447 /** 448 * dev_get_addr() - Get the reg property of a device 449 * 450 * @dev: Pointer to a device 451 * 452 * @return addr 453 */ 454 fdt_addr_t dev_get_addr(struct udevice *dev); 455 456 /** 457 * dev_get_addr_ptr() - Return pointer to the address of the reg property 458 * of a device 459 * 460 * @dev: Pointer to a device 461 * 462 * @return Pointer to addr, or NULL if there is no such property 463 */ 464 void *dev_get_addr_ptr(struct udevice *dev); 465 466 /** 467 * dev_get_addr_index() - Get the indexed reg property of a device 468 * 469 * @dev: Pointer to a device 470 * @index: the 'reg' property can hold a list of <addr, size> pairs 471 * and @index is used to select which one is required 472 * 473 * @return addr 474 */ 475 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index); 476 477 /** 478 * dev_get_addr_name() - Get the reg property of a device, indexed by name 479 * 480 * @dev: Pointer to a device 481 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the 482 * 'reg-names' property providing named-based identification. @index 483 * indicates the value to search for in 'reg-names'. 484 * 485 * @return addr 486 */ 487 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name); 488 489 /** 490 * device_has_children() - check if a device has any children 491 * 492 * @dev: Device to check 493 * @return true if the device has one or more children 494 */ 495 bool device_has_children(struct udevice *dev); 496 497 /** 498 * device_has_active_children() - check if a device has any active children 499 * 500 * @dev: Device to check 501 * @return true if the device has one or more children and at least one of 502 * them is active (probed). 503 */ 504 bool device_has_active_children(struct udevice *dev); 505 506 /** 507 * device_is_last_sibling() - check if a device is the last sibling 508 * 509 * This function can be useful for display purposes, when special action needs 510 * to be taken when displaying the last sibling. This can happen when a tree 511 * view of devices is being displayed. 512 * 513 * @dev: Device to check 514 * @return true if there are no more siblings after this one - i.e. is it 515 * last in the list. 516 */ 517 bool device_is_last_sibling(struct udevice *dev); 518 519 /** 520 * device_set_name() - set the name of a device 521 * 522 * This must be called in the device's bind() method and no later. Normally 523 * this is unnecessary but for probed devices which don't get a useful name 524 * this function can be helpful. 525 * 526 * @dev: Device to update 527 * @name: New name (this string is allocated new memory and attached to 528 * the device) 529 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the 530 * string 531 */ 532 int device_set_name(struct udevice *dev, const char *name); 533 534 /** 535 * device_is_on_pci_bus - Test if a device is on a PCI bus 536 * 537 * @dev: device to test 538 * @return: true if it is on a PCI bus, false otherwise 539 */ 540 static inline bool device_is_on_pci_bus(struct udevice *dev) 541 { 542 return device_get_uclass_id(dev->parent) == UCLASS_PCI; 543 } 544 545 /** 546 * device_foreach_child_safe() - iterate through child devices safely 547 * 548 * This allows the @pos child to be removed in the loop if required. 549 * 550 * @pos: struct udevice * for the current device 551 * @next: struct udevice * for the next device 552 * @parent: parent device to scan 553 */ 554 #define device_foreach_child_safe(pos, next, parent) \ 555 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node) 556 557 /* device resource management */ 558 typedef void (*dr_release_t)(struct udevice *dev, void *res); 559 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data); 560 561 #ifdef CONFIG_DEVRES 562 563 #ifdef CONFIG_DEBUG_DEVRES 564 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp, 565 const char *name); 566 #define _devres_alloc(release, size, gfp) \ 567 __devres_alloc(release, size, gfp, #release) 568 #else 569 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp); 570 #endif 571 572 /** 573 * devres_alloc() - Allocate device resource data 574 * @release: Release function devres will be associated with 575 * @size: Allocation size 576 * @gfp: Allocation flags 577 * 578 * Allocate devres of @size bytes. The allocated area is associated 579 * with @release. The returned pointer can be passed to 580 * other devres_*() functions. 581 * 582 * RETURNS: 583 * Pointer to allocated devres on success, NULL on failure. 584 */ 585 #define devres_alloc(release, size, gfp) \ 586 _devres_alloc(release, size, gfp | __GFP_ZERO) 587 588 /** 589 * devres_free() - Free device resource data 590 * @res: Pointer to devres data to free 591 * 592 * Free devres created with devres_alloc(). 593 */ 594 void devres_free(void *res); 595 596 /** 597 * devres_add() - Register device resource 598 * @dev: Device to add resource to 599 * @res: Resource to register 600 * 601 * Register devres @res to @dev. @res should have been allocated 602 * using devres_alloc(). On driver detach, the associated release 603 * function will be invoked and devres will be freed automatically. 604 */ 605 void devres_add(struct udevice *dev, void *res); 606 607 /** 608 * devres_find() - Find device resource 609 * @dev: Device to lookup resource from 610 * @release: Look for resources associated with this release function 611 * @match: Match function (optional) 612 * @match_data: Data for the match function 613 * 614 * Find the latest devres of @dev which is associated with @release 615 * and for which @match returns 1. If @match is NULL, it's considered 616 * to match all. 617 * 618 * @return pointer to found devres, NULL if not found. 619 */ 620 void *devres_find(struct udevice *dev, dr_release_t release, 621 dr_match_t match, void *match_data); 622 623 /** 624 * devres_get() - Find devres, if non-existent, add one atomically 625 * @dev: Device to lookup or add devres for 626 * @new_res: Pointer to new initialized devres to add if not found 627 * @match: Match function (optional) 628 * @match_data: Data for the match function 629 * 630 * Find the latest devres of @dev which has the same release function 631 * as @new_res and for which @match return 1. If found, @new_res is 632 * freed; otherwise, @new_res is added atomically. 633 * 634 * @return ointer to found or added devres. 635 */ 636 void *devres_get(struct udevice *dev, void *new_res, 637 dr_match_t match, void *match_data); 638 639 /** 640 * devres_remove() - Find a device resource and remove it 641 * @dev: Device to find resource from 642 * @release: Look for resources associated with this release function 643 * @match: Match function (optional) 644 * @match_data: Data for the match function 645 * 646 * Find the latest devres of @dev associated with @release and for 647 * which @match returns 1. If @match is NULL, it's considered to 648 * match all. If found, the resource is removed atomically and 649 * returned. 650 * 651 * @return ointer to removed devres on success, NULL if not found. 652 */ 653 void *devres_remove(struct udevice *dev, dr_release_t release, 654 dr_match_t match, void *match_data); 655 656 /** 657 * devres_destroy() - Find a device resource and destroy it 658 * @dev: Device to find resource from 659 * @release: Look for resources associated with this release function 660 * @match: Match function (optional) 661 * @match_data: Data for the match function 662 * 663 * Find the latest devres of @dev associated with @release and for 664 * which @match returns 1. If @match is NULL, it's considered to 665 * match all. If found, the resource is removed atomically and freed. 666 * 667 * Note that the release function for the resource will not be called, 668 * only the devres-allocated data will be freed. The caller becomes 669 * responsible for freeing any other data. 670 * 671 * @return 0 if devres is found and freed, -ENOENT if not found. 672 */ 673 int devres_destroy(struct udevice *dev, dr_release_t release, 674 dr_match_t match, void *match_data); 675 676 /** 677 * devres_release() - Find a device resource and destroy it, calling release 678 * @dev: Device to find resource from 679 * @release: Look for resources associated with this release function 680 * @match: Match function (optional) 681 * @match_data: Data for the match function 682 * 683 * Find the latest devres of @dev associated with @release and for 684 * which @match returns 1. If @match is NULL, it's considered to 685 * match all. If found, the resource is removed atomically, the 686 * release function called and the resource freed. 687 * 688 * @return 0 if devres is found and freed, -ENOENT if not found. 689 */ 690 int devres_release(struct udevice *dev, dr_release_t release, 691 dr_match_t match, void *match_data); 692 693 /* managed devm_k.alloc/kfree for device drivers */ 694 /** 695 * devm_kmalloc() - Resource-managed kmalloc 696 * @dev: Device to allocate memory for 697 * @size: Allocation size 698 * @gfp: Allocation gfp flags 699 * 700 * Managed kmalloc. Memory allocated with this function is 701 * automatically freed on driver detach. Like all other devres 702 * resources, guaranteed alignment is unsigned long long. 703 * 704 * @return pointer to allocated memory on success, NULL on failure. 705 */ 706 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp); 707 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 708 { 709 return devm_kmalloc(dev, size, gfp | __GFP_ZERO); 710 } 711 static inline void *devm_kmalloc_array(struct udevice *dev, 712 size_t n, size_t size, gfp_t flags) 713 { 714 if (size != 0 && n > SIZE_MAX / size) 715 return NULL; 716 return devm_kmalloc(dev, n * size, flags); 717 } 718 static inline void *devm_kcalloc(struct udevice *dev, 719 size_t n, size_t size, gfp_t flags) 720 { 721 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); 722 } 723 724 /** 725 * devm_kfree() - Resource-managed kfree 726 * @dev: Device this memory belongs to 727 * @ptr: Memory to free 728 * 729 * Free memory allocated with devm_kmalloc(). 730 */ 731 void devm_kfree(struct udevice *dev, void *ptr); 732 733 #else /* ! CONFIG_DEVRES */ 734 735 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) 736 { 737 return kzalloc(size, gfp); 738 } 739 740 static inline void devres_free(void *res) 741 { 742 kfree(res); 743 } 744 745 static inline void devres_add(struct udevice *dev, void *res) 746 { 747 } 748 749 static inline void *devres_find(struct udevice *dev, dr_release_t release, 750 dr_match_t match, void *match_data) 751 { 752 return NULL; 753 } 754 755 static inline void *devres_get(struct udevice *dev, void *new_res, 756 dr_match_t match, void *match_data) 757 { 758 return NULL; 759 } 760 761 static inline void *devres_remove(struct udevice *dev, dr_release_t release, 762 dr_match_t match, void *match_data) 763 { 764 return NULL; 765 } 766 767 static inline int devres_destroy(struct udevice *dev, dr_release_t release, 768 dr_match_t match, void *match_data) 769 { 770 return 0; 771 } 772 773 static inline int devres_release(struct udevice *dev, dr_release_t release, 774 dr_match_t match, void *match_data) 775 { 776 return 0; 777 } 778 779 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp) 780 { 781 return kmalloc(size, gfp); 782 } 783 784 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 785 { 786 return kzalloc(size, gfp); 787 } 788 789 static inline void *devm_kmaloc_array(struct udevice *dev, 790 size_t n, size_t size, gfp_t flags) 791 { 792 /* TODO: add kmalloc_array() to linux/compat.h */ 793 if (size != 0 && n > SIZE_MAX / size) 794 return NULL; 795 return kmalloc(n * size, flags); 796 } 797 798 static inline void *devm_kcalloc(struct udevice *dev, 799 size_t n, size_t size, gfp_t flags) 800 { 801 /* TODO: add kcalloc() to linux/compat.h */ 802 return kmalloc(n * size, flags | __GFP_ZERO); 803 } 804 805 static inline void devm_kfree(struct udevice *dev, void *ptr) 806 { 807 kfree(ptr); 808 } 809 810 #endif /* ! CONFIG_DEVRES */ 811 812 /** 813 * dm_set_translation_offset() - Set translation offset 814 * @offs: Translation offset 815 * 816 * Some platforms need a special address translation. Those 817 * platforms (e.g. mvebu in SPL) can configure a translation 818 * offset in the DM by calling this function. It will be 819 * added to all addresses returned in dev_get_addr(). 820 */ 821 void dm_set_translation_offset(fdt_addr_t offs); 822 823 /** 824 * dm_get_translation_offset() - Get translation offset 825 * 826 * This function returns the translation offset that can 827 * be configured by calling dm_set_translation_offset(). 828 * 829 * @return translation offset for the device address (0 as default). 830 */ 831 fdt_addr_t dm_get_translation_offset(void); 832 833 #endif 834