1 /* 2 * Copyright (c) 2013 Google, Inc 3 * 4 * (C) Copyright 2012 5 * Pavel Herrmann <morpheus.ibis@gmail.com> 6 * Marek Vasut <marex@denx.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #ifndef _DM_DEVICE_H 12 #define _DM_DEVICE_H 13 14 #include <dm/uclass-id.h> 15 #include <fdtdec.h> 16 #include <linker_lists.h> 17 #include <linux/compat.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 21 struct driver_info; 22 23 /* Driver is active (probed). Cleared when it is removed */ 24 #define DM_FLAG_ACTIVATED (1 << 0) 25 26 /* DM is responsible for allocating and freeing platdata */ 27 #define DM_FLAG_ALLOC_PDATA (1 << 1) 28 29 /* DM should init this device prior to relocation */ 30 #define DM_FLAG_PRE_RELOC (1 << 2) 31 32 /* DM is responsible for allocating and freeing parent_platdata */ 33 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3) 34 35 /* DM is responsible for allocating and freeing uclass_platdata */ 36 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4) 37 38 /* Allocate driver private data on a DMA boundary */ 39 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5) 40 41 /* Device is bound */ 42 #define DM_FLAG_BOUND (1 << 6) 43 44 /* Device name is allocated and should be freed on unbind() */ 45 #define DM_FLAG_NAME_ALLOCED (1 << 7) 46 47 #define DM_FLAG_OF_PLATDATA (1 << 8) 48 49 /** 50 * struct udevice - An instance of a driver 51 * 52 * This holds information about a device, which is a driver bound to a 53 * particular port or peripheral (essentially a driver instance). 54 * 55 * A device will come into existence through a 'bind' call, either due to 56 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node 57 * in the device tree (in which case of_offset is >= 0). In the latter case 58 * we translate the device tree information into platdata in a function 59 * implemented by the driver ofdata_to_platdata method (called just before the 60 * probe method if the device has a device tree node. 61 * 62 * All three of platdata, priv and uclass_priv can be allocated by the 63 * driver, or you can use the auto_alloc_size members of struct driver and 64 * struct uclass_driver to have driver model do this automatically. 65 * 66 * @driver: The driver used by this device 67 * @name: Name of device, typically the FDT node name 68 * @platdata: Configuration data for this device 69 * @parent_platdata: The parent bus's configuration data for this device 70 * @uclass_platdata: The uclass's configuration data for this device 71 * @of_offset: Device tree node offset for this device (- for none) 72 * @driver_data: Driver data word for the entry that matched this device with 73 * its driver 74 * @parent: Parent of this device, or NULL for the top level device 75 * @priv: Private data for this device 76 * @uclass: Pointer to uclass for this device 77 * @uclass_priv: The uclass's private data for this device 78 * @parent_priv: The parent's private data for this device 79 * @uclass_node: Used by uclass to link its devices 80 * @child_head: List of children of this device 81 * @sibling_node: Next device in list of all devices 82 * @flags: Flags for this device DM_FLAG_... 83 * @req_seq: Requested sequence number for this device (-1 = any) 84 * @seq: Allocated sequence number for this device (-1 = none). This is set up 85 * when the device is probed and will be unique within the device's uclass. 86 * @devres_head: List of memory allocations associated with this device. 87 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will 88 * add to this list. Memory so-allocated will be freed 89 * automatically when the device is removed / unbound 90 */ 91 struct udevice { 92 const struct driver *driver; 93 const char *name; 94 void *platdata; 95 void *parent_platdata; 96 void *uclass_platdata; 97 int of_offset; 98 ulong driver_data; 99 struct udevice *parent; 100 void *priv; 101 struct uclass *uclass; 102 void *uclass_priv; 103 void *parent_priv; 104 struct list_head uclass_node; 105 struct list_head child_head; 106 struct list_head sibling_node; 107 uint32_t flags; 108 int req_seq; 109 int seq; 110 #ifdef CONFIG_DEVRES 111 struct list_head devres_head; 112 #endif 113 }; 114 115 /* Maximum sequence number supported */ 116 #define DM_MAX_SEQ 999 117 118 /* Returns the operations for a device */ 119 #define device_get_ops(dev) (dev->driver->ops) 120 121 /* Returns non-zero if the device is active (probed and not removed) */ 122 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED) 123 124 static inline int dev_of_offset(const struct udevice *dev) 125 { 126 return dev->of_offset; 127 } 128 129 static inline void dev_set_of_offset(struct udevice *dev, int of_offset) 130 { 131 dev->of_offset = of_offset; 132 } 133 134 /** 135 * struct udevice_id - Lists the compatible strings supported by a driver 136 * @compatible: Compatible string 137 * @data: Data for this compatible string 138 */ 139 struct udevice_id { 140 const char *compatible; 141 ulong data; 142 }; 143 144 #if CONFIG_IS_ENABLED(OF_CONTROL) 145 #define of_match_ptr(_ptr) (_ptr) 146 #else 147 #define of_match_ptr(_ptr) NULL 148 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ 149 150 /** 151 * struct driver - A driver for a feature or peripheral 152 * 153 * This holds methods for setting up a new device, and also removing it. 154 * The device needs information to set itself up - this is provided either 155 * by platdata or a device tree node (which we find by looking up 156 * matching compatible strings with of_match). 157 * 158 * Drivers all belong to a uclass, representing a class of devices of the 159 * same type. Common elements of the drivers can be implemented in the uclass, 160 * or the uclass can provide a consistent interface to the drivers within 161 * it. 162 * 163 * @name: Device name 164 * @id: Identiies the uclass we belong to 165 * @of_match: List of compatible strings to match, and any identifying data 166 * for each. 167 * @bind: Called to bind a device to its driver 168 * @probe: Called to probe a device, i.e. activate it 169 * @remove: Called to remove a device, i.e. de-activate it 170 * @unbind: Called to unbind a device from its driver 171 * @ofdata_to_platdata: Called before probe to decode device tree data 172 * @child_post_bind: Called after a new child has been bound 173 * @child_pre_probe: Called before a child device is probed. The device has 174 * memory allocated but it has not yet been probed. 175 * @child_post_remove: Called after a child device is removed. The device 176 * has memory allocated but its device_remove() method has been called. 177 * @priv_auto_alloc_size: If non-zero this is the size of the private data 178 * to be allocated in the device's ->priv pointer. If zero, then the driver 179 * is responsible for allocating any data required. 180 * @platdata_auto_alloc_size: If non-zero this is the size of the 181 * platform data to be allocated in the device's ->platdata pointer. 182 * This is typically only useful for device-tree-aware drivers (those with 183 * an of_match), since drivers which use platdata will have the data 184 * provided in the U_BOOT_DEVICE() instantiation. 185 * @per_child_auto_alloc_size: Each device can hold private data owned by 186 * its parent. If required this will be automatically allocated if this 187 * value is non-zero. 188 * @per_child_platdata_auto_alloc_size: A bus likes to store information about 189 * its children. If non-zero this is the size of this data, to be allocated 190 * in the child's parent_platdata pointer. 191 * @ops: Driver-specific operations. This is typically a list of function 192 * pointers defined by the driver, to implement driver functions required by 193 * the uclass. 194 * @flags: driver flags - see DM_FLAGS_... 195 */ 196 struct driver { 197 char *name; 198 enum uclass_id id; 199 const struct udevice_id *of_match; 200 int (*bind)(struct udevice *dev); 201 int (*probe)(struct udevice *dev); 202 int (*remove)(struct udevice *dev); 203 int (*unbind)(struct udevice *dev); 204 int (*ofdata_to_platdata)(struct udevice *dev); 205 int (*child_post_bind)(struct udevice *dev); 206 int (*child_pre_probe)(struct udevice *dev); 207 int (*child_post_remove)(struct udevice *dev); 208 int priv_auto_alloc_size; 209 int platdata_auto_alloc_size; 210 int per_child_auto_alloc_size; 211 int per_child_platdata_auto_alloc_size; 212 const void *ops; /* driver-specific operations */ 213 uint32_t flags; 214 }; 215 216 /* Declare a new U-Boot driver */ 217 #define U_BOOT_DRIVER(__name) \ 218 ll_entry_declare(struct driver, __name, driver) 219 220 /* Get a pointer to a given driver */ 221 #define DM_GET_DRIVER(__name) \ 222 ll_entry_get(struct driver, __name, driver) 223 224 /** 225 * dev_get_platdata() - Get the platform data for a device 226 * 227 * This checks that dev is not NULL, but no other checks for now 228 * 229 * @dev Device to check 230 * @return platform data, or NULL if none 231 */ 232 void *dev_get_platdata(struct udevice *dev); 233 234 /** 235 * dev_get_parent_platdata() - Get the parent platform data for a device 236 * 237 * This checks that dev is not NULL, but no other checks for now 238 * 239 * @dev Device to check 240 * @return parent's platform data, or NULL if none 241 */ 242 void *dev_get_parent_platdata(struct udevice *dev); 243 244 /** 245 * dev_get_uclass_platdata() - Get the uclass platform data for a device 246 * 247 * This checks that dev is not NULL, but no other checks for now 248 * 249 * @dev Device to check 250 * @return uclass's platform data, or NULL if none 251 */ 252 void *dev_get_uclass_platdata(struct udevice *dev); 253 254 /** 255 * dev_get_priv() - Get the private data for a device 256 * 257 * This checks that dev is not NULL, but no other checks for now 258 * 259 * @dev Device to check 260 * @return private data, or NULL if none 261 */ 262 void *dev_get_priv(struct udevice *dev); 263 264 /** 265 * dev_get_parent_priv() - Get the parent private data for a device 266 * 267 * The parent private data is data stored in the device but owned by the 268 * parent. For example, a USB device may have parent data which contains 269 * information about how to talk to the device over USB. 270 * 271 * This checks that dev is not NULL, but no other checks for now 272 * 273 * @dev Device to check 274 * @return parent data, or NULL if none 275 */ 276 void *dev_get_parent_priv(struct udevice *dev); 277 278 /** 279 * dev_get_uclass_priv() - Get the private uclass data for a device 280 * 281 * This checks that dev is not NULL, but no other checks for now 282 * 283 * @dev Device to check 284 * @return private uclass data for this device, or NULL if none 285 */ 286 void *dev_get_uclass_priv(struct udevice *dev); 287 288 /** 289 * struct dev_get_parent() - Get the parent of a device 290 * 291 * @child: Child to check 292 * @return parent of child, or NULL if this is the root device 293 */ 294 struct udevice *dev_get_parent(struct udevice *child); 295 296 /** 297 * dev_get_driver_data() - get the driver data used to bind a device 298 * 299 * When a device is bound using a device tree node, it matches a 300 * particular compatible string in struct udevice_id. This function 301 * returns the associated data value for that compatible string. This is 302 * the 'data' field in struct udevice_id. 303 * 304 * As an example, consider this structure: 305 * static const struct udevice_id tegra_i2c_ids[] = { 306 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 }, 307 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD }, 308 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC }, 309 * { } 310 * }; 311 * 312 * When driver model finds a driver for this it will store the 'data' value 313 * corresponding to the compatible string it matches. This function returns 314 * that value. This allows the driver to handle several variants of a device. 315 * 316 * For USB devices, this is the driver_info field in struct usb_device_id. 317 * 318 * @dev: Device to check 319 * @return driver data (0 if none is provided) 320 */ 321 ulong dev_get_driver_data(struct udevice *dev); 322 323 /** 324 * dev_get_driver_ops() - get the device's driver's operations 325 * 326 * This checks that dev is not NULL, and returns the pointer to device's 327 * driver's operations. 328 * 329 * @dev: Device to check 330 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops 331 */ 332 const void *dev_get_driver_ops(struct udevice *dev); 333 334 /** 335 * device_get_uclass_id() - return the uclass ID of a device 336 * 337 * @dev: Device to check 338 * @return uclass ID for the device 339 */ 340 enum uclass_id device_get_uclass_id(struct udevice *dev); 341 342 /** 343 * dev_get_uclass_name() - return the uclass name of a device 344 * 345 * This checks that dev is not NULL. 346 * 347 * @dev: Device to check 348 * @return pointer to the uclass name for the device 349 */ 350 const char *dev_get_uclass_name(struct udevice *dev); 351 352 /** 353 * device_get_child() - Get the child of a device by index 354 * 355 * Returns the numbered child, 0 being the first. This does not use 356 * sequence numbers, only the natural order. 357 * 358 * @dev: Parent device to check 359 * @index: Child index 360 * @devp: Returns pointer to device 361 * @return 0 if OK, -ENODEV if no such device, other error if the device fails 362 * to probe 363 */ 364 int device_get_child(struct udevice *parent, int index, struct udevice **devp); 365 366 /** 367 * device_find_child_by_seq() - Find a child device based on a sequence 368 * 369 * This searches for a device with the given seq or req_seq. 370 * 371 * For seq, if an active device has this sequence it will be returned. 372 * If there is no such device then this will return -ENODEV. 373 * 374 * For req_seq, if a device (whether activated or not) has this req_seq 375 * value, that device will be returned. This is a strong indication that 376 * the device will receive that sequence when activated. 377 * 378 * @parent: Parent device 379 * @seq_or_req_seq: Sequence number to find (0=first) 380 * @find_req_seq: true to find req_seq, false to find seq 381 * @devp: Returns pointer to device (there is only one per for each seq). 382 * Set to NULL if none is found 383 * @return 0 if OK, -ve on error 384 */ 385 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq, 386 bool find_req_seq, struct udevice **devp); 387 388 /** 389 * device_get_child_by_seq() - Get a child device based on a sequence 390 * 391 * If an active device has this sequence it will be returned. If there is no 392 * such device then this will check for a device that is requesting this 393 * sequence. 394 * 395 * The device is probed to activate it ready for use. 396 * 397 * @parent: Parent device 398 * @seq: Sequence number to find (0=first) 399 * @devp: Returns pointer to device (there is only one per for each seq) 400 * Set to NULL if none is found 401 * @return 0 if OK, -ve on error 402 */ 403 int device_get_child_by_seq(struct udevice *parent, int seq, 404 struct udevice **devp); 405 406 /** 407 * device_find_child_by_of_offset() - Find a child device based on FDT offset 408 * 409 * Locates a child device by its device tree offset. 410 * 411 * @parent: Parent device 412 * @of_offset: Device tree offset to find 413 * @devp: Returns pointer to device if found, otherwise this is set to NULL 414 * @return 0 if OK, -ve on error 415 */ 416 int device_find_child_by_of_offset(struct udevice *parent, int of_offset, 417 struct udevice **devp); 418 419 /** 420 * device_get_child_by_of_offset() - Get a child device based on FDT offset 421 * 422 * Locates a child device by its device tree offset. 423 * 424 * The device is probed to activate it ready for use. 425 * 426 * @parent: Parent device 427 * @of_offset: Device tree offset to find 428 * @devp: Returns pointer to device if found, otherwise this is set to NULL 429 * @return 0 if OK, -ve on error 430 */ 431 int device_get_child_by_of_offset(struct udevice *parent, int of_offset, 432 struct udevice **devp); 433 434 /** 435 * device_get_global_by_of_offset() - Get a device based on FDT offset 436 * 437 * Locates a device by its device tree offset, searching globally throughout 438 * the all driver model devices. 439 * 440 * The device is probed to activate it ready for use. 441 * 442 * @of_offset: Device tree offset to find 443 * @devp: Returns pointer to device if found, otherwise this is set to NULL 444 * @return 0 if OK, -ve on error 445 */ 446 int device_get_global_by_of_offset(int of_offset, struct udevice **devp); 447 448 /** 449 * device_find_first_child() - Find the first child of a device 450 * 451 * @parent: Parent device to search 452 * @devp: Returns first child device, or NULL if none 453 * @return 0 454 */ 455 int device_find_first_child(struct udevice *parent, struct udevice **devp); 456 457 /** 458 * device_find_next_child() - Find the next child of a device 459 * 460 * @devp: Pointer to previous child device on entry. Returns pointer to next 461 * child device, or NULL if none 462 * @return 0 463 */ 464 int device_find_next_child(struct udevice **devp); 465 466 /** 467 * dev_get_addr() - Get the reg property of a device 468 * 469 * @dev: Pointer to a device 470 * 471 * @return addr 472 */ 473 fdt_addr_t dev_get_addr(struct udevice *dev); 474 475 /** 476 * dev_get_addr_ptr() - Return pointer to the address of the reg property 477 * of a device 478 * 479 * @dev: Pointer to a device 480 * 481 * @return Pointer to addr, or NULL if there is no such property 482 */ 483 void *dev_get_addr_ptr(struct udevice *dev); 484 485 /** 486 * dev_map_physmem() - Read device address from reg property of the 487 * device node and map the address into CPU address 488 * space. 489 * 490 * @dev: Pointer to device 491 * @size: size of the memory to map 492 * 493 * @return mapped address, or NULL if the device does not have reg 494 * property. 495 */ 496 void *dev_map_physmem(struct udevice *dev, unsigned long size); 497 498 /** 499 * dev_get_addr_index() - Get the indexed reg property of a device 500 * 501 * @dev: Pointer to a device 502 * @index: the 'reg' property can hold a list of <addr, size> pairs 503 * and @index is used to select which one is required 504 * 505 * @return addr 506 */ 507 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index); 508 509 /** 510 * dev_get_addr_size_index() - Get the indexed reg property of a device 511 * 512 * Returns the address and size specified in the 'reg' property of a device. 513 * 514 * @dev: Pointer to a device 515 * @index: the 'reg' property can hold a list of <addr, size> pairs 516 * and @index is used to select which one is required 517 * @size: Pointer to size varible - this function returns the size 518 * specified in the 'reg' property here 519 * 520 * @return addr 521 */ 522 fdt_addr_t dev_get_addr_size_index(struct udevice *dev, int index, 523 fdt_size_t *size); 524 525 /** 526 * dev_get_addr_name() - Get the reg property of a device, indexed by name 527 * 528 * @dev: Pointer to a device 529 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the 530 * 'reg-names' property providing named-based identification. @index 531 * indicates the value to search for in 'reg-names'. 532 * 533 * @return addr 534 */ 535 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name); 536 537 /** 538 * device_has_children() - check if a device has any children 539 * 540 * @dev: Device to check 541 * @return true if the device has one or more children 542 */ 543 bool device_has_children(struct udevice *dev); 544 545 /** 546 * device_has_active_children() - check if a device has any active children 547 * 548 * @dev: Device to check 549 * @return true if the device has one or more children and at least one of 550 * them is active (probed). 551 */ 552 bool device_has_active_children(struct udevice *dev); 553 554 /** 555 * device_is_last_sibling() - check if a device is the last sibling 556 * 557 * This function can be useful for display purposes, when special action needs 558 * to be taken when displaying the last sibling. This can happen when a tree 559 * view of devices is being displayed. 560 * 561 * @dev: Device to check 562 * @return true if there are no more siblings after this one - i.e. is it 563 * last in the list. 564 */ 565 bool device_is_last_sibling(struct udevice *dev); 566 567 /** 568 * device_set_name() - set the name of a device 569 * 570 * This must be called in the device's bind() method and no later. Normally 571 * this is unnecessary but for probed devices which don't get a useful name 572 * this function can be helpful. 573 * 574 * The name is allocated and will be freed automatically when the device is 575 * unbound. 576 * 577 * @dev: Device to update 578 * @name: New name (this string is allocated new memory and attached to 579 * the device) 580 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the 581 * string 582 */ 583 int device_set_name(struct udevice *dev, const char *name); 584 585 /** 586 * device_set_name_alloced() - note that a device name is allocated 587 * 588 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is 589 * unbound the name will be freed. This avoids memory leaks. 590 * 591 * @dev: Device to update 592 */ 593 void device_set_name_alloced(struct udevice *dev); 594 595 /** 596 * of_device_is_compatible() - check if the device is compatible with the compat 597 * 598 * This allows to check whether the device is comaptible with the compat. 599 * 600 * @dev: udevice pointer for which compatible needs to be verified. 601 * @compat: Compatible string which needs to verified in the given 602 * device 603 * @return true if OK, false if the compatible is not found 604 */ 605 bool of_device_is_compatible(struct udevice *dev, const char *compat); 606 607 /** 608 * of_machine_is_compatible() - check if the machine is compatible with 609 * the compat 610 * 611 * This allows to check whether the machine is comaptible with the compat. 612 * 613 * @compat: Compatible string which needs to verified 614 * @return true if OK, false if the compatible is not found 615 */ 616 bool of_machine_is_compatible(const char *compat); 617 618 /** 619 * device_is_on_pci_bus - Test if a device is on a PCI bus 620 * 621 * @dev: device to test 622 * @return: true if it is on a PCI bus, false otherwise 623 */ 624 static inline bool device_is_on_pci_bus(struct udevice *dev) 625 { 626 return device_get_uclass_id(dev->parent) == UCLASS_PCI; 627 } 628 629 /** 630 * device_foreach_child_safe() - iterate through child devices safely 631 * 632 * This allows the @pos child to be removed in the loop if required. 633 * 634 * @pos: struct udevice * for the current device 635 * @next: struct udevice * for the next device 636 * @parent: parent device to scan 637 */ 638 #define device_foreach_child_safe(pos, next, parent) \ 639 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node) 640 641 /** 642 * dm_scan_fdt_dev() - Bind child device in a the device tree 643 * 644 * This handles device which have sub-nodes in the device tree. It scans all 645 * sub-nodes and binds drivers for each node where a driver can be found. 646 * 647 * If this is called prior to relocation, only pre-relocation devices will be 648 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where 649 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will 650 * be bound. 651 * 652 * @dev: Device to scan 653 * @return 0 if OK, -ve on error 654 */ 655 int dm_scan_fdt_dev(struct udevice *dev); 656 657 /* device resource management */ 658 typedef void (*dr_release_t)(struct udevice *dev, void *res); 659 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data); 660 661 #ifdef CONFIG_DEVRES 662 663 #ifdef CONFIG_DEBUG_DEVRES 664 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp, 665 const char *name); 666 #define _devres_alloc(release, size, gfp) \ 667 __devres_alloc(release, size, gfp, #release) 668 #else 669 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp); 670 #endif 671 672 /** 673 * devres_alloc() - Allocate device resource data 674 * @release: Release function devres will be associated with 675 * @size: Allocation size 676 * @gfp: Allocation flags 677 * 678 * Allocate devres of @size bytes. The allocated area is associated 679 * with @release. The returned pointer can be passed to 680 * other devres_*() functions. 681 * 682 * RETURNS: 683 * Pointer to allocated devres on success, NULL on failure. 684 */ 685 #define devres_alloc(release, size, gfp) \ 686 _devres_alloc(release, size, gfp | __GFP_ZERO) 687 688 /** 689 * devres_free() - Free device resource data 690 * @res: Pointer to devres data to free 691 * 692 * Free devres created with devres_alloc(). 693 */ 694 void devres_free(void *res); 695 696 /** 697 * devres_add() - Register device resource 698 * @dev: Device to add resource to 699 * @res: Resource to register 700 * 701 * Register devres @res to @dev. @res should have been allocated 702 * using devres_alloc(). On driver detach, the associated release 703 * function will be invoked and devres will be freed automatically. 704 */ 705 void devres_add(struct udevice *dev, void *res); 706 707 /** 708 * devres_find() - Find device resource 709 * @dev: Device to lookup resource from 710 * @release: Look for resources associated with this release function 711 * @match: Match function (optional) 712 * @match_data: Data for the match function 713 * 714 * Find the latest devres of @dev which is associated with @release 715 * and for which @match returns 1. If @match is NULL, it's considered 716 * to match all. 717 * 718 * @return pointer to found devres, NULL if not found. 719 */ 720 void *devres_find(struct udevice *dev, dr_release_t release, 721 dr_match_t match, void *match_data); 722 723 /** 724 * devres_get() - Find devres, if non-existent, add one atomically 725 * @dev: Device to lookup or add devres for 726 * @new_res: Pointer to new initialized devres to add if not found 727 * @match: Match function (optional) 728 * @match_data: Data for the match function 729 * 730 * Find the latest devres of @dev which has the same release function 731 * as @new_res and for which @match return 1. If found, @new_res is 732 * freed; otherwise, @new_res is added atomically. 733 * 734 * @return ointer to found or added devres. 735 */ 736 void *devres_get(struct udevice *dev, void *new_res, 737 dr_match_t match, void *match_data); 738 739 /** 740 * devres_remove() - Find a device resource and remove it 741 * @dev: Device to find resource from 742 * @release: Look for resources associated with this release function 743 * @match: Match function (optional) 744 * @match_data: Data for the match function 745 * 746 * Find the latest devres of @dev associated with @release and for 747 * which @match returns 1. If @match is NULL, it's considered to 748 * match all. If found, the resource is removed atomically and 749 * returned. 750 * 751 * @return ointer to removed devres on success, NULL if not found. 752 */ 753 void *devres_remove(struct udevice *dev, dr_release_t release, 754 dr_match_t match, void *match_data); 755 756 /** 757 * devres_destroy() - Find a device resource and destroy it 758 * @dev: Device to find resource from 759 * @release: Look for resources associated with this release function 760 * @match: Match function (optional) 761 * @match_data: Data for the match function 762 * 763 * Find the latest devres of @dev associated with @release and for 764 * which @match returns 1. If @match is NULL, it's considered to 765 * match all. If found, the resource is removed atomically and freed. 766 * 767 * Note that the release function for the resource will not be called, 768 * only the devres-allocated data will be freed. The caller becomes 769 * responsible for freeing any other data. 770 * 771 * @return 0 if devres is found and freed, -ENOENT if not found. 772 */ 773 int devres_destroy(struct udevice *dev, dr_release_t release, 774 dr_match_t match, void *match_data); 775 776 /** 777 * devres_release() - Find a device resource and destroy it, calling release 778 * @dev: Device to find resource from 779 * @release: Look for resources associated with this release function 780 * @match: Match function (optional) 781 * @match_data: Data for the match function 782 * 783 * Find the latest devres of @dev associated with @release and for 784 * which @match returns 1. If @match is NULL, it's considered to 785 * match all. If found, the resource is removed atomically, the 786 * release function called and the resource freed. 787 * 788 * @return 0 if devres is found and freed, -ENOENT if not found. 789 */ 790 int devres_release(struct udevice *dev, dr_release_t release, 791 dr_match_t match, void *match_data); 792 793 /* managed devm_k.alloc/kfree for device drivers */ 794 /** 795 * devm_kmalloc() - Resource-managed kmalloc 796 * @dev: Device to allocate memory for 797 * @size: Allocation size 798 * @gfp: Allocation gfp flags 799 * 800 * Managed kmalloc. Memory allocated with this function is 801 * automatically freed on driver detach. Like all other devres 802 * resources, guaranteed alignment is unsigned long long. 803 * 804 * @return pointer to allocated memory on success, NULL on failure. 805 */ 806 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp); 807 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 808 { 809 return devm_kmalloc(dev, size, gfp | __GFP_ZERO); 810 } 811 static inline void *devm_kmalloc_array(struct udevice *dev, 812 size_t n, size_t size, gfp_t flags) 813 { 814 if (size != 0 && n > SIZE_MAX / size) 815 return NULL; 816 return devm_kmalloc(dev, n * size, flags); 817 } 818 static inline void *devm_kcalloc(struct udevice *dev, 819 size_t n, size_t size, gfp_t flags) 820 { 821 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); 822 } 823 824 /** 825 * devm_kfree() - Resource-managed kfree 826 * @dev: Device this memory belongs to 827 * @ptr: Memory to free 828 * 829 * Free memory allocated with devm_kmalloc(). 830 */ 831 void devm_kfree(struct udevice *dev, void *ptr); 832 833 #else /* ! CONFIG_DEVRES */ 834 835 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) 836 { 837 return kzalloc(size, gfp); 838 } 839 840 static inline void devres_free(void *res) 841 { 842 kfree(res); 843 } 844 845 static inline void devres_add(struct udevice *dev, void *res) 846 { 847 } 848 849 static inline void *devres_find(struct udevice *dev, dr_release_t release, 850 dr_match_t match, void *match_data) 851 { 852 return NULL; 853 } 854 855 static inline void *devres_get(struct udevice *dev, void *new_res, 856 dr_match_t match, void *match_data) 857 { 858 return NULL; 859 } 860 861 static inline void *devres_remove(struct udevice *dev, dr_release_t release, 862 dr_match_t match, void *match_data) 863 { 864 return NULL; 865 } 866 867 static inline int devres_destroy(struct udevice *dev, dr_release_t release, 868 dr_match_t match, void *match_data) 869 { 870 return 0; 871 } 872 873 static inline int devres_release(struct udevice *dev, dr_release_t release, 874 dr_match_t match, void *match_data) 875 { 876 return 0; 877 } 878 879 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp) 880 { 881 return kmalloc(size, gfp); 882 } 883 884 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 885 { 886 return kzalloc(size, gfp); 887 } 888 889 static inline void *devm_kmaloc_array(struct udevice *dev, 890 size_t n, size_t size, gfp_t flags) 891 { 892 /* TODO: add kmalloc_array() to linux/compat.h */ 893 if (size != 0 && n > SIZE_MAX / size) 894 return NULL; 895 return kmalloc(n * size, flags); 896 } 897 898 static inline void *devm_kcalloc(struct udevice *dev, 899 size_t n, size_t size, gfp_t flags) 900 { 901 /* TODO: add kcalloc() to linux/compat.h */ 902 return kmalloc(n * size, flags | __GFP_ZERO); 903 } 904 905 static inline void devm_kfree(struct udevice *dev, void *ptr) 906 { 907 kfree(ptr); 908 } 909 910 #endif /* ! CONFIG_DEVRES */ 911 912 /** 913 * dm_set_translation_offset() - Set translation offset 914 * @offs: Translation offset 915 * 916 * Some platforms need a special address translation. Those 917 * platforms (e.g. mvebu in SPL) can configure a translation 918 * offset in the DM by calling this function. It will be 919 * added to all addresses returned in dev_get_addr(). 920 */ 921 void dm_set_translation_offset(fdt_addr_t offs); 922 923 /** 924 * dm_get_translation_offset() - Get translation offset 925 * 926 * This function returns the translation offset that can 927 * be configured by calling dm_set_translation_offset(). 928 * 929 * @return translation offset for the device address (0 as default). 930 */ 931 fdt_addr_t dm_get_translation_offset(void); 932 933 #endif 934