xref: /openbmc/u-boot/include/dm/device.h (revision 90101386)
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13 
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 
21 struct driver_info;
22 
23 /* Driver is active (probed). Cleared when it is removed */
24 #define DM_FLAG_ACTIVATED		(1 << 0)
25 
26 /* DM is responsible for allocating and freeing platdata */
27 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
28 
29 /* DM should init this device prior to relocation */
30 #define DM_FLAG_PRE_RELOC		(1 << 2)
31 
32 /* DM is responsible for allocating and freeing parent_platdata */
33 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
34 
35 /* DM is responsible for allocating and freeing uclass_platdata */
36 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
37 
38 /* Allocate driver private data on a DMA boundary */
39 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
40 
41 /* Device is bound */
42 #define DM_FLAG_BOUND			(1 << 6)
43 
44 /* Device name is allocated and should be freed on unbind() */
45 #define DM_FLAG_NAME_ALLOCED		(1 << 7)
46 
47 #define DM_FLAG_OF_PLATDATA		(1 << 8)
48 
49 /**
50  * struct udevice - An instance of a driver
51  *
52  * This holds information about a device, which is a driver bound to a
53  * particular port or peripheral (essentially a driver instance).
54  *
55  * A device will come into existence through a 'bind' call, either due to
56  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
57  * in the device tree (in which case of_offset is >= 0). In the latter case
58  * we translate the device tree information into platdata in a function
59  * implemented by the driver ofdata_to_platdata method (called just before the
60  * probe method if the device has a device tree node.
61  *
62  * All three of platdata, priv and uclass_priv can be allocated by the
63  * driver, or you can use the auto_alloc_size members of struct driver and
64  * struct uclass_driver to have driver model do this automatically.
65  *
66  * @driver: The driver used by this device
67  * @name: Name of device, typically the FDT node name
68  * @platdata: Configuration data for this device
69  * @parent_platdata: The parent bus's configuration data for this device
70  * @uclass_platdata: The uclass's configuration data for this device
71  * @of_offset: Device tree node offset for this device (- for none)
72  * @driver_data: Driver data word for the entry that matched this device with
73  *		its driver
74  * @parent: Parent of this device, or NULL for the top level device
75  * @priv: Private data for this device
76  * @uclass: Pointer to uclass for this device
77  * @uclass_priv: The uclass's private data for this device
78  * @parent_priv: The parent's private data for this device
79  * @uclass_node: Used by uclass to link its devices
80  * @child_head: List of children of this device
81  * @sibling_node: Next device in list of all devices
82  * @flags: Flags for this device DM_FLAG_...
83  * @req_seq: Requested sequence number for this device (-1 = any)
84  * @seq: Allocated sequence number for this device (-1 = none). This is set up
85  * when the device is probed and will be unique within the device's uclass.
86  * @devres_head: List of memory allocations associated with this device.
87  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
88  *		add to this list. Memory so-allocated will be freed
89  *		automatically when the device is removed / unbound
90  */
91 struct udevice {
92 	const struct driver *driver;
93 	const char *name;
94 	void *platdata;
95 	void *parent_platdata;
96 	void *uclass_platdata;
97 	int of_offset;
98 	ulong driver_data;
99 	struct udevice *parent;
100 	void *priv;
101 	struct uclass *uclass;
102 	void *uclass_priv;
103 	void *parent_priv;
104 	struct list_head uclass_node;
105 	struct list_head child_head;
106 	struct list_head sibling_node;
107 	uint32_t flags;
108 	int req_seq;
109 	int seq;
110 #ifdef CONFIG_DEVRES
111 	struct list_head devres_head;
112 #endif
113 };
114 
115 /* Maximum sequence number supported */
116 #define DM_MAX_SEQ	999
117 
118 /* Returns the operations for a device */
119 #define device_get_ops(dev)	(dev->driver->ops)
120 
121 /* Returns non-zero if the device is active (probed and not removed) */
122 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
123 
124 /**
125  * struct udevice_id - Lists the compatible strings supported by a driver
126  * @compatible: Compatible string
127  * @data: Data for this compatible string
128  */
129 struct udevice_id {
130 	const char *compatible;
131 	ulong data;
132 };
133 
134 #if CONFIG_IS_ENABLED(OF_CONTROL)
135 #define of_match_ptr(_ptr)	(_ptr)
136 #else
137 #define of_match_ptr(_ptr)	NULL
138 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
139 
140 /**
141  * struct driver - A driver for a feature or peripheral
142  *
143  * This holds methods for setting up a new device, and also removing it.
144  * The device needs information to set itself up - this is provided either
145  * by platdata or a device tree node (which we find by looking up
146  * matching compatible strings with of_match).
147  *
148  * Drivers all belong to a uclass, representing a class of devices of the
149  * same type. Common elements of the drivers can be implemented in the uclass,
150  * or the uclass can provide a consistent interface to the drivers within
151  * it.
152  *
153  * @name: Device name
154  * @id: Identiies the uclass we belong to
155  * @of_match: List of compatible strings to match, and any identifying data
156  * for each.
157  * @bind: Called to bind a device to its driver
158  * @probe: Called to probe a device, i.e. activate it
159  * @remove: Called to remove a device, i.e. de-activate it
160  * @unbind: Called to unbind a device from its driver
161  * @ofdata_to_platdata: Called before probe to decode device tree data
162  * @child_post_bind: Called after a new child has been bound
163  * @child_pre_probe: Called before a child device is probed. The device has
164  * memory allocated but it has not yet been probed.
165  * @child_post_remove: Called after a child device is removed. The device
166  * has memory allocated but its device_remove() method has been called.
167  * @priv_auto_alloc_size: If non-zero this is the size of the private data
168  * to be allocated in the device's ->priv pointer. If zero, then the driver
169  * is responsible for allocating any data required.
170  * @platdata_auto_alloc_size: If non-zero this is the size of the
171  * platform data to be allocated in the device's ->platdata pointer.
172  * This is typically only useful for device-tree-aware drivers (those with
173  * an of_match), since drivers which use platdata will have the data
174  * provided in the U_BOOT_DEVICE() instantiation.
175  * @per_child_auto_alloc_size: Each device can hold private data owned by
176  * its parent. If required this will be automatically allocated if this
177  * value is non-zero.
178  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
179  * its children. If non-zero this is the size of this data, to be allocated
180  * in the child's parent_platdata pointer.
181  * @ops: Driver-specific operations. This is typically a list of function
182  * pointers defined by the driver, to implement driver functions required by
183  * the uclass.
184  * @flags: driver flags - see DM_FLAGS_...
185  */
186 struct driver {
187 	char *name;
188 	enum uclass_id id;
189 	const struct udevice_id *of_match;
190 	int (*bind)(struct udevice *dev);
191 	int (*probe)(struct udevice *dev);
192 	int (*remove)(struct udevice *dev);
193 	int (*unbind)(struct udevice *dev);
194 	int (*ofdata_to_platdata)(struct udevice *dev);
195 	int (*child_post_bind)(struct udevice *dev);
196 	int (*child_pre_probe)(struct udevice *dev);
197 	int (*child_post_remove)(struct udevice *dev);
198 	int priv_auto_alloc_size;
199 	int platdata_auto_alloc_size;
200 	int per_child_auto_alloc_size;
201 	int per_child_platdata_auto_alloc_size;
202 	const void *ops;	/* driver-specific operations */
203 	uint32_t flags;
204 };
205 
206 /* Declare a new U-Boot driver */
207 #define U_BOOT_DRIVER(__name)						\
208 	ll_entry_declare(struct driver, __name, driver)
209 
210 /* Get a pointer to a given driver */
211 #define DM_GET_DRIVER(__name)						\
212 	ll_entry_get(struct driver, __name, driver)
213 
214 /**
215  * dev_get_platdata() - Get the platform data for a device
216  *
217  * This checks that dev is not NULL, but no other checks for now
218  *
219  * @dev		Device to check
220  * @return platform data, or NULL if none
221  */
222 void *dev_get_platdata(struct udevice *dev);
223 
224 /**
225  * dev_get_parent_platdata() - Get the parent platform data for a device
226  *
227  * This checks that dev is not NULL, but no other checks for now
228  *
229  * @dev		Device to check
230  * @return parent's platform data, or NULL if none
231  */
232 void *dev_get_parent_platdata(struct udevice *dev);
233 
234 /**
235  * dev_get_uclass_platdata() - Get the uclass platform data for a device
236  *
237  * This checks that dev is not NULL, but no other checks for now
238  *
239  * @dev		Device to check
240  * @return uclass's platform data, or NULL if none
241  */
242 void *dev_get_uclass_platdata(struct udevice *dev);
243 
244 /**
245  * dev_get_priv() - Get the private data for a device
246  *
247  * This checks that dev is not NULL, but no other checks for now
248  *
249  * @dev		Device to check
250  * @return private data, or NULL if none
251  */
252 void *dev_get_priv(struct udevice *dev);
253 
254 /**
255  * dev_get_parent_priv() - Get the parent private data for a device
256  *
257  * The parent private data is data stored in the device but owned by the
258  * parent. For example, a USB device may have parent data which contains
259  * information about how to talk to the device over USB.
260  *
261  * This checks that dev is not NULL, but no other checks for now
262  *
263  * @dev		Device to check
264  * @return parent data, or NULL if none
265  */
266 void *dev_get_parent_priv(struct udevice *dev);
267 
268 /**
269  * dev_get_uclass_priv() - Get the private uclass data for a device
270  *
271  * This checks that dev is not NULL, but no other checks for now
272  *
273  * @dev		Device to check
274  * @return private uclass data for this device, or NULL if none
275  */
276 void *dev_get_uclass_priv(struct udevice *dev);
277 
278 /**
279  * struct dev_get_parent() - Get the parent of a device
280  *
281  * @child:	Child to check
282  * @return parent of child, or NULL if this is the root device
283  */
284 struct udevice *dev_get_parent(struct udevice *child);
285 
286 /**
287  * dev_get_driver_data() - get the driver data used to bind a device
288  *
289  * When a device is bound using a device tree node, it matches a
290  * particular compatible string in struct udevice_id. This function
291  * returns the associated data value for that compatible string. This is
292  * the 'data' field in struct udevice_id.
293  *
294  * As an example, consider this structure:
295  * static const struct udevice_id tegra_i2c_ids[] = {
296  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
297  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
298  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
299  *	{ }
300  * };
301  *
302  * When driver model finds a driver for this it will store the 'data' value
303  * corresponding to the compatible string it matches. This function returns
304  * that value. This allows the driver to handle several variants of a device.
305  *
306  * For USB devices, this is the driver_info field in struct usb_device_id.
307  *
308  * @dev:	Device to check
309  * @return driver data (0 if none is provided)
310  */
311 ulong dev_get_driver_data(struct udevice *dev);
312 
313 /**
314  * dev_get_driver_ops() - get the device's driver's operations
315  *
316  * This checks that dev is not NULL, and returns the pointer to device's
317  * driver's operations.
318  *
319  * @dev:	Device to check
320  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
321  */
322 const void *dev_get_driver_ops(struct udevice *dev);
323 
324 /**
325  * device_get_uclass_id() - return the uclass ID of a device
326  *
327  * @dev:	Device to check
328  * @return uclass ID for the device
329  */
330 enum uclass_id device_get_uclass_id(struct udevice *dev);
331 
332 /**
333  * dev_get_uclass_name() - return the uclass name of a device
334  *
335  * This checks that dev is not NULL.
336  *
337  * @dev:	Device to check
338  * @return  pointer to the uclass name for the device
339  */
340 const char *dev_get_uclass_name(struct udevice *dev);
341 
342 /**
343  * device_get_child() - Get the child of a device by index
344  *
345  * Returns the numbered child, 0 being the first. This does not use
346  * sequence numbers, only the natural order.
347  *
348  * @dev:	Parent device to check
349  * @index:	Child index
350  * @devp:	Returns pointer to device
351  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
352  *	   to probe
353  */
354 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
355 
356 /**
357  * device_find_child_by_seq() - Find a child device based on a sequence
358  *
359  * This searches for a device with the given seq or req_seq.
360  *
361  * For seq, if an active device has this sequence it will be returned.
362  * If there is no such device then this will return -ENODEV.
363  *
364  * For req_seq, if a device (whether activated or not) has this req_seq
365  * value, that device will be returned. This is a strong indication that
366  * the device will receive that sequence when activated.
367  *
368  * @parent: Parent device
369  * @seq_or_req_seq: Sequence number to find (0=first)
370  * @find_req_seq: true to find req_seq, false to find seq
371  * @devp: Returns pointer to device (there is only one per for each seq).
372  * Set to NULL if none is found
373  * @return 0 if OK, -ve on error
374  */
375 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
376 			     bool find_req_seq, struct udevice **devp);
377 
378 /**
379  * device_get_child_by_seq() - Get a child device based on a sequence
380  *
381  * If an active device has this sequence it will be returned. If there is no
382  * such device then this will check for a device that is requesting this
383  * sequence.
384  *
385  * The device is probed to activate it ready for use.
386  *
387  * @parent: Parent device
388  * @seq: Sequence number to find (0=first)
389  * @devp: Returns pointer to device (there is only one per for each seq)
390  * Set to NULL if none is found
391  * @return 0 if OK, -ve on error
392  */
393 int device_get_child_by_seq(struct udevice *parent, int seq,
394 			    struct udevice **devp);
395 
396 /**
397  * device_find_child_by_of_offset() - Find a child device based on FDT offset
398  *
399  * Locates a child device by its device tree offset.
400  *
401  * @parent: Parent device
402  * @of_offset: Device tree offset to find
403  * @devp: Returns pointer to device if found, otherwise this is set to NULL
404  * @return 0 if OK, -ve on error
405  */
406 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
407 				   struct udevice **devp);
408 
409 /**
410  * device_get_child_by_of_offset() - Get a child device based on FDT offset
411  *
412  * Locates a child device by its device tree offset.
413  *
414  * The device is probed to activate it ready for use.
415  *
416  * @parent: Parent device
417  * @of_offset: Device tree offset to find
418  * @devp: Returns pointer to device if found, otherwise this is set to NULL
419  * @return 0 if OK, -ve on error
420  */
421 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
422 				  struct udevice **devp);
423 
424 /**
425  * device_get_global_by_of_offset() - Get a device based on FDT offset
426  *
427  * Locates a device by its device tree offset, searching globally throughout
428  * the all driver model devices.
429  *
430  * The device is probed to activate it ready for use.
431  *
432  * @of_offset: Device tree offset to find
433  * @devp: Returns pointer to device if found, otherwise this is set to NULL
434  * @return 0 if OK, -ve on error
435  */
436 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
437 
438 /**
439  * device_find_first_child() - Find the first child of a device
440  *
441  * @parent: Parent device to search
442  * @devp: Returns first child device, or NULL if none
443  * @return 0
444  */
445 int device_find_first_child(struct udevice *parent, struct udevice **devp);
446 
447 /**
448  * device_find_next_child() - Find the next child of a device
449  *
450  * @devp: Pointer to previous child device on entry. Returns pointer to next
451  *		child device, or NULL if none
452  * @return 0
453  */
454 int device_find_next_child(struct udevice **devp);
455 
456 /**
457  * dev_get_addr() - Get the reg property of a device
458  *
459  * @dev: Pointer to a device
460  *
461  * @return addr
462  */
463 fdt_addr_t dev_get_addr(struct udevice *dev);
464 
465 /**
466  * dev_get_addr_ptr() - Return pointer to the address of the reg property
467  *                      of a device
468  *
469  * @dev: Pointer to a device
470  *
471  * @return Pointer to addr, or NULL if there is no such property
472  */
473 void *dev_get_addr_ptr(struct udevice *dev);
474 
475 /**
476  * dev_map_physmem() - Read device address from reg property of the
477  *                     device node and map the address into CPU address
478  *                     space.
479  *
480  * @dev: Pointer to device
481  * @size: size of the memory to map
482  *
483  * @return  mapped address, or NULL if the device does not have reg
484  *          property.
485  */
486 void *dev_map_physmem(struct udevice *dev, unsigned long size);
487 
488 /**
489  * dev_get_addr_index() - Get the indexed reg property of a device
490  *
491  * @dev: Pointer to a device
492  * @index: the 'reg' property can hold a list of <addr, size> pairs
493  *	   and @index is used to select which one is required
494  *
495  * @return addr
496  */
497 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index);
498 
499 /**
500  * dev_get_addr_size_index() - Get the indexed reg property of a device
501  *
502  * Returns the address and size specified in the 'reg' property of a device.
503  *
504  * @dev: Pointer to a device
505  * @index: the 'reg' property can hold a list of <addr, size> pairs
506  *	   and @index is used to select which one is required
507  * @size: Pointer to size varible - this function returns the size
508  *        specified in the 'reg' property here
509  *
510  * @return addr
511  */
512 fdt_addr_t dev_get_addr_size_index(struct udevice *dev, int index,
513 				   fdt_size_t *size);
514 
515 /**
516  * dev_get_addr_name() - Get the reg property of a device, indexed by name
517  *
518  * @dev: Pointer to a device
519  * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
520  *	  'reg-names' property providing named-based identification. @index
521  *	  indicates the value to search for in 'reg-names'.
522  *
523  * @return addr
524  */
525 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name);
526 
527 /**
528  * device_has_children() - check if a device has any children
529  *
530  * @dev:	Device to check
531  * @return true if the device has one or more children
532  */
533 bool device_has_children(struct udevice *dev);
534 
535 /**
536  * device_has_active_children() - check if a device has any active children
537  *
538  * @dev:	Device to check
539  * @return true if the device has one or more children and at least one of
540  * them is active (probed).
541  */
542 bool device_has_active_children(struct udevice *dev);
543 
544 /**
545  * device_is_last_sibling() - check if a device is the last sibling
546  *
547  * This function can be useful for display purposes, when special action needs
548  * to be taken when displaying the last sibling. This can happen when a tree
549  * view of devices is being displayed.
550  *
551  * @dev:	Device to check
552  * @return true if there are no more siblings after this one - i.e. is it
553  * last in the list.
554  */
555 bool device_is_last_sibling(struct udevice *dev);
556 
557 /**
558  * device_set_name() - set the name of a device
559  *
560  * This must be called in the device's bind() method and no later. Normally
561  * this is unnecessary but for probed devices which don't get a useful name
562  * this function can be helpful.
563  *
564  * The name is allocated and will be freed automatically when the device is
565  * unbound.
566  *
567  * @dev:	Device to update
568  * @name:	New name (this string is allocated new memory and attached to
569  *		the device)
570  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
571  * string
572  */
573 int device_set_name(struct udevice *dev, const char *name);
574 
575 /**
576  * device_set_name_alloced() - note that a device name is allocated
577  *
578  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
579  * unbound the name will be freed. This avoids memory leaks.
580  *
581  * @dev:	Device to update
582  */
583 void device_set_name_alloced(struct udevice *dev);
584 
585 /**
586  * of_device_is_compatible() - check if the device is compatible with the compat
587  *
588  * This allows to check whether the device is comaptible with the compat.
589  *
590  * @dev:	udevice pointer for which compatible needs to be verified.
591  * @compat:	Compatible string which needs to verified in the given
592  *		device
593  * @return true if OK, false if the compatible is not found
594  */
595 bool of_device_is_compatible(struct udevice *dev, const char *compat);
596 
597 /**
598  * of_machine_is_compatible() - check if the machine is compatible with
599  *				the compat
600  *
601  * This allows to check whether the machine is comaptible with the compat.
602  *
603  * @compat:	Compatible string which needs to verified
604  * @return true if OK, false if the compatible is not found
605  */
606 bool of_machine_is_compatible(const char *compat);
607 
608 /**
609  * device_is_on_pci_bus - Test if a device is on a PCI bus
610  *
611  * @dev:	device to test
612  * @return:	true if it is on a PCI bus, false otherwise
613  */
614 static inline bool device_is_on_pci_bus(struct udevice *dev)
615 {
616 	return device_get_uclass_id(dev->parent) == UCLASS_PCI;
617 }
618 
619 /**
620  * device_foreach_child_safe() - iterate through child devices safely
621  *
622  * This allows the @pos child to be removed in the loop if required.
623  *
624  * @pos: struct udevice * for the current device
625  * @next: struct udevice * for the next device
626  * @parent: parent device to scan
627  */
628 #define device_foreach_child_safe(pos, next, parent)	\
629 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
630 
631 /**
632  * dm_scan_fdt_dev() - Bind child device in a the device tree
633  *
634  * This handles device which have sub-nodes in the device tree. It scans all
635  * sub-nodes and binds drivers for each node where a driver can be found.
636  *
637  * If this is called prior to relocation, only pre-relocation devices will be
638  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
639  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
640  * be bound.
641  *
642  * @dev:	Device to scan
643  * @return 0 if OK, -ve on error
644  */
645 int dm_scan_fdt_dev(struct udevice *dev);
646 
647 /* device resource management */
648 typedef void (*dr_release_t)(struct udevice *dev, void *res);
649 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
650 
651 #ifdef CONFIG_DEVRES
652 
653 #ifdef CONFIG_DEBUG_DEVRES
654 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
655 		     const char *name);
656 #define _devres_alloc(release, size, gfp) \
657 	__devres_alloc(release, size, gfp, #release)
658 #else
659 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
660 #endif
661 
662 /**
663  * devres_alloc() - Allocate device resource data
664  * @release: Release function devres will be associated with
665  * @size: Allocation size
666  * @gfp: Allocation flags
667  *
668  * Allocate devres of @size bytes.  The allocated area is associated
669  * with @release.  The returned pointer can be passed to
670  * other devres_*() functions.
671  *
672  * RETURNS:
673  * Pointer to allocated devres on success, NULL on failure.
674  */
675 #define devres_alloc(release, size, gfp) \
676 	_devres_alloc(release, size, gfp | __GFP_ZERO)
677 
678 /**
679  * devres_free() - Free device resource data
680  * @res: Pointer to devres data to free
681  *
682  * Free devres created with devres_alloc().
683  */
684 void devres_free(void *res);
685 
686 /**
687  * devres_add() - Register device resource
688  * @dev: Device to add resource to
689  * @res: Resource to register
690  *
691  * Register devres @res to @dev.  @res should have been allocated
692  * using devres_alloc().  On driver detach, the associated release
693  * function will be invoked and devres will be freed automatically.
694  */
695 void devres_add(struct udevice *dev, void *res);
696 
697 /**
698  * devres_find() - Find device resource
699  * @dev: Device to lookup resource from
700  * @release: Look for resources associated with this release function
701  * @match: Match function (optional)
702  * @match_data: Data for the match function
703  *
704  * Find the latest devres of @dev which is associated with @release
705  * and for which @match returns 1.  If @match is NULL, it's considered
706  * to match all.
707  *
708  * @return pointer to found devres, NULL if not found.
709  */
710 void *devres_find(struct udevice *dev, dr_release_t release,
711 		  dr_match_t match, void *match_data);
712 
713 /**
714  * devres_get() - Find devres, if non-existent, add one atomically
715  * @dev: Device to lookup or add devres for
716  * @new_res: Pointer to new initialized devres to add if not found
717  * @match: Match function (optional)
718  * @match_data: Data for the match function
719  *
720  * Find the latest devres of @dev which has the same release function
721  * as @new_res and for which @match return 1.  If found, @new_res is
722  * freed; otherwise, @new_res is added atomically.
723  *
724  * @return ointer to found or added devres.
725  */
726 void *devres_get(struct udevice *dev, void *new_res,
727 		 dr_match_t match, void *match_data);
728 
729 /**
730  * devres_remove() - Find a device resource and remove it
731  * @dev: Device to find resource from
732  * @release: Look for resources associated with this release function
733  * @match: Match function (optional)
734  * @match_data: Data for the match function
735  *
736  * Find the latest devres of @dev associated with @release and for
737  * which @match returns 1.  If @match is NULL, it's considered to
738  * match all.  If found, the resource is removed atomically and
739  * returned.
740  *
741  * @return ointer to removed devres on success, NULL if not found.
742  */
743 void *devres_remove(struct udevice *dev, dr_release_t release,
744 		    dr_match_t match, void *match_data);
745 
746 /**
747  * devres_destroy() - Find a device resource and destroy it
748  * @dev: Device to find resource from
749  * @release: Look for resources associated with this release function
750  * @match: Match function (optional)
751  * @match_data: Data for the match function
752  *
753  * Find the latest devres of @dev associated with @release and for
754  * which @match returns 1.  If @match is NULL, it's considered to
755  * match all.  If found, the resource is removed atomically and freed.
756  *
757  * Note that the release function for the resource will not be called,
758  * only the devres-allocated data will be freed.  The caller becomes
759  * responsible for freeing any other data.
760  *
761  * @return 0 if devres is found and freed, -ENOENT if not found.
762  */
763 int devres_destroy(struct udevice *dev, dr_release_t release,
764 		   dr_match_t match, void *match_data);
765 
766 /**
767  * devres_release() - Find a device resource and destroy it, calling release
768  * @dev: Device to find resource from
769  * @release: Look for resources associated with this release function
770  * @match: Match function (optional)
771  * @match_data: Data for the match function
772  *
773  * Find the latest devres of @dev associated with @release and for
774  * which @match returns 1.  If @match is NULL, it's considered to
775  * match all.  If found, the resource is removed atomically, the
776  * release function called and the resource freed.
777  *
778  * @return 0 if devres is found and freed, -ENOENT if not found.
779  */
780 int devres_release(struct udevice *dev, dr_release_t release,
781 		   dr_match_t match, void *match_data);
782 
783 /* managed devm_k.alloc/kfree for device drivers */
784 /**
785  * devm_kmalloc() - Resource-managed kmalloc
786  * @dev: Device to allocate memory for
787  * @size: Allocation size
788  * @gfp: Allocation gfp flags
789  *
790  * Managed kmalloc.  Memory allocated with this function is
791  * automatically freed on driver detach.  Like all other devres
792  * resources, guaranteed alignment is unsigned long long.
793  *
794  * @return pointer to allocated memory on success, NULL on failure.
795  */
796 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
797 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
798 {
799 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
800 }
801 static inline void *devm_kmalloc_array(struct udevice *dev,
802 				       size_t n, size_t size, gfp_t flags)
803 {
804 	if (size != 0 && n > SIZE_MAX / size)
805 		return NULL;
806 	return devm_kmalloc(dev, n * size, flags);
807 }
808 static inline void *devm_kcalloc(struct udevice *dev,
809 				 size_t n, size_t size, gfp_t flags)
810 {
811 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
812 }
813 
814 /**
815  * devm_kfree() - Resource-managed kfree
816  * @dev: Device this memory belongs to
817  * @ptr: Memory to free
818  *
819  * Free memory allocated with devm_kmalloc().
820  */
821 void devm_kfree(struct udevice *dev, void *ptr);
822 
823 #else /* ! CONFIG_DEVRES */
824 
825 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
826 {
827 	return kzalloc(size, gfp);
828 }
829 
830 static inline void devres_free(void *res)
831 {
832 	kfree(res);
833 }
834 
835 static inline void devres_add(struct udevice *dev, void *res)
836 {
837 }
838 
839 static inline void *devres_find(struct udevice *dev, dr_release_t release,
840 				dr_match_t match, void *match_data)
841 {
842 	return NULL;
843 }
844 
845 static inline void *devres_get(struct udevice *dev, void *new_res,
846 			       dr_match_t match, void *match_data)
847 {
848 	return NULL;
849 }
850 
851 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
852 				  dr_match_t match, void *match_data)
853 {
854 	return NULL;
855 }
856 
857 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
858 				 dr_match_t match, void *match_data)
859 {
860 	return 0;
861 }
862 
863 static inline int devres_release(struct udevice *dev, dr_release_t release,
864 				 dr_match_t match, void *match_data)
865 {
866 	return 0;
867 }
868 
869 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
870 {
871 	return kmalloc(size, gfp);
872 }
873 
874 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
875 {
876 	return kzalloc(size, gfp);
877 }
878 
879 static inline void *devm_kmaloc_array(struct udevice *dev,
880 				      size_t n, size_t size, gfp_t flags)
881 {
882 	/* TODO: add kmalloc_array() to linux/compat.h */
883 	if (size != 0 && n > SIZE_MAX / size)
884 		return NULL;
885 	return kmalloc(n * size, flags);
886 }
887 
888 static inline void *devm_kcalloc(struct udevice *dev,
889 				 size_t n, size_t size, gfp_t flags)
890 {
891 	/* TODO: add kcalloc() to linux/compat.h */
892 	return kmalloc(n * size, flags | __GFP_ZERO);
893 }
894 
895 static inline void devm_kfree(struct udevice *dev, void *ptr)
896 {
897 	kfree(ptr);
898 }
899 
900 #endif /* ! CONFIG_DEVRES */
901 
902 /**
903  * dm_set_translation_offset() - Set translation offset
904  * @offs: Translation offset
905  *
906  * Some platforms need a special address translation. Those
907  * platforms (e.g. mvebu in SPL) can configure a translation
908  * offset in the DM by calling this function. It will be
909  * added to all addresses returned in dev_get_addr().
910  */
911 void dm_set_translation_offset(fdt_addr_t offs);
912 
913 /**
914  * dm_get_translation_offset() - Get translation offset
915  *
916  * This function returns the translation offset that can
917  * be configured by calling dm_set_translation_offset().
918  *
919  * @return translation offset for the device address (0 as default).
920  */
921 fdt_addr_t dm_get_translation_offset(void);
922 
923 #endif
924