1 /* 2 * Copyright (c) 2013 Google, Inc 3 * 4 * (C) Copyright 2012 5 * Pavel Herrmann <morpheus.ibis@gmail.com> 6 * Marek Vasut <marex@denx.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #ifndef _DM_DEVICE_H 12 #define _DM_DEVICE_H 13 14 #include <dm/uclass-id.h> 15 #include <fdtdec.h> 16 #include <linker_lists.h> 17 #include <linux/compat.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 21 struct driver_info; 22 23 /* Driver is active (probed). Cleared when it is removed */ 24 #define DM_FLAG_ACTIVATED (1 << 0) 25 26 /* DM is responsible for allocating and freeing platdata */ 27 #define DM_FLAG_ALLOC_PDATA (1 << 1) 28 29 /* DM should init this device prior to relocation */ 30 #define DM_FLAG_PRE_RELOC (1 << 2) 31 32 /* DM is responsible for allocating and freeing parent_platdata */ 33 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3) 34 35 /* DM is responsible for allocating and freeing uclass_platdata */ 36 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4) 37 38 /* Allocate driver private data on a DMA boundary */ 39 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5) 40 41 /* Device is bound */ 42 #define DM_FLAG_BOUND (1 << 6) 43 44 /* Device name is allocated and should be freed on unbind() */ 45 #define DM_NAME_ALLOCED (1 << 7) 46 47 /** 48 * struct udevice - An instance of a driver 49 * 50 * This holds information about a device, which is a driver bound to a 51 * particular port or peripheral (essentially a driver instance). 52 * 53 * A device will come into existence through a 'bind' call, either due to 54 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node 55 * in the device tree (in which case of_offset is >= 0). In the latter case 56 * we translate the device tree information into platdata in a function 57 * implemented by the driver ofdata_to_platdata method (called just before the 58 * probe method if the device has a device tree node. 59 * 60 * All three of platdata, priv and uclass_priv can be allocated by the 61 * driver, or you can use the auto_alloc_size members of struct driver and 62 * struct uclass_driver to have driver model do this automatically. 63 * 64 * @driver: The driver used by this device 65 * @name: Name of device, typically the FDT node name 66 * @platdata: Configuration data for this device 67 * @parent_platdata: The parent bus's configuration data for this device 68 * @uclass_platdata: The uclass's configuration data for this device 69 * @of_offset: Device tree node offset for this device (- for none) 70 * @driver_data: Driver data word for the entry that matched this device with 71 * its driver 72 * @parent: Parent of this device, or NULL for the top level device 73 * @priv: Private data for this device 74 * @uclass: Pointer to uclass for this device 75 * @uclass_priv: The uclass's private data for this device 76 * @parent_priv: The parent's private data for this device 77 * @uclass_node: Used by uclass to link its devices 78 * @child_head: List of children of this device 79 * @sibling_node: Next device in list of all devices 80 * @flags: Flags for this device DM_FLAG_... 81 * @req_seq: Requested sequence number for this device (-1 = any) 82 * @seq: Allocated sequence number for this device (-1 = none). This is set up 83 * when the device is probed and will be unique within the device's uclass. 84 * @devres_head: List of memory allocations associated with this device. 85 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will 86 * add to this list. Memory so-allocated will be freed 87 * automatically when the device is removed / unbound 88 */ 89 struct udevice { 90 const struct driver *driver; 91 const char *name; 92 void *platdata; 93 void *parent_platdata; 94 void *uclass_platdata; 95 int of_offset; 96 ulong driver_data; 97 struct udevice *parent; 98 void *priv; 99 struct uclass *uclass; 100 void *uclass_priv; 101 void *parent_priv; 102 struct list_head uclass_node; 103 struct list_head child_head; 104 struct list_head sibling_node; 105 uint32_t flags; 106 int req_seq; 107 int seq; 108 #ifdef CONFIG_DEVRES 109 struct list_head devres_head; 110 #endif 111 }; 112 113 /* Maximum sequence number supported */ 114 #define DM_MAX_SEQ 999 115 116 /* Returns the operations for a device */ 117 #define device_get_ops(dev) (dev->driver->ops) 118 119 /* Returns non-zero if the device is active (probed and not removed) */ 120 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED) 121 122 /** 123 * struct udevice_id - Lists the compatible strings supported by a driver 124 * @compatible: Compatible string 125 * @data: Data for this compatible string 126 */ 127 struct udevice_id { 128 const char *compatible; 129 ulong data; 130 }; 131 132 #if CONFIG_IS_ENABLED(OF_CONTROL) 133 #define of_match_ptr(_ptr) (_ptr) 134 #else 135 #define of_match_ptr(_ptr) NULL 136 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ 137 138 /** 139 * struct driver - A driver for a feature or peripheral 140 * 141 * This holds methods for setting up a new device, and also removing it. 142 * The device needs information to set itself up - this is provided either 143 * by platdata or a device tree node (which we find by looking up 144 * matching compatible strings with of_match). 145 * 146 * Drivers all belong to a uclass, representing a class of devices of the 147 * same type. Common elements of the drivers can be implemented in the uclass, 148 * or the uclass can provide a consistent interface to the drivers within 149 * it. 150 * 151 * @name: Device name 152 * @id: Identiies the uclass we belong to 153 * @of_match: List of compatible strings to match, and any identifying data 154 * for each. 155 * @bind: Called to bind a device to its driver 156 * @probe: Called to probe a device, i.e. activate it 157 * @remove: Called to remove a device, i.e. de-activate it 158 * @unbind: Called to unbind a device from its driver 159 * @ofdata_to_platdata: Called before probe to decode device tree data 160 * @child_post_bind: Called after a new child has been bound 161 * @child_pre_probe: Called before a child device is probed. The device has 162 * memory allocated but it has not yet been probed. 163 * @child_post_remove: Called after a child device is removed. The device 164 * has memory allocated but its device_remove() method has been called. 165 * @priv_auto_alloc_size: If non-zero this is the size of the private data 166 * to be allocated in the device's ->priv pointer. If zero, then the driver 167 * is responsible for allocating any data required. 168 * @platdata_auto_alloc_size: If non-zero this is the size of the 169 * platform data to be allocated in the device's ->platdata pointer. 170 * This is typically only useful for device-tree-aware drivers (those with 171 * an of_match), since drivers which use platdata will have the data 172 * provided in the U_BOOT_DEVICE() instantiation. 173 * @per_child_auto_alloc_size: Each device can hold private data owned by 174 * its parent. If required this will be automatically allocated if this 175 * value is non-zero. 176 * @per_child_platdata_auto_alloc_size: A bus likes to store information about 177 * its children. If non-zero this is the size of this data, to be allocated 178 * in the child's parent_platdata pointer. 179 * @ops: Driver-specific operations. This is typically a list of function 180 * pointers defined by the driver, to implement driver functions required by 181 * the uclass. 182 * @flags: driver flags - see DM_FLAGS_... 183 */ 184 struct driver { 185 char *name; 186 enum uclass_id id; 187 const struct udevice_id *of_match; 188 int (*bind)(struct udevice *dev); 189 int (*probe)(struct udevice *dev); 190 int (*remove)(struct udevice *dev); 191 int (*unbind)(struct udevice *dev); 192 int (*ofdata_to_platdata)(struct udevice *dev); 193 int (*child_post_bind)(struct udevice *dev); 194 int (*child_pre_probe)(struct udevice *dev); 195 int (*child_post_remove)(struct udevice *dev); 196 int priv_auto_alloc_size; 197 int platdata_auto_alloc_size; 198 int per_child_auto_alloc_size; 199 int per_child_platdata_auto_alloc_size; 200 const void *ops; /* driver-specific operations */ 201 uint32_t flags; 202 }; 203 204 /* Declare a new U-Boot driver */ 205 #define U_BOOT_DRIVER(__name) \ 206 ll_entry_declare(struct driver, __name, driver) 207 208 /** 209 * dev_get_platdata() - Get the platform data for a device 210 * 211 * This checks that dev is not NULL, but no other checks for now 212 * 213 * @dev Device to check 214 * @return platform data, or NULL if none 215 */ 216 void *dev_get_platdata(struct udevice *dev); 217 218 /** 219 * dev_get_parent_platdata() - Get the parent platform data for a device 220 * 221 * This checks that dev is not NULL, but no other checks for now 222 * 223 * @dev Device to check 224 * @return parent's platform data, or NULL if none 225 */ 226 void *dev_get_parent_platdata(struct udevice *dev); 227 228 /** 229 * dev_get_uclass_platdata() - Get the uclass platform data for a device 230 * 231 * This checks that dev is not NULL, but no other checks for now 232 * 233 * @dev Device to check 234 * @return uclass's platform data, or NULL if none 235 */ 236 void *dev_get_uclass_platdata(struct udevice *dev); 237 238 /** 239 * dev_get_priv() - Get the private data for a device 240 * 241 * This checks that dev is not NULL, but no other checks for now 242 * 243 * @dev Device to check 244 * @return private data, or NULL if none 245 */ 246 void *dev_get_priv(struct udevice *dev); 247 248 /** 249 * dev_get_parent_priv() - Get the parent private data for a device 250 * 251 * The parent private data is data stored in the device but owned by the 252 * parent. For example, a USB device may have parent data which contains 253 * information about how to talk to the device over USB. 254 * 255 * This checks that dev is not NULL, but no other checks for now 256 * 257 * @dev Device to check 258 * @return parent data, or NULL if none 259 */ 260 void *dev_get_parent_priv(struct udevice *dev); 261 262 /** 263 * dev_get_uclass_priv() - Get the private uclass data for a device 264 * 265 * This checks that dev is not NULL, but no other checks for now 266 * 267 * @dev Device to check 268 * @return private uclass data for this device, or NULL if none 269 */ 270 void *dev_get_uclass_priv(struct udevice *dev); 271 272 /** 273 * struct dev_get_parent() - Get the parent of a device 274 * 275 * @child: Child to check 276 * @return parent of child, or NULL if this is the root device 277 */ 278 struct udevice *dev_get_parent(struct udevice *child); 279 280 /** 281 * dev_get_driver_data() - get the driver data used to bind a device 282 * 283 * When a device is bound using a device tree node, it matches a 284 * particular compatible string in struct udevice_id. This function 285 * returns the associated data value for that compatible string. This is 286 * the 'data' field in struct udevice_id. 287 * 288 * As an example, consider this structure: 289 * static const struct udevice_id tegra_i2c_ids[] = { 290 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 }, 291 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD }, 292 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC }, 293 * { } 294 * }; 295 * 296 * When driver model finds a driver for this it will store the 'data' value 297 * corresponding to the compatible string it matches. This function returns 298 * that value. This allows the driver to handle several variants of a device. 299 * 300 * For USB devices, this is the driver_info field in struct usb_device_id. 301 * 302 * @dev: Device to check 303 * @return driver data (0 if none is provided) 304 */ 305 ulong dev_get_driver_data(struct udevice *dev); 306 307 /** 308 * dev_get_driver_ops() - get the device's driver's operations 309 * 310 * This checks that dev is not NULL, and returns the pointer to device's 311 * driver's operations. 312 * 313 * @dev: Device to check 314 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops 315 */ 316 const void *dev_get_driver_ops(struct udevice *dev); 317 318 /** 319 * device_get_uclass_id() - return the uclass ID of a device 320 * 321 * @dev: Device to check 322 * @return uclass ID for the device 323 */ 324 enum uclass_id device_get_uclass_id(struct udevice *dev); 325 326 /** 327 * dev_get_uclass_name() - return the uclass name of a device 328 * 329 * This checks that dev is not NULL. 330 * 331 * @dev: Device to check 332 * @return pointer to the uclass name for the device 333 */ 334 const char *dev_get_uclass_name(struct udevice *dev); 335 336 /** 337 * device_get_child() - Get the child of a device by index 338 * 339 * Returns the numbered child, 0 being the first. This does not use 340 * sequence numbers, only the natural order. 341 * 342 * @dev: Parent device to check 343 * @index: Child index 344 * @devp: Returns pointer to device 345 * @return 0 if OK, -ENODEV if no such device, other error if the device fails 346 * to probe 347 */ 348 int device_get_child(struct udevice *parent, int index, struct udevice **devp); 349 350 /** 351 * device_find_child_by_seq() - Find a child device based on a sequence 352 * 353 * This searches for a device with the given seq or req_seq. 354 * 355 * For seq, if an active device has this sequence it will be returned. 356 * If there is no such device then this will return -ENODEV. 357 * 358 * For req_seq, if a device (whether activated or not) has this req_seq 359 * value, that device will be returned. This is a strong indication that 360 * the device will receive that sequence when activated. 361 * 362 * @parent: Parent device 363 * @seq_or_req_seq: Sequence number to find (0=first) 364 * @find_req_seq: true to find req_seq, false to find seq 365 * @devp: Returns pointer to device (there is only one per for each seq). 366 * Set to NULL if none is found 367 * @return 0 if OK, -ve on error 368 */ 369 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq, 370 bool find_req_seq, struct udevice **devp); 371 372 /** 373 * device_get_child_by_seq() - Get a child device based on a sequence 374 * 375 * If an active device has this sequence it will be returned. If there is no 376 * such device then this will check for a device that is requesting this 377 * sequence. 378 * 379 * The device is probed to activate it ready for use. 380 * 381 * @parent: Parent device 382 * @seq: Sequence number to find (0=first) 383 * @devp: Returns pointer to device (there is only one per for each seq) 384 * Set to NULL if none is found 385 * @return 0 if OK, -ve on error 386 */ 387 int device_get_child_by_seq(struct udevice *parent, int seq, 388 struct udevice **devp); 389 390 /** 391 * device_find_child_by_of_offset() - Find a child device based on FDT offset 392 * 393 * Locates a child device by its device tree offset. 394 * 395 * @parent: Parent device 396 * @of_offset: Device tree offset to find 397 * @devp: Returns pointer to device if found, otherwise this is set to NULL 398 * @return 0 if OK, -ve on error 399 */ 400 int device_find_child_by_of_offset(struct udevice *parent, int of_offset, 401 struct udevice **devp); 402 403 /** 404 * device_get_child_by_of_offset() - Get a child device based on FDT offset 405 * 406 * Locates a child device by its device tree offset. 407 * 408 * The device is probed to activate it ready for use. 409 * 410 * @parent: Parent device 411 * @of_offset: Device tree offset to find 412 * @devp: Returns pointer to device if found, otherwise this is set to NULL 413 * @return 0 if OK, -ve on error 414 */ 415 int device_get_child_by_of_offset(struct udevice *parent, int of_offset, 416 struct udevice **devp); 417 418 /** 419 * device_get_global_by_of_offset() - Get a device based on FDT offset 420 * 421 * Locates a device by its device tree offset, searching globally throughout 422 * the all driver model devices. 423 * 424 * The device is probed to activate it ready for use. 425 * 426 * @of_offset: Device tree offset to find 427 * @devp: Returns pointer to device if found, otherwise this is set to NULL 428 * @return 0 if OK, -ve on error 429 */ 430 int device_get_global_by_of_offset(int of_offset, struct udevice **devp); 431 432 /** 433 * device_find_first_child() - Find the first child of a device 434 * 435 * @parent: Parent device to search 436 * @devp: Returns first child device, or NULL if none 437 * @return 0 438 */ 439 int device_find_first_child(struct udevice *parent, struct udevice **devp); 440 441 /** 442 * device_find_next_child() - Find the next child of a device 443 * 444 * @devp: Pointer to previous child device on entry. Returns pointer to next 445 * child device, or NULL if none 446 * @return 0 447 */ 448 int device_find_next_child(struct udevice **devp); 449 450 /** 451 * dev_get_addr() - Get the reg property of a device 452 * 453 * @dev: Pointer to a device 454 * 455 * @return addr 456 */ 457 fdt_addr_t dev_get_addr(struct udevice *dev); 458 459 /** 460 * dev_get_addr_ptr() - Return pointer to the address of the reg property 461 * of a device 462 * 463 * @dev: Pointer to a device 464 * 465 * @return Pointer to addr, or NULL if there is no such property 466 */ 467 void *dev_get_addr_ptr(struct udevice *dev); 468 469 /** 470 * dev_map_physmem() - Read device address from reg property of the 471 * device node and map the address into CPU address 472 * space. 473 * 474 * @dev: Pointer to device 475 * @size: size of the memory to map 476 * 477 * @return mapped address, or NULL if the device does not have reg 478 * property. 479 */ 480 void *dev_map_physmem(struct udevice *dev, unsigned long size); 481 482 /** 483 * dev_get_addr_index() - Get the indexed reg property of a device 484 * 485 * @dev: Pointer to a device 486 * @index: the 'reg' property can hold a list of <addr, size> pairs 487 * and @index is used to select which one is required 488 * 489 * @return addr 490 */ 491 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index); 492 493 /** 494 * dev_get_addr_name() - Get the reg property of a device, indexed by name 495 * 496 * @dev: Pointer to a device 497 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the 498 * 'reg-names' property providing named-based identification. @index 499 * indicates the value to search for in 'reg-names'. 500 * 501 * @return addr 502 */ 503 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name); 504 505 /** 506 * device_has_children() - check if a device has any children 507 * 508 * @dev: Device to check 509 * @return true if the device has one or more children 510 */ 511 bool device_has_children(struct udevice *dev); 512 513 /** 514 * device_has_active_children() - check if a device has any active children 515 * 516 * @dev: Device to check 517 * @return true if the device has one or more children and at least one of 518 * them is active (probed). 519 */ 520 bool device_has_active_children(struct udevice *dev); 521 522 /** 523 * device_is_last_sibling() - check if a device is the last sibling 524 * 525 * This function can be useful for display purposes, when special action needs 526 * to be taken when displaying the last sibling. This can happen when a tree 527 * view of devices is being displayed. 528 * 529 * @dev: Device to check 530 * @return true if there are no more siblings after this one - i.e. is it 531 * last in the list. 532 */ 533 bool device_is_last_sibling(struct udevice *dev); 534 535 /** 536 * device_set_name() - set the name of a device 537 * 538 * This must be called in the device's bind() method and no later. Normally 539 * this is unnecessary but for probed devices which don't get a useful name 540 * this function can be helpful. 541 * 542 * The name is allocated and will be freed automatically when the device is 543 * unbound. 544 * 545 * @dev: Device to update 546 * @name: New name (this string is allocated new memory and attached to 547 * the device) 548 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the 549 * string 550 */ 551 int device_set_name(struct udevice *dev, const char *name); 552 553 /** 554 * device_set_name_alloced() - note that a device name is allocated 555 * 556 * This sets the DM_NAME_ALLOCED flag for the device, so that when it is 557 * unbound the name will be freed. This avoids memory leaks. 558 * 559 * @dev: Device to update 560 */ 561 void device_set_name_alloced(struct udevice *dev); 562 563 /** 564 * of_device_is_compatible() - check if the device is compatible with the compat 565 * 566 * This allows to check whether the device is comaptible with the compat. 567 * 568 * @dev: udevice pointer for which compatible needs to be verified. 569 * @compat: Compatible string which needs to verified in the given 570 * device 571 * @return true if OK, false if the compatible is not found 572 */ 573 bool of_device_is_compatible(struct udevice *dev, const char *compat); 574 575 /** 576 * of_machine_is_compatible() - check if the machine is compatible with 577 * the compat 578 * 579 * This allows to check whether the machine is comaptible with the compat. 580 * 581 * @compat: Compatible string which needs to verified 582 * @return true if OK, false if the compatible is not found 583 */ 584 bool of_machine_is_compatible(const char *compat); 585 586 /** 587 * device_is_on_pci_bus - Test if a device is on a PCI bus 588 * 589 * @dev: device to test 590 * @return: true if it is on a PCI bus, false otherwise 591 */ 592 static inline bool device_is_on_pci_bus(struct udevice *dev) 593 { 594 return device_get_uclass_id(dev->parent) == UCLASS_PCI; 595 } 596 597 /** 598 * device_foreach_child_safe() - iterate through child devices safely 599 * 600 * This allows the @pos child to be removed in the loop if required. 601 * 602 * @pos: struct udevice * for the current device 603 * @next: struct udevice * for the next device 604 * @parent: parent device to scan 605 */ 606 #define device_foreach_child_safe(pos, next, parent) \ 607 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node) 608 609 /* device resource management */ 610 typedef void (*dr_release_t)(struct udevice *dev, void *res); 611 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data); 612 613 #ifdef CONFIG_DEVRES 614 615 #ifdef CONFIG_DEBUG_DEVRES 616 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp, 617 const char *name); 618 #define _devres_alloc(release, size, gfp) \ 619 __devres_alloc(release, size, gfp, #release) 620 #else 621 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp); 622 #endif 623 624 /** 625 * devres_alloc() - Allocate device resource data 626 * @release: Release function devres will be associated with 627 * @size: Allocation size 628 * @gfp: Allocation flags 629 * 630 * Allocate devres of @size bytes. The allocated area is associated 631 * with @release. The returned pointer can be passed to 632 * other devres_*() functions. 633 * 634 * RETURNS: 635 * Pointer to allocated devres on success, NULL on failure. 636 */ 637 #define devres_alloc(release, size, gfp) \ 638 _devres_alloc(release, size, gfp | __GFP_ZERO) 639 640 /** 641 * devres_free() - Free device resource data 642 * @res: Pointer to devres data to free 643 * 644 * Free devres created with devres_alloc(). 645 */ 646 void devres_free(void *res); 647 648 /** 649 * devres_add() - Register device resource 650 * @dev: Device to add resource to 651 * @res: Resource to register 652 * 653 * Register devres @res to @dev. @res should have been allocated 654 * using devres_alloc(). On driver detach, the associated release 655 * function will be invoked and devres will be freed automatically. 656 */ 657 void devres_add(struct udevice *dev, void *res); 658 659 /** 660 * devres_find() - Find device resource 661 * @dev: Device to lookup resource from 662 * @release: Look for resources associated with this release function 663 * @match: Match function (optional) 664 * @match_data: Data for the match function 665 * 666 * Find the latest devres of @dev which is associated with @release 667 * and for which @match returns 1. If @match is NULL, it's considered 668 * to match all. 669 * 670 * @return pointer to found devres, NULL if not found. 671 */ 672 void *devres_find(struct udevice *dev, dr_release_t release, 673 dr_match_t match, void *match_data); 674 675 /** 676 * devres_get() - Find devres, if non-existent, add one atomically 677 * @dev: Device to lookup or add devres for 678 * @new_res: Pointer to new initialized devres to add if not found 679 * @match: Match function (optional) 680 * @match_data: Data for the match function 681 * 682 * Find the latest devres of @dev which has the same release function 683 * as @new_res and for which @match return 1. If found, @new_res is 684 * freed; otherwise, @new_res is added atomically. 685 * 686 * @return ointer to found or added devres. 687 */ 688 void *devres_get(struct udevice *dev, void *new_res, 689 dr_match_t match, void *match_data); 690 691 /** 692 * devres_remove() - Find a device resource and remove it 693 * @dev: Device to find resource from 694 * @release: Look for resources associated with this release function 695 * @match: Match function (optional) 696 * @match_data: Data for the match function 697 * 698 * Find the latest devres of @dev associated with @release and for 699 * which @match returns 1. If @match is NULL, it's considered to 700 * match all. If found, the resource is removed atomically and 701 * returned. 702 * 703 * @return ointer to removed devres on success, NULL if not found. 704 */ 705 void *devres_remove(struct udevice *dev, dr_release_t release, 706 dr_match_t match, void *match_data); 707 708 /** 709 * devres_destroy() - Find a device resource and destroy it 710 * @dev: Device to find resource from 711 * @release: Look for resources associated with this release function 712 * @match: Match function (optional) 713 * @match_data: Data for the match function 714 * 715 * Find the latest devres of @dev associated with @release and for 716 * which @match returns 1. If @match is NULL, it's considered to 717 * match all. If found, the resource is removed atomically and freed. 718 * 719 * Note that the release function for the resource will not be called, 720 * only the devres-allocated data will be freed. The caller becomes 721 * responsible for freeing any other data. 722 * 723 * @return 0 if devres is found and freed, -ENOENT if not found. 724 */ 725 int devres_destroy(struct udevice *dev, dr_release_t release, 726 dr_match_t match, void *match_data); 727 728 /** 729 * devres_release() - Find a device resource and destroy it, calling release 730 * @dev: Device to find resource from 731 * @release: Look for resources associated with this release function 732 * @match: Match function (optional) 733 * @match_data: Data for the match function 734 * 735 * Find the latest devres of @dev associated with @release and for 736 * which @match returns 1. If @match is NULL, it's considered to 737 * match all. If found, the resource is removed atomically, the 738 * release function called and the resource freed. 739 * 740 * @return 0 if devres is found and freed, -ENOENT if not found. 741 */ 742 int devres_release(struct udevice *dev, dr_release_t release, 743 dr_match_t match, void *match_data); 744 745 /* managed devm_k.alloc/kfree for device drivers */ 746 /** 747 * devm_kmalloc() - Resource-managed kmalloc 748 * @dev: Device to allocate memory for 749 * @size: Allocation size 750 * @gfp: Allocation gfp flags 751 * 752 * Managed kmalloc. Memory allocated with this function is 753 * automatically freed on driver detach. Like all other devres 754 * resources, guaranteed alignment is unsigned long long. 755 * 756 * @return pointer to allocated memory on success, NULL on failure. 757 */ 758 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp); 759 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 760 { 761 return devm_kmalloc(dev, size, gfp | __GFP_ZERO); 762 } 763 static inline void *devm_kmalloc_array(struct udevice *dev, 764 size_t n, size_t size, gfp_t flags) 765 { 766 if (size != 0 && n > SIZE_MAX / size) 767 return NULL; 768 return devm_kmalloc(dev, n * size, flags); 769 } 770 static inline void *devm_kcalloc(struct udevice *dev, 771 size_t n, size_t size, gfp_t flags) 772 { 773 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); 774 } 775 776 /** 777 * devm_kfree() - Resource-managed kfree 778 * @dev: Device this memory belongs to 779 * @ptr: Memory to free 780 * 781 * Free memory allocated with devm_kmalloc(). 782 */ 783 void devm_kfree(struct udevice *dev, void *ptr); 784 785 #else /* ! CONFIG_DEVRES */ 786 787 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) 788 { 789 return kzalloc(size, gfp); 790 } 791 792 static inline void devres_free(void *res) 793 { 794 kfree(res); 795 } 796 797 static inline void devres_add(struct udevice *dev, void *res) 798 { 799 } 800 801 static inline void *devres_find(struct udevice *dev, dr_release_t release, 802 dr_match_t match, void *match_data) 803 { 804 return NULL; 805 } 806 807 static inline void *devres_get(struct udevice *dev, void *new_res, 808 dr_match_t match, void *match_data) 809 { 810 return NULL; 811 } 812 813 static inline void *devres_remove(struct udevice *dev, dr_release_t release, 814 dr_match_t match, void *match_data) 815 { 816 return NULL; 817 } 818 819 static inline int devres_destroy(struct udevice *dev, dr_release_t release, 820 dr_match_t match, void *match_data) 821 { 822 return 0; 823 } 824 825 static inline int devres_release(struct udevice *dev, dr_release_t release, 826 dr_match_t match, void *match_data) 827 { 828 return 0; 829 } 830 831 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp) 832 { 833 return kmalloc(size, gfp); 834 } 835 836 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 837 { 838 return kzalloc(size, gfp); 839 } 840 841 static inline void *devm_kmaloc_array(struct udevice *dev, 842 size_t n, size_t size, gfp_t flags) 843 { 844 /* TODO: add kmalloc_array() to linux/compat.h */ 845 if (size != 0 && n > SIZE_MAX / size) 846 return NULL; 847 return kmalloc(n * size, flags); 848 } 849 850 static inline void *devm_kcalloc(struct udevice *dev, 851 size_t n, size_t size, gfp_t flags) 852 { 853 /* TODO: add kcalloc() to linux/compat.h */ 854 return kmalloc(n * size, flags | __GFP_ZERO); 855 } 856 857 static inline void devm_kfree(struct udevice *dev, void *ptr) 858 { 859 kfree(ptr); 860 } 861 862 #endif /* ! CONFIG_DEVRES */ 863 864 /** 865 * dm_set_translation_offset() - Set translation offset 866 * @offs: Translation offset 867 * 868 * Some platforms need a special address translation. Those 869 * platforms (e.g. mvebu in SPL) can configure a translation 870 * offset in the DM by calling this function. It will be 871 * added to all addresses returned in dev_get_addr(). 872 */ 873 void dm_set_translation_offset(fdt_addr_t offs); 874 875 /** 876 * dm_get_translation_offset() - Get translation offset 877 * 878 * This function returns the translation offset that can 879 * be configured by calling dm_set_translation_offset(). 880 * 881 * @return translation offset for the device address (0 as default). 882 */ 883 fdt_addr_t dm_get_translation_offset(void); 884 885 #endif 886