xref: /openbmc/u-boot/include/dm/device.h (revision 8729d582)
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13 
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 
21 struct driver_info;
22 
23 /* Driver is active (probed). Cleared when it is removed */
24 #define DM_FLAG_ACTIVATED		(1 << 0)
25 
26 /* DM is responsible for allocating and freeing platdata */
27 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
28 
29 /* DM should init this device prior to relocation */
30 #define DM_FLAG_PRE_RELOC		(1 << 2)
31 
32 /* DM is responsible for allocating and freeing parent_platdata */
33 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
34 
35 /* DM is responsible for allocating and freeing uclass_platdata */
36 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
37 
38 /* Allocate driver private data on a DMA boundary */
39 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
40 
41 /* Device is bound */
42 #define DM_FLAG_BOUND			(1 << 6)
43 
44 /* Device name is allocated and should be freed on unbind() */
45 #define DM_NAME_ALLOCED			(1 << 7)
46 
47 /**
48  * struct udevice - An instance of a driver
49  *
50  * This holds information about a device, which is a driver bound to a
51  * particular port or peripheral (essentially a driver instance).
52  *
53  * A device will come into existence through a 'bind' call, either due to
54  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
55  * in the device tree (in which case of_offset is >= 0). In the latter case
56  * we translate the device tree information into platdata in a function
57  * implemented by the driver ofdata_to_platdata method (called just before the
58  * probe method if the device has a device tree node.
59  *
60  * All three of platdata, priv and uclass_priv can be allocated by the
61  * driver, or you can use the auto_alloc_size members of struct driver and
62  * struct uclass_driver to have driver model do this automatically.
63  *
64  * @driver: The driver used by this device
65  * @name: Name of device, typically the FDT node name
66  * @platdata: Configuration data for this device
67  * @parent_platdata: The parent bus's configuration data for this device
68  * @uclass_platdata: The uclass's configuration data for this device
69  * @of_offset: Device tree node offset for this device (- for none)
70  * @driver_data: Driver data word for the entry that matched this device with
71  *		its driver
72  * @parent: Parent of this device, or NULL for the top level device
73  * @priv: Private data for this device
74  * @uclass: Pointer to uclass for this device
75  * @uclass_priv: The uclass's private data for this device
76  * @parent_priv: The parent's private data for this device
77  * @uclass_node: Used by uclass to link its devices
78  * @child_head: List of children of this device
79  * @sibling_node: Next device in list of all devices
80  * @flags: Flags for this device DM_FLAG_...
81  * @req_seq: Requested sequence number for this device (-1 = any)
82  * @seq: Allocated sequence number for this device (-1 = none). This is set up
83  * when the device is probed and will be unique within the device's uclass.
84  * @devres_head: List of memory allocations associated with this device.
85  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
86  *		add to this list. Memory so-allocated will be freed
87  *		automatically when the device is removed / unbound
88  */
89 struct udevice {
90 	const struct driver *driver;
91 	const char *name;
92 	void *platdata;
93 	void *parent_platdata;
94 	void *uclass_platdata;
95 	int of_offset;
96 	ulong driver_data;
97 	struct udevice *parent;
98 	void *priv;
99 	struct uclass *uclass;
100 	void *uclass_priv;
101 	void *parent_priv;
102 	struct list_head uclass_node;
103 	struct list_head child_head;
104 	struct list_head sibling_node;
105 	uint32_t flags;
106 	int req_seq;
107 	int seq;
108 #ifdef CONFIG_DEVRES
109 	struct list_head devres_head;
110 #endif
111 };
112 
113 /* Maximum sequence number supported */
114 #define DM_MAX_SEQ	999
115 
116 /* Returns the operations for a device */
117 #define device_get_ops(dev)	(dev->driver->ops)
118 
119 /* Returns non-zero if the device is active (probed and not removed) */
120 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
121 
122 /**
123  * struct udevice_id - Lists the compatible strings supported by a driver
124  * @compatible: Compatible string
125  * @data: Data for this compatible string
126  */
127 struct udevice_id {
128 	const char *compatible;
129 	ulong data;
130 };
131 
132 #if CONFIG_IS_ENABLED(OF_CONTROL)
133 #define of_match_ptr(_ptr)	(_ptr)
134 #else
135 #define of_match_ptr(_ptr)	NULL
136 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
137 
138 /**
139  * struct driver - A driver for a feature or peripheral
140  *
141  * This holds methods for setting up a new device, and also removing it.
142  * The device needs information to set itself up - this is provided either
143  * by platdata or a device tree node (which we find by looking up
144  * matching compatible strings with of_match).
145  *
146  * Drivers all belong to a uclass, representing a class of devices of the
147  * same type. Common elements of the drivers can be implemented in the uclass,
148  * or the uclass can provide a consistent interface to the drivers within
149  * it.
150  *
151  * @name: Device name
152  * @id: Identiies the uclass we belong to
153  * @of_match: List of compatible strings to match, and any identifying data
154  * for each.
155  * @bind: Called to bind a device to its driver
156  * @probe: Called to probe a device, i.e. activate it
157  * @remove: Called to remove a device, i.e. de-activate it
158  * @unbind: Called to unbind a device from its driver
159  * @ofdata_to_platdata: Called before probe to decode device tree data
160  * @child_post_bind: Called after a new child has been bound
161  * @child_pre_probe: Called before a child device is probed. The device has
162  * memory allocated but it has not yet been probed.
163  * @child_post_remove: Called after a child device is removed. The device
164  * has memory allocated but its device_remove() method has been called.
165  * @priv_auto_alloc_size: If non-zero this is the size of the private data
166  * to be allocated in the device's ->priv pointer. If zero, then the driver
167  * is responsible for allocating any data required.
168  * @platdata_auto_alloc_size: If non-zero this is the size of the
169  * platform data to be allocated in the device's ->platdata pointer.
170  * This is typically only useful for device-tree-aware drivers (those with
171  * an of_match), since drivers which use platdata will have the data
172  * provided in the U_BOOT_DEVICE() instantiation.
173  * @per_child_auto_alloc_size: Each device can hold private data owned by
174  * its parent. If required this will be automatically allocated if this
175  * value is non-zero.
176  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
177  * its children. If non-zero this is the size of this data, to be allocated
178  * in the child's parent_platdata pointer.
179  * @ops: Driver-specific operations. This is typically a list of function
180  * pointers defined by the driver, to implement driver functions required by
181  * the uclass.
182  * @flags: driver flags - see DM_FLAGS_...
183  */
184 struct driver {
185 	char *name;
186 	enum uclass_id id;
187 	const struct udevice_id *of_match;
188 	int (*bind)(struct udevice *dev);
189 	int (*probe)(struct udevice *dev);
190 	int (*remove)(struct udevice *dev);
191 	int (*unbind)(struct udevice *dev);
192 	int (*ofdata_to_platdata)(struct udevice *dev);
193 	int (*child_post_bind)(struct udevice *dev);
194 	int (*child_pre_probe)(struct udevice *dev);
195 	int (*child_post_remove)(struct udevice *dev);
196 	int priv_auto_alloc_size;
197 	int platdata_auto_alloc_size;
198 	int per_child_auto_alloc_size;
199 	int per_child_platdata_auto_alloc_size;
200 	const void *ops;	/* driver-specific operations */
201 	uint32_t flags;
202 };
203 
204 /* Declare a new U-Boot driver */
205 #define U_BOOT_DRIVER(__name)						\
206 	ll_entry_declare(struct driver, __name, driver)
207 
208 /**
209  * dev_get_platdata() - Get the platform data for a device
210  *
211  * This checks that dev is not NULL, but no other checks for now
212  *
213  * @dev		Device to check
214  * @return platform data, or NULL if none
215  */
216 void *dev_get_platdata(struct udevice *dev);
217 
218 /**
219  * dev_get_parent_platdata() - Get the parent platform data for a device
220  *
221  * This checks that dev is not NULL, but no other checks for now
222  *
223  * @dev		Device to check
224  * @return parent's platform data, or NULL if none
225  */
226 void *dev_get_parent_platdata(struct udevice *dev);
227 
228 /**
229  * dev_get_uclass_platdata() - Get the uclass platform data for a device
230  *
231  * This checks that dev is not NULL, but no other checks for now
232  *
233  * @dev		Device to check
234  * @return uclass's platform data, or NULL if none
235  */
236 void *dev_get_uclass_platdata(struct udevice *dev);
237 
238 /**
239  * dev_get_priv() - Get the private data for a device
240  *
241  * This checks that dev is not NULL, but no other checks for now
242  *
243  * @dev		Device to check
244  * @return private data, or NULL if none
245  */
246 void *dev_get_priv(struct udevice *dev);
247 
248 /**
249  * dev_get_parent_priv() - Get the parent private data for a device
250  *
251  * The parent private data is data stored in the device but owned by the
252  * parent. For example, a USB device may have parent data which contains
253  * information about how to talk to the device over USB.
254  *
255  * This checks that dev is not NULL, but no other checks for now
256  *
257  * @dev		Device to check
258  * @return parent data, or NULL if none
259  */
260 void *dev_get_parent_priv(struct udevice *dev);
261 
262 /**
263  * dev_get_uclass_priv() - Get the private uclass data for a device
264  *
265  * This checks that dev is not NULL, but no other checks for now
266  *
267  * @dev		Device to check
268  * @return private uclass data for this device, or NULL if none
269  */
270 void *dev_get_uclass_priv(struct udevice *dev);
271 
272 /**
273  * struct dev_get_parent() - Get the parent of a device
274  *
275  * @child:	Child to check
276  * @return parent of child, or NULL if this is the root device
277  */
278 struct udevice *dev_get_parent(struct udevice *child);
279 
280 /**
281  * dev_get_driver_data() - get the driver data used to bind a device
282  *
283  * When a device is bound using a device tree node, it matches a
284  * particular compatible string in struct udevice_id. This function
285  * returns the associated data value for that compatible string. This is
286  * the 'data' field in struct udevice_id.
287  *
288  * As an example, consider this structure:
289  * static const struct udevice_id tegra_i2c_ids[] = {
290  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
291  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
292  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
293  *	{ }
294  * };
295  *
296  * When driver model finds a driver for this it will store the 'data' value
297  * corresponding to the compatible string it matches. This function returns
298  * that value. This allows the driver to handle several variants of a device.
299  *
300  * For USB devices, this is the driver_info field in struct usb_device_id.
301  *
302  * @dev:	Device to check
303  * @return driver data (0 if none is provided)
304  */
305 ulong dev_get_driver_data(struct udevice *dev);
306 
307 /**
308  * dev_get_driver_ops() - get the device's driver's operations
309  *
310  * This checks that dev is not NULL, and returns the pointer to device's
311  * driver's operations.
312  *
313  * @dev:	Device to check
314  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
315  */
316 const void *dev_get_driver_ops(struct udevice *dev);
317 
318 /**
319  * device_get_uclass_id() - return the uclass ID of a device
320  *
321  * @dev:	Device to check
322  * @return uclass ID for the device
323  */
324 enum uclass_id device_get_uclass_id(struct udevice *dev);
325 
326 /**
327  * dev_get_uclass_name() - return the uclass name of a device
328  *
329  * This checks that dev is not NULL.
330  *
331  * @dev:	Device to check
332  * @return  pointer to the uclass name for the device
333  */
334 const char *dev_get_uclass_name(struct udevice *dev);
335 
336 /**
337  * device_get_child() - Get the child of a device by index
338  *
339  * Returns the numbered child, 0 being the first. This does not use
340  * sequence numbers, only the natural order.
341  *
342  * @dev:	Parent device to check
343  * @index:	Child index
344  * @devp:	Returns pointer to device
345  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
346  *	   to probe
347  */
348 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
349 
350 /**
351  * device_find_child_by_seq() - Find a child device based on a sequence
352  *
353  * This searches for a device with the given seq or req_seq.
354  *
355  * For seq, if an active device has this sequence it will be returned.
356  * If there is no such device then this will return -ENODEV.
357  *
358  * For req_seq, if a device (whether activated or not) has this req_seq
359  * value, that device will be returned. This is a strong indication that
360  * the device will receive that sequence when activated.
361  *
362  * @parent: Parent device
363  * @seq_or_req_seq: Sequence number to find (0=first)
364  * @find_req_seq: true to find req_seq, false to find seq
365  * @devp: Returns pointer to device (there is only one per for each seq).
366  * Set to NULL if none is found
367  * @return 0 if OK, -ve on error
368  */
369 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
370 			     bool find_req_seq, struct udevice **devp);
371 
372 /**
373  * device_get_child_by_seq() - Get a child device based on a sequence
374  *
375  * If an active device has this sequence it will be returned. If there is no
376  * such device then this will check for a device that is requesting this
377  * sequence.
378  *
379  * The device is probed to activate it ready for use.
380  *
381  * @parent: Parent device
382  * @seq: Sequence number to find (0=first)
383  * @devp: Returns pointer to device (there is only one per for each seq)
384  * Set to NULL if none is found
385  * @return 0 if OK, -ve on error
386  */
387 int device_get_child_by_seq(struct udevice *parent, int seq,
388 			    struct udevice **devp);
389 
390 /**
391  * device_find_child_by_of_offset() - Find a child device based on FDT offset
392  *
393  * Locates a child device by its device tree offset.
394  *
395  * @parent: Parent device
396  * @of_offset: Device tree offset to find
397  * @devp: Returns pointer to device if found, otherwise this is set to NULL
398  * @return 0 if OK, -ve on error
399  */
400 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
401 				   struct udevice **devp);
402 
403 /**
404  * device_get_child_by_of_offset() - Get a child device based on FDT offset
405  *
406  * Locates a child device by its device tree offset.
407  *
408  * The device is probed to activate it ready for use.
409  *
410  * @parent: Parent device
411  * @of_offset: Device tree offset to find
412  * @devp: Returns pointer to device if found, otherwise this is set to NULL
413  * @return 0 if OK, -ve on error
414  */
415 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
416 				  struct udevice **devp);
417 
418 /**
419  * device_get_global_by_of_offset() - Get a device based on FDT offset
420  *
421  * Locates a device by its device tree offset, searching globally throughout
422  * the all driver model devices.
423  *
424  * The device is probed to activate it ready for use.
425  *
426  * @of_offset: Device tree offset to find
427  * @devp: Returns pointer to device if found, otherwise this is set to NULL
428  * @return 0 if OK, -ve on error
429  */
430 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
431 
432 /**
433  * device_find_first_child() - Find the first child of a device
434  *
435  * @parent: Parent device to search
436  * @devp: Returns first child device, or NULL if none
437  * @return 0
438  */
439 int device_find_first_child(struct udevice *parent, struct udevice **devp);
440 
441 /**
442  * device_find_next_child() - Find the next child of a device
443  *
444  * @devp: Pointer to previous child device on entry. Returns pointer to next
445  *		child device, or NULL if none
446  * @return 0
447  */
448 int device_find_next_child(struct udevice **devp);
449 
450 /**
451  * dev_get_addr() - Get the reg property of a device
452  *
453  * @dev: Pointer to a device
454  *
455  * @return addr
456  */
457 fdt_addr_t dev_get_addr(struct udevice *dev);
458 
459 /**
460  * dev_get_addr_ptr() - Return pointer to the address of the reg property
461  *                      of a device
462  *
463  * @dev: Pointer to a device
464  *
465  * @return Pointer to addr, or NULL if there is no such property
466  */
467 void *dev_get_addr_ptr(struct udevice *dev);
468 
469 /**
470  * dev_map_physmem() - Read device address from reg property of the
471  *                     device node and map the address into CPU address
472  *                     space.
473  *
474  * @dev: Pointer to device
475  * @size: size of the memory to map
476  *
477  * @return  mapped address, or NULL if the device does not have reg
478  *          property.
479  */
480 void *dev_map_physmem(struct udevice *dev, unsigned long size);
481 
482 /**
483  * dev_get_addr_index() - Get the indexed reg property of a device
484  *
485  * @dev: Pointer to a device
486  * @index: the 'reg' property can hold a list of <addr, size> pairs
487  *	   and @index is used to select which one is required
488  *
489  * @return addr
490  */
491 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index);
492 
493 /**
494  * dev_get_addr_name() - Get the reg property of a device, indexed by name
495  *
496  * @dev: Pointer to a device
497  * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
498  *	  'reg-names' property providing named-based identification. @index
499  *	  indicates the value to search for in 'reg-names'.
500  *
501  * @return addr
502  */
503 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name);
504 
505 /**
506  * device_has_children() - check if a device has any children
507  *
508  * @dev:	Device to check
509  * @return true if the device has one or more children
510  */
511 bool device_has_children(struct udevice *dev);
512 
513 /**
514  * device_has_active_children() - check if a device has any active children
515  *
516  * @dev:	Device to check
517  * @return true if the device has one or more children and at least one of
518  * them is active (probed).
519  */
520 bool device_has_active_children(struct udevice *dev);
521 
522 /**
523  * device_is_last_sibling() - check if a device is the last sibling
524  *
525  * This function can be useful for display purposes, when special action needs
526  * to be taken when displaying the last sibling. This can happen when a tree
527  * view of devices is being displayed.
528  *
529  * @dev:	Device to check
530  * @return true if there are no more siblings after this one - i.e. is it
531  * last in the list.
532  */
533 bool device_is_last_sibling(struct udevice *dev);
534 
535 /**
536  * device_set_name() - set the name of a device
537  *
538  * This must be called in the device's bind() method and no later. Normally
539  * this is unnecessary but for probed devices which don't get a useful name
540  * this function can be helpful.
541  *
542  * The name is allocated and will be freed automatically when the device is
543  * unbound.
544  *
545  * @dev:	Device to update
546  * @name:	New name (this string is allocated new memory and attached to
547  *		the device)
548  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
549  * string
550  */
551 int device_set_name(struct udevice *dev, const char *name);
552 
553 /**
554  * device_set_name_alloced() - note that a device name is allocated
555  *
556  * This sets the DM_NAME_ALLOCED flag for the device, so that when it is
557  * unbound the name will be freed. This avoids memory leaks.
558  *
559  * @dev:	Device to update
560  */
561 void device_set_name_alloced(struct udevice *dev);
562 
563 /**
564  * of_device_is_compatible() - check if the device is compatible with the compat
565  *
566  * This allows to check whether the device is comaptible with the compat.
567  *
568  * @dev:	udevice pointer for which compatible needs to be verified.
569  * @compat:	Compatible string which needs to verified in the given
570  *		device
571  * @return true if OK, false if the compatible is not found
572  */
573 bool of_device_is_compatible(struct udevice *dev, const char *compat);
574 
575 /**
576  * of_machine_is_compatible() - check if the machine is compatible with
577  *				the compat
578  *
579  * This allows to check whether the machine is comaptible with the compat.
580  *
581  * @compat:	Compatible string which needs to verified
582  * @return true if OK, false if the compatible is not found
583  */
584 bool of_machine_is_compatible(const char *compat);
585 
586 /**
587  * device_is_on_pci_bus - Test if a device is on a PCI bus
588  *
589  * @dev:	device to test
590  * @return:	true if it is on a PCI bus, false otherwise
591  */
592 static inline bool device_is_on_pci_bus(struct udevice *dev)
593 {
594 	return device_get_uclass_id(dev->parent) == UCLASS_PCI;
595 }
596 
597 /**
598  * device_foreach_child_safe() - iterate through child devices safely
599  *
600  * This allows the @pos child to be removed in the loop if required.
601  *
602  * @pos: struct udevice * for the current device
603  * @next: struct udevice * for the next device
604  * @parent: parent device to scan
605  */
606 #define device_foreach_child_safe(pos, next, parent)	\
607 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
608 
609 /* device resource management */
610 typedef void (*dr_release_t)(struct udevice *dev, void *res);
611 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
612 
613 #ifdef CONFIG_DEVRES
614 
615 #ifdef CONFIG_DEBUG_DEVRES
616 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
617 		     const char *name);
618 #define _devres_alloc(release, size, gfp) \
619 	__devres_alloc(release, size, gfp, #release)
620 #else
621 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
622 #endif
623 
624 /**
625  * devres_alloc() - Allocate device resource data
626  * @release: Release function devres will be associated with
627  * @size: Allocation size
628  * @gfp: Allocation flags
629  *
630  * Allocate devres of @size bytes.  The allocated area is associated
631  * with @release.  The returned pointer can be passed to
632  * other devres_*() functions.
633  *
634  * RETURNS:
635  * Pointer to allocated devres on success, NULL on failure.
636  */
637 #define devres_alloc(release, size, gfp) \
638 	_devres_alloc(release, size, gfp | __GFP_ZERO)
639 
640 /**
641  * devres_free() - Free device resource data
642  * @res: Pointer to devres data to free
643  *
644  * Free devres created with devres_alloc().
645  */
646 void devres_free(void *res);
647 
648 /**
649  * devres_add() - Register device resource
650  * @dev: Device to add resource to
651  * @res: Resource to register
652  *
653  * Register devres @res to @dev.  @res should have been allocated
654  * using devres_alloc().  On driver detach, the associated release
655  * function will be invoked and devres will be freed automatically.
656  */
657 void devres_add(struct udevice *dev, void *res);
658 
659 /**
660  * devres_find() - Find device resource
661  * @dev: Device to lookup resource from
662  * @release: Look for resources associated with this release function
663  * @match: Match function (optional)
664  * @match_data: Data for the match function
665  *
666  * Find the latest devres of @dev which is associated with @release
667  * and for which @match returns 1.  If @match is NULL, it's considered
668  * to match all.
669  *
670  * @return pointer to found devres, NULL if not found.
671  */
672 void *devres_find(struct udevice *dev, dr_release_t release,
673 		  dr_match_t match, void *match_data);
674 
675 /**
676  * devres_get() - Find devres, if non-existent, add one atomically
677  * @dev: Device to lookup or add devres for
678  * @new_res: Pointer to new initialized devres to add if not found
679  * @match: Match function (optional)
680  * @match_data: Data for the match function
681  *
682  * Find the latest devres of @dev which has the same release function
683  * as @new_res and for which @match return 1.  If found, @new_res is
684  * freed; otherwise, @new_res is added atomically.
685  *
686  * @return ointer to found or added devres.
687  */
688 void *devres_get(struct udevice *dev, void *new_res,
689 		 dr_match_t match, void *match_data);
690 
691 /**
692  * devres_remove() - Find a device resource and remove it
693  * @dev: Device to find resource from
694  * @release: Look for resources associated with this release function
695  * @match: Match function (optional)
696  * @match_data: Data for the match function
697  *
698  * Find the latest devres of @dev associated with @release and for
699  * which @match returns 1.  If @match is NULL, it's considered to
700  * match all.  If found, the resource is removed atomically and
701  * returned.
702  *
703  * @return ointer to removed devres on success, NULL if not found.
704  */
705 void *devres_remove(struct udevice *dev, dr_release_t release,
706 		    dr_match_t match, void *match_data);
707 
708 /**
709  * devres_destroy() - Find a device resource and destroy it
710  * @dev: Device to find resource from
711  * @release: Look for resources associated with this release function
712  * @match: Match function (optional)
713  * @match_data: Data for the match function
714  *
715  * Find the latest devres of @dev associated with @release and for
716  * which @match returns 1.  If @match is NULL, it's considered to
717  * match all.  If found, the resource is removed atomically and freed.
718  *
719  * Note that the release function for the resource will not be called,
720  * only the devres-allocated data will be freed.  The caller becomes
721  * responsible for freeing any other data.
722  *
723  * @return 0 if devres is found and freed, -ENOENT if not found.
724  */
725 int devres_destroy(struct udevice *dev, dr_release_t release,
726 		   dr_match_t match, void *match_data);
727 
728 /**
729  * devres_release() - Find a device resource and destroy it, calling release
730  * @dev: Device to find resource from
731  * @release: Look for resources associated with this release function
732  * @match: Match function (optional)
733  * @match_data: Data for the match function
734  *
735  * Find the latest devres of @dev associated with @release and for
736  * which @match returns 1.  If @match is NULL, it's considered to
737  * match all.  If found, the resource is removed atomically, the
738  * release function called and the resource freed.
739  *
740  * @return 0 if devres is found and freed, -ENOENT if not found.
741  */
742 int devres_release(struct udevice *dev, dr_release_t release,
743 		   dr_match_t match, void *match_data);
744 
745 /* managed devm_k.alloc/kfree for device drivers */
746 /**
747  * devm_kmalloc() - Resource-managed kmalloc
748  * @dev: Device to allocate memory for
749  * @size: Allocation size
750  * @gfp: Allocation gfp flags
751  *
752  * Managed kmalloc.  Memory allocated with this function is
753  * automatically freed on driver detach.  Like all other devres
754  * resources, guaranteed alignment is unsigned long long.
755  *
756  * @return pointer to allocated memory on success, NULL on failure.
757  */
758 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
759 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
760 {
761 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
762 }
763 static inline void *devm_kmalloc_array(struct udevice *dev,
764 				       size_t n, size_t size, gfp_t flags)
765 {
766 	if (size != 0 && n > SIZE_MAX / size)
767 		return NULL;
768 	return devm_kmalloc(dev, n * size, flags);
769 }
770 static inline void *devm_kcalloc(struct udevice *dev,
771 				 size_t n, size_t size, gfp_t flags)
772 {
773 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
774 }
775 
776 /**
777  * devm_kfree() - Resource-managed kfree
778  * @dev: Device this memory belongs to
779  * @ptr: Memory to free
780  *
781  * Free memory allocated with devm_kmalloc().
782  */
783 void devm_kfree(struct udevice *dev, void *ptr);
784 
785 #else /* ! CONFIG_DEVRES */
786 
787 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
788 {
789 	return kzalloc(size, gfp);
790 }
791 
792 static inline void devres_free(void *res)
793 {
794 	kfree(res);
795 }
796 
797 static inline void devres_add(struct udevice *dev, void *res)
798 {
799 }
800 
801 static inline void *devres_find(struct udevice *dev, dr_release_t release,
802 				dr_match_t match, void *match_data)
803 {
804 	return NULL;
805 }
806 
807 static inline void *devres_get(struct udevice *dev, void *new_res,
808 			       dr_match_t match, void *match_data)
809 {
810 	return NULL;
811 }
812 
813 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
814 				  dr_match_t match, void *match_data)
815 {
816 	return NULL;
817 }
818 
819 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
820 				 dr_match_t match, void *match_data)
821 {
822 	return 0;
823 }
824 
825 static inline int devres_release(struct udevice *dev, dr_release_t release,
826 				 dr_match_t match, void *match_data)
827 {
828 	return 0;
829 }
830 
831 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
832 {
833 	return kmalloc(size, gfp);
834 }
835 
836 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
837 {
838 	return kzalloc(size, gfp);
839 }
840 
841 static inline void *devm_kmaloc_array(struct udevice *dev,
842 				      size_t n, size_t size, gfp_t flags)
843 {
844 	/* TODO: add kmalloc_array() to linux/compat.h */
845 	if (size != 0 && n > SIZE_MAX / size)
846 		return NULL;
847 	return kmalloc(n * size, flags);
848 }
849 
850 static inline void *devm_kcalloc(struct udevice *dev,
851 				 size_t n, size_t size, gfp_t flags)
852 {
853 	/* TODO: add kcalloc() to linux/compat.h */
854 	return kmalloc(n * size, flags | __GFP_ZERO);
855 }
856 
857 static inline void devm_kfree(struct udevice *dev, void *ptr)
858 {
859 	kfree(ptr);
860 }
861 
862 #endif /* ! CONFIG_DEVRES */
863 
864 /**
865  * dm_set_translation_offset() - Set translation offset
866  * @offs: Translation offset
867  *
868  * Some platforms need a special address translation. Those
869  * platforms (e.g. mvebu in SPL) can configure a translation
870  * offset in the DM by calling this function. It will be
871  * added to all addresses returned in dev_get_addr().
872  */
873 void dm_set_translation_offset(fdt_addr_t offs);
874 
875 /**
876  * dm_get_translation_offset() - Get translation offset
877  *
878  * This function returns the translation offset that can
879  * be configured by calling dm_set_translation_offset().
880  *
881  * @return translation offset for the device address (0 as default).
882  */
883 fdt_addr_t dm_get_translation_offset(void);
884 
885 #endif
886