1 /* 2 * Copyright (c) 2013 Google, Inc 3 * 4 * (C) Copyright 2012 5 * Pavel Herrmann <morpheus.ibis@gmail.com> 6 * Marek Vasut <marex@denx.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #ifndef _DM_DEVICE_H 12 #define _DM_DEVICE_H 13 14 #include <dm/ofnode.h> 15 #include <dm/uclass-id.h> 16 #include <fdtdec.h> 17 #include <linker_lists.h> 18 #include <linux/compat.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 22 struct driver_info; 23 24 /* Driver is active (probed). Cleared when it is removed */ 25 #define DM_FLAG_ACTIVATED (1 << 0) 26 27 /* DM is responsible for allocating and freeing platdata */ 28 #define DM_FLAG_ALLOC_PDATA (1 << 1) 29 30 /* DM should init this device prior to relocation */ 31 #define DM_FLAG_PRE_RELOC (1 << 2) 32 33 /* DM is responsible for allocating and freeing parent_platdata */ 34 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3) 35 36 /* DM is responsible for allocating and freeing uclass_platdata */ 37 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4) 38 39 /* Allocate driver private data on a DMA boundary */ 40 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5) 41 42 /* Device is bound */ 43 #define DM_FLAG_BOUND (1 << 6) 44 45 /* Device name is allocated and should be freed on unbind() */ 46 #define DM_FLAG_NAME_ALLOCED (1 << 7) 47 48 #define DM_FLAG_OF_PLATDATA (1 << 8) 49 50 /* 51 * Call driver remove function to stop currently active DMA transfers or 52 * give DMA buffers back to the HW / controller. This may be needed for 53 * some drivers to do some final stage cleanup before the OS is called 54 * (U-Boot exit) 55 */ 56 #define DM_FLAG_ACTIVE_DMA (1 << 9) 57 58 /* 59 * Call driver remove function to do some final configuration, before 60 * U-Boot exits and the OS is started 61 */ 62 #define DM_FLAG_OS_PREPARE (1 << 10) 63 64 /* 65 * One or multiple of these flags are passed to device_remove() so that 66 * a selective device removal as specified by the remove-stage and the 67 * driver flags can be done. 68 */ 69 enum { 70 /* Normal remove, remove all devices */ 71 DM_REMOVE_NORMAL = 1 << 0, 72 73 /* Remove devices with active DMA */ 74 DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA, 75 76 /* Remove devices which need some final OS preparation steps */ 77 DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE, 78 79 /* Add more use cases here */ 80 81 /* Remove devices with any active flag */ 82 DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE, 83 }; 84 85 /** 86 * struct udevice - An instance of a driver 87 * 88 * This holds information about a device, which is a driver bound to a 89 * particular port or peripheral (essentially a driver instance). 90 * 91 * A device will come into existence through a 'bind' call, either due to 92 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node 93 * in the device tree (in which case of_offset is >= 0). In the latter case 94 * we translate the device tree information into platdata in a function 95 * implemented by the driver ofdata_to_platdata method (called just before the 96 * probe method if the device has a device tree node. 97 * 98 * All three of platdata, priv and uclass_priv can be allocated by the 99 * driver, or you can use the auto_alloc_size members of struct driver and 100 * struct uclass_driver to have driver model do this automatically. 101 * 102 * @driver: The driver used by this device 103 * @name: Name of device, typically the FDT node name 104 * @platdata: Configuration data for this device 105 * @parent_platdata: The parent bus's configuration data for this device 106 * @uclass_platdata: The uclass's configuration data for this device 107 * @node: Reference to device tree node for this device 108 * @driver_data: Driver data word for the entry that matched this device with 109 * its driver 110 * @parent: Parent of this device, or NULL for the top level device 111 * @priv: Private data for this device 112 * @uclass: Pointer to uclass for this device 113 * @uclass_priv: The uclass's private data for this device 114 * @parent_priv: The parent's private data for this device 115 * @uclass_node: Used by uclass to link its devices 116 * @child_head: List of children of this device 117 * @sibling_node: Next device in list of all devices 118 * @flags: Flags for this device DM_FLAG_... 119 * @req_seq: Requested sequence number for this device (-1 = any) 120 * @seq: Allocated sequence number for this device (-1 = none). This is set up 121 * when the device is probed and will be unique within the device's uclass. 122 * @devres_head: List of memory allocations associated with this device. 123 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will 124 * add to this list. Memory so-allocated will be freed 125 * automatically when the device is removed / unbound 126 */ 127 struct udevice { 128 const struct driver *driver; 129 const char *name; 130 void *platdata; 131 void *parent_platdata; 132 void *uclass_platdata; 133 ofnode node; 134 ulong driver_data; 135 struct udevice *parent; 136 void *priv; 137 struct uclass *uclass; 138 void *uclass_priv; 139 void *parent_priv; 140 struct list_head uclass_node; 141 struct list_head child_head; 142 struct list_head sibling_node; 143 uint32_t flags; 144 int req_seq; 145 int seq; 146 #ifdef CONFIG_DEVRES 147 struct list_head devres_head; 148 #endif 149 }; 150 151 /* Maximum sequence number supported */ 152 #define DM_MAX_SEQ 999 153 154 /* Returns the operations for a device */ 155 #define device_get_ops(dev) (dev->driver->ops) 156 157 /* Returns non-zero if the device is active (probed and not removed) */ 158 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED) 159 160 static inline int dev_of_offset(const struct udevice *dev) 161 { 162 return ofnode_to_offset(dev->node); 163 } 164 165 static inline void dev_set_of_offset(struct udevice *dev, int of_offset) 166 { 167 dev->node = offset_to_ofnode(of_offset); 168 } 169 170 static inline bool dev_has_of_node(struct udevice *dev) 171 { 172 return ofnode_valid(dev->node); 173 } 174 175 /** 176 * struct udevice_id - Lists the compatible strings supported by a driver 177 * @compatible: Compatible string 178 * @data: Data for this compatible string 179 */ 180 struct udevice_id { 181 const char *compatible; 182 ulong data; 183 }; 184 185 #if CONFIG_IS_ENABLED(OF_CONTROL) 186 #define of_match_ptr(_ptr) (_ptr) 187 #else 188 #define of_match_ptr(_ptr) NULL 189 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ 190 191 /** 192 * struct driver - A driver for a feature or peripheral 193 * 194 * This holds methods for setting up a new device, and also removing it. 195 * The device needs information to set itself up - this is provided either 196 * by platdata or a device tree node (which we find by looking up 197 * matching compatible strings with of_match). 198 * 199 * Drivers all belong to a uclass, representing a class of devices of the 200 * same type. Common elements of the drivers can be implemented in the uclass, 201 * or the uclass can provide a consistent interface to the drivers within 202 * it. 203 * 204 * @name: Device name 205 * @id: Identiies the uclass we belong to 206 * @of_match: List of compatible strings to match, and any identifying data 207 * for each. 208 * @bind: Called to bind a device to its driver 209 * @probe: Called to probe a device, i.e. activate it 210 * @remove: Called to remove a device, i.e. de-activate it 211 * @unbind: Called to unbind a device from its driver 212 * @ofdata_to_platdata: Called before probe to decode device tree data 213 * @child_post_bind: Called after a new child has been bound 214 * @child_pre_probe: Called before a child device is probed. The device has 215 * memory allocated but it has not yet been probed. 216 * @child_post_remove: Called after a child device is removed. The device 217 * has memory allocated but its device_remove() method has been called. 218 * @priv_auto_alloc_size: If non-zero this is the size of the private data 219 * to be allocated in the device's ->priv pointer. If zero, then the driver 220 * is responsible for allocating any data required. 221 * @platdata_auto_alloc_size: If non-zero this is the size of the 222 * platform data to be allocated in the device's ->platdata pointer. 223 * This is typically only useful for device-tree-aware drivers (those with 224 * an of_match), since drivers which use platdata will have the data 225 * provided in the U_BOOT_DEVICE() instantiation. 226 * @per_child_auto_alloc_size: Each device can hold private data owned by 227 * its parent. If required this will be automatically allocated if this 228 * value is non-zero. 229 * @per_child_platdata_auto_alloc_size: A bus likes to store information about 230 * its children. If non-zero this is the size of this data, to be allocated 231 * in the child's parent_platdata pointer. 232 * @ops: Driver-specific operations. This is typically a list of function 233 * pointers defined by the driver, to implement driver functions required by 234 * the uclass. 235 * @flags: driver flags - see DM_FLAGS_... 236 */ 237 struct driver { 238 char *name; 239 enum uclass_id id; 240 const struct udevice_id *of_match; 241 int (*bind)(struct udevice *dev); 242 int (*probe)(struct udevice *dev); 243 int (*remove)(struct udevice *dev); 244 int (*unbind)(struct udevice *dev); 245 int (*ofdata_to_platdata)(struct udevice *dev); 246 int (*child_post_bind)(struct udevice *dev); 247 int (*child_pre_probe)(struct udevice *dev); 248 int (*child_post_remove)(struct udevice *dev); 249 int priv_auto_alloc_size; 250 int platdata_auto_alloc_size; 251 int per_child_auto_alloc_size; 252 int per_child_platdata_auto_alloc_size; 253 const void *ops; /* driver-specific operations */ 254 uint32_t flags; 255 }; 256 257 /* Declare a new U-Boot driver */ 258 #define U_BOOT_DRIVER(__name) \ 259 ll_entry_declare(struct driver, __name, driver) 260 261 /* Get a pointer to a given driver */ 262 #define DM_GET_DRIVER(__name) \ 263 ll_entry_get(struct driver, __name, driver) 264 265 /** 266 * dev_get_platdata() - Get the platform data for a device 267 * 268 * This checks that dev is not NULL, but no other checks for now 269 * 270 * @dev Device to check 271 * @return platform data, or NULL if none 272 */ 273 void *dev_get_platdata(struct udevice *dev); 274 275 /** 276 * dev_get_parent_platdata() - Get the parent platform data for a device 277 * 278 * This checks that dev is not NULL, but no other checks for now 279 * 280 * @dev Device to check 281 * @return parent's platform data, or NULL if none 282 */ 283 void *dev_get_parent_platdata(struct udevice *dev); 284 285 /** 286 * dev_get_uclass_platdata() - Get the uclass platform data for a device 287 * 288 * This checks that dev is not NULL, but no other checks for now 289 * 290 * @dev Device to check 291 * @return uclass's platform data, or NULL if none 292 */ 293 void *dev_get_uclass_platdata(struct udevice *dev); 294 295 /** 296 * dev_get_priv() - Get the private data for a device 297 * 298 * This checks that dev is not NULL, but no other checks for now 299 * 300 * @dev Device to check 301 * @return private data, or NULL if none 302 */ 303 void *dev_get_priv(struct udevice *dev); 304 305 /** 306 * dev_get_parent_priv() - Get the parent private data for a device 307 * 308 * The parent private data is data stored in the device but owned by the 309 * parent. For example, a USB device may have parent data which contains 310 * information about how to talk to the device over USB. 311 * 312 * This checks that dev is not NULL, but no other checks for now 313 * 314 * @dev Device to check 315 * @return parent data, or NULL if none 316 */ 317 void *dev_get_parent_priv(struct udevice *dev); 318 319 /** 320 * dev_get_uclass_priv() - Get the private uclass data for a device 321 * 322 * This checks that dev is not NULL, but no other checks for now 323 * 324 * @dev Device to check 325 * @return private uclass data for this device, or NULL if none 326 */ 327 void *dev_get_uclass_priv(struct udevice *dev); 328 329 /** 330 * struct dev_get_parent() - Get the parent of a device 331 * 332 * @child: Child to check 333 * @return parent of child, or NULL if this is the root device 334 */ 335 struct udevice *dev_get_parent(struct udevice *child); 336 337 /** 338 * dev_get_driver_data() - get the driver data used to bind a device 339 * 340 * When a device is bound using a device tree node, it matches a 341 * particular compatible string in struct udevice_id. This function 342 * returns the associated data value for that compatible string. This is 343 * the 'data' field in struct udevice_id. 344 * 345 * As an example, consider this structure: 346 * static const struct udevice_id tegra_i2c_ids[] = { 347 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 }, 348 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD }, 349 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC }, 350 * { } 351 * }; 352 * 353 * When driver model finds a driver for this it will store the 'data' value 354 * corresponding to the compatible string it matches. This function returns 355 * that value. This allows the driver to handle several variants of a device. 356 * 357 * For USB devices, this is the driver_info field in struct usb_device_id. 358 * 359 * @dev: Device to check 360 * @return driver data (0 if none is provided) 361 */ 362 ulong dev_get_driver_data(struct udevice *dev); 363 364 /** 365 * dev_get_driver_ops() - get the device's driver's operations 366 * 367 * This checks that dev is not NULL, and returns the pointer to device's 368 * driver's operations. 369 * 370 * @dev: Device to check 371 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops 372 */ 373 const void *dev_get_driver_ops(struct udevice *dev); 374 375 /** 376 * device_get_uclass_id() - return the uclass ID of a device 377 * 378 * @dev: Device to check 379 * @return uclass ID for the device 380 */ 381 enum uclass_id device_get_uclass_id(struct udevice *dev); 382 383 /** 384 * dev_get_uclass_name() - return the uclass name of a device 385 * 386 * This checks that dev is not NULL. 387 * 388 * @dev: Device to check 389 * @return pointer to the uclass name for the device 390 */ 391 const char *dev_get_uclass_name(struct udevice *dev); 392 393 /** 394 * device_get_child() - Get the child of a device by index 395 * 396 * Returns the numbered child, 0 being the first. This does not use 397 * sequence numbers, only the natural order. 398 * 399 * @dev: Parent device to check 400 * @index: Child index 401 * @devp: Returns pointer to device 402 * @return 0 if OK, -ENODEV if no such device, other error if the device fails 403 * to probe 404 */ 405 int device_get_child(struct udevice *parent, int index, struct udevice **devp); 406 407 /** 408 * device_find_child_by_seq() - Find a child device based on a sequence 409 * 410 * This searches for a device with the given seq or req_seq. 411 * 412 * For seq, if an active device has this sequence it will be returned. 413 * If there is no such device then this will return -ENODEV. 414 * 415 * For req_seq, if a device (whether activated or not) has this req_seq 416 * value, that device will be returned. This is a strong indication that 417 * the device will receive that sequence when activated. 418 * 419 * @parent: Parent device 420 * @seq_or_req_seq: Sequence number to find (0=first) 421 * @find_req_seq: true to find req_seq, false to find seq 422 * @devp: Returns pointer to device (there is only one per for each seq). 423 * Set to NULL if none is found 424 * @return 0 if OK, -ve on error 425 */ 426 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq, 427 bool find_req_seq, struct udevice **devp); 428 429 /** 430 * device_get_child_by_seq() - Get a child device based on a sequence 431 * 432 * If an active device has this sequence it will be returned. If there is no 433 * such device then this will check for a device that is requesting this 434 * sequence. 435 * 436 * The device is probed to activate it ready for use. 437 * 438 * @parent: Parent device 439 * @seq: Sequence number to find (0=first) 440 * @devp: Returns pointer to device (there is only one per for each seq) 441 * Set to NULL if none is found 442 * @return 0 if OK, -ve on error 443 */ 444 int device_get_child_by_seq(struct udevice *parent, int seq, 445 struct udevice **devp); 446 447 /** 448 * device_find_child_by_of_offset() - Find a child device based on FDT offset 449 * 450 * Locates a child device by its device tree offset. 451 * 452 * @parent: Parent device 453 * @of_offset: Device tree offset to find 454 * @devp: Returns pointer to device if found, otherwise this is set to NULL 455 * @return 0 if OK, -ve on error 456 */ 457 int device_find_child_by_of_offset(struct udevice *parent, int of_offset, 458 struct udevice **devp); 459 460 /** 461 * device_get_child_by_of_offset() - Get a child device based on FDT offset 462 * 463 * Locates a child device by its device tree offset. 464 * 465 * The device is probed to activate it ready for use. 466 * 467 * @parent: Parent device 468 * @of_offset: Device tree offset to find 469 * @devp: Returns pointer to device if found, otherwise this is set to NULL 470 * @return 0 if OK, -ve on error 471 */ 472 int device_get_child_by_of_offset(struct udevice *parent, int of_offset, 473 struct udevice **devp); 474 475 /** 476 * device_get_global_by_of_offset() - Get a device based on FDT offset 477 * 478 * Locates a device by its device tree offset, searching globally throughout 479 * the all driver model devices. 480 * 481 * The device is probed to activate it ready for use. 482 * 483 * @of_offset: Device tree offset to find 484 * @devp: Returns pointer to device if found, otherwise this is set to NULL 485 * @return 0 if OK, -ve on error 486 */ 487 int device_get_global_by_of_offset(int of_offset, struct udevice **devp); 488 489 /** 490 * device_find_first_child() - Find the first child of a device 491 * 492 * @parent: Parent device to search 493 * @devp: Returns first child device, or NULL if none 494 * @return 0 495 */ 496 int device_find_first_child(struct udevice *parent, struct udevice **devp); 497 498 /** 499 * device_find_next_child() - Find the next child of a device 500 * 501 * @devp: Pointer to previous child device on entry. Returns pointer to next 502 * child device, or NULL if none 503 * @return 0 504 */ 505 int device_find_next_child(struct udevice **devp); 506 507 /** 508 * device_has_children() - check if a device has any children 509 * 510 * @dev: Device to check 511 * @return true if the device has one or more children 512 */ 513 bool device_has_children(struct udevice *dev); 514 515 /** 516 * device_has_active_children() - check if a device has any active children 517 * 518 * @dev: Device to check 519 * @return true if the device has one or more children and at least one of 520 * them is active (probed). 521 */ 522 bool device_has_active_children(struct udevice *dev); 523 524 /** 525 * device_is_last_sibling() - check if a device is the last sibling 526 * 527 * This function can be useful for display purposes, when special action needs 528 * to be taken when displaying the last sibling. This can happen when a tree 529 * view of devices is being displayed. 530 * 531 * @dev: Device to check 532 * @return true if there are no more siblings after this one - i.e. is it 533 * last in the list. 534 */ 535 bool device_is_last_sibling(struct udevice *dev); 536 537 /** 538 * device_set_name() - set the name of a device 539 * 540 * This must be called in the device's bind() method and no later. Normally 541 * this is unnecessary but for probed devices which don't get a useful name 542 * this function can be helpful. 543 * 544 * The name is allocated and will be freed automatically when the device is 545 * unbound. 546 * 547 * @dev: Device to update 548 * @name: New name (this string is allocated new memory and attached to 549 * the device) 550 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the 551 * string 552 */ 553 int device_set_name(struct udevice *dev, const char *name); 554 555 /** 556 * device_set_name_alloced() - note that a device name is allocated 557 * 558 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is 559 * unbound the name will be freed. This avoids memory leaks. 560 * 561 * @dev: Device to update 562 */ 563 void device_set_name_alloced(struct udevice *dev); 564 565 /** 566 * device_is_compatible() - check if the device is compatible with the compat 567 * 568 * This allows to check whether the device is comaptible with the compat. 569 * 570 * @dev: udevice pointer for which compatible needs to be verified. 571 * @compat: Compatible string which needs to verified in the given 572 * device 573 * @return true if OK, false if the compatible is not found 574 */ 575 bool device_is_compatible(struct udevice *dev, const char *compat); 576 577 /** 578 * of_machine_is_compatible() - check if the machine is compatible with 579 * the compat 580 * 581 * This allows to check whether the machine is comaptible with the compat. 582 * 583 * @compat: Compatible string which needs to verified 584 * @return true if OK, false if the compatible is not found 585 */ 586 bool of_machine_is_compatible(const char *compat); 587 588 /** 589 * device_is_on_pci_bus - Test if a device is on a PCI bus 590 * 591 * @dev: device to test 592 * @return: true if it is on a PCI bus, false otherwise 593 */ 594 static inline bool device_is_on_pci_bus(struct udevice *dev) 595 { 596 return device_get_uclass_id(dev->parent) == UCLASS_PCI; 597 } 598 599 /** 600 * device_foreach_child_safe() - iterate through child devices safely 601 * 602 * This allows the @pos child to be removed in the loop if required. 603 * 604 * @pos: struct udevice * for the current device 605 * @next: struct udevice * for the next device 606 * @parent: parent device to scan 607 */ 608 #define device_foreach_child_safe(pos, next, parent) \ 609 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node) 610 611 /** 612 * dm_scan_fdt_dev() - Bind child device in a the device tree 613 * 614 * This handles device which have sub-nodes in the device tree. It scans all 615 * sub-nodes and binds drivers for each node where a driver can be found. 616 * 617 * If this is called prior to relocation, only pre-relocation devices will be 618 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where 619 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will 620 * be bound. 621 * 622 * @dev: Device to scan 623 * @return 0 if OK, -ve on error 624 */ 625 int dm_scan_fdt_dev(struct udevice *dev); 626 627 /* device resource management */ 628 typedef void (*dr_release_t)(struct udevice *dev, void *res); 629 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data); 630 631 #ifdef CONFIG_DEVRES 632 633 #ifdef CONFIG_DEBUG_DEVRES 634 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp, 635 const char *name); 636 #define _devres_alloc(release, size, gfp) \ 637 __devres_alloc(release, size, gfp, #release) 638 #else 639 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp); 640 #endif 641 642 /** 643 * devres_alloc() - Allocate device resource data 644 * @release: Release function devres will be associated with 645 * @size: Allocation size 646 * @gfp: Allocation flags 647 * 648 * Allocate devres of @size bytes. The allocated area is associated 649 * with @release. The returned pointer can be passed to 650 * other devres_*() functions. 651 * 652 * RETURNS: 653 * Pointer to allocated devres on success, NULL on failure. 654 */ 655 #define devres_alloc(release, size, gfp) \ 656 _devres_alloc(release, size, gfp | __GFP_ZERO) 657 658 /** 659 * devres_free() - Free device resource data 660 * @res: Pointer to devres data to free 661 * 662 * Free devres created with devres_alloc(). 663 */ 664 void devres_free(void *res); 665 666 /** 667 * devres_add() - Register device resource 668 * @dev: Device to add resource to 669 * @res: Resource to register 670 * 671 * Register devres @res to @dev. @res should have been allocated 672 * using devres_alloc(). On driver detach, the associated release 673 * function will be invoked and devres will be freed automatically. 674 */ 675 void devres_add(struct udevice *dev, void *res); 676 677 /** 678 * devres_find() - Find device resource 679 * @dev: Device to lookup resource from 680 * @release: Look for resources associated with this release function 681 * @match: Match function (optional) 682 * @match_data: Data for the match function 683 * 684 * Find the latest devres of @dev which is associated with @release 685 * and for which @match returns 1. If @match is NULL, it's considered 686 * to match all. 687 * 688 * @return pointer to found devres, NULL if not found. 689 */ 690 void *devres_find(struct udevice *dev, dr_release_t release, 691 dr_match_t match, void *match_data); 692 693 /** 694 * devres_get() - Find devres, if non-existent, add one atomically 695 * @dev: Device to lookup or add devres for 696 * @new_res: Pointer to new initialized devres to add if not found 697 * @match: Match function (optional) 698 * @match_data: Data for the match function 699 * 700 * Find the latest devres of @dev which has the same release function 701 * as @new_res and for which @match return 1. If found, @new_res is 702 * freed; otherwise, @new_res is added atomically. 703 * 704 * @return ointer to found or added devres. 705 */ 706 void *devres_get(struct udevice *dev, void *new_res, 707 dr_match_t match, void *match_data); 708 709 /** 710 * devres_remove() - Find a device resource and remove it 711 * @dev: Device to find resource from 712 * @release: Look for resources associated with this release function 713 * @match: Match function (optional) 714 * @match_data: Data for the match function 715 * 716 * Find the latest devres of @dev associated with @release and for 717 * which @match returns 1. If @match is NULL, it's considered to 718 * match all. If found, the resource is removed atomically and 719 * returned. 720 * 721 * @return ointer to removed devres on success, NULL if not found. 722 */ 723 void *devres_remove(struct udevice *dev, dr_release_t release, 724 dr_match_t match, void *match_data); 725 726 /** 727 * devres_destroy() - Find a device resource and destroy it 728 * @dev: Device to find resource from 729 * @release: Look for resources associated with this release function 730 * @match: Match function (optional) 731 * @match_data: Data for the match function 732 * 733 * Find the latest devres of @dev associated with @release and for 734 * which @match returns 1. If @match is NULL, it's considered to 735 * match all. If found, the resource is removed atomically and freed. 736 * 737 * Note that the release function for the resource will not be called, 738 * only the devres-allocated data will be freed. The caller becomes 739 * responsible for freeing any other data. 740 * 741 * @return 0 if devres is found and freed, -ENOENT if not found. 742 */ 743 int devres_destroy(struct udevice *dev, dr_release_t release, 744 dr_match_t match, void *match_data); 745 746 /** 747 * devres_release() - Find a device resource and destroy it, calling release 748 * @dev: Device to find resource from 749 * @release: Look for resources associated with this release function 750 * @match: Match function (optional) 751 * @match_data: Data for the match function 752 * 753 * Find the latest devres of @dev associated with @release and for 754 * which @match returns 1. If @match is NULL, it's considered to 755 * match all. If found, the resource is removed atomically, the 756 * release function called and the resource freed. 757 * 758 * @return 0 if devres is found and freed, -ENOENT if not found. 759 */ 760 int devres_release(struct udevice *dev, dr_release_t release, 761 dr_match_t match, void *match_data); 762 763 /* managed devm_k.alloc/kfree for device drivers */ 764 /** 765 * devm_kmalloc() - Resource-managed kmalloc 766 * @dev: Device to allocate memory for 767 * @size: Allocation size 768 * @gfp: Allocation gfp flags 769 * 770 * Managed kmalloc. Memory allocated with this function is 771 * automatically freed on driver detach. Like all other devres 772 * resources, guaranteed alignment is unsigned long long. 773 * 774 * @return pointer to allocated memory on success, NULL on failure. 775 */ 776 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp); 777 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 778 { 779 return devm_kmalloc(dev, size, gfp | __GFP_ZERO); 780 } 781 static inline void *devm_kmalloc_array(struct udevice *dev, 782 size_t n, size_t size, gfp_t flags) 783 { 784 if (size != 0 && n > SIZE_MAX / size) 785 return NULL; 786 return devm_kmalloc(dev, n * size, flags); 787 } 788 static inline void *devm_kcalloc(struct udevice *dev, 789 size_t n, size_t size, gfp_t flags) 790 { 791 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); 792 } 793 794 /** 795 * devm_kfree() - Resource-managed kfree 796 * @dev: Device this memory belongs to 797 * @ptr: Memory to free 798 * 799 * Free memory allocated with devm_kmalloc(). 800 */ 801 void devm_kfree(struct udevice *dev, void *ptr); 802 803 #else /* ! CONFIG_DEVRES */ 804 805 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) 806 { 807 return kzalloc(size, gfp); 808 } 809 810 static inline void devres_free(void *res) 811 { 812 kfree(res); 813 } 814 815 static inline void devres_add(struct udevice *dev, void *res) 816 { 817 } 818 819 static inline void *devres_find(struct udevice *dev, dr_release_t release, 820 dr_match_t match, void *match_data) 821 { 822 return NULL; 823 } 824 825 static inline void *devres_get(struct udevice *dev, void *new_res, 826 dr_match_t match, void *match_data) 827 { 828 return NULL; 829 } 830 831 static inline void *devres_remove(struct udevice *dev, dr_release_t release, 832 dr_match_t match, void *match_data) 833 { 834 return NULL; 835 } 836 837 static inline int devres_destroy(struct udevice *dev, dr_release_t release, 838 dr_match_t match, void *match_data) 839 { 840 return 0; 841 } 842 843 static inline int devres_release(struct udevice *dev, dr_release_t release, 844 dr_match_t match, void *match_data) 845 { 846 return 0; 847 } 848 849 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp) 850 { 851 return kmalloc(size, gfp); 852 } 853 854 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 855 { 856 return kzalloc(size, gfp); 857 } 858 859 static inline void *devm_kmaloc_array(struct udevice *dev, 860 size_t n, size_t size, gfp_t flags) 861 { 862 /* TODO: add kmalloc_array() to linux/compat.h */ 863 if (size != 0 && n > SIZE_MAX / size) 864 return NULL; 865 return kmalloc(n * size, flags); 866 } 867 868 static inline void *devm_kcalloc(struct udevice *dev, 869 size_t n, size_t size, gfp_t flags) 870 { 871 /* TODO: add kcalloc() to linux/compat.h */ 872 return kmalloc(n * size, flags | __GFP_ZERO); 873 } 874 875 static inline void devm_kfree(struct udevice *dev, void *ptr) 876 { 877 kfree(ptr); 878 } 879 880 #endif /* ! CONFIG_DEVRES */ 881 882 #endif 883