xref: /openbmc/u-boot/include/dm/device.h (revision 679590eb)
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13 
14 #include <dm/ofnode.h>
15 #include <dm/uclass-id.h>
16 #include <fdtdec.h>
17 #include <linker_lists.h>
18 #include <linux/compat.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 
22 struct driver_info;
23 
24 /* Driver is active (probed). Cleared when it is removed */
25 #define DM_FLAG_ACTIVATED		(1 << 0)
26 
27 /* DM is responsible for allocating and freeing platdata */
28 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
29 
30 /* DM should init this device prior to relocation */
31 #define DM_FLAG_PRE_RELOC		(1 << 2)
32 
33 /* DM is responsible for allocating and freeing parent_platdata */
34 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
35 
36 /* DM is responsible for allocating and freeing uclass_platdata */
37 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
38 
39 /* Allocate driver private data on a DMA boundary */
40 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
41 
42 /* Device is bound */
43 #define DM_FLAG_BOUND			(1 << 6)
44 
45 /* Device name is allocated and should be freed on unbind() */
46 #define DM_FLAG_NAME_ALLOCED		(1 << 7)
47 
48 #define DM_FLAG_OF_PLATDATA		(1 << 8)
49 
50 /*
51  * Call driver remove function to stop currently active DMA transfers or
52  * give DMA buffers back to the HW / controller. This may be needed for
53  * some drivers to do some final stage cleanup before the OS is called
54  * (U-Boot exit)
55  */
56 #define DM_FLAG_ACTIVE_DMA		(1 << 9)
57 
58 /*
59  * Call driver remove function to do some final configuration, before
60  * U-Boot exits and the OS is started
61  */
62 #define DM_FLAG_OS_PREPARE		(1 << 10)
63 
64 /*
65  * One or multiple of these flags are passed to device_remove() so that
66  * a selective device removal as specified by the remove-stage and the
67  * driver flags can be done.
68  */
69 enum {
70 	/* Normal remove, remove all devices */
71 	DM_REMOVE_NORMAL     = 1 << 0,
72 
73 	/* Remove devices with active DMA */
74 	DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
75 
76 	/* Remove devices which need some final OS preparation steps */
77 	DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
78 
79 	/* Add more use cases here */
80 
81 	/* Remove devices with any active flag */
82 	DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
83 };
84 
85 /**
86  * struct udevice - An instance of a driver
87  *
88  * This holds information about a device, which is a driver bound to a
89  * particular port or peripheral (essentially a driver instance).
90  *
91  * A device will come into existence through a 'bind' call, either due to
92  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
93  * in the device tree (in which case of_offset is >= 0). In the latter case
94  * we translate the device tree information into platdata in a function
95  * implemented by the driver ofdata_to_platdata method (called just before the
96  * probe method if the device has a device tree node.
97  *
98  * All three of platdata, priv and uclass_priv can be allocated by the
99  * driver, or you can use the auto_alloc_size members of struct driver and
100  * struct uclass_driver to have driver model do this automatically.
101  *
102  * @driver: The driver used by this device
103  * @name: Name of device, typically the FDT node name
104  * @platdata: Configuration data for this device
105  * @parent_platdata: The parent bus's configuration data for this device
106  * @uclass_platdata: The uclass's configuration data for this device
107  * @node: Reference to device tree node for this device
108  * @driver_data: Driver data word for the entry that matched this device with
109  *		its driver
110  * @parent: Parent of this device, or NULL for the top level device
111  * @priv: Private data for this device
112  * @uclass: Pointer to uclass for this device
113  * @uclass_priv: The uclass's private data for this device
114  * @parent_priv: The parent's private data for this device
115  * @uclass_node: Used by uclass to link its devices
116  * @child_head: List of children of this device
117  * @sibling_node: Next device in list of all devices
118  * @flags: Flags for this device DM_FLAG_...
119  * @req_seq: Requested sequence number for this device (-1 = any)
120  * @seq: Allocated sequence number for this device (-1 = none). This is set up
121  * when the device is probed and will be unique within the device's uclass.
122  * @devres_head: List of memory allocations associated with this device.
123  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
124  *		add to this list. Memory so-allocated will be freed
125  *		automatically when the device is removed / unbound
126  */
127 struct udevice {
128 	const struct driver *driver;
129 	const char *name;
130 	void *platdata;
131 	void *parent_platdata;
132 	void *uclass_platdata;
133 	ofnode node;
134 	ulong driver_data;
135 	struct udevice *parent;
136 	void *priv;
137 	struct uclass *uclass;
138 	void *uclass_priv;
139 	void *parent_priv;
140 	struct list_head uclass_node;
141 	struct list_head child_head;
142 	struct list_head sibling_node;
143 	uint32_t flags;
144 	int req_seq;
145 	int seq;
146 #ifdef CONFIG_DEVRES
147 	struct list_head devres_head;
148 #endif
149 };
150 
151 /* Maximum sequence number supported */
152 #define DM_MAX_SEQ	999
153 
154 /* Returns the operations for a device */
155 #define device_get_ops(dev)	(dev->driver->ops)
156 
157 /* Returns non-zero if the device is active (probed and not removed) */
158 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
159 
160 static inline int dev_of_offset(const struct udevice *dev)
161 {
162 	return ofnode_to_offset(dev->node);
163 }
164 
165 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
166 {
167 	dev->node = offset_to_ofnode(of_offset);
168 }
169 
170 static inline bool dev_has_of_node(struct udevice *dev)
171 {
172 	return ofnode_valid(dev->node);
173 }
174 
175 /**
176  * struct udevice_id - Lists the compatible strings supported by a driver
177  * @compatible: Compatible string
178  * @data: Data for this compatible string
179  */
180 struct udevice_id {
181 	const char *compatible;
182 	ulong data;
183 };
184 
185 #if CONFIG_IS_ENABLED(OF_CONTROL)
186 #define of_match_ptr(_ptr)	(_ptr)
187 #else
188 #define of_match_ptr(_ptr)	NULL
189 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
190 
191 /**
192  * struct driver - A driver for a feature or peripheral
193  *
194  * This holds methods for setting up a new device, and also removing it.
195  * The device needs information to set itself up - this is provided either
196  * by platdata or a device tree node (which we find by looking up
197  * matching compatible strings with of_match).
198  *
199  * Drivers all belong to a uclass, representing a class of devices of the
200  * same type. Common elements of the drivers can be implemented in the uclass,
201  * or the uclass can provide a consistent interface to the drivers within
202  * it.
203  *
204  * @name: Device name
205  * @id: Identiies the uclass we belong to
206  * @of_match: List of compatible strings to match, and any identifying data
207  * for each.
208  * @bind: Called to bind a device to its driver
209  * @probe: Called to probe a device, i.e. activate it
210  * @remove: Called to remove a device, i.e. de-activate it
211  * @unbind: Called to unbind a device from its driver
212  * @ofdata_to_platdata: Called before probe to decode device tree data
213  * @child_post_bind: Called after a new child has been bound
214  * @child_pre_probe: Called before a child device is probed. The device has
215  * memory allocated but it has not yet been probed.
216  * @child_post_remove: Called after a child device is removed. The device
217  * has memory allocated but its device_remove() method has been called.
218  * @priv_auto_alloc_size: If non-zero this is the size of the private data
219  * to be allocated in the device's ->priv pointer. If zero, then the driver
220  * is responsible for allocating any data required.
221  * @platdata_auto_alloc_size: If non-zero this is the size of the
222  * platform data to be allocated in the device's ->platdata pointer.
223  * This is typically only useful for device-tree-aware drivers (those with
224  * an of_match), since drivers which use platdata will have the data
225  * provided in the U_BOOT_DEVICE() instantiation.
226  * @per_child_auto_alloc_size: Each device can hold private data owned by
227  * its parent. If required this will be automatically allocated if this
228  * value is non-zero.
229  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
230  * its children. If non-zero this is the size of this data, to be allocated
231  * in the child's parent_platdata pointer.
232  * @ops: Driver-specific operations. This is typically a list of function
233  * pointers defined by the driver, to implement driver functions required by
234  * the uclass.
235  * @flags: driver flags - see DM_FLAGS_...
236  */
237 struct driver {
238 	char *name;
239 	enum uclass_id id;
240 	const struct udevice_id *of_match;
241 	int (*bind)(struct udevice *dev);
242 	int (*probe)(struct udevice *dev);
243 	int (*remove)(struct udevice *dev);
244 	int (*unbind)(struct udevice *dev);
245 	int (*ofdata_to_platdata)(struct udevice *dev);
246 	int (*child_post_bind)(struct udevice *dev);
247 	int (*child_pre_probe)(struct udevice *dev);
248 	int (*child_post_remove)(struct udevice *dev);
249 	int priv_auto_alloc_size;
250 	int platdata_auto_alloc_size;
251 	int per_child_auto_alloc_size;
252 	int per_child_platdata_auto_alloc_size;
253 	const void *ops;	/* driver-specific operations */
254 	uint32_t flags;
255 };
256 
257 /* Declare a new U-Boot driver */
258 #define U_BOOT_DRIVER(__name)						\
259 	ll_entry_declare(struct driver, __name, driver)
260 
261 /* Get a pointer to a given driver */
262 #define DM_GET_DRIVER(__name)						\
263 	ll_entry_get(struct driver, __name, driver)
264 
265 /**
266  * dev_get_platdata() - Get the platform data for a device
267  *
268  * This checks that dev is not NULL, but no other checks for now
269  *
270  * @dev		Device to check
271  * @return platform data, or NULL if none
272  */
273 void *dev_get_platdata(struct udevice *dev);
274 
275 /**
276  * dev_get_parent_platdata() - Get the parent platform data for a device
277  *
278  * This checks that dev is not NULL, but no other checks for now
279  *
280  * @dev		Device to check
281  * @return parent's platform data, or NULL if none
282  */
283 void *dev_get_parent_platdata(struct udevice *dev);
284 
285 /**
286  * dev_get_uclass_platdata() - Get the uclass platform data for a device
287  *
288  * This checks that dev is not NULL, but no other checks for now
289  *
290  * @dev		Device to check
291  * @return uclass's platform data, or NULL if none
292  */
293 void *dev_get_uclass_platdata(struct udevice *dev);
294 
295 /**
296  * dev_get_priv() - Get the private data for a device
297  *
298  * This checks that dev is not NULL, but no other checks for now
299  *
300  * @dev		Device to check
301  * @return private data, or NULL if none
302  */
303 void *dev_get_priv(struct udevice *dev);
304 
305 /**
306  * dev_get_parent_priv() - Get the parent private data for a device
307  *
308  * The parent private data is data stored in the device but owned by the
309  * parent. For example, a USB device may have parent data which contains
310  * information about how to talk to the device over USB.
311  *
312  * This checks that dev is not NULL, but no other checks for now
313  *
314  * @dev		Device to check
315  * @return parent data, or NULL if none
316  */
317 void *dev_get_parent_priv(struct udevice *dev);
318 
319 /**
320  * dev_get_uclass_priv() - Get the private uclass data for a device
321  *
322  * This checks that dev is not NULL, but no other checks for now
323  *
324  * @dev		Device to check
325  * @return private uclass data for this device, or NULL if none
326  */
327 void *dev_get_uclass_priv(struct udevice *dev);
328 
329 /**
330  * struct dev_get_parent() - Get the parent of a device
331  *
332  * @child:	Child to check
333  * @return parent of child, or NULL if this is the root device
334  */
335 struct udevice *dev_get_parent(struct udevice *child);
336 
337 /**
338  * dev_get_driver_data() - get the driver data used to bind a device
339  *
340  * When a device is bound using a device tree node, it matches a
341  * particular compatible string in struct udevice_id. This function
342  * returns the associated data value for that compatible string. This is
343  * the 'data' field in struct udevice_id.
344  *
345  * As an example, consider this structure:
346  * static const struct udevice_id tegra_i2c_ids[] = {
347  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
348  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
349  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
350  *	{ }
351  * };
352  *
353  * When driver model finds a driver for this it will store the 'data' value
354  * corresponding to the compatible string it matches. This function returns
355  * that value. This allows the driver to handle several variants of a device.
356  *
357  * For USB devices, this is the driver_info field in struct usb_device_id.
358  *
359  * @dev:	Device to check
360  * @return driver data (0 if none is provided)
361  */
362 ulong dev_get_driver_data(struct udevice *dev);
363 
364 /**
365  * dev_get_driver_ops() - get the device's driver's operations
366  *
367  * This checks that dev is not NULL, and returns the pointer to device's
368  * driver's operations.
369  *
370  * @dev:	Device to check
371  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
372  */
373 const void *dev_get_driver_ops(struct udevice *dev);
374 
375 /**
376  * device_get_uclass_id() - return the uclass ID of a device
377  *
378  * @dev:	Device to check
379  * @return uclass ID for the device
380  */
381 enum uclass_id device_get_uclass_id(struct udevice *dev);
382 
383 /**
384  * dev_get_uclass_name() - return the uclass name of a device
385  *
386  * This checks that dev is not NULL.
387  *
388  * @dev:	Device to check
389  * @return  pointer to the uclass name for the device
390  */
391 const char *dev_get_uclass_name(struct udevice *dev);
392 
393 /**
394  * device_get_child() - Get the child of a device by index
395  *
396  * Returns the numbered child, 0 being the first. This does not use
397  * sequence numbers, only the natural order.
398  *
399  * @dev:	Parent device to check
400  * @index:	Child index
401  * @devp:	Returns pointer to device
402  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
403  *	   to probe
404  */
405 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
406 
407 /**
408  * device_find_child_by_seq() - Find a child device based on a sequence
409  *
410  * This searches for a device with the given seq or req_seq.
411  *
412  * For seq, if an active device has this sequence it will be returned.
413  * If there is no such device then this will return -ENODEV.
414  *
415  * For req_seq, if a device (whether activated or not) has this req_seq
416  * value, that device will be returned. This is a strong indication that
417  * the device will receive that sequence when activated.
418  *
419  * @parent: Parent device
420  * @seq_or_req_seq: Sequence number to find (0=first)
421  * @find_req_seq: true to find req_seq, false to find seq
422  * @devp: Returns pointer to device (there is only one per for each seq).
423  * Set to NULL if none is found
424  * @return 0 if OK, -ve on error
425  */
426 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
427 			     bool find_req_seq, struct udevice **devp);
428 
429 /**
430  * device_get_child_by_seq() - Get a child device based on a sequence
431  *
432  * If an active device has this sequence it will be returned. If there is no
433  * such device then this will check for a device that is requesting this
434  * sequence.
435  *
436  * The device is probed to activate it ready for use.
437  *
438  * @parent: Parent device
439  * @seq: Sequence number to find (0=first)
440  * @devp: Returns pointer to device (there is only one per for each seq)
441  * Set to NULL if none is found
442  * @return 0 if OK, -ve on error
443  */
444 int device_get_child_by_seq(struct udevice *parent, int seq,
445 			    struct udevice **devp);
446 
447 /**
448  * device_find_child_by_of_offset() - Find a child device based on FDT offset
449  *
450  * Locates a child device by its device tree offset.
451  *
452  * @parent: Parent device
453  * @of_offset: Device tree offset to find
454  * @devp: Returns pointer to device if found, otherwise this is set to NULL
455  * @return 0 if OK, -ve on error
456  */
457 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
458 				   struct udevice **devp);
459 
460 /**
461  * device_get_child_by_of_offset() - Get a child device based on FDT offset
462  *
463  * Locates a child device by its device tree offset.
464  *
465  * The device is probed to activate it ready for use.
466  *
467  * @parent: Parent device
468  * @of_offset: Device tree offset to find
469  * @devp: Returns pointer to device if found, otherwise this is set to NULL
470  * @return 0 if OK, -ve on error
471  */
472 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
473 				  struct udevice **devp);
474 
475 /**
476  * device_get_global_by_of_offset() - Get a device based on FDT offset
477  *
478  * Locates a device by its device tree offset, searching globally throughout
479  * the all driver model devices.
480  *
481  * The device is probed to activate it ready for use.
482  *
483  * @of_offset: Device tree offset to find
484  * @devp: Returns pointer to device if found, otherwise this is set to NULL
485  * @return 0 if OK, -ve on error
486  */
487 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
488 
489 /**
490  * device_find_first_child() - Find the first child of a device
491  *
492  * @parent: Parent device to search
493  * @devp: Returns first child device, or NULL if none
494  * @return 0
495  */
496 int device_find_first_child(struct udevice *parent, struct udevice **devp);
497 
498 /**
499  * device_find_next_child() - Find the next child of a device
500  *
501  * @devp: Pointer to previous child device on entry. Returns pointer to next
502  *		child device, or NULL if none
503  * @return 0
504  */
505 int device_find_next_child(struct udevice **devp);
506 
507 /**
508  * device_has_children() - check if a device has any children
509  *
510  * @dev:	Device to check
511  * @return true if the device has one or more children
512  */
513 bool device_has_children(struct udevice *dev);
514 
515 /**
516  * device_has_active_children() - check if a device has any active children
517  *
518  * @dev:	Device to check
519  * @return true if the device has one or more children and at least one of
520  * them is active (probed).
521  */
522 bool device_has_active_children(struct udevice *dev);
523 
524 /**
525  * device_is_last_sibling() - check if a device is the last sibling
526  *
527  * This function can be useful for display purposes, when special action needs
528  * to be taken when displaying the last sibling. This can happen when a tree
529  * view of devices is being displayed.
530  *
531  * @dev:	Device to check
532  * @return true if there are no more siblings after this one - i.e. is it
533  * last in the list.
534  */
535 bool device_is_last_sibling(struct udevice *dev);
536 
537 /**
538  * device_set_name() - set the name of a device
539  *
540  * This must be called in the device's bind() method and no later. Normally
541  * this is unnecessary but for probed devices which don't get a useful name
542  * this function can be helpful.
543  *
544  * The name is allocated and will be freed automatically when the device is
545  * unbound.
546  *
547  * @dev:	Device to update
548  * @name:	New name (this string is allocated new memory and attached to
549  *		the device)
550  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
551  * string
552  */
553 int device_set_name(struct udevice *dev, const char *name);
554 
555 /**
556  * device_set_name_alloced() - note that a device name is allocated
557  *
558  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
559  * unbound the name will be freed. This avoids memory leaks.
560  *
561  * @dev:	Device to update
562  */
563 void device_set_name_alloced(struct udevice *dev);
564 
565 /**
566  * device_is_compatible() - check if the device is compatible with the compat
567  *
568  * This allows to check whether the device is comaptible with the compat.
569  *
570  * @dev:	udevice pointer for which compatible needs to be verified.
571  * @compat:	Compatible string which needs to verified in the given
572  *		device
573  * @return true if OK, false if the compatible is not found
574  */
575 bool device_is_compatible(struct udevice *dev, const char *compat);
576 
577 /**
578  * of_machine_is_compatible() - check if the machine is compatible with
579  *				the compat
580  *
581  * This allows to check whether the machine is comaptible with the compat.
582  *
583  * @compat:	Compatible string which needs to verified
584  * @return true if OK, false if the compatible is not found
585  */
586 bool of_machine_is_compatible(const char *compat);
587 
588 /**
589  * device_is_on_pci_bus - Test if a device is on a PCI bus
590  *
591  * @dev:	device to test
592  * @return:	true if it is on a PCI bus, false otherwise
593  */
594 static inline bool device_is_on_pci_bus(struct udevice *dev)
595 {
596 	return device_get_uclass_id(dev->parent) == UCLASS_PCI;
597 }
598 
599 /**
600  * device_foreach_child_safe() - iterate through child devices safely
601  *
602  * This allows the @pos child to be removed in the loop if required.
603  *
604  * @pos: struct udevice * for the current device
605  * @next: struct udevice * for the next device
606  * @parent: parent device to scan
607  */
608 #define device_foreach_child_safe(pos, next, parent)	\
609 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
610 
611 /**
612  * dm_scan_fdt_dev() - Bind child device in a the device tree
613  *
614  * This handles device which have sub-nodes in the device tree. It scans all
615  * sub-nodes and binds drivers for each node where a driver can be found.
616  *
617  * If this is called prior to relocation, only pre-relocation devices will be
618  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
619  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
620  * be bound.
621  *
622  * @dev:	Device to scan
623  * @return 0 if OK, -ve on error
624  */
625 int dm_scan_fdt_dev(struct udevice *dev);
626 
627 /* device resource management */
628 typedef void (*dr_release_t)(struct udevice *dev, void *res);
629 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
630 
631 #ifdef CONFIG_DEVRES
632 
633 #ifdef CONFIG_DEBUG_DEVRES
634 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
635 		     const char *name);
636 #define _devres_alloc(release, size, gfp) \
637 	__devres_alloc(release, size, gfp, #release)
638 #else
639 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
640 #endif
641 
642 /**
643  * devres_alloc() - Allocate device resource data
644  * @release: Release function devres will be associated with
645  * @size: Allocation size
646  * @gfp: Allocation flags
647  *
648  * Allocate devres of @size bytes.  The allocated area is associated
649  * with @release.  The returned pointer can be passed to
650  * other devres_*() functions.
651  *
652  * RETURNS:
653  * Pointer to allocated devres on success, NULL on failure.
654  */
655 #define devres_alloc(release, size, gfp) \
656 	_devres_alloc(release, size, gfp | __GFP_ZERO)
657 
658 /**
659  * devres_free() - Free device resource data
660  * @res: Pointer to devres data to free
661  *
662  * Free devres created with devres_alloc().
663  */
664 void devres_free(void *res);
665 
666 /**
667  * devres_add() - Register device resource
668  * @dev: Device to add resource to
669  * @res: Resource to register
670  *
671  * Register devres @res to @dev.  @res should have been allocated
672  * using devres_alloc().  On driver detach, the associated release
673  * function will be invoked and devres will be freed automatically.
674  */
675 void devres_add(struct udevice *dev, void *res);
676 
677 /**
678  * devres_find() - Find device resource
679  * @dev: Device to lookup resource from
680  * @release: Look for resources associated with this release function
681  * @match: Match function (optional)
682  * @match_data: Data for the match function
683  *
684  * Find the latest devres of @dev which is associated with @release
685  * and for which @match returns 1.  If @match is NULL, it's considered
686  * to match all.
687  *
688  * @return pointer to found devres, NULL if not found.
689  */
690 void *devres_find(struct udevice *dev, dr_release_t release,
691 		  dr_match_t match, void *match_data);
692 
693 /**
694  * devres_get() - Find devres, if non-existent, add one atomically
695  * @dev: Device to lookup or add devres for
696  * @new_res: Pointer to new initialized devres to add if not found
697  * @match: Match function (optional)
698  * @match_data: Data for the match function
699  *
700  * Find the latest devres of @dev which has the same release function
701  * as @new_res and for which @match return 1.  If found, @new_res is
702  * freed; otherwise, @new_res is added atomically.
703  *
704  * @return ointer to found or added devres.
705  */
706 void *devres_get(struct udevice *dev, void *new_res,
707 		 dr_match_t match, void *match_data);
708 
709 /**
710  * devres_remove() - Find a device resource and remove it
711  * @dev: Device to find resource from
712  * @release: Look for resources associated with this release function
713  * @match: Match function (optional)
714  * @match_data: Data for the match function
715  *
716  * Find the latest devres of @dev associated with @release and for
717  * which @match returns 1.  If @match is NULL, it's considered to
718  * match all.  If found, the resource is removed atomically and
719  * returned.
720  *
721  * @return ointer to removed devres on success, NULL if not found.
722  */
723 void *devres_remove(struct udevice *dev, dr_release_t release,
724 		    dr_match_t match, void *match_data);
725 
726 /**
727  * devres_destroy() - Find a device resource and destroy it
728  * @dev: Device to find resource from
729  * @release: Look for resources associated with this release function
730  * @match: Match function (optional)
731  * @match_data: Data for the match function
732  *
733  * Find the latest devres of @dev associated with @release and for
734  * which @match returns 1.  If @match is NULL, it's considered to
735  * match all.  If found, the resource is removed atomically and freed.
736  *
737  * Note that the release function for the resource will not be called,
738  * only the devres-allocated data will be freed.  The caller becomes
739  * responsible for freeing any other data.
740  *
741  * @return 0 if devres is found and freed, -ENOENT if not found.
742  */
743 int devres_destroy(struct udevice *dev, dr_release_t release,
744 		   dr_match_t match, void *match_data);
745 
746 /**
747  * devres_release() - Find a device resource and destroy it, calling release
748  * @dev: Device to find resource from
749  * @release: Look for resources associated with this release function
750  * @match: Match function (optional)
751  * @match_data: Data for the match function
752  *
753  * Find the latest devres of @dev associated with @release and for
754  * which @match returns 1.  If @match is NULL, it's considered to
755  * match all.  If found, the resource is removed atomically, the
756  * release function called and the resource freed.
757  *
758  * @return 0 if devres is found and freed, -ENOENT if not found.
759  */
760 int devres_release(struct udevice *dev, dr_release_t release,
761 		   dr_match_t match, void *match_data);
762 
763 /* managed devm_k.alloc/kfree for device drivers */
764 /**
765  * devm_kmalloc() - Resource-managed kmalloc
766  * @dev: Device to allocate memory for
767  * @size: Allocation size
768  * @gfp: Allocation gfp flags
769  *
770  * Managed kmalloc.  Memory allocated with this function is
771  * automatically freed on driver detach.  Like all other devres
772  * resources, guaranteed alignment is unsigned long long.
773  *
774  * @return pointer to allocated memory on success, NULL on failure.
775  */
776 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
777 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
778 {
779 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
780 }
781 static inline void *devm_kmalloc_array(struct udevice *dev,
782 				       size_t n, size_t size, gfp_t flags)
783 {
784 	if (size != 0 && n > SIZE_MAX / size)
785 		return NULL;
786 	return devm_kmalloc(dev, n * size, flags);
787 }
788 static inline void *devm_kcalloc(struct udevice *dev,
789 				 size_t n, size_t size, gfp_t flags)
790 {
791 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
792 }
793 
794 /**
795  * devm_kfree() - Resource-managed kfree
796  * @dev: Device this memory belongs to
797  * @ptr: Memory to free
798  *
799  * Free memory allocated with devm_kmalloc().
800  */
801 void devm_kfree(struct udevice *dev, void *ptr);
802 
803 #else /* ! CONFIG_DEVRES */
804 
805 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
806 {
807 	return kzalloc(size, gfp);
808 }
809 
810 static inline void devres_free(void *res)
811 {
812 	kfree(res);
813 }
814 
815 static inline void devres_add(struct udevice *dev, void *res)
816 {
817 }
818 
819 static inline void *devres_find(struct udevice *dev, dr_release_t release,
820 				dr_match_t match, void *match_data)
821 {
822 	return NULL;
823 }
824 
825 static inline void *devres_get(struct udevice *dev, void *new_res,
826 			       dr_match_t match, void *match_data)
827 {
828 	return NULL;
829 }
830 
831 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
832 				  dr_match_t match, void *match_data)
833 {
834 	return NULL;
835 }
836 
837 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
838 				 dr_match_t match, void *match_data)
839 {
840 	return 0;
841 }
842 
843 static inline int devres_release(struct udevice *dev, dr_release_t release,
844 				 dr_match_t match, void *match_data)
845 {
846 	return 0;
847 }
848 
849 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
850 {
851 	return kmalloc(size, gfp);
852 }
853 
854 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
855 {
856 	return kzalloc(size, gfp);
857 }
858 
859 static inline void *devm_kmaloc_array(struct udevice *dev,
860 				      size_t n, size_t size, gfp_t flags)
861 {
862 	/* TODO: add kmalloc_array() to linux/compat.h */
863 	if (size != 0 && n > SIZE_MAX / size)
864 		return NULL;
865 	return kmalloc(n * size, flags);
866 }
867 
868 static inline void *devm_kcalloc(struct udevice *dev,
869 				 size_t n, size_t size, gfp_t flags)
870 {
871 	/* TODO: add kcalloc() to linux/compat.h */
872 	return kmalloc(n * size, flags | __GFP_ZERO);
873 }
874 
875 static inline void devm_kfree(struct udevice *dev, void *ptr)
876 {
877 	kfree(ptr);
878 }
879 
880 #endif /* ! CONFIG_DEVRES */
881 
882 #endif
883