xref: /openbmc/u-boot/include/dm/device.h (revision efe2d80c)
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13 
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 
21 struct driver_info;
22 
23 /* Driver is active (probed). Cleared when it is removed */
24 #define DM_FLAG_ACTIVATED		(1 << 0)
25 
26 /* DM is responsible for allocating and freeing platdata */
27 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
28 
29 /* DM should init this device prior to relocation */
30 #define DM_FLAG_PRE_RELOC		(1 << 2)
31 
32 /* DM is responsible for allocating and freeing parent_platdata */
33 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
34 
35 /* DM is responsible for allocating and freeing uclass_platdata */
36 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
37 
38 /* Allocate driver private data on a DMA boundary */
39 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
40 
41 /* Device is bound */
42 #define DM_FLAG_BOUND			(1 << 6)
43 
44 /**
45  * struct udevice - An instance of a driver
46  *
47  * This holds information about a device, which is a driver bound to a
48  * particular port or peripheral (essentially a driver instance).
49  *
50  * A device will come into existence through a 'bind' call, either due to
51  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
52  * in the device tree (in which case of_offset is >= 0). In the latter case
53  * we translate the device tree information into platdata in a function
54  * implemented by the driver ofdata_to_platdata method (called just before the
55  * probe method if the device has a device tree node.
56  *
57  * All three of platdata, priv and uclass_priv can be allocated by the
58  * driver, or you can use the auto_alloc_size members of struct driver and
59  * struct uclass_driver to have driver model do this automatically.
60  *
61  * @driver: The driver used by this device
62  * @name: Name of device, typically the FDT node name
63  * @platdata: Configuration data for this device
64  * @parent_platdata: The parent bus's configuration data for this device
65  * @uclass_platdata: The uclass's configuration data for this device
66  * @of_offset: Device tree node offset for this device (- for none)
67  * @driver_data: Driver data word for the entry that matched this device with
68  *		its driver
69  * @parent: Parent of this device, or NULL for the top level device
70  * @priv: Private data for this device
71  * @uclass: Pointer to uclass for this device
72  * @uclass_priv: The uclass's private data for this device
73  * @parent_priv: The parent's private data for this device
74  * @uclass_node: Used by uclass to link its devices
75  * @child_head: List of children of this device
76  * @sibling_node: Next device in list of all devices
77  * @flags: Flags for this device DM_FLAG_...
78  * @req_seq: Requested sequence number for this device (-1 = any)
79  * @seq: Allocated sequence number for this device (-1 = none). This is set up
80  * when the device is probed and will be unique within the device's uclass.
81  * @devres_head: List of memory allocations associated with this device.
82  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
83  *		add to this list. Memory so-allocated will be freed
84  *		automatically when the device is removed / unbound
85  */
86 struct udevice {
87 	const struct driver *driver;
88 	const char *name;
89 	void *platdata;
90 	void *parent_platdata;
91 	void *uclass_platdata;
92 	int of_offset;
93 	ulong driver_data;
94 	struct udevice *parent;
95 	void *priv;
96 	struct uclass *uclass;
97 	void *uclass_priv;
98 	void *parent_priv;
99 	struct list_head uclass_node;
100 	struct list_head child_head;
101 	struct list_head sibling_node;
102 	uint32_t flags;
103 	int req_seq;
104 	int seq;
105 #ifdef CONFIG_DEVRES
106 	struct list_head devres_head;
107 #endif
108 };
109 
110 /* Maximum sequence number supported */
111 #define DM_MAX_SEQ	999
112 
113 /* Returns the operations for a device */
114 #define device_get_ops(dev)	(dev->driver->ops)
115 
116 /* Returns non-zero if the device is active (probed and not removed) */
117 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
118 
119 /**
120  * struct udevice_id - Lists the compatible strings supported by a driver
121  * @compatible: Compatible string
122  * @data: Data for this compatible string
123  */
124 struct udevice_id {
125 	const char *compatible;
126 	ulong data;
127 };
128 
129 #if CONFIG_IS_ENABLED(OF_CONTROL)
130 #define of_match_ptr(_ptr)	(_ptr)
131 #else
132 #define of_match_ptr(_ptr)	NULL
133 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
134 
135 /**
136  * struct driver - A driver for a feature or peripheral
137  *
138  * This holds methods for setting up a new device, and also removing it.
139  * The device needs information to set itself up - this is provided either
140  * by platdata or a device tree node (which we find by looking up
141  * matching compatible strings with of_match).
142  *
143  * Drivers all belong to a uclass, representing a class of devices of the
144  * same type. Common elements of the drivers can be implemented in the uclass,
145  * or the uclass can provide a consistent interface to the drivers within
146  * it.
147  *
148  * @name: Device name
149  * @id: Identiies the uclass we belong to
150  * @of_match: List of compatible strings to match, and any identifying data
151  * for each.
152  * @bind: Called to bind a device to its driver
153  * @probe: Called to probe a device, i.e. activate it
154  * @remove: Called to remove a device, i.e. de-activate it
155  * @unbind: Called to unbind a device from its driver
156  * @ofdata_to_platdata: Called before probe to decode device tree data
157  * @child_post_bind: Called after a new child has been bound
158  * @child_pre_probe: Called before a child device is probed. The device has
159  * memory allocated but it has not yet been probed.
160  * @child_post_remove: Called after a child device is removed. The device
161  * has memory allocated but its device_remove() method has been called.
162  * @priv_auto_alloc_size: If non-zero this is the size of the private data
163  * to be allocated in the device's ->priv pointer. If zero, then the driver
164  * is responsible for allocating any data required.
165  * @platdata_auto_alloc_size: If non-zero this is the size of the
166  * platform data to be allocated in the device's ->platdata pointer.
167  * This is typically only useful for device-tree-aware drivers (those with
168  * an of_match), since drivers which use platdata will have the data
169  * provided in the U_BOOT_DEVICE() instantiation.
170  * @per_child_auto_alloc_size: Each device can hold private data owned by
171  * its parent. If required this will be automatically allocated if this
172  * value is non-zero.
173  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
174  * its children. If non-zero this is the size of this data, to be allocated
175  * in the child's parent_platdata pointer.
176  * @ops: Driver-specific operations. This is typically a list of function
177  * pointers defined by the driver, to implement driver functions required by
178  * the uclass.
179  * @flags: driver flags - see DM_FLAGS_...
180  */
181 struct driver {
182 	char *name;
183 	enum uclass_id id;
184 	const struct udevice_id *of_match;
185 	int (*bind)(struct udevice *dev);
186 	int (*probe)(struct udevice *dev);
187 	int (*remove)(struct udevice *dev);
188 	int (*unbind)(struct udevice *dev);
189 	int (*ofdata_to_platdata)(struct udevice *dev);
190 	int (*child_post_bind)(struct udevice *dev);
191 	int (*child_pre_probe)(struct udevice *dev);
192 	int (*child_post_remove)(struct udevice *dev);
193 	int priv_auto_alloc_size;
194 	int platdata_auto_alloc_size;
195 	int per_child_auto_alloc_size;
196 	int per_child_platdata_auto_alloc_size;
197 	const void *ops;	/* driver-specific operations */
198 	uint32_t flags;
199 };
200 
201 /* Declare a new U-Boot driver */
202 #define U_BOOT_DRIVER(__name)						\
203 	ll_entry_declare(struct driver, __name, driver)
204 
205 /**
206  * dev_get_platdata() - Get the platform data for a device
207  *
208  * This checks that dev is not NULL, but no other checks for now
209  *
210  * @dev		Device to check
211  * @return platform data, or NULL if none
212  */
213 void *dev_get_platdata(struct udevice *dev);
214 
215 /**
216  * dev_get_parent_platdata() - Get the parent platform data for a device
217  *
218  * This checks that dev is not NULL, but no other checks for now
219  *
220  * @dev		Device to check
221  * @return parent's platform data, or NULL if none
222  */
223 void *dev_get_parent_platdata(struct udevice *dev);
224 
225 /**
226  * dev_get_uclass_platdata() - Get the uclass platform data for a device
227  *
228  * This checks that dev is not NULL, but no other checks for now
229  *
230  * @dev		Device to check
231  * @return uclass's platform data, or NULL if none
232  */
233 void *dev_get_uclass_platdata(struct udevice *dev);
234 
235 /**
236  * dev_get_priv() - Get the private data for a device
237  *
238  * This checks that dev is not NULL, but no other checks for now
239  *
240  * @dev		Device to check
241  * @return private data, or NULL if none
242  */
243 void *dev_get_priv(struct udevice *dev);
244 
245 /**
246  * dev_get_parent_priv() - Get the parent private data for a device
247  *
248  * The parent private data is data stored in the device but owned by the
249  * parent. For example, a USB device may have parent data which contains
250  * information about how to talk to the device over USB.
251  *
252  * This checks that dev is not NULL, but no other checks for now
253  *
254  * @dev		Device to check
255  * @return parent data, or NULL if none
256  */
257 void *dev_get_parent_priv(struct udevice *dev);
258 
259 /**
260  * dev_get_uclass_priv() - Get the private uclass data for a device
261  *
262  * This checks that dev is not NULL, but no other checks for now
263  *
264  * @dev		Device to check
265  * @return private uclass data for this device, or NULL if none
266  */
267 void *dev_get_uclass_priv(struct udevice *dev);
268 
269 /**
270  * struct dev_get_parent() - Get the parent of a device
271  *
272  * @child:	Child to check
273  * @return parent of child, or NULL if this is the root device
274  */
275 struct udevice *dev_get_parent(struct udevice *child);
276 
277 /**
278  * dev_get_driver_data() - get the driver data used to bind a device
279  *
280  * When a device is bound using a device tree node, it matches a
281  * particular compatible string in struct udevice_id. This function
282  * returns the associated data value for that compatible string. This is
283  * the 'data' field in struct udevice_id.
284  *
285  * As an example, consider this structure:
286  * static const struct udevice_id tegra_i2c_ids[] = {
287  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
288  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
289  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
290  *	{ }
291  * };
292  *
293  * When driver model finds a driver for this it will store the 'data' value
294  * corresponding to the compatible string it matches. This function returns
295  * that value. This allows the driver to handle several variants of a device.
296  *
297  * For USB devices, this is the driver_info field in struct usb_device_id.
298  *
299  * @dev:	Device to check
300  * @return driver data (0 if none is provided)
301  */
302 ulong dev_get_driver_data(struct udevice *dev);
303 
304 /**
305  * dev_get_driver_ops() - get the device's driver's operations
306  *
307  * This checks that dev is not NULL, and returns the pointer to device's
308  * driver's operations.
309  *
310  * @dev:	Device to check
311  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
312  */
313 const void *dev_get_driver_ops(struct udevice *dev);
314 
315 /**
316  * device_get_uclass_id() - return the uclass ID of a device
317  *
318  * @dev:	Device to check
319  * @return uclass ID for the device
320  */
321 enum uclass_id device_get_uclass_id(struct udevice *dev);
322 
323 /**
324  * dev_get_uclass_name() - return the uclass name of a device
325  *
326  * This checks that dev is not NULL.
327  *
328  * @dev:	Device to check
329  * @return  pointer to the uclass name for the device
330  */
331 const char *dev_get_uclass_name(struct udevice *dev);
332 
333 /**
334  * device_get_child() - Get the child of a device by index
335  *
336  * Returns the numbered child, 0 being the first. This does not use
337  * sequence numbers, only the natural order.
338  *
339  * @dev:	Parent device to check
340  * @index:	Child index
341  * @devp:	Returns pointer to device
342  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
343  *	   to probe
344  */
345 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
346 
347 /**
348  * device_find_child_by_seq() - Find a child device based on a sequence
349  *
350  * This searches for a device with the given seq or req_seq.
351  *
352  * For seq, if an active device has this sequence it will be returned.
353  * If there is no such device then this will return -ENODEV.
354  *
355  * For req_seq, if a device (whether activated or not) has this req_seq
356  * value, that device will be returned. This is a strong indication that
357  * the device will receive that sequence when activated.
358  *
359  * @parent: Parent device
360  * @seq_or_req_seq: Sequence number to find (0=first)
361  * @find_req_seq: true to find req_seq, false to find seq
362  * @devp: Returns pointer to device (there is only one per for each seq).
363  * Set to NULL if none is found
364  * @return 0 if OK, -ve on error
365  */
366 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
367 			     bool find_req_seq, struct udevice **devp);
368 
369 /**
370  * device_get_child_by_seq() - Get a child device based on a sequence
371  *
372  * If an active device has this sequence it will be returned. If there is no
373  * such device then this will check for a device that is requesting this
374  * sequence.
375  *
376  * The device is probed to activate it ready for use.
377  *
378  * @parent: Parent device
379  * @seq: Sequence number to find (0=first)
380  * @devp: Returns pointer to device (there is only one per for each seq)
381  * Set to NULL if none is found
382  * @return 0 if OK, -ve on error
383  */
384 int device_get_child_by_seq(struct udevice *parent, int seq,
385 			    struct udevice **devp);
386 
387 /**
388  * device_find_child_by_of_offset() - Find a child device based on FDT offset
389  *
390  * Locates a child device by its device tree offset.
391  *
392  * @parent: Parent device
393  * @of_offset: Device tree offset to find
394  * @devp: Returns pointer to device if found, otherwise this is set to NULL
395  * @return 0 if OK, -ve on error
396  */
397 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
398 				   struct udevice **devp);
399 
400 /**
401  * device_get_child_by_of_offset() - Get a child device based on FDT offset
402  *
403  * Locates a child device by its device tree offset.
404  *
405  * The device is probed to activate it ready for use.
406  *
407  * @parent: Parent device
408  * @of_offset: Device tree offset to find
409  * @devp: Returns pointer to device if found, otherwise this is set to NULL
410  * @return 0 if OK, -ve on error
411  */
412 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
413 				  struct udevice **devp);
414 
415 /**
416  * device_get_global_by_of_offset() - Get a device based on FDT offset
417  *
418  * Locates a device by its device tree offset, searching globally throughout
419  * the all driver model devices.
420  *
421  * The device is probed to activate it ready for use.
422  *
423  * @of_offset: Device tree offset to find
424  * @devp: Returns pointer to device if found, otherwise this is set to NULL
425  * @return 0 if OK, -ve on error
426  */
427 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
428 
429 /**
430  * device_find_first_child() - Find the first child of a device
431  *
432  * @parent: Parent device to search
433  * @devp: Returns first child device, or NULL if none
434  * @return 0
435  */
436 int device_find_first_child(struct udevice *parent, struct udevice **devp);
437 
438 /**
439  * device_find_next_child() - Find the next child of a device
440  *
441  * @devp: Pointer to previous child device on entry. Returns pointer to next
442  *		child device, or NULL if none
443  * @return 0
444  */
445 int device_find_next_child(struct udevice **devp);
446 
447 /**
448  * dev_get_addr() - Get the reg property of a device
449  *
450  * @dev: Pointer to a device
451  *
452  * @return addr
453  */
454 fdt_addr_t dev_get_addr(struct udevice *dev);
455 
456 /**
457  * device_has_children() - check if a device has any children
458  *
459  * @dev:	Device to check
460  * @return true if the device has one or more children
461  */
462 bool device_has_children(struct udevice *dev);
463 
464 /**
465  * device_has_active_children() - check if a device has any active children
466  *
467  * @dev:	Device to check
468  * @return true if the device has one or more children and at least one of
469  * them is active (probed).
470  */
471 bool device_has_active_children(struct udevice *dev);
472 
473 /**
474  * device_is_last_sibling() - check if a device is the last sibling
475  *
476  * This function can be useful for display purposes, when special action needs
477  * to be taken when displaying the last sibling. This can happen when a tree
478  * view of devices is being displayed.
479  *
480  * @dev:	Device to check
481  * @return true if there are no more siblings after this one - i.e. is it
482  * last in the list.
483  */
484 bool device_is_last_sibling(struct udevice *dev);
485 
486 /**
487  * device_set_name() - set the name of a device
488  *
489  * This must be called in the device's bind() method and no later. Normally
490  * this is unnecessary but for probed devices which don't get a useful name
491  * this function can be helpful.
492  *
493  * @dev:	Device to update
494  * @name:	New name (this string is allocated new memory and attached to
495  *		the device)
496  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
497  * string
498  */
499 int device_set_name(struct udevice *dev, const char *name);
500 
501 /**
502  * device_is_on_pci_bus - Test if a device is on a PCI bus
503  *
504  * @dev:	device to test
505  * @return:	true if it is on a PCI bus, false otherwise
506  */
507 static inline bool device_is_on_pci_bus(struct udevice *dev)
508 {
509 	return device_get_uclass_id(dev->parent) == UCLASS_PCI;
510 }
511 
512 /**
513  * device_foreach_child_safe() - iterate through child devices safely
514  *
515  * This allows the @pos child to be removed in the loop if required.
516  *
517  * @pos: struct udevice * for the current device
518  * @next: struct udevice * for the next device
519  * @parent: parent device to scan
520  */
521 #define device_foreach_child_safe(pos, next, parent)	\
522 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
523 
524 /* device resource management */
525 typedef void (*dr_release_t)(struct udevice *dev, void *res);
526 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
527 
528 #ifdef CONFIG_DEVRES
529 
530 #ifdef CONFIG_DEBUG_DEVRES
531 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
532 		     const char *name);
533 #define _devres_alloc(release, size, gfp) \
534 	__devres_alloc(release, size, gfp, #release)
535 #else
536 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
537 #endif
538 
539 /**
540  * devres_alloc() - Allocate device resource data
541  * @release: Release function devres will be associated with
542  * @size: Allocation size
543  * @gfp: Allocation flags
544  *
545  * Allocate devres of @size bytes.  The allocated area is associated
546  * with @release.  The returned pointer can be passed to
547  * other devres_*() functions.
548  *
549  * RETURNS:
550  * Pointer to allocated devres on success, NULL on failure.
551  */
552 #define devres_alloc(release, size, gfp) \
553 	_devres_alloc(release, size, gfp | __GFP_ZERO)
554 
555 /**
556  * devres_free() - Free device resource data
557  * @res: Pointer to devres data to free
558  *
559  * Free devres created with devres_alloc().
560  */
561 void devres_free(void *res);
562 
563 /**
564  * devres_add() - Register device resource
565  * @dev: Device to add resource to
566  * @res: Resource to register
567  *
568  * Register devres @res to @dev.  @res should have been allocated
569  * using devres_alloc().  On driver detach, the associated release
570  * function will be invoked and devres will be freed automatically.
571  */
572 void devres_add(struct udevice *dev, void *res);
573 
574 /**
575  * devres_find() - Find device resource
576  * @dev: Device to lookup resource from
577  * @release: Look for resources associated with this release function
578  * @match: Match function (optional)
579  * @match_data: Data for the match function
580  *
581  * Find the latest devres of @dev which is associated with @release
582  * and for which @match returns 1.  If @match is NULL, it's considered
583  * to match all.
584  *
585  * @return pointer to found devres, NULL if not found.
586  */
587 void *devres_find(struct udevice *dev, dr_release_t release,
588 		  dr_match_t match, void *match_data);
589 
590 /**
591  * devres_get() - Find devres, if non-existent, add one atomically
592  * @dev: Device to lookup or add devres for
593  * @new_res: Pointer to new initialized devres to add if not found
594  * @match: Match function (optional)
595  * @match_data: Data for the match function
596  *
597  * Find the latest devres of @dev which has the same release function
598  * as @new_res and for which @match return 1.  If found, @new_res is
599  * freed; otherwise, @new_res is added atomically.
600  *
601  * @return ointer to found or added devres.
602  */
603 void *devres_get(struct udevice *dev, void *new_res,
604 		 dr_match_t match, void *match_data);
605 
606 /**
607  * devres_remove() - Find a device resource and remove it
608  * @dev: Device to find resource from
609  * @release: Look for resources associated with this release function
610  * @match: Match function (optional)
611  * @match_data: Data for the match function
612  *
613  * Find the latest devres of @dev associated with @release and for
614  * which @match returns 1.  If @match is NULL, it's considered to
615  * match all.  If found, the resource is removed atomically and
616  * returned.
617  *
618  * @return ointer to removed devres on success, NULL if not found.
619  */
620 void *devres_remove(struct udevice *dev, dr_release_t release,
621 		    dr_match_t match, void *match_data);
622 
623 /**
624  * devres_destroy() - Find a device resource and destroy it
625  * @dev: Device to find resource from
626  * @release: Look for resources associated with this release function
627  * @match: Match function (optional)
628  * @match_data: Data for the match function
629  *
630  * Find the latest devres of @dev associated with @release and for
631  * which @match returns 1.  If @match is NULL, it's considered to
632  * match all.  If found, the resource is removed atomically and freed.
633  *
634  * Note that the release function for the resource will not be called,
635  * only the devres-allocated data will be freed.  The caller becomes
636  * responsible for freeing any other data.
637  *
638  * @return 0 if devres is found and freed, -ENOENT if not found.
639  */
640 int devres_destroy(struct udevice *dev, dr_release_t release,
641 		   dr_match_t match, void *match_data);
642 
643 /**
644  * devres_release() - Find a device resource and destroy it, calling release
645  * @dev: Device to find resource from
646  * @release: Look for resources associated with this release function
647  * @match: Match function (optional)
648  * @match_data: Data for the match function
649  *
650  * Find the latest devres of @dev associated with @release and for
651  * which @match returns 1.  If @match is NULL, it's considered to
652  * match all.  If found, the resource is removed atomically, the
653  * release function called and the resource freed.
654  *
655  * @return 0 if devres is found and freed, -ENOENT if not found.
656  */
657 int devres_release(struct udevice *dev, dr_release_t release,
658 		   dr_match_t match, void *match_data);
659 
660 /* managed devm_k.alloc/kfree for device drivers */
661 /**
662  * devm_kmalloc() - Resource-managed kmalloc
663  * @dev: Device to allocate memory for
664  * @size: Allocation size
665  * @gfp: Allocation gfp flags
666  *
667  * Managed kmalloc.  Memory allocated with this function is
668  * automatically freed on driver detach.  Like all other devres
669  * resources, guaranteed alignment is unsigned long long.
670  *
671  * @return pointer to allocated memory on success, NULL on failure.
672  */
673 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
674 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
675 {
676 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
677 }
678 static inline void *devm_kmalloc_array(struct udevice *dev,
679 				       size_t n, size_t size, gfp_t flags)
680 {
681 	if (size != 0 && n > SIZE_MAX / size)
682 		return NULL;
683 	return devm_kmalloc(dev, n * size, flags);
684 }
685 static inline void *devm_kcalloc(struct udevice *dev,
686 				 size_t n, size_t size, gfp_t flags)
687 {
688 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
689 }
690 
691 /**
692  * devm_kfree() - Resource-managed kfree
693  * @dev: Device this memory belongs to
694  * @ptr: Memory to free
695  *
696  * Free memory allocated with devm_kmalloc().
697  */
698 void devm_kfree(struct udevice *dev, void *ptr);
699 
700 #else /* ! CONFIG_DEVRES */
701 
702 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
703 {
704 	return kzalloc(size, gfp);
705 }
706 
707 static inline void devres_free(void *res)
708 {
709 	kfree(res);
710 }
711 
712 static inline void devres_add(struct udevice *dev, void *res)
713 {
714 }
715 
716 static inline void *devres_find(struct udevice *dev, dr_release_t release,
717 				dr_match_t match, void *match_data)
718 {
719 	return NULL;
720 }
721 
722 static inline void *devres_get(struct udevice *dev, void *new_res,
723 			       dr_match_t match, void *match_data)
724 {
725 	return NULL;
726 }
727 
728 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
729 				  dr_match_t match, void *match_data)
730 {
731 	return NULL;
732 }
733 
734 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
735 				 dr_match_t match, void *match_data)
736 {
737 	return 0;
738 }
739 
740 static inline int devres_release(struct udevice *dev, dr_release_t release,
741 				 dr_match_t match, void *match_data)
742 {
743 	return 0;
744 }
745 
746 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
747 {
748 	return kmalloc(size, gfp);
749 }
750 
751 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
752 {
753 	return kzalloc(size, gfp);
754 }
755 
756 static inline void *devm_kmaloc_array(struct udevice *dev,
757 				      size_t n, size_t size, gfp_t flags)
758 {
759 	/* TODO: add kmalloc_array() to linux/compat.h */
760 	if (size != 0 && n > SIZE_MAX / size)
761 		return NULL;
762 	return kmalloc(n * size, flags);
763 }
764 
765 static inline void *devm_kcalloc(struct udevice *dev,
766 				 size_t n, size_t size, gfp_t flags)
767 {
768 	/* TODO: add kcalloc() to linux/compat.h */
769 	return kmalloc(n * size, flags | __GFP_ZERO);
770 }
771 
772 static inline void devm_kfree(struct udevice *dev, void *ptr)
773 {
774 	kfree(ptr);
775 }
776 
777 #endif /* ! CONFIG_DEVRES */
778 
779 #endif
780