1 /* 2 * Copyright (c) 2013 Google, Inc 3 * 4 * (C) Copyright 2012 5 * Pavel Herrmann <morpheus.ibis@gmail.com> 6 * Marek Vasut <marex@denx.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #ifndef _DM_DEVICE_H 12 #define _DM_DEVICE_H 13 14 #include <dm/uclass-id.h> 15 #include <fdtdec.h> 16 #include <linker_lists.h> 17 #include <linux/compat.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 21 struct driver_info; 22 23 /* Driver is active (probed). Cleared when it is removed */ 24 #define DM_FLAG_ACTIVATED (1 << 0) 25 26 /* DM is responsible for allocating and freeing platdata */ 27 #define DM_FLAG_ALLOC_PDATA (1 << 1) 28 29 /* DM should init this device prior to relocation */ 30 #define DM_FLAG_PRE_RELOC (1 << 2) 31 32 /* DM is responsible for allocating and freeing parent_platdata */ 33 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3) 34 35 /* DM is responsible for allocating and freeing uclass_platdata */ 36 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4) 37 38 /* Allocate driver private data on a DMA boundary */ 39 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5) 40 41 /* Device is bound */ 42 #define DM_FLAG_BOUND (1 << 6) 43 44 /** 45 * struct udevice - An instance of a driver 46 * 47 * This holds information about a device, which is a driver bound to a 48 * particular port or peripheral (essentially a driver instance). 49 * 50 * A device will come into existence through a 'bind' call, either due to 51 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node 52 * in the device tree (in which case of_offset is >= 0). In the latter case 53 * we translate the device tree information into platdata in a function 54 * implemented by the driver ofdata_to_platdata method (called just before the 55 * probe method if the device has a device tree node. 56 * 57 * All three of platdata, priv and uclass_priv can be allocated by the 58 * driver, or you can use the auto_alloc_size members of struct driver and 59 * struct uclass_driver to have driver model do this automatically. 60 * 61 * @driver: The driver used by this device 62 * @name: Name of device, typically the FDT node name 63 * @platdata: Configuration data for this device 64 * @parent_platdata: The parent bus's configuration data for this device 65 * @uclass_platdata: The uclass's configuration data for this device 66 * @of_offset: Device tree node offset for this device (- for none) 67 * @driver_data: Driver data word for the entry that matched this device with 68 * its driver 69 * @parent: Parent of this device, or NULL for the top level device 70 * @priv: Private data for this device 71 * @uclass: Pointer to uclass for this device 72 * @uclass_priv: The uclass's private data for this device 73 * @parent_priv: The parent's private data for this device 74 * @uclass_node: Used by uclass to link its devices 75 * @child_head: List of children of this device 76 * @sibling_node: Next device in list of all devices 77 * @flags: Flags for this device DM_FLAG_... 78 * @req_seq: Requested sequence number for this device (-1 = any) 79 * @seq: Allocated sequence number for this device (-1 = none). This is set up 80 * when the device is probed and will be unique within the device's uclass. 81 */ 82 struct udevice { 83 const struct driver *driver; 84 const char *name; 85 void *platdata; 86 void *parent_platdata; 87 void *uclass_platdata; 88 int of_offset; 89 ulong driver_data; 90 struct udevice *parent; 91 void *priv; 92 struct uclass *uclass; 93 void *uclass_priv; 94 void *parent_priv; 95 struct list_head uclass_node; 96 struct list_head child_head; 97 struct list_head sibling_node; 98 uint32_t flags; 99 int req_seq; 100 int seq; 101 #ifdef CONFIG_DEVRES 102 struct list_head devres_head; 103 #endif 104 }; 105 106 /* Maximum sequence number supported */ 107 #define DM_MAX_SEQ 999 108 109 /* Returns the operations for a device */ 110 #define device_get_ops(dev) (dev->driver->ops) 111 112 /* Returns non-zero if the device is active (probed and not removed) */ 113 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED) 114 115 /** 116 * struct udevice_id - Lists the compatible strings supported by a driver 117 * @compatible: Compatible string 118 * @data: Data for this compatible string 119 */ 120 struct udevice_id { 121 const char *compatible; 122 ulong data; 123 }; 124 125 #if CONFIG_IS_ENABLED(OF_CONTROL) 126 #define of_match_ptr(_ptr) (_ptr) 127 #else 128 #define of_match_ptr(_ptr) NULL 129 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ 130 131 /** 132 * struct driver - A driver for a feature or peripheral 133 * 134 * This holds methods for setting up a new device, and also removing it. 135 * The device needs information to set itself up - this is provided either 136 * by platdata or a device tree node (which we find by looking up 137 * matching compatible strings with of_match). 138 * 139 * Drivers all belong to a uclass, representing a class of devices of the 140 * same type. Common elements of the drivers can be implemented in the uclass, 141 * or the uclass can provide a consistent interface to the drivers within 142 * it. 143 * 144 * @name: Device name 145 * @id: Identiies the uclass we belong to 146 * @of_match: List of compatible strings to match, and any identifying data 147 * for each. 148 * @bind: Called to bind a device to its driver 149 * @probe: Called to probe a device, i.e. activate it 150 * @remove: Called to remove a device, i.e. de-activate it 151 * @unbind: Called to unbind a device from its driver 152 * @ofdata_to_platdata: Called before probe to decode device tree data 153 * @child_post_bind: Called after a new child has been bound 154 * @child_pre_probe: Called before a child device is probed. The device has 155 * memory allocated but it has not yet been probed. 156 * @child_post_remove: Called after a child device is removed. The device 157 * has memory allocated but its device_remove() method has been called. 158 * @priv_auto_alloc_size: If non-zero this is the size of the private data 159 * to be allocated in the device's ->priv pointer. If zero, then the driver 160 * is responsible for allocating any data required. 161 * @platdata_auto_alloc_size: If non-zero this is the size of the 162 * platform data to be allocated in the device's ->platdata pointer. 163 * This is typically only useful for device-tree-aware drivers (those with 164 * an of_match), since drivers which use platdata will have the data 165 * provided in the U_BOOT_DEVICE() instantiation. 166 * @per_child_auto_alloc_size: Each device can hold private data owned by 167 * its parent. If required this will be automatically allocated if this 168 * value is non-zero. 169 * TODO(sjg@chromium.org): I'm considering dropping this, and just having 170 * device_probe_child() pass it in. So far the use case for allocating it 171 * is SPI, but I found that unsatisfactory. Since it is here I will leave it 172 * until things are clearer. 173 * @per_child_platdata_auto_alloc_size: A bus likes to store information about 174 * its children. If non-zero this is the size of this data, to be allocated 175 * in the child's parent_platdata pointer. 176 * @ops: Driver-specific operations. This is typically a list of function 177 * pointers defined by the driver, to implement driver functions required by 178 * the uclass. 179 * @flags: driver flags - see DM_FLAGS_... 180 */ 181 struct driver { 182 char *name; 183 enum uclass_id id; 184 const struct udevice_id *of_match; 185 int (*bind)(struct udevice *dev); 186 int (*probe)(struct udevice *dev); 187 int (*remove)(struct udevice *dev); 188 int (*unbind)(struct udevice *dev); 189 int (*ofdata_to_platdata)(struct udevice *dev); 190 int (*child_post_bind)(struct udevice *dev); 191 int (*child_pre_probe)(struct udevice *dev); 192 int (*child_post_remove)(struct udevice *dev); 193 int priv_auto_alloc_size; 194 int platdata_auto_alloc_size; 195 int per_child_auto_alloc_size; 196 int per_child_platdata_auto_alloc_size; 197 const void *ops; /* driver-specific operations */ 198 uint32_t flags; 199 }; 200 201 /* Declare a new U-Boot driver */ 202 #define U_BOOT_DRIVER(__name) \ 203 ll_entry_declare(struct driver, __name, driver) 204 205 /** 206 * dev_get_platdata() - Get the platform data for a device 207 * 208 * This checks that dev is not NULL, but no other checks for now 209 * 210 * @dev Device to check 211 * @return platform data, or NULL if none 212 */ 213 void *dev_get_platdata(struct udevice *dev); 214 215 /** 216 * dev_get_parent_platdata() - Get the parent platform data for a device 217 * 218 * This checks that dev is not NULL, but no other checks for now 219 * 220 * @dev Device to check 221 * @return parent's platform data, or NULL if none 222 */ 223 void *dev_get_parent_platdata(struct udevice *dev); 224 225 /** 226 * dev_get_uclass_platdata() - Get the uclass platform data for a device 227 * 228 * This checks that dev is not NULL, but no other checks for now 229 * 230 * @dev Device to check 231 * @return uclass's platform data, or NULL if none 232 */ 233 void *dev_get_uclass_platdata(struct udevice *dev); 234 235 /** 236 * dev_get_parentdata() - Get the parent data for a device 237 * 238 * The parent data is data stored in the device but owned by the parent. 239 * For example, a USB device may have parent data which contains information 240 * about how to talk to the device over USB. 241 * 242 * This checks that dev is not NULL, but no other checks for now 243 * 244 * @dev Device to check 245 * @return parent data, or NULL if none 246 */ 247 void *dev_get_parentdata(struct udevice *dev); 248 249 /** 250 * dev_get_priv() - Get the private data for a device 251 * 252 * This checks that dev is not NULL, but no other checks for now 253 * 254 * @dev Device to check 255 * @return private data, or NULL if none 256 */ 257 void *dev_get_priv(struct udevice *dev); 258 259 /** 260 * struct dev_get_parent() - Get the parent of a device 261 * 262 * @child: Child to check 263 * @return parent of child, or NULL if this is the root device 264 */ 265 struct udevice *dev_get_parent(struct udevice *child); 266 267 /** 268 * dev_get_uclass_priv() - Get the private uclass data for a device 269 * 270 * This checks that dev is not NULL, but no other checks for now 271 * 272 * @dev Device to check 273 * @return private uclass data for this device, or NULL if none 274 */ 275 void *dev_get_uclass_priv(struct udevice *dev); 276 277 /** 278 * dev_get_driver_data() - get the driver data used to bind a device 279 * 280 * When a device is bound using a device tree node, it matches a 281 * particular compatible string as in struct udevice_id. This function 282 * returns the associated data value for that compatible string. This is 283 * the 'data' field in struct udevice_id. 284 * 285 * For USB devices, this is the driver_info field in struct usb_device_id. 286 * 287 * @dev: Device to check 288 */ 289 ulong dev_get_driver_data(struct udevice *dev); 290 291 /** 292 * dev_get_driver_ops() - get the device's driver's operations 293 * 294 * This checks that dev is not NULL, and returns the pointer to device's 295 * driver's operations. 296 * 297 * @dev: Device to check 298 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops 299 */ 300 const void *dev_get_driver_ops(struct udevice *dev); 301 302 /* 303 * device_get_uclass_id() - return the uclass ID of a device 304 * 305 * @dev: Device to check 306 * @return uclass ID for the device 307 */ 308 enum uclass_id device_get_uclass_id(struct udevice *dev); 309 310 /* 311 * dev_get_uclass_name() - return the uclass name of a device 312 * 313 * This checks that dev is not NULL. 314 * 315 * @dev: Device to check 316 * @return pointer to the uclass name for the device 317 */ 318 const char *dev_get_uclass_name(struct udevice *dev); 319 320 /** 321 * device_get_child() - Get the child of a device by index 322 * 323 * Returns the numbered child, 0 being the first. This does not use 324 * sequence numbers, only the natural order. 325 * 326 * @dev: Parent device to check 327 * @index: Child index 328 * @devp: Returns pointer to device 329 * @return 0 if OK, -ENODEV if no such device, other error if the device fails 330 * to probe 331 */ 332 int device_get_child(struct udevice *parent, int index, struct udevice **devp); 333 334 /** 335 * device_find_child_by_seq() - Find a child device based on a sequence 336 * 337 * This searches for a device with the given seq or req_seq. 338 * 339 * For seq, if an active device has this sequence it will be returned. 340 * If there is no such device then this will return -ENODEV. 341 * 342 * For req_seq, if a device (whether activated or not) has this req_seq 343 * value, that device will be returned. This is a strong indication that 344 * the device will receive that sequence when activated. 345 * 346 * @parent: Parent device 347 * @seq_or_req_seq: Sequence number to find (0=first) 348 * @find_req_seq: true to find req_seq, false to find seq 349 * @devp: Returns pointer to device (there is only one per for each seq). 350 * Set to NULL if none is found 351 * @return 0 if OK, -ve on error 352 */ 353 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq, 354 bool find_req_seq, struct udevice **devp); 355 356 /** 357 * device_get_child_by_seq() - Get a child device based on a sequence 358 * 359 * If an active device has this sequence it will be returned. If there is no 360 * such device then this will check for a device that is requesting this 361 * sequence. 362 * 363 * The device is probed to activate it ready for use. 364 * 365 * @parent: Parent device 366 * @seq: Sequence number to find (0=first) 367 * @devp: Returns pointer to device (there is only one per for each seq) 368 * Set to NULL if none is found 369 * @return 0 if OK, -ve on error 370 */ 371 int device_get_child_by_seq(struct udevice *parent, int seq, 372 struct udevice **devp); 373 374 /** 375 * device_find_child_by_of_offset() - Find a child device based on FDT offset 376 * 377 * Locates a child device by its device tree offset. 378 * 379 * @parent: Parent device 380 * @of_offset: Device tree offset to find 381 * @devp: Returns pointer to device if found, otherwise this is set to NULL 382 * @return 0 if OK, -ve on error 383 */ 384 int device_find_child_by_of_offset(struct udevice *parent, int of_offset, 385 struct udevice **devp); 386 387 /** 388 * device_get_child_by_of_offset() - Get a child device based on FDT offset 389 * 390 * Locates a child device by its device tree offset. 391 * 392 * The device is probed to activate it ready for use. 393 * 394 * @parent: Parent device 395 * @of_offset: Device tree offset to find 396 * @devp: Returns pointer to device if found, otherwise this is set to NULL 397 * @return 0 if OK, -ve on error 398 */ 399 int device_get_child_by_of_offset(struct udevice *parent, int of_offset, 400 struct udevice **devp); 401 402 /** 403 * device_get_global_by_of_offset() - Get a device based on FDT offset 404 * 405 * Locates a device by its device tree offset, searching globally throughout 406 * the all driver model devices. 407 * 408 * The device is probed to activate it ready for use. 409 * 410 * @of_offset: Device tree offset to find 411 * @devp: Returns pointer to device if found, otherwise this is set to NULL 412 * @return 0 if OK, -ve on error 413 */ 414 int device_get_global_by_of_offset(int of_offset, struct udevice **devp); 415 416 /** 417 * device_find_first_child() - Find the first child of a device 418 * 419 * @parent: Parent device to search 420 * @devp: Returns first child device, or NULL if none 421 * @return 0 422 */ 423 int device_find_first_child(struct udevice *parent, struct udevice **devp); 424 425 /** 426 * device_find_next_child() - Find the next child of a device 427 * 428 * @devp: Pointer to previous child device on entry. Returns pointer to next 429 * child device, or NULL if none 430 * @return 0 431 */ 432 int device_find_next_child(struct udevice **devp); 433 434 /** 435 * dev_get_addr() - Get the reg property of a device 436 * 437 * @dev: Pointer to a device 438 * 439 * @return addr 440 */ 441 fdt_addr_t dev_get_addr(struct udevice *dev); 442 443 /** 444 * device_has_children() - check if a device has any children 445 * 446 * @dev: Device to check 447 * @return true if the device has one or more children 448 */ 449 bool device_has_children(struct udevice *dev); 450 451 /** 452 * device_has_active_children() - check if a device has any active children 453 * 454 * @dev: Device to check 455 * @return true if the device has one or more children and at least one of 456 * them is active (probed). 457 */ 458 bool device_has_active_children(struct udevice *dev); 459 460 /** 461 * device_is_last_sibling() - check if a device is the last sibling 462 * 463 * This function can be useful for display purposes, when special action needs 464 * to be taken when displaying the last sibling. This can happen when a tree 465 * view of devices is being displayed. 466 * 467 * @dev: Device to check 468 * @return true if there are no more siblings after this one - i.e. is it 469 * last in the list. 470 */ 471 bool device_is_last_sibling(struct udevice *dev); 472 473 /** 474 * device_set_name() - set the name of a device 475 * 476 * This must be called in the device's bind() method and no later. Normally 477 * this is unnecessary but for probed devices which don't get a useful name 478 * this function can be helpful. 479 * 480 * @dev: Device to update 481 * @name: New name (this string is allocated new memory and attached to 482 * the device) 483 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the 484 * string 485 */ 486 int device_set_name(struct udevice *dev, const char *name); 487 488 /* device resource management */ 489 typedef void (*dr_release_t)(struct udevice *dev, void *res); 490 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data); 491 492 #ifdef CONFIG_DEVRES 493 494 #ifdef CONFIG_DEBUG_DEVRES 495 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp, 496 const char *name); 497 #define _devres_alloc(release, size, gfp) \ 498 __devres_alloc(release, size, gfp, #release) 499 #else 500 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp); 501 #endif 502 503 /** 504 * devres_alloc - Allocate device resource data 505 * @release: Release function devres will be associated with 506 * @size: Allocation size 507 * @gfp: Allocation flags 508 * 509 * Allocate devres of @size bytes. The allocated area is associated 510 * with @release. The returned pointer can be passed to 511 * other devres_*() functions. 512 * 513 * RETURNS: 514 * Pointer to allocated devres on success, NULL on failure. 515 */ 516 #define devres_alloc(release, size, gfp) \ 517 _devres_alloc(release, size, gfp | __GFP_ZERO) 518 519 /** 520 * devres_free - Free device resource data 521 * @res: Pointer to devres data to free 522 * 523 * Free devres created with devres_alloc(). 524 */ 525 void devres_free(void *res); 526 527 /** 528 * devres_add - Register device resource 529 * @dev: Device to add resource to 530 * @res: Resource to register 531 * 532 * Register devres @res to @dev. @res should have been allocated 533 * using devres_alloc(). On driver detach, the associated release 534 * function will be invoked and devres will be freed automatically. 535 */ 536 void devres_add(struct udevice *dev, void *res); 537 538 /** 539 * devres_find - Find device resource 540 * @dev: Device to lookup resource from 541 * @release: Look for resources associated with this release function 542 * @match: Match function (optional) 543 * @match_data: Data for the match function 544 * 545 * Find the latest devres of @dev which is associated with @release 546 * and for which @match returns 1. If @match is NULL, it's considered 547 * to match all. 548 * 549 * RETURNS: 550 * Pointer to found devres, NULL if not found. 551 */ 552 void *devres_find(struct udevice *dev, dr_release_t release, 553 dr_match_t match, void *match_data); 554 555 /** 556 * devres_get - Find devres, if non-existent, add one atomically 557 * @dev: Device to lookup or add devres for 558 * @new_res: Pointer to new initialized devres to add if not found 559 * @match: Match function (optional) 560 * @match_data: Data for the match function 561 * 562 * Find the latest devres of @dev which has the same release function 563 * as @new_res and for which @match return 1. If found, @new_res is 564 * freed; otherwise, @new_res is added atomically. 565 * 566 * RETURNS: 567 * Pointer to found or added devres. 568 */ 569 void *devres_get(struct udevice *dev, void *new_res, 570 dr_match_t match, void *match_data); 571 572 /** 573 * devres_remove - Find a device resource and remove it 574 * @dev: Device to find resource from 575 * @release: Look for resources associated with this release function 576 * @match: Match function (optional) 577 * @match_data: Data for the match function 578 * 579 * Find the latest devres of @dev associated with @release and for 580 * which @match returns 1. If @match is NULL, it's considered to 581 * match all. If found, the resource is removed atomically and 582 * returned. 583 * 584 * RETURNS: 585 * Pointer to removed devres on success, NULL if not found. 586 */ 587 void *devres_remove(struct udevice *dev, dr_release_t release, 588 dr_match_t match, void *match_data); 589 590 /** 591 * devres_destroy - Find a device resource and destroy it 592 * @dev: Device to find resource from 593 * @release: Look for resources associated with this release function 594 * @match: Match function (optional) 595 * @match_data: Data for the match function 596 * 597 * Find the latest devres of @dev associated with @release and for 598 * which @match returns 1. If @match is NULL, it's considered to 599 * match all. If found, the resource is removed atomically and freed. 600 * 601 * Note that the release function for the resource will not be called, 602 * only the devres-allocated data will be freed. The caller becomes 603 * responsible for freeing any other data. 604 * 605 * RETURNS: 606 * 0 if devres is found and freed, -ENOENT if not found. 607 */ 608 int devres_destroy(struct udevice *dev, dr_release_t release, 609 dr_match_t match, void *match_data); 610 611 /** 612 * devres_release - Find a device resource and destroy it, calling release 613 * @dev: Device to find resource from 614 * @release: Look for resources associated with this release function 615 * @match: Match function (optional) 616 * @match_data: Data for the match function 617 * 618 * Find the latest devres of @dev associated with @release and for 619 * which @match returns 1. If @match is NULL, it's considered to 620 * match all. If found, the resource is removed atomically, the 621 * release function called and the resource freed. 622 * 623 * RETURNS: 624 * 0 if devres is found and freed, -ENOENT if not found. 625 */ 626 int devres_release(struct udevice *dev, dr_release_t release, 627 dr_match_t match, void *match_data); 628 629 /* managed devm_k.alloc/kfree for device drivers */ 630 /** 631 * devm_kmalloc - Resource-managed kmalloc 632 * @dev: Device to allocate memory for 633 * @size: Allocation size 634 * @gfp: Allocation gfp flags 635 * 636 * Managed kmalloc. Memory allocated with this function is 637 * automatically freed on driver detach. Like all other devres 638 * resources, guaranteed alignment is unsigned long long. 639 * 640 * RETURNS: 641 * Pointer to allocated memory on success, NULL on failure. 642 */ 643 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp); 644 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 645 { 646 return devm_kmalloc(dev, size, gfp | __GFP_ZERO); 647 } 648 static inline void *devm_kmalloc_array(struct udevice *dev, 649 size_t n, size_t size, gfp_t flags) 650 { 651 if (size != 0 && n > SIZE_MAX / size) 652 return NULL; 653 return devm_kmalloc(dev, n * size, flags); 654 } 655 static inline void *devm_kcalloc(struct udevice *dev, 656 size_t n, size_t size, gfp_t flags) 657 { 658 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); 659 } 660 661 /** 662 * devm_kfree - Resource-managed kfree 663 * @dev: Device this memory belongs to 664 * @p: Memory to free 665 * 666 * Free memory allocated with devm_kmalloc(). 667 */ 668 void devm_kfree(struct udevice *dev, void *p); 669 670 #else /* ! CONFIG_DEVRES */ 671 672 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) 673 { 674 return kzalloc(size, gfp); 675 } 676 677 static inline void devres_free(void *res) 678 { 679 kfree(res); 680 } 681 682 static inline void devres_add(struct udevice *dev, void *res) 683 { 684 } 685 686 static inline void *devres_find(struct udevice *dev, dr_release_t release, 687 dr_match_t match, void *match_data) 688 { 689 return NULL; 690 } 691 692 static inline void *devres_get(struct udevice *dev, void *new_res, 693 dr_match_t match, void *match_data) 694 { 695 return NULL; 696 } 697 698 static inline void *devres_remove(struct udevice *dev, dr_release_t release, 699 dr_match_t match, void *match_data) 700 { 701 return NULL; 702 } 703 704 static inline int devres_destroy(struct udevice *dev, dr_release_t release, 705 dr_match_t match, void *match_data) 706 { 707 return 0; 708 } 709 710 static inline int devres_release(struct udevice *dev, dr_release_t release, 711 dr_match_t match, void *match_data) 712 { 713 return 0; 714 } 715 716 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp) 717 { 718 return kmalloc(size, gfp); 719 } 720 721 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 722 { 723 return kzalloc(size, gfp); 724 } 725 726 static inline void *devm_kmaloc_array(struct udevice *dev, 727 size_t n, size_t size, gfp_t flags) 728 { 729 /* TODO: add kmalloc_array() to linux/compat.h */ 730 if (size != 0 && n > SIZE_MAX / size) 731 return NULL; 732 return kmalloc(n * size, flags); 733 } 734 735 static inline void *devm_kcalloc(struct udevice *dev, 736 size_t n, size_t size, gfp_t flags) 737 { 738 /* TODO: add kcalloc() to linux/compat.h */ 739 return kmalloc(n * size, flags | __GFP_ZERO); 740 } 741 742 static inline void devm_kfree(struct udevice *dev, void *p) 743 { 744 kfree(p); 745 } 746 747 #endif /* ! CONFIG_DEVRES */ 748 749 #endif 750