xref: /openbmc/u-boot/include/dm/device.h (revision 274bced8)
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13 
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 
21 struct driver_info;
22 
23 /* Driver is active (probed). Cleared when it is removed */
24 #define DM_FLAG_ACTIVATED		(1 << 0)
25 
26 /* DM is responsible for allocating and freeing platdata */
27 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
28 
29 /* DM should init this device prior to relocation */
30 #define DM_FLAG_PRE_RELOC		(1 << 2)
31 
32 /* DM is responsible for allocating and freeing parent_platdata */
33 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
34 
35 /* DM is responsible for allocating and freeing uclass_platdata */
36 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
37 
38 /* Allocate driver private data on a DMA boundary */
39 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
40 
41 /* Device is bound */
42 #define DM_FLAG_BOUND			(1 << 6)
43 
44 /* Device name is allocated and should be freed on unbind() */
45 #define DM_FLAG_NAME_ALLOCED		(1 << 7)
46 
47 #define DM_FLAG_OF_PLATDATA		(1 << 8)
48 
49 /**
50  * struct udevice - An instance of a driver
51  *
52  * This holds information about a device, which is a driver bound to a
53  * particular port or peripheral (essentially a driver instance).
54  *
55  * A device will come into existence through a 'bind' call, either due to
56  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
57  * in the device tree (in which case of_offset is >= 0). In the latter case
58  * we translate the device tree information into platdata in a function
59  * implemented by the driver ofdata_to_platdata method (called just before the
60  * probe method if the device has a device tree node.
61  *
62  * All three of platdata, priv and uclass_priv can be allocated by the
63  * driver, or you can use the auto_alloc_size members of struct driver and
64  * struct uclass_driver to have driver model do this automatically.
65  *
66  * @driver: The driver used by this device
67  * @name: Name of device, typically the FDT node name
68  * @platdata: Configuration data for this device
69  * @parent_platdata: The parent bus's configuration data for this device
70  * @uclass_platdata: The uclass's configuration data for this device
71  * @of_offset: Device tree node offset for this device (- for none)
72  * @driver_data: Driver data word for the entry that matched this device with
73  *		its driver
74  * @parent: Parent of this device, or NULL for the top level device
75  * @priv: Private data for this device
76  * @uclass: Pointer to uclass for this device
77  * @uclass_priv: The uclass's private data for this device
78  * @parent_priv: The parent's private data for this device
79  * @uclass_node: Used by uclass to link its devices
80  * @child_head: List of children of this device
81  * @sibling_node: Next device in list of all devices
82  * @flags: Flags for this device DM_FLAG_...
83  * @req_seq: Requested sequence number for this device (-1 = any)
84  * @seq: Allocated sequence number for this device (-1 = none). This is set up
85  * when the device is probed and will be unique within the device's uclass.
86  * @devres_head: List of memory allocations associated with this device.
87  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
88  *		add to this list. Memory so-allocated will be freed
89  *		automatically when the device is removed / unbound
90  */
91 struct udevice {
92 	const struct driver *driver;
93 	const char *name;
94 	void *platdata;
95 	void *parent_platdata;
96 	void *uclass_platdata;
97 	int of_offset;
98 	ulong driver_data;
99 	struct udevice *parent;
100 	void *priv;
101 	struct uclass *uclass;
102 	void *uclass_priv;
103 	void *parent_priv;
104 	struct list_head uclass_node;
105 	struct list_head child_head;
106 	struct list_head sibling_node;
107 	uint32_t flags;
108 	int req_seq;
109 	int seq;
110 #ifdef CONFIG_DEVRES
111 	struct list_head devres_head;
112 #endif
113 };
114 
115 /* Maximum sequence number supported */
116 #define DM_MAX_SEQ	999
117 
118 /* Returns the operations for a device */
119 #define device_get_ops(dev)	(dev->driver->ops)
120 
121 /* Returns non-zero if the device is active (probed and not removed) */
122 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
123 
124 static inline int dev_of_offset(const struct udevice *dev)
125 {
126 	return dev->of_offset;
127 }
128 
129 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
130 {
131 	dev->of_offset = of_offset;
132 }
133 
134 /**
135  * struct udevice_id - Lists the compatible strings supported by a driver
136  * @compatible: Compatible string
137  * @data: Data for this compatible string
138  */
139 struct udevice_id {
140 	const char *compatible;
141 	ulong data;
142 };
143 
144 #if CONFIG_IS_ENABLED(OF_CONTROL)
145 #define of_match_ptr(_ptr)	(_ptr)
146 #else
147 #define of_match_ptr(_ptr)	NULL
148 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
149 
150 /**
151  * struct driver - A driver for a feature or peripheral
152  *
153  * This holds methods for setting up a new device, and also removing it.
154  * The device needs information to set itself up - this is provided either
155  * by platdata or a device tree node (which we find by looking up
156  * matching compatible strings with of_match).
157  *
158  * Drivers all belong to a uclass, representing a class of devices of the
159  * same type. Common elements of the drivers can be implemented in the uclass,
160  * or the uclass can provide a consistent interface to the drivers within
161  * it.
162  *
163  * @name: Device name
164  * @id: Identiies the uclass we belong to
165  * @of_match: List of compatible strings to match, and any identifying data
166  * for each.
167  * @bind: Called to bind a device to its driver
168  * @probe: Called to probe a device, i.e. activate it
169  * @remove: Called to remove a device, i.e. de-activate it
170  * @unbind: Called to unbind a device from its driver
171  * @ofdata_to_platdata: Called before probe to decode device tree data
172  * @child_post_bind: Called after a new child has been bound
173  * @child_pre_probe: Called before a child device is probed. The device has
174  * memory allocated but it has not yet been probed.
175  * @child_post_remove: Called after a child device is removed. The device
176  * has memory allocated but its device_remove() method has been called.
177  * @priv_auto_alloc_size: If non-zero this is the size of the private data
178  * to be allocated in the device's ->priv pointer. If zero, then the driver
179  * is responsible for allocating any data required.
180  * @platdata_auto_alloc_size: If non-zero this is the size of the
181  * platform data to be allocated in the device's ->platdata pointer.
182  * This is typically only useful for device-tree-aware drivers (those with
183  * an of_match), since drivers which use platdata will have the data
184  * provided in the U_BOOT_DEVICE() instantiation.
185  * @per_child_auto_alloc_size: Each device can hold private data owned by
186  * its parent. If required this will be automatically allocated if this
187  * value is non-zero.
188  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
189  * its children. If non-zero this is the size of this data, to be allocated
190  * in the child's parent_platdata pointer.
191  * @ops: Driver-specific operations. This is typically a list of function
192  * pointers defined by the driver, to implement driver functions required by
193  * the uclass.
194  * @flags: driver flags - see DM_FLAGS_...
195  */
196 struct driver {
197 	char *name;
198 	enum uclass_id id;
199 	const struct udevice_id *of_match;
200 	int (*bind)(struct udevice *dev);
201 	int (*probe)(struct udevice *dev);
202 	int (*remove)(struct udevice *dev);
203 	int (*unbind)(struct udevice *dev);
204 	int (*ofdata_to_platdata)(struct udevice *dev);
205 	int (*child_post_bind)(struct udevice *dev);
206 	int (*child_pre_probe)(struct udevice *dev);
207 	int (*child_post_remove)(struct udevice *dev);
208 	int priv_auto_alloc_size;
209 	int platdata_auto_alloc_size;
210 	int per_child_auto_alloc_size;
211 	int per_child_platdata_auto_alloc_size;
212 	const void *ops;	/* driver-specific operations */
213 	uint32_t flags;
214 };
215 
216 /* Declare a new U-Boot driver */
217 #define U_BOOT_DRIVER(__name)						\
218 	ll_entry_declare(struct driver, __name, driver)
219 
220 /* Get a pointer to a given driver */
221 #define DM_GET_DRIVER(__name)						\
222 	ll_entry_get(struct driver, __name, driver)
223 
224 /**
225  * dev_get_platdata() - Get the platform data for a device
226  *
227  * This checks that dev is not NULL, but no other checks for now
228  *
229  * @dev		Device to check
230  * @return platform data, or NULL if none
231  */
232 void *dev_get_platdata(struct udevice *dev);
233 
234 /**
235  * dev_get_parent_platdata() - Get the parent platform data for a device
236  *
237  * This checks that dev is not NULL, but no other checks for now
238  *
239  * @dev		Device to check
240  * @return parent's platform data, or NULL if none
241  */
242 void *dev_get_parent_platdata(struct udevice *dev);
243 
244 /**
245  * dev_get_uclass_platdata() - Get the uclass platform data for a device
246  *
247  * This checks that dev is not NULL, but no other checks for now
248  *
249  * @dev		Device to check
250  * @return uclass's platform data, or NULL if none
251  */
252 void *dev_get_uclass_platdata(struct udevice *dev);
253 
254 /**
255  * dev_get_priv() - Get the private data for a device
256  *
257  * This checks that dev is not NULL, but no other checks for now
258  *
259  * @dev		Device to check
260  * @return private data, or NULL if none
261  */
262 void *dev_get_priv(struct udevice *dev);
263 
264 /**
265  * dev_get_parent_priv() - Get the parent private data for a device
266  *
267  * The parent private data is data stored in the device but owned by the
268  * parent. For example, a USB device may have parent data which contains
269  * information about how to talk to the device over USB.
270  *
271  * This checks that dev is not NULL, but no other checks for now
272  *
273  * @dev		Device to check
274  * @return parent data, or NULL if none
275  */
276 void *dev_get_parent_priv(struct udevice *dev);
277 
278 /**
279  * dev_get_uclass_priv() - Get the private uclass data for a device
280  *
281  * This checks that dev is not NULL, but no other checks for now
282  *
283  * @dev		Device to check
284  * @return private uclass data for this device, or NULL if none
285  */
286 void *dev_get_uclass_priv(struct udevice *dev);
287 
288 /**
289  * struct dev_get_parent() - Get the parent of a device
290  *
291  * @child:	Child to check
292  * @return parent of child, or NULL if this is the root device
293  */
294 struct udevice *dev_get_parent(struct udevice *child);
295 
296 /**
297  * dev_get_driver_data() - get the driver data used to bind a device
298  *
299  * When a device is bound using a device tree node, it matches a
300  * particular compatible string in struct udevice_id. This function
301  * returns the associated data value for that compatible string. This is
302  * the 'data' field in struct udevice_id.
303  *
304  * As an example, consider this structure:
305  * static const struct udevice_id tegra_i2c_ids[] = {
306  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
307  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
308  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
309  *	{ }
310  * };
311  *
312  * When driver model finds a driver for this it will store the 'data' value
313  * corresponding to the compatible string it matches. This function returns
314  * that value. This allows the driver to handle several variants of a device.
315  *
316  * For USB devices, this is the driver_info field in struct usb_device_id.
317  *
318  * @dev:	Device to check
319  * @return driver data (0 if none is provided)
320  */
321 ulong dev_get_driver_data(struct udevice *dev);
322 
323 /**
324  * dev_get_driver_ops() - get the device's driver's operations
325  *
326  * This checks that dev is not NULL, and returns the pointer to device's
327  * driver's operations.
328  *
329  * @dev:	Device to check
330  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
331  */
332 const void *dev_get_driver_ops(struct udevice *dev);
333 
334 /**
335  * device_get_uclass_id() - return the uclass ID of a device
336  *
337  * @dev:	Device to check
338  * @return uclass ID for the device
339  */
340 enum uclass_id device_get_uclass_id(struct udevice *dev);
341 
342 /**
343  * dev_get_uclass_name() - return the uclass name of a device
344  *
345  * This checks that dev is not NULL.
346  *
347  * @dev:	Device to check
348  * @return  pointer to the uclass name for the device
349  */
350 const char *dev_get_uclass_name(struct udevice *dev);
351 
352 /**
353  * device_get_child() - Get the child of a device by index
354  *
355  * Returns the numbered child, 0 being the first. This does not use
356  * sequence numbers, only the natural order.
357  *
358  * @dev:	Parent device to check
359  * @index:	Child index
360  * @devp:	Returns pointer to device
361  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
362  *	   to probe
363  */
364 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
365 
366 /**
367  * device_find_child_by_seq() - Find a child device based on a sequence
368  *
369  * This searches for a device with the given seq or req_seq.
370  *
371  * For seq, if an active device has this sequence it will be returned.
372  * If there is no such device then this will return -ENODEV.
373  *
374  * For req_seq, if a device (whether activated or not) has this req_seq
375  * value, that device will be returned. This is a strong indication that
376  * the device will receive that sequence when activated.
377  *
378  * @parent: Parent device
379  * @seq_or_req_seq: Sequence number to find (0=first)
380  * @find_req_seq: true to find req_seq, false to find seq
381  * @devp: Returns pointer to device (there is only one per for each seq).
382  * Set to NULL if none is found
383  * @return 0 if OK, -ve on error
384  */
385 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
386 			     bool find_req_seq, struct udevice **devp);
387 
388 /**
389  * device_get_child_by_seq() - Get a child device based on a sequence
390  *
391  * If an active device has this sequence it will be returned. If there is no
392  * such device then this will check for a device that is requesting this
393  * sequence.
394  *
395  * The device is probed to activate it ready for use.
396  *
397  * @parent: Parent device
398  * @seq: Sequence number to find (0=first)
399  * @devp: Returns pointer to device (there is only one per for each seq)
400  * Set to NULL if none is found
401  * @return 0 if OK, -ve on error
402  */
403 int device_get_child_by_seq(struct udevice *parent, int seq,
404 			    struct udevice **devp);
405 
406 /**
407  * device_find_child_by_of_offset() - Find a child device based on FDT offset
408  *
409  * Locates a child device by its device tree offset.
410  *
411  * @parent: Parent device
412  * @of_offset: Device tree offset to find
413  * @devp: Returns pointer to device if found, otherwise this is set to NULL
414  * @return 0 if OK, -ve on error
415  */
416 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
417 				   struct udevice **devp);
418 
419 /**
420  * device_get_child_by_of_offset() - Get a child device based on FDT offset
421  *
422  * Locates a child device by its device tree offset.
423  *
424  * The device is probed to activate it ready for use.
425  *
426  * @parent: Parent device
427  * @of_offset: Device tree offset to find
428  * @devp: Returns pointer to device if found, otherwise this is set to NULL
429  * @return 0 if OK, -ve on error
430  */
431 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
432 				  struct udevice **devp);
433 
434 /**
435  * device_get_global_by_of_offset() - Get a device based on FDT offset
436  *
437  * Locates a device by its device tree offset, searching globally throughout
438  * the all driver model devices.
439  *
440  * The device is probed to activate it ready for use.
441  *
442  * @of_offset: Device tree offset to find
443  * @devp: Returns pointer to device if found, otherwise this is set to NULL
444  * @return 0 if OK, -ve on error
445  */
446 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
447 
448 /**
449  * device_find_first_child() - Find the first child of a device
450  *
451  * @parent: Parent device to search
452  * @devp: Returns first child device, or NULL if none
453  * @return 0
454  */
455 int device_find_first_child(struct udevice *parent, struct udevice **devp);
456 
457 /**
458  * device_find_next_child() - Find the next child of a device
459  *
460  * @devp: Pointer to previous child device on entry. Returns pointer to next
461  *		child device, or NULL if none
462  * @return 0
463  */
464 int device_find_next_child(struct udevice **devp);
465 
466 /**
467  * dev_get_addr() - Get the reg property of a device
468  *
469  * @dev: Pointer to a device
470  *
471  * @return addr
472  */
473 fdt_addr_t dev_get_addr(struct udevice *dev);
474 
475 /**
476  * dev_get_addr_ptr() - Return pointer to the address of the reg property
477  *                      of a device
478  *
479  * @dev: Pointer to a device
480  *
481  * @return Pointer to addr, or NULL if there is no such property
482  */
483 void *dev_get_addr_ptr(struct udevice *dev);
484 
485 /**
486  * dev_map_physmem() - Read device address from reg property of the
487  *                     device node and map the address into CPU address
488  *                     space.
489  *
490  * @dev: Pointer to device
491  * @size: size of the memory to map
492  *
493  * @return  mapped address, or NULL if the device does not have reg
494  *          property.
495  */
496 void *dev_map_physmem(struct udevice *dev, unsigned long size);
497 
498 /**
499  * dev_get_addr_index() - Get the indexed reg property of a device
500  *
501  * @dev: Pointer to a device
502  * @index: the 'reg' property can hold a list of <addr, size> pairs
503  *	   and @index is used to select which one is required
504  *
505  * @return addr
506  */
507 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index);
508 
509 /**
510  * dev_get_addr_size_index() - Get the indexed reg property of a device
511  *
512  * Returns the address and size specified in the 'reg' property of a device.
513  *
514  * @dev: Pointer to a device
515  * @index: the 'reg' property can hold a list of <addr, size> pairs
516  *	   and @index is used to select which one is required
517  * @size: Pointer to size varible - this function returns the size
518  *        specified in the 'reg' property here
519  *
520  * @return addr
521  */
522 fdt_addr_t dev_get_addr_size_index(struct udevice *dev, int index,
523 				   fdt_size_t *size);
524 
525 /**
526  * dev_get_addr_name() - Get the reg property of a device, indexed by name
527  *
528  * @dev: Pointer to a device
529  * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
530  *	  'reg-names' property providing named-based identification. @index
531  *	  indicates the value to search for in 'reg-names'.
532  *
533  * @return addr
534  */
535 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name);
536 
537 /**
538  * device_has_children() - check if a device has any children
539  *
540  * @dev:	Device to check
541  * @return true if the device has one or more children
542  */
543 bool device_has_children(struct udevice *dev);
544 
545 /**
546  * device_has_active_children() - check if a device has any active children
547  *
548  * @dev:	Device to check
549  * @return true if the device has one or more children and at least one of
550  * them is active (probed).
551  */
552 bool device_has_active_children(struct udevice *dev);
553 
554 /**
555  * device_is_last_sibling() - check if a device is the last sibling
556  *
557  * This function can be useful for display purposes, when special action needs
558  * to be taken when displaying the last sibling. This can happen when a tree
559  * view of devices is being displayed.
560  *
561  * @dev:	Device to check
562  * @return true if there are no more siblings after this one - i.e. is it
563  * last in the list.
564  */
565 bool device_is_last_sibling(struct udevice *dev);
566 
567 /**
568  * device_set_name() - set the name of a device
569  *
570  * This must be called in the device's bind() method and no later. Normally
571  * this is unnecessary but for probed devices which don't get a useful name
572  * this function can be helpful.
573  *
574  * The name is allocated and will be freed automatically when the device is
575  * unbound.
576  *
577  * @dev:	Device to update
578  * @name:	New name (this string is allocated new memory and attached to
579  *		the device)
580  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
581  * string
582  */
583 int device_set_name(struct udevice *dev, const char *name);
584 
585 /**
586  * device_set_name_alloced() - note that a device name is allocated
587  *
588  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
589  * unbound the name will be freed. This avoids memory leaks.
590  *
591  * @dev:	Device to update
592  */
593 void device_set_name_alloced(struct udevice *dev);
594 
595 /**
596  * of_device_is_compatible() - check if the device is compatible with the compat
597  *
598  * This allows to check whether the device is comaptible with the compat.
599  *
600  * @dev:	udevice pointer for which compatible needs to be verified.
601  * @compat:	Compatible string which needs to verified in the given
602  *		device
603  * @return true if OK, false if the compatible is not found
604  */
605 bool of_device_is_compatible(struct udevice *dev, const char *compat);
606 
607 /**
608  * of_machine_is_compatible() - check if the machine is compatible with
609  *				the compat
610  *
611  * This allows to check whether the machine is comaptible with the compat.
612  *
613  * @compat:	Compatible string which needs to verified
614  * @return true if OK, false if the compatible is not found
615  */
616 bool of_machine_is_compatible(const char *compat);
617 
618 /**
619  * device_is_on_pci_bus - Test if a device is on a PCI bus
620  *
621  * @dev:	device to test
622  * @return:	true if it is on a PCI bus, false otherwise
623  */
624 static inline bool device_is_on_pci_bus(struct udevice *dev)
625 {
626 	return device_get_uclass_id(dev->parent) == UCLASS_PCI;
627 }
628 
629 /**
630  * device_foreach_child_safe() - iterate through child devices safely
631  *
632  * This allows the @pos child to be removed in the loop if required.
633  *
634  * @pos: struct udevice * for the current device
635  * @next: struct udevice * for the next device
636  * @parent: parent device to scan
637  */
638 #define device_foreach_child_safe(pos, next, parent)	\
639 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
640 
641 /**
642  * dm_scan_fdt_dev() - Bind child device in a the device tree
643  *
644  * This handles device which have sub-nodes in the device tree. It scans all
645  * sub-nodes and binds drivers for each node where a driver can be found.
646  *
647  * If this is called prior to relocation, only pre-relocation devices will be
648  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
649  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
650  * be bound.
651  *
652  * @dev:	Device to scan
653  * @return 0 if OK, -ve on error
654  */
655 int dm_scan_fdt_dev(struct udevice *dev);
656 
657 /* device resource management */
658 typedef void (*dr_release_t)(struct udevice *dev, void *res);
659 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
660 
661 #ifdef CONFIG_DEVRES
662 
663 #ifdef CONFIG_DEBUG_DEVRES
664 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
665 		     const char *name);
666 #define _devres_alloc(release, size, gfp) \
667 	__devres_alloc(release, size, gfp, #release)
668 #else
669 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
670 #endif
671 
672 /**
673  * devres_alloc() - Allocate device resource data
674  * @release: Release function devres will be associated with
675  * @size: Allocation size
676  * @gfp: Allocation flags
677  *
678  * Allocate devres of @size bytes.  The allocated area is associated
679  * with @release.  The returned pointer can be passed to
680  * other devres_*() functions.
681  *
682  * RETURNS:
683  * Pointer to allocated devres on success, NULL on failure.
684  */
685 #define devres_alloc(release, size, gfp) \
686 	_devres_alloc(release, size, gfp | __GFP_ZERO)
687 
688 /**
689  * devres_free() - Free device resource data
690  * @res: Pointer to devres data to free
691  *
692  * Free devres created with devres_alloc().
693  */
694 void devres_free(void *res);
695 
696 /**
697  * devres_add() - Register device resource
698  * @dev: Device to add resource to
699  * @res: Resource to register
700  *
701  * Register devres @res to @dev.  @res should have been allocated
702  * using devres_alloc().  On driver detach, the associated release
703  * function will be invoked and devres will be freed automatically.
704  */
705 void devres_add(struct udevice *dev, void *res);
706 
707 /**
708  * devres_find() - Find device resource
709  * @dev: Device to lookup resource from
710  * @release: Look for resources associated with this release function
711  * @match: Match function (optional)
712  * @match_data: Data for the match function
713  *
714  * Find the latest devres of @dev which is associated with @release
715  * and for which @match returns 1.  If @match is NULL, it's considered
716  * to match all.
717  *
718  * @return pointer to found devres, NULL if not found.
719  */
720 void *devres_find(struct udevice *dev, dr_release_t release,
721 		  dr_match_t match, void *match_data);
722 
723 /**
724  * devres_get() - Find devres, if non-existent, add one atomically
725  * @dev: Device to lookup or add devres for
726  * @new_res: Pointer to new initialized devres to add if not found
727  * @match: Match function (optional)
728  * @match_data: Data for the match function
729  *
730  * Find the latest devres of @dev which has the same release function
731  * as @new_res and for which @match return 1.  If found, @new_res is
732  * freed; otherwise, @new_res is added atomically.
733  *
734  * @return ointer to found or added devres.
735  */
736 void *devres_get(struct udevice *dev, void *new_res,
737 		 dr_match_t match, void *match_data);
738 
739 /**
740  * devres_remove() - Find a device resource and remove it
741  * @dev: Device to find resource from
742  * @release: Look for resources associated with this release function
743  * @match: Match function (optional)
744  * @match_data: Data for the match function
745  *
746  * Find the latest devres of @dev associated with @release and for
747  * which @match returns 1.  If @match is NULL, it's considered to
748  * match all.  If found, the resource is removed atomically and
749  * returned.
750  *
751  * @return ointer to removed devres on success, NULL if not found.
752  */
753 void *devres_remove(struct udevice *dev, dr_release_t release,
754 		    dr_match_t match, void *match_data);
755 
756 /**
757  * devres_destroy() - Find a device resource and destroy it
758  * @dev: Device to find resource from
759  * @release: Look for resources associated with this release function
760  * @match: Match function (optional)
761  * @match_data: Data for the match function
762  *
763  * Find the latest devres of @dev associated with @release and for
764  * which @match returns 1.  If @match is NULL, it's considered to
765  * match all.  If found, the resource is removed atomically and freed.
766  *
767  * Note that the release function for the resource will not be called,
768  * only the devres-allocated data will be freed.  The caller becomes
769  * responsible for freeing any other data.
770  *
771  * @return 0 if devres is found and freed, -ENOENT if not found.
772  */
773 int devres_destroy(struct udevice *dev, dr_release_t release,
774 		   dr_match_t match, void *match_data);
775 
776 /**
777  * devres_release() - Find a device resource and destroy it, calling release
778  * @dev: Device to find resource from
779  * @release: Look for resources associated with this release function
780  * @match: Match function (optional)
781  * @match_data: Data for the match function
782  *
783  * Find the latest devres of @dev associated with @release and for
784  * which @match returns 1.  If @match is NULL, it's considered to
785  * match all.  If found, the resource is removed atomically, the
786  * release function called and the resource freed.
787  *
788  * @return 0 if devres is found and freed, -ENOENT if not found.
789  */
790 int devres_release(struct udevice *dev, dr_release_t release,
791 		   dr_match_t match, void *match_data);
792 
793 /* managed devm_k.alloc/kfree for device drivers */
794 /**
795  * devm_kmalloc() - Resource-managed kmalloc
796  * @dev: Device to allocate memory for
797  * @size: Allocation size
798  * @gfp: Allocation gfp flags
799  *
800  * Managed kmalloc.  Memory allocated with this function is
801  * automatically freed on driver detach.  Like all other devres
802  * resources, guaranteed alignment is unsigned long long.
803  *
804  * @return pointer to allocated memory on success, NULL on failure.
805  */
806 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
807 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
808 {
809 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
810 }
811 static inline void *devm_kmalloc_array(struct udevice *dev,
812 				       size_t n, size_t size, gfp_t flags)
813 {
814 	if (size != 0 && n > SIZE_MAX / size)
815 		return NULL;
816 	return devm_kmalloc(dev, n * size, flags);
817 }
818 static inline void *devm_kcalloc(struct udevice *dev,
819 				 size_t n, size_t size, gfp_t flags)
820 {
821 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
822 }
823 
824 /**
825  * devm_kfree() - Resource-managed kfree
826  * @dev: Device this memory belongs to
827  * @ptr: Memory to free
828  *
829  * Free memory allocated with devm_kmalloc().
830  */
831 void devm_kfree(struct udevice *dev, void *ptr);
832 
833 #else /* ! CONFIG_DEVRES */
834 
835 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
836 {
837 	return kzalloc(size, gfp);
838 }
839 
840 static inline void devres_free(void *res)
841 {
842 	kfree(res);
843 }
844 
845 static inline void devres_add(struct udevice *dev, void *res)
846 {
847 }
848 
849 static inline void *devres_find(struct udevice *dev, dr_release_t release,
850 				dr_match_t match, void *match_data)
851 {
852 	return NULL;
853 }
854 
855 static inline void *devres_get(struct udevice *dev, void *new_res,
856 			       dr_match_t match, void *match_data)
857 {
858 	return NULL;
859 }
860 
861 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
862 				  dr_match_t match, void *match_data)
863 {
864 	return NULL;
865 }
866 
867 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
868 				 dr_match_t match, void *match_data)
869 {
870 	return 0;
871 }
872 
873 static inline int devres_release(struct udevice *dev, dr_release_t release,
874 				 dr_match_t match, void *match_data)
875 {
876 	return 0;
877 }
878 
879 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
880 {
881 	return kmalloc(size, gfp);
882 }
883 
884 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
885 {
886 	return kzalloc(size, gfp);
887 }
888 
889 static inline void *devm_kmaloc_array(struct udevice *dev,
890 				      size_t n, size_t size, gfp_t flags)
891 {
892 	/* TODO: add kmalloc_array() to linux/compat.h */
893 	if (size != 0 && n > SIZE_MAX / size)
894 		return NULL;
895 	return kmalloc(n * size, flags);
896 }
897 
898 static inline void *devm_kcalloc(struct udevice *dev,
899 				 size_t n, size_t size, gfp_t flags)
900 {
901 	/* TODO: add kcalloc() to linux/compat.h */
902 	return kmalloc(n * size, flags | __GFP_ZERO);
903 }
904 
905 static inline void devm_kfree(struct udevice *dev, void *ptr)
906 {
907 	kfree(ptr);
908 }
909 
910 #endif /* ! CONFIG_DEVRES */
911 
912 /**
913  * dm_set_translation_offset() - Set translation offset
914  * @offs: Translation offset
915  *
916  * Some platforms need a special address translation. Those
917  * platforms (e.g. mvebu in SPL) can configure a translation
918  * offset in the DM by calling this function. It will be
919  * added to all addresses returned in dev_get_addr().
920  */
921 void dm_set_translation_offset(fdt_addr_t offs);
922 
923 /**
924  * dm_get_translation_offset() - Get translation offset
925  *
926  * This function returns the translation offset that can
927  * be configured by calling dm_set_translation_offset().
928  *
929  * @return translation offset for the device address (0 as default).
930  */
931 fdt_addr_t dm_get_translation_offset(void);
932 
933 #endif
934