xref: /openbmc/u-boot/include/dm/device.h (revision f960ca0a)
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13 
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 
21 struct driver_info;
22 
23 /* Driver is active (probed). Cleared when it is removed */
24 #define DM_FLAG_ACTIVATED		(1 << 0)
25 
26 /* DM is responsible for allocating and freeing platdata */
27 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
28 
29 /* DM should init this device prior to relocation */
30 #define DM_FLAG_PRE_RELOC		(1 << 2)
31 
32 /* DM is responsible for allocating and freeing parent_platdata */
33 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
34 
35 /* DM is responsible for allocating and freeing uclass_platdata */
36 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
37 
38 /* Allocate driver private data on a DMA boundary */
39 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
40 
41 /* Device is bound */
42 #define DM_FLAG_BOUND			(1 << 6)
43 
44 /**
45  * struct udevice - An instance of a driver
46  *
47  * This holds information about a device, which is a driver bound to a
48  * particular port or peripheral (essentially a driver instance).
49  *
50  * A device will come into existence through a 'bind' call, either due to
51  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
52  * in the device tree (in which case of_offset is >= 0). In the latter case
53  * we translate the device tree information into platdata in a function
54  * implemented by the driver ofdata_to_platdata method (called just before the
55  * probe method if the device has a device tree node.
56  *
57  * All three of platdata, priv and uclass_priv can be allocated by the
58  * driver, or you can use the auto_alloc_size members of struct driver and
59  * struct uclass_driver to have driver model do this automatically.
60  *
61  * @driver: The driver used by this device
62  * @name: Name of device, typically the FDT node name
63  * @platdata: Configuration data for this device
64  * @parent_platdata: The parent bus's configuration data for this device
65  * @uclass_platdata: The uclass's configuration data for this device
66  * @of_offset: Device tree node offset for this device (- for none)
67  * @driver_data: Driver data word for the entry that matched this device with
68  *		its driver
69  * @parent: Parent of this device, or NULL for the top level device
70  * @priv: Private data for this device
71  * @uclass: Pointer to uclass for this device
72  * @uclass_priv: The uclass's private data for this device
73  * @parent_priv: The parent's private data for this device
74  * @uclass_node: Used by uclass to link its devices
75  * @child_head: List of children of this device
76  * @sibling_node: Next device in list of all devices
77  * @flags: Flags for this device DM_FLAG_...
78  * @req_seq: Requested sequence number for this device (-1 = any)
79  * @seq: Allocated sequence number for this device (-1 = none). This is set up
80  * when the device is probed and will be unique within the device's uclass.
81  * @devres_head: List of memory allocations associated with this device.
82  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
83  *		add to this list. Memory so-allocated will be freed
84  *		automatically when the device is removed / unbound
85  */
86 struct udevice {
87 	const struct driver *driver;
88 	const char *name;
89 	void *platdata;
90 	void *parent_platdata;
91 	void *uclass_platdata;
92 	int of_offset;
93 	ulong driver_data;
94 	struct udevice *parent;
95 	void *priv;
96 	struct uclass *uclass;
97 	void *uclass_priv;
98 	void *parent_priv;
99 	struct list_head uclass_node;
100 	struct list_head child_head;
101 	struct list_head sibling_node;
102 	uint32_t flags;
103 	int req_seq;
104 	int seq;
105 #ifdef CONFIG_DEVRES
106 	struct list_head devres_head;
107 #endif
108 };
109 
110 /* Maximum sequence number supported */
111 #define DM_MAX_SEQ	999
112 
113 /* Returns the operations for a device */
114 #define device_get_ops(dev)	(dev->driver->ops)
115 
116 /* Returns non-zero if the device is active (probed and not removed) */
117 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
118 
119 /**
120  * struct udevice_id - Lists the compatible strings supported by a driver
121  * @compatible: Compatible string
122  * @data: Data for this compatible string
123  */
124 struct udevice_id {
125 	const char *compatible;
126 	ulong data;
127 };
128 
129 #if CONFIG_IS_ENABLED(OF_CONTROL)
130 #define of_match_ptr(_ptr)	(_ptr)
131 #else
132 #define of_match_ptr(_ptr)	NULL
133 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
134 
135 /**
136  * struct driver - A driver for a feature or peripheral
137  *
138  * This holds methods for setting up a new device, and also removing it.
139  * The device needs information to set itself up - this is provided either
140  * by platdata or a device tree node (which we find by looking up
141  * matching compatible strings with of_match).
142  *
143  * Drivers all belong to a uclass, representing a class of devices of the
144  * same type. Common elements of the drivers can be implemented in the uclass,
145  * or the uclass can provide a consistent interface to the drivers within
146  * it.
147  *
148  * @name: Device name
149  * @id: Identiies the uclass we belong to
150  * @of_match: List of compatible strings to match, and any identifying data
151  * for each.
152  * @bind: Called to bind a device to its driver
153  * @probe: Called to probe a device, i.e. activate it
154  * @remove: Called to remove a device, i.e. de-activate it
155  * @unbind: Called to unbind a device from its driver
156  * @ofdata_to_platdata: Called before probe to decode device tree data
157  * @child_post_bind: Called after a new child has been bound
158  * @child_pre_probe: Called before a child device is probed. The device has
159  * memory allocated but it has not yet been probed.
160  * @child_post_remove: Called after a child device is removed. The device
161  * has memory allocated but its device_remove() method has been called.
162  * @priv_auto_alloc_size: If non-zero this is the size of the private data
163  * to be allocated in the device's ->priv pointer. If zero, then the driver
164  * is responsible for allocating any data required.
165  * @platdata_auto_alloc_size: If non-zero this is the size of the
166  * platform data to be allocated in the device's ->platdata pointer.
167  * This is typically only useful for device-tree-aware drivers (those with
168  * an of_match), since drivers which use platdata will have the data
169  * provided in the U_BOOT_DEVICE() instantiation.
170  * @per_child_auto_alloc_size: Each device can hold private data owned by
171  * its parent. If required this will be automatically allocated if this
172  * value is non-zero.
173  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
174  * its children. If non-zero this is the size of this data, to be allocated
175  * in the child's parent_platdata pointer.
176  * @ops: Driver-specific operations. This is typically a list of function
177  * pointers defined by the driver, to implement driver functions required by
178  * the uclass.
179  * @flags: driver flags - see DM_FLAGS_...
180  */
181 struct driver {
182 	char *name;
183 	enum uclass_id id;
184 	const struct udevice_id *of_match;
185 	int (*bind)(struct udevice *dev);
186 	int (*probe)(struct udevice *dev);
187 	int (*remove)(struct udevice *dev);
188 	int (*unbind)(struct udevice *dev);
189 	int (*ofdata_to_platdata)(struct udevice *dev);
190 	int (*child_post_bind)(struct udevice *dev);
191 	int (*child_pre_probe)(struct udevice *dev);
192 	int (*child_post_remove)(struct udevice *dev);
193 	int priv_auto_alloc_size;
194 	int platdata_auto_alloc_size;
195 	int per_child_auto_alloc_size;
196 	int per_child_platdata_auto_alloc_size;
197 	const void *ops;	/* driver-specific operations */
198 	uint32_t flags;
199 };
200 
201 /* Declare a new U-Boot driver */
202 #define U_BOOT_DRIVER(__name)						\
203 	ll_entry_declare(struct driver, __name, driver)
204 
205 /**
206  * dev_get_platdata() - Get the platform data for a device
207  *
208  * This checks that dev is not NULL, but no other checks for now
209  *
210  * @dev		Device to check
211  * @return platform data, or NULL if none
212  */
213 void *dev_get_platdata(struct udevice *dev);
214 
215 /**
216  * dev_get_parent_platdata() - Get the parent platform data for a device
217  *
218  * This checks that dev is not NULL, but no other checks for now
219  *
220  * @dev		Device to check
221  * @return parent's platform data, or NULL if none
222  */
223 void *dev_get_parent_platdata(struct udevice *dev);
224 
225 /**
226  * dev_get_uclass_platdata() - Get the uclass platform data for a device
227  *
228  * This checks that dev is not NULL, but no other checks for now
229  *
230  * @dev		Device to check
231  * @return uclass's platform data, or NULL if none
232  */
233 void *dev_get_uclass_platdata(struct udevice *dev);
234 
235 /**
236  * dev_get_priv() - Get the private data for a device
237  *
238  * This checks that dev is not NULL, but no other checks for now
239  *
240  * @dev		Device to check
241  * @return private data, or NULL if none
242  */
243 void *dev_get_priv(struct udevice *dev);
244 
245 /**
246  * dev_get_parent_priv() - Get the parent private data for a device
247  *
248  * The parent private data is data stored in the device but owned by the
249  * parent. For example, a USB device may have parent data which contains
250  * information about how to talk to the device over USB.
251  *
252  * This checks that dev is not NULL, but no other checks for now
253  *
254  * @dev		Device to check
255  * @return parent data, or NULL if none
256  */
257 void *dev_get_parent_priv(struct udevice *dev);
258 
259 /**
260  * dev_get_uclass_priv() - Get the private uclass data for a device
261  *
262  * This checks that dev is not NULL, but no other checks for now
263  *
264  * @dev		Device to check
265  * @return private uclass data for this device, or NULL if none
266  */
267 void *dev_get_uclass_priv(struct udevice *dev);
268 
269 /**
270  * struct dev_get_parent() - Get the parent of a device
271  *
272  * @child:	Child to check
273  * @return parent of child, or NULL if this is the root device
274  */
275 struct udevice *dev_get_parent(struct udevice *child);
276 
277 /**
278  * dev_get_driver_data() - get the driver data used to bind a device
279  *
280  * When a device is bound using a device tree node, it matches a
281  * particular compatible string in struct udevice_id. This function
282  * returns the associated data value for that compatible string. This is
283  * the 'data' field in struct udevice_id.
284  *
285  * As an example, consider this structure:
286  * static const struct udevice_id tegra_i2c_ids[] = {
287  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
288  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
289  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
290  *	{ }
291  * };
292  *
293  * When driver model finds a driver for this it will store the 'data' value
294  * corresponding to the compatible string it matches. This function returns
295  * that value. This allows the driver to handle several variants of a device.
296  *
297  * For USB devices, this is the driver_info field in struct usb_device_id.
298  *
299  * @dev:	Device to check
300  * @return driver data (0 if none is provided)
301  */
302 ulong dev_get_driver_data(struct udevice *dev);
303 
304 /**
305  * dev_get_driver_ops() - get the device's driver's operations
306  *
307  * This checks that dev is not NULL, and returns the pointer to device's
308  * driver's operations.
309  *
310  * @dev:	Device to check
311  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
312  */
313 const void *dev_get_driver_ops(struct udevice *dev);
314 
315 /**
316  * device_get_uclass_id() - return the uclass ID of a device
317  *
318  * @dev:	Device to check
319  * @return uclass ID for the device
320  */
321 enum uclass_id device_get_uclass_id(struct udevice *dev);
322 
323 /**
324  * dev_get_uclass_name() - return the uclass name of a device
325  *
326  * This checks that dev is not NULL.
327  *
328  * @dev:	Device to check
329  * @return  pointer to the uclass name for the device
330  */
331 const char *dev_get_uclass_name(struct udevice *dev);
332 
333 /**
334  * device_get_child() - Get the child of a device by index
335  *
336  * Returns the numbered child, 0 being the first. This does not use
337  * sequence numbers, only the natural order.
338  *
339  * @dev:	Parent device to check
340  * @index:	Child index
341  * @devp:	Returns pointer to device
342  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
343  *	   to probe
344  */
345 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
346 
347 /**
348  * device_find_child_by_seq() - Find a child device based on a sequence
349  *
350  * This searches for a device with the given seq or req_seq.
351  *
352  * For seq, if an active device has this sequence it will be returned.
353  * If there is no such device then this will return -ENODEV.
354  *
355  * For req_seq, if a device (whether activated or not) has this req_seq
356  * value, that device will be returned. This is a strong indication that
357  * the device will receive that sequence when activated.
358  *
359  * @parent: Parent device
360  * @seq_or_req_seq: Sequence number to find (0=first)
361  * @find_req_seq: true to find req_seq, false to find seq
362  * @devp: Returns pointer to device (there is only one per for each seq).
363  * Set to NULL if none is found
364  * @return 0 if OK, -ve on error
365  */
366 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
367 			     bool find_req_seq, struct udevice **devp);
368 
369 /**
370  * device_get_child_by_seq() - Get a child device based on a sequence
371  *
372  * If an active device has this sequence it will be returned. If there is no
373  * such device then this will check for a device that is requesting this
374  * sequence.
375  *
376  * The device is probed to activate it ready for use.
377  *
378  * @parent: Parent device
379  * @seq: Sequence number to find (0=first)
380  * @devp: Returns pointer to device (there is only one per for each seq)
381  * Set to NULL if none is found
382  * @return 0 if OK, -ve on error
383  */
384 int device_get_child_by_seq(struct udevice *parent, int seq,
385 			    struct udevice **devp);
386 
387 /**
388  * device_find_child_by_of_offset() - Find a child device based on FDT offset
389  *
390  * Locates a child device by its device tree offset.
391  *
392  * @parent: Parent device
393  * @of_offset: Device tree offset to find
394  * @devp: Returns pointer to device if found, otherwise this is set to NULL
395  * @return 0 if OK, -ve on error
396  */
397 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
398 				   struct udevice **devp);
399 
400 /**
401  * device_get_child_by_of_offset() - Get a child device based on FDT offset
402  *
403  * Locates a child device by its device tree offset.
404  *
405  * The device is probed to activate it ready for use.
406  *
407  * @parent: Parent device
408  * @of_offset: Device tree offset to find
409  * @devp: Returns pointer to device if found, otherwise this is set to NULL
410  * @return 0 if OK, -ve on error
411  */
412 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
413 				  struct udevice **devp);
414 
415 /**
416  * device_get_global_by_of_offset() - Get a device based on FDT offset
417  *
418  * Locates a device by its device tree offset, searching globally throughout
419  * the all driver model devices.
420  *
421  * The device is probed to activate it ready for use.
422  *
423  * @of_offset: Device tree offset to find
424  * @devp: Returns pointer to device if found, otherwise this is set to NULL
425  * @return 0 if OK, -ve on error
426  */
427 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
428 
429 /**
430  * device_find_first_child() - Find the first child of a device
431  *
432  * @parent: Parent device to search
433  * @devp: Returns first child device, or NULL if none
434  * @return 0
435  */
436 int device_find_first_child(struct udevice *parent, struct udevice **devp);
437 
438 /**
439  * device_find_next_child() - Find the next child of a device
440  *
441  * @devp: Pointer to previous child device on entry. Returns pointer to next
442  *		child device, or NULL if none
443  * @return 0
444  */
445 int device_find_next_child(struct udevice **devp);
446 
447 /**
448  * dev_get_addr() - Get the reg property of a device
449  *
450  * @dev: Pointer to a device
451  *
452  * @return addr
453  */
454 fdt_addr_t dev_get_addr(struct udevice *dev);
455 
456 /**
457  * dev_get_addr_ptr() - Return pointer to the address of the reg property
458  *                      of a device
459  *
460  * @dev: Pointer to a device
461  *
462  * @return Pointer to addr, or NULL if there is no such property
463  */
464 void *dev_get_addr_ptr(struct udevice *dev);
465 
466 /**
467  * dev_get_addr_index() - Get the indexed reg property of a device
468  *
469  * @dev: Pointer to a device
470  * @index: the 'reg' property can hold a list of <addr, size> pairs
471  *	   and @index is used to select which one is required
472  *
473  * @return addr
474  */
475 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index);
476 
477 /**
478  * dev_get_addr_name() - Get the reg property of a device, indexed by name
479  *
480  * @dev: Pointer to a device
481  * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
482  *	  'reg-names' property providing named-based identification. @index
483  *	  indicates the value to search for in 'reg-names'.
484  *
485  * @return addr
486  */
487 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name);
488 
489 /**
490  * device_has_children() - check if a device has any children
491  *
492  * @dev:	Device to check
493  * @return true if the device has one or more children
494  */
495 bool device_has_children(struct udevice *dev);
496 
497 /**
498  * device_has_active_children() - check if a device has any active children
499  *
500  * @dev:	Device to check
501  * @return true if the device has one or more children and at least one of
502  * them is active (probed).
503  */
504 bool device_has_active_children(struct udevice *dev);
505 
506 /**
507  * device_is_last_sibling() - check if a device is the last sibling
508  *
509  * This function can be useful for display purposes, when special action needs
510  * to be taken when displaying the last sibling. This can happen when a tree
511  * view of devices is being displayed.
512  *
513  * @dev:	Device to check
514  * @return true if there are no more siblings after this one - i.e. is it
515  * last in the list.
516  */
517 bool device_is_last_sibling(struct udevice *dev);
518 
519 /**
520  * device_set_name() - set the name of a device
521  *
522  * This must be called in the device's bind() method and no later. Normally
523  * this is unnecessary but for probed devices which don't get a useful name
524  * this function can be helpful.
525  *
526  * @dev:	Device to update
527  * @name:	New name (this string is allocated new memory and attached to
528  *		the device)
529  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
530  * string
531  */
532 int device_set_name(struct udevice *dev, const char *name);
533 
534 /**
535  * device_is_on_pci_bus - Test if a device is on a PCI bus
536  *
537  * @dev:	device to test
538  * @return:	true if it is on a PCI bus, false otherwise
539  */
540 static inline bool device_is_on_pci_bus(struct udevice *dev)
541 {
542 	return device_get_uclass_id(dev->parent) == UCLASS_PCI;
543 }
544 
545 /**
546  * device_foreach_child_safe() - iterate through child devices safely
547  *
548  * This allows the @pos child to be removed in the loop if required.
549  *
550  * @pos: struct udevice * for the current device
551  * @next: struct udevice * for the next device
552  * @parent: parent device to scan
553  */
554 #define device_foreach_child_safe(pos, next, parent)	\
555 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
556 
557 /* device resource management */
558 typedef void (*dr_release_t)(struct udevice *dev, void *res);
559 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
560 
561 #ifdef CONFIG_DEVRES
562 
563 #ifdef CONFIG_DEBUG_DEVRES
564 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
565 		     const char *name);
566 #define _devres_alloc(release, size, gfp) \
567 	__devres_alloc(release, size, gfp, #release)
568 #else
569 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
570 #endif
571 
572 /**
573  * devres_alloc() - Allocate device resource data
574  * @release: Release function devres will be associated with
575  * @size: Allocation size
576  * @gfp: Allocation flags
577  *
578  * Allocate devres of @size bytes.  The allocated area is associated
579  * with @release.  The returned pointer can be passed to
580  * other devres_*() functions.
581  *
582  * RETURNS:
583  * Pointer to allocated devres on success, NULL on failure.
584  */
585 #define devres_alloc(release, size, gfp) \
586 	_devres_alloc(release, size, gfp | __GFP_ZERO)
587 
588 /**
589  * devres_free() - Free device resource data
590  * @res: Pointer to devres data to free
591  *
592  * Free devres created with devres_alloc().
593  */
594 void devres_free(void *res);
595 
596 /**
597  * devres_add() - Register device resource
598  * @dev: Device to add resource to
599  * @res: Resource to register
600  *
601  * Register devres @res to @dev.  @res should have been allocated
602  * using devres_alloc().  On driver detach, the associated release
603  * function will be invoked and devres will be freed automatically.
604  */
605 void devres_add(struct udevice *dev, void *res);
606 
607 /**
608  * devres_find() - Find device resource
609  * @dev: Device to lookup resource from
610  * @release: Look for resources associated with this release function
611  * @match: Match function (optional)
612  * @match_data: Data for the match function
613  *
614  * Find the latest devres of @dev which is associated with @release
615  * and for which @match returns 1.  If @match is NULL, it's considered
616  * to match all.
617  *
618  * @return pointer to found devres, NULL if not found.
619  */
620 void *devres_find(struct udevice *dev, dr_release_t release,
621 		  dr_match_t match, void *match_data);
622 
623 /**
624  * devres_get() - Find devres, if non-existent, add one atomically
625  * @dev: Device to lookup or add devres for
626  * @new_res: Pointer to new initialized devres to add if not found
627  * @match: Match function (optional)
628  * @match_data: Data for the match function
629  *
630  * Find the latest devres of @dev which has the same release function
631  * as @new_res and for which @match return 1.  If found, @new_res is
632  * freed; otherwise, @new_res is added atomically.
633  *
634  * @return ointer to found or added devres.
635  */
636 void *devres_get(struct udevice *dev, void *new_res,
637 		 dr_match_t match, void *match_data);
638 
639 /**
640  * devres_remove() - Find a device resource and remove it
641  * @dev: Device to find resource from
642  * @release: Look for resources associated with this release function
643  * @match: Match function (optional)
644  * @match_data: Data for the match function
645  *
646  * Find the latest devres of @dev associated with @release and for
647  * which @match returns 1.  If @match is NULL, it's considered to
648  * match all.  If found, the resource is removed atomically and
649  * returned.
650  *
651  * @return ointer to removed devres on success, NULL if not found.
652  */
653 void *devres_remove(struct udevice *dev, dr_release_t release,
654 		    dr_match_t match, void *match_data);
655 
656 /**
657  * devres_destroy() - Find a device resource and destroy it
658  * @dev: Device to find resource from
659  * @release: Look for resources associated with this release function
660  * @match: Match function (optional)
661  * @match_data: Data for the match function
662  *
663  * Find the latest devres of @dev associated with @release and for
664  * which @match returns 1.  If @match is NULL, it's considered to
665  * match all.  If found, the resource is removed atomically and freed.
666  *
667  * Note that the release function for the resource will not be called,
668  * only the devres-allocated data will be freed.  The caller becomes
669  * responsible for freeing any other data.
670  *
671  * @return 0 if devres is found and freed, -ENOENT if not found.
672  */
673 int devres_destroy(struct udevice *dev, dr_release_t release,
674 		   dr_match_t match, void *match_data);
675 
676 /**
677  * devres_release() - Find a device resource and destroy it, calling release
678  * @dev: Device to find resource from
679  * @release: Look for resources associated with this release function
680  * @match: Match function (optional)
681  * @match_data: Data for the match function
682  *
683  * Find the latest devres of @dev associated with @release and for
684  * which @match returns 1.  If @match is NULL, it's considered to
685  * match all.  If found, the resource is removed atomically, the
686  * release function called and the resource freed.
687  *
688  * @return 0 if devres is found and freed, -ENOENT if not found.
689  */
690 int devres_release(struct udevice *dev, dr_release_t release,
691 		   dr_match_t match, void *match_data);
692 
693 /* managed devm_k.alloc/kfree for device drivers */
694 /**
695  * devm_kmalloc() - Resource-managed kmalloc
696  * @dev: Device to allocate memory for
697  * @size: Allocation size
698  * @gfp: Allocation gfp flags
699  *
700  * Managed kmalloc.  Memory allocated with this function is
701  * automatically freed on driver detach.  Like all other devres
702  * resources, guaranteed alignment is unsigned long long.
703  *
704  * @return pointer to allocated memory on success, NULL on failure.
705  */
706 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
707 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
708 {
709 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
710 }
711 static inline void *devm_kmalloc_array(struct udevice *dev,
712 				       size_t n, size_t size, gfp_t flags)
713 {
714 	if (size != 0 && n > SIZE_MAX / size)
715 		return NULL;
716 	return devm_kmalloc(dev, n * size, flags);
717 }
718 static inline void *devm_kcalloc(struct udevice *dev,
719 				 size_t n, size_t size, gfp_t flags)
720 {
721 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
722 }
723 
724 /**
725  * devm_kfree() - Resource-managed kfree
726  * @dev: Device this memory belongs to
727  * @ptr: Memory to free
728  *
729  * Free memory allocated with devm_kmalloc().
730  */
731 void devm_kfree(struct udevice *dev, void *ptr);
732 
733 #else /* ! CONFIG_DEVRES */
734 
735 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
736 {
737 	return kzalloc(size, gfp);
738 }
739 
740 static inline void devres_free(void *res)
741 {
742 	kfree(res);
743 }
744 
745 static inline void devres_add(struct udevice *dev, void *res)
746 {
747 }
748 
749 static inline void *devres_find(struct udevice *dev, dr_release_t release,
750 				dr_match_t match, void *match_data)
751 {
752 	return NULL;
753 }
754 
755 static inline void *devres_get(struct udevice *dev, void *new_res,
756 			       dr_match_t match, void *match_data)
757 {
758 	return NULL;
759 }
760 
761 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
762 				  dr_match_t match, void *match_data)
763 {
764 	return NULL;
765 }
766 
767 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
768 				 dr_match_t match, void *match_data)
769 {
770 	return 0;
771 }
772 
773 static inline int devres_release(struct udevice *dev, dr_release_t release,
774 				 dr_match_t match, void *match_data)
775 {
776 	return 0;
777 }
778 
779 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
780 {
781 	return kmalloc(size, gfp);
782 }
783 
784 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
785 {
786 	return kzalloc(size, gfp);
787 }
788 
789 static inline void *devm_kmaloc_array(struct udevice *dev,
790 				      size_t n, size_t size, gfp_t flags)
791 {
792 	/* TODO: add kmalloc_array() to linux/compat.h */
793 	if (size != 0 && n > SIZE_MAX / size)
794 		return NULL;
795 	return kmalloc(n * size, flags);
796 }
797 
798 static inline void *devm_kcalloc(struct udevice *dev,
799 				 size_t n, size_t size, gfp_t flags)
800 {
801 	/* TODO: add kcalloc() to linux/compat.h */
802 	return kmalloc(n * size, flags | __GFP_ZERO);
803 }
804 
805 static inline void devm_kfree(struct udevice *dev, void *ptr)
806 {
807 	kfree(ptr);
808 }
809 
810 #endif /* ! CONFIG_DEVRES */
811 
812 /**
813  * dm_set_translation_offset() - Set translation offset
814  * @offs: Translation offset
815  *
816  * Some platforms need a special address translation. Those
817  * platforms (e.g. mvebu in SPL) can configure a translation
818  * offset in the DM by calling this function. It will be
819  * added to all addresses returned in dev_get_addr().
820  */
821 void dm_set_translation_offset(fdt_addr_t offs);
822 
823 /**
824  * dm_get_translation_offset() - Get translation offset
825  *
826  * This function returns the translation offset that can
827  * be configured by calling dm_set_translation_offset().
828  *
829  * @return translation offset for the device address (0 as default).
830  */
831 fdt_addr_t dm_get_translation_offset(void);
832 
833 #endif
834