xref: /openbmc/u-boot/include/dm/device.h (revision 4d93617d)
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13 
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/list.h>
18 
19 struct driver_info;
20 
21 /* Driver is active (probed). Cleared when it is removed */
22 #define DM_FLAG_ACTIVATED	(1 << 0)
23 
24 /* DM is responsible for allocating and freeing platdata */
25 #define DM_FLAG_ALLOC_PDATA	(1 << 1)
26 
27 /* DM should init this device prior to relocation */
28 #define DM_FLAG_PRE_RELOC	(1 << 2)
29 
30 /* DM is responsible for allocating and freeing parent_platdata */
31 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
32 
33 /**
34  * struct udevice - An instance of a driver
35  *
36  * This holds information about a device, which is a driver bound to a
37  * particular port or peripheral (essentially a driver instance).
38  *
39  * A device will come into existence through a 'bind' call, either due to
40  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
41  * in the device tree (in which case of_offset is >= 0). In the latter case
42  * we translate the device tree information into platdata in a function
43  * implemented by the driver ofdata_to_platdata method (called just before the
44  * probe method if the device has a device tree node.
45  *
46  * All three of platdata, priv and uclass_priv can be allocated by the
47  * driver, or you can use the auto_alloc_size members of struct driver and
48  * struct uclass_driver to have driver model do this automatically.
49  *
50  * @driver: The driver used by this device
51  * @name: Name of device, typically the FDT node name
52  * @platdata: Configuration data for this device
53  * @parent_platdata: The parent bus's configuration data for this device
54  * @of_offset: Device tree node offset for this device (- for none)
55  * @of_id: Pointer to the udevice_id structure which created the device
56  * @parent: Parent of this device, or NULL for the top level device
57  * @priv: Private data for this device
58  * @uclass: Pointer to uclass for this device
59  * @uclass_priv: The uclass's private data for this device
60  * @parent_priv: The parent's private data for this device
61  * @uclass_node: Used by uclass to link its devices
62  * @child_head: List of children of this device
63  * @sibling_node: Next device in list of all devices
64  * @flags: Flags for this device DM_FLAG_...
65  * @req_seq: Requested sequence number for this device (-1 = any)
66  * @seq: Allocated sequence number for this device (-1 = none). This is set up
67  * when the device is probed and will be unique within the device's uclass.
68  */
69 struct udevice {
70 	struct driver *driver;
71 	const char *name;
72 	void *platdata;
73 	void *parent_platdata;
74 	int of_offset;
75 	const struct udevice_id *of_id;
76 	struct udevice *parent;
77 	void *priv;
78 	struct uclass *uclass;
79 	void *uclass_priv;
80 	void *parent_priv;
81 	struct list_head uclass_node;
82 	struct list_head child_head;
83 	struct list_head sibling_node;
84 	uint32_t flags;
85 	int req_seq;
86 	int seq;
87 };
88 
89 /* Maximum sequence number supported */
90 #define DM_MAX_SEQ	999
91 
92 /* Returns the operations for a device */
93 #define device_get_ops(dev)	(dev->driver->ops)
94 
95 /* Returns non-zero if the device is active (probed and not removed) */
96 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
97 
98 /**
99  * struct udevice_id - Lists the compatible strings supported by a driver
100  * @compatible: Compatible string
101  * @data: Data for this compatible string
102  */
103 struct udevice_id {
104 	const char *compatible;
105 	ulong data;
106 };
107 
108 #ifdef CONFIG_OF_CONTROL
109 #define of_match_ptr(_ptr)	(_ptr)
110 #else
111 #define of_match_ptr(_ptr)	NULL
112 #endif /* CONFIG_OF_CONTROL */
113 
114 /**
115  * struct driver - A driver for a feature or peripheral
116  *
117  * This holds methods for setting up a new device, and also removing it.
118  * The device needs information to set itself up - this is provided either
119  * by platdata or a device tree node (which we find by looking up
120  * matching compatible strings with of_match).
121  *
122  * Drivers all belong to a uclass, representing a class of devices of the
123  * same type. Common elements of the drivers can be implemented in the uclass,
124  * or the uclass can provide a consistent interface to the drivers within
125  * it.
126  *
127  * @name: Device name
128  * @id: Identiies the uclass we belong to
129  * @of_match: List of compatible strings to match, and any identifying data
130  * for each.
131  * @bind: Called to bind a device to its driver
132  * @probe: Called to probe a device, i.e. activate it
133  * @remove: Called to remove a device, i.e. de-activate it
134  * @unbind: Called to unbind a device from its driver
135  * @ofdata_to_platdata: Called before probe to decode device tree data
136  * @child_post_bind: Called after a new child has been bound
137  * @child_pre_probe: Called before a child device is probed. The device has
138  * memory allocated but it has not yet been probed.
139  * @child_post_remove: Called after a child device is removed. The device
140  * has memory allocated but its device_remove() method has been called.
141  * @priv_auto_alloc_size: If non-zero this is the size of the private data
142  * to be allocated in the device's ->priv pointer. If zero, then the driver
143  * is responsible for allocating any data required.
144  * @platdata_auto_alloc_size: If non-zero this is the size of the
145  * platform data to be allocated in the device's ->platdata pointer.
146  * This is typically only useful for device-tree-aware drivers (those with
147  * an of_match), since drivers which use platdata will have the data
148  * provided in the U_BOOT_DEVICE() instantiation.
149  * @per_child_auto_alloc_size: Each device can hold private data owned by
150  * its parent. If required this will be automatically allocated if this
151  * value is non-zero.
152  * TODO(sjg@chromium.org): I'm considering dropping this, and just having
153  * device_probe_child() pass it in. So far the use case for allocating it
154  * is SPI, but I found that unsatisfactory. Since it is here I will leave it
155  * until things are clearer.
156  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
157  * its children. If non-zero this is the size of this data, to be allocated
158  * in the child's parent_platdata pointer.
159  * @ops: Driver-specific operations. This is typically a list of function
160  * pointers defined by the driver, to implement driver functions required by
161  * the uclass.
162  * @flags: driver flags - see DM_FLAGS_...
163  */
164 struct driver {
165 	char *name;
166 	enum uclass_id id;
167 	const struct udevice_id *of_match;
168 	int (*bind)(struct udevice *dev);
169 	int (*probe)(struct udevice *dev);
170 	int (*remove)(struct udevice *dev);
171 	int (*unbind)(struct udevice *dev);
172 	int (*ofdata_to_platdata)(struct udevice *dev);
173 	int (*child_post_bind)(struct udevice *dev);
174 	int (*child_pre_probe)(struct udevice *dev);
175 	int (*child_post_remove)(struct udevice *dev);
176 	int priv_auto_alloc_size;
177 	int platdata_auto_alloc_size;
178 	int per_child_auto_alloc_size;
179 	int per_child_platdata_auto_alloc_size;
180 	const void *ops;	/* driver-specific operations */
181 	uint32_t flags;
182 };
183 
184 /* Declare a new U-Boot driver */
185 #define U_BOOT_DRIVER(__name)						\
186 	ll_entry_declare(struct driver, __name, driver)
187 
188 /**
189  * dev_get_platdata() - Get the platform data for a device
190  *
191  * This checks that dev is not NULL, but no other checks for now
192  *
193  * @dev		Device to check
194  * @return platform data, or NULL if none
195  */
196 void *dev_get_platdata(struct udevice *dev);
197 
198 /**
199  * dev_get_parent_platdata() - Get the parent platform data for a device
200  *
201  * This checks that dev is not NULL, but no other checks for now
202  *
203  * @dev		Device to check
204  * @return parent's platform data, or NULL if none
205  */
206 void *dev_get_parent_platdata(struct udevice *dev);
207 
208 /**
209  * dev_get_parentdata() - Get the parent data for a device
210  *
211  * The parent data is data stored in the device but owned by the parent.
212  * For example, a USB device may have parent data which contains information
213  * about how to talk to the device over USB.
214  *
215  * This checks that dev is not NULL, but no other checks for now
216  *
217  * @dev		Device to check
218  * @return parent data, or NULL if none
219  */
220 void *dev_get_parentdata(struct udevice *dev);
221 
222 /**
223  * dev_get_priv() - Get the private data for a device
224  *
225  * This checks that dev is not NULL, but no other checks for now
226  *
227  * @dev		Device to check
228  * @return private data, or NULL if none
229  */
230 void *dev_get_priv(struct udevice *dev);
231 
232 /**
233  * struct dev_get_parent() - Get the parent of a device
234  *
235  * @child:	Child to check
236  * @return parent of child, or NULL if this is the root device
237  */
238 struct udevice *dev_get_parent(struct udevice *child);
239 
240 /**
241  * dev_get_of_data() - get the device tree data used to bind a device
242  *
243  * When a device is bound using a device tree node, it matches a
244  * particular compatible string as in struct udevice_id. This function
245  * returns the associated data value for that compatible string
246  */
247 ulong dev_get_of_data(struct udevice *dev);
248 
249 /*
250  * device_get_uclass_id() - return the uclass ID of a device
251  *
252  * @dev:	Device to check
253  * @return uclass ID for the device
254  */
255 enum uclass_id device_get_uclass_id(struct udevice *dev);
256 
257 /**
258  * device_get_child() - Get the child of a device by index
259  *
260  * Returns the numbered child, 0 being the first. This does not use
261  * sequence numbers, only the natural order.
262  *
263  * @dev:	Parent device to check
264  * @index:	Child index
265  * @devp:	Returns pointer to device
266  */
267 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
268 
269 /**
270  * device_find_child_by_seq() - Find a child device based on a sequence
271  *
272  * This searches for a device with the given seq or req_seq.
273  *
274  * For seq, if an active device has this sequence it will be returned.
275  * If there is no such device then this will return -ENODEV.
276  *
277  * For req_seq, if a device (whether activated or not) has this req_seq
278  * value, that device will be returned. This is a strong indication that
279  * the device will receive that sequence when activated.
280  *
281  * @parent: Parent device
282  * @seq_or_req_seq: Sequence number to find (0=first)
283  * @find_req_seq: true to find req_seq, false to find seq
284  * @devp: Returns pointer to device (there is only one per for each seq).
285  * Set to NULL if none is found
286  * @return 0 if OK, -ve on error
287  */
288 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
289 			     bool find_req_seq, struct udevice **devp);
290 
291 /**
292  * device_get_child_by_seq() - Get a child device based on a sequence
293  *
294  * If an active device has this sequence it will be returned. If there is no
295  * such device then this will check for a device that is requesting this
296  * sequence.
297  *
298  * The device is probed to activate it ready for use.
299  *
300  * @parent: Parent device
301  * @seq: Sequence number to find (0=first)
302  * @devp: Returns pointer to device (there is only one per for each seq)
303  * Set to NULL if none is found
304  * @return 0 if OK, -ve on error
305  */
306 int device_get_child_by_seq(struct udevice *parent, int seq,
307 			    struct udevice **devp);
308 
309 /**
310  * device_find_child_by_of_offset() - Find a child device based on FDT offset
311  *
312  * Locates a child device by its device tree offset.
313  *
314  * @parent: Parent device
315  * @of_offset: Device tree offset to find
316  * @devp: Returns pointer to device if found, otherwise this is set to NULL
317  * @return 0 if OK, -ve on error
318  */
319 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
320 				   struct udevice **devp);
321 
322 /**
323  * device_get_child_by_of_offset() - Get a child device based on FDT offset
324  *
325  * Locates a child device by its device tree offset.
326  *
327  * The device is probed to activate it ready for use.
328  *
329  * @parent: Parent device
330  * @of_offset: Device tree offset to find
331  * @devp: Returns pointer to device if found, otherwise this is set to NULL
332  * @return 0 if OK, -ve on error
333  */
334 int device_get_child_by_of_offset(struct udevice *parent, int seq,
335 				  struct udevice **devp);
336 
337 /**
338  * device_find_first_child() - Find the first child of a device
339  *
340  * @parent: Parent device to search
341  * @devp: Returns first child device, or NULL if none
342  * @return 0
343  */
344 int device_find_first_child(struct udevice *parent, struct udevice **devp);
345 
346 /**
347  * device_find_first_child() - Find the first child of a device
348  *
349  * @devp: Pointer to previous child device on entry. Returns pointer to next
350  *		child device, or NULL if none
351  * @return 0
352  */
353 int device_find_next_child(struct udevice **devp);
354 
355 /**
356  * dev_get_addr() - Get the reg property of a device
357  *
358  * @dev: Pointer to a device
359  *
360  * @return addr
361  */
362 fdt_addr_t dev_get_addr(struct udevice *dev);
363 
364 #endif
365