1 /* 2 * Copyright (c) 2013 Google, Inc 3 * 4 * (C) Copyright 2012 5 * Pavel Herrmann <morpheus.ibis@gmail.com> 6 * Marek Vasut <marex@denx.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #ifndef _DM_DEVICE_H 12 #define _DM_DEVICE_H 13 14 #include <dm/uclass-id.h> 15 #include <fdtdec.h> 16 #include <linker_lists.h> 17 #include <linux/compat.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 21 struct driver_info; 22 23 /* Driver is active (probed). Cleared when it is removed */ 24 #define DM_FLAG_ACTIVATED (1 << 0) 25 26 /* DM is responsible for allocating and freeing platdata */ 27 #define DM_FLAG_ALLOC_PDATA (1 << 1) 28 29 /* DM should init this device prior to relocation */ 30 #define DM_FLAG_PRE_RELOC (1 << 2) 31 32 /* DM is responsible for allocating and freeing parent_platdata */ 33 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3) 34 35 /* DM is responsible for allocating and freeing uclass_platdata */ 36 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4) 37 38 /* Allocate driver private data on a DMA boundary */ 39 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5) 40 41 /* Device is bound */ 42 #define DM_FLAG_BOUND (1 << 6) 43 44 /* Device name is allocated and should be freed on unbind() */ 45 #define DM_FLAG_NAME_ALLOCED (1 << 7) 46 47 #define DM_FLAG_OF_PLATDATA (1 << 8) 48 49 /* 50 * Call driver remove function to stop currently active DMA transfers or 51 * give DMA buffers back to the HW / controller. This may be needed for 52 * some drivers to do some final stage cleanup before the OS is called 53 * (U-Boot exit) 54 */ 55 #define DM_FLAG_ACTIVE_DMA (1 << 9) 56 57 /* 58 * Call driver remove function to do some final configuration, before 59 * U-Boot exits and the OS is started 60 */ 61 #define DM_FLAG_OS_PREPARE (1 << 10) 62 63 /* 64 * One or multiple of these flags are passed to device_remove() so that 65 * a selective device removal as specified by the remove-stage and the 66 * driver flags can be done. 67 */ 68 enum { 69 /* Normal remove, remove all devices */ 70 DM_REMOVE_NORMAL = 1 << 0, 71 72 /* Remove devices with active DMA */ 73 DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA, 74 75 /* Remove devices which need some final OS preparation steps */ 76 DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE, 77 78 /* Add more use cases here */ 79 80 /* Remove devices with any active flag */ 81 DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE, 82 }; 83 84 /** 85 * struct udevice - An instance of a driver 86 * 87 * This holds information about a device, which is a driver bound to a 88 * particular port or peripheral (essentially a driver instance). 89 * 90 * A device will come into existence through a 'bind' call, either due to 91 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node 92 * in the device tree (in which case of_offset is >= 0). In the latter case 93 * we translate the device tree information into platdata in a function 94 * implemented by the driver ofdata_to_platdata method (called just before the 95 * probe method if the device has a device tree node. 96 * 97 * All three of platdata, priv and uclass_priv can be allocated by the 98 * driver, or you can use the auto_alloc_size members of struct driver and 99 * struct uclass_driver to have driver model do this automatically. 100 * 101 * @driver: The driver used by this device 102 * @name: Name of device, typically the FDT node name 103 * @platdata: Configuration data for this device 104 * @parent_platdata: The parent bus's configuration data for this device 105 * @uclass_platdata: The uclass's configuration data for this device 106 * @of_offset: Device tree node offset for this device (- for none) 107 * @driver_data: Driver data word for the entry that matched this device with 108 * its driver 109 * @parent: Parent of this device, or NULL for the top level device 110 * @priv: Private data for this device 111 * @uclass: Pointer to uclass for this device 112 * @uclass_priv: The uclass's private data for this device 113 * @parent_priv: The parent's private data for this device 114 * @uclass_node: Used by uclass to link its devices 115 * @child_head: List of children of this device 116 * @sibling_node: Next device in list of all devices 117 * @flags: Flags for this device DM_FLAG_... 118 * @req_seq: Requested sequence number for this device (-1 = any) 119 * @seq: Allocated sequence number for this device (-1 = none). This is set up 120 * when the device is probed and will be unique within the device's uclass. 121 * @devres_head: List of memory allocations associated with this device. 122 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will 123 * add to this list. Memory so-allocated will be freed 124 * automatically when the device is removed / unbound 125 */ 126 struct udevice { 127 const struct driver *driver; 128 const char *name; 129 void *platdata; 130 void *parent_platdata; 131 void *uclass_platdata; 132 int of_offset; 133 ulong driver_data; 134 struct udevice *parent; 135 void *priv; 136 struct uclass *uclass; 137 void *uclass_priv; 138 void *parent_priv; 139 struct list_head uclass_node; 140 struct list_head child_head; 141 struct list_head sibling_node; 142 uint32_t flags; 143 int req_seq; 144 int seq; 145 #ifdef CONFIG_DEVRES 146 struct list_head devres_head; 147 #endif 148 }; 149 150 /* Maximum sequence number supported */ 151 #define DM_MAX_SEQ 999 152 153 /* Returns the operations for a device */ 154 #define device_get_ops(dev) (dev->driver->ops) 155 156 /* Returns non-zero if the device is active (probed and not removed) */ 157 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED) 158 159 static inline int dev_of_offset(const struct udevice *dev) 160 { 161 return dev->of_offset; 162 } 163 164 static inline void dev_set_of_offset(struct udevice *dev, int of_offset) 165 { 166 dev->of_offset = of_offset; 167 } 168 169 /** 170 * struct udevice_id - Lists the compatible strings supported by a driver 171 * @compatible: Compatible string 172 * @data: Data for this compatible string 173 */ 174 struct udevice_id { 175 const char *compatible; 176 ulong data; 177 }; 178 179 #if CONFIG_IS_ENABLED(OF_CONTROL) 180 #define of_match_ptr(_ptr) (_ptr) 181 #else 182 #define of_match_ptr(_ptr) NULL 183 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ 184 185 /** 186 * struct driver - A driver for a feature or peripheral 187 * 188 * This holds methods for setting up a new device, and also removing it. 189 * The device needs information to set itself up - this is provided either 190 * by platdata or a device tree node (which we find by looking up 191 * matching compatible strings with of_match). 192 * 193 * Drivers all belong to a uclass, representing a class of devices of the 194 * same type. Common elements of the drivers can be implemented in the uclass, 195 * or the uclass can provide a consistent interface to the drivers within 196 * it. 197 * 198 * @name: Device name 199 * @id: Identiies the uclass we belong to 200 * @of_match: List of compatible strings to match, and any identifying data 201 * for each. 202 * @bind: Called to bind a device to its driver 203 * @probe: Called to probe a device, i.e. activate it 204 * @remove: Called to remove a device, i.e. de-activate it 205 * @unbind: Called to unbind a device from its driver 206 * @ofdata_to_platdata: Called before probe to decode device tree data 207 * @child_post_bind: Called after a new child has been bound 208 * @child_pre_probe: Called before a child device is probed. The device has 209 * memory allocated but it has not yet been probed. 210 * @child_post_remove: Called after a child device is removed. The device 211 * has memory allocated but its device_remove() method has been called. 212 * @priv_auto_alloc_size: If non-zero this is the size of the private data 213 * to be allocated in the device's ->priv pointer. If zero, then the driver 214 * is responsible for allocating any data required. 215 * @platdata_auto_alloc_size: If non-zero this is the size of the 216 * platform data to be allocated in the device's ->platdata pointer. 217 * This is typically only useful for device-tree-aware drivers (those with 218 * an of_match), since drivers which use platdata will have the data 219 * provided in the U_BOOT_DEVICE() instantiation. 220 * @per_child_auto_alloc_size: Each device can hold private data owned by 221 * its parent. If required this will be automatically allocated if this 222 * value is non-zero. 223 * @per_child_platdata_auto_alloc_size: A bus likes to store information about 224 * its children. If non-zero this is the size of this data, to be allocated 225 * in the child's parent_platdata pointer. 226 * @ops: Driver-specific operations. This is typically a list of function 227 * pointers defined by the driver, to implement driver functions required by 228 * the uclass. 229 * @flags: driver flags - see DM_FLAGS_... 230 */ 231 struct driver { 232 char *name; 233 enum uclass_id id; 234 const struct udevice_id *of_match; 235 int (*bind)(struct udevice *dev); 236 int (*probe)(struct udevice *dev); 237 int (*remove)(struct udevice *dev); 238 int (*unbind)(struct udevice *dev); 239 int (*ofdata_to_platdata)(struct udevice *dev); 240 int (*child_post_bind)(struct udevice *dev); 241 int (*child_pre_probe)(struct udevice *dev); 242 int (*child_post_remove)(struct udevice *dev); 243 int priv_auto_alloc_size; 244 int platdata_auto_alloc_size; 245 int per_child_auto_alloc_size; 246 int per_child_platdata_auto_alloc_size; 247 const void *ops; /* driver-specific operations */ 248 uint32_t flags; 249 }; 250 251 /* Declare a new U-Boot driver */ 252 #define U_BOOT_DRIVER(__name) \ 253 ll_entry_declare(struct driver, __name, driver) 254 255 /* Get a pointer to a given driver */ 256 #define DM_GET_DRIVER(__name) \ 257 ll_entry_get(struct driver, __name, driver) 258 259 /** 260 * dev_get_platdata() - Get the platform data for a device 261 * 262 * This checks that dev is not NULL, but no other checks for now 263 * 264 * @dev Device to check 265 * @return platform data, or NULL if none 266 */ 267 void *dev_get_platdata(struct udevice *dev); 268 269 /** 270 * dev_get_parent_platdata() - Get the parent platform data for a device 271 * 272 * This checks that dev is not NULL, but no other checks for now 273 * 274 * @dev Device to check 275 * @return parent's platform data, or NULL if none 276 */ 277 void *dev_get_parent_platdata(struct udevice *dev); 278 279 /** 280 * dev_get_uclass_platdata() - Get the uclass platform data for a device 281 * 282 * This checks that dev is not NULL, but no other checks for now 283 * 284 * @dev Device to check 285 * @return uclass's platform data, or NULL if none 286 */ 287 void *dev_get_uclass_platdata(struct udevice *dev); 288 289 /** 290 * dev_get_priv() - Get the private data for a device 291 * 292 * This checks that dev is not NULL, but no other checks for now 293 * 294 * @dev Device to check 295 * @return private data, or NULL if none 296 */ 297 void *dev_get_priv(struct udevice *dev); 298 299 /** 300 * dev_get_parent_priv() - Get the parent private data for a device 301 * 302 * The parent private data is data stored in the device but owned by the 303 * parent. For example, a USB device may have parent data which contains 304 * information about how to talk to the device over USB. 305 * 306 * This checks that dev is not NULL, but no other checks for now 307 * 308 * @dev Device to check 309 * @return parent data, or NULL if none 310 */ 311 void *dev_get_parent_priv(struct udevice *dev); 312 313 /** 314 * dev_get_uclass_priv() - Get the private uclass data for a device 315 * 316 * This checks that dev is not NULL, but no other checks for now 317 * 318 * @dev Device to check 319 * @return private uclass data for this device, or NULL if none 320 */ 321 void *dev_get_uclass_priv(struct udevice *dev); 322 323 /** 324 * struct dev_get_parent() - Get the parent of a device 325 * 326 * @child: Child to check 327 * @return parent of child, or NULL if this is the root device 328 */ 329 struct udevice *dev_get_parent(struct udevice *child); 330 331 /** 332 * dev_get_driver_data() - get the driver data used to bind a device 333 * 334 * When a device is bound using a device tree node, it matches a 335 * particular compatible string in struct udevice_id. This function 336 * returns the associated data value for that compatible string. This is 337 * the 'data' field in struct udevice_id. 338 * 339 * As an example, consider this structure: 340 * static const struct udevice_id tegra_i2c_ids[] = { 341 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 }, 342 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD }, 343 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC }, 344 * { } 345 * }; 346 * 347 * When driver model finds a driver for this it will store the 'data' value 348 * corresponding to the compatible string it matches. This function returns 349 * that value. This allows the driver to handle several variants of a device. 350 * 351 * For USB devices, this is the driver_info field in struct usb_device_id. 352 * 353 * @dev: Device to check 354 * @return driver data (0 if none is provided) 355 */ 356 ulong dev_get_driver_data(struct udevice *dev); 357 358 /** 359 * dev_get_driver_ops() - get the device's driver's operations 360 * 361 * This checks that dev is not NULL, and returns the pointer to device's 362 * driver's operations. 363 * 364 * @dev: Device to check 365 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops 366 */ 367 const void *dev_get_driver_ops(struct udevice *dev); 368 369 /** 370 * device_get_uclass_id() - return the uclass ID of a device 371 * 372 * @dev: Device to check 373 * @return uclass ID for the device 374 */ 375 enum uclass_id device_get_uclass_id(struct udevice *dev); 376 377 /** 378 * dev_get_uclass_name() - return the uclass name of a device 379 * 380 * This checks that dev is not NULL. 381 * 382 * @dev: Device to check 383 * @return pointer to the uclass name for the device 384 */ 385 const char *dev_get_uclass_name(struct udevice *dev); 386 387 /** 388 * device_get_child() - Get the child of a device by index 389 * 390 * Returns the numbered child, 0 being the first. This does not use 391 * sequence numbers, only the natural order. 392 * 393 * @dev: Parent device to check 394 * @index: Child index 395 * @devp: Returns pointer to device 396 * @return 0 if OK, -ENODEV if no such device, other error if the device fails 397 * to probe 398 */ 399 int device_get_child(struct udevice *parent, int index, struct udevice **devp); 400 401 /** 402 * device_find_child_by_seq() - Find a child device based on a sequence 403 * 404 * This searches for a device with the given seq or req_seq. 405 * 406 * For seq, if an active device has this sequence it will be returned. 407 * If there is no such device then this will return -ENODEV. 408 * 409 * For req_seq, if a device (whether activated or not) has this req_seq 410 * value, that device will be returned. This is a strong indication that 411 * the device will receive that sequence when activated. 412 * 413 * @parent: Parent device 414 * @seq_or_req_seq: Sequence number to find (0=first) 415 * @find_req_seq: true to find req_seq, false to find seq 416 * @devp: Returns pointer to device (there is only one per for each seq). 417 * Set to NULL if none is found 418 * @return 0 if OK, -ve on error 419 */ 420 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq, 421 bool find_req_seq, struct udevice **devp); 422 423 /** 424 * device_get_child_by_seq() - Get a child device based on a sequence 425 * 426 * If an active device has this sequence it will be returned. If there is no 427 * such device then this will check for a device that is requesting this 428 * sequence. 429 * 430 * The device is probed to activate it ready for use. 431 * 432 * @parent: Parent device 433 * @seq: Sequence number to find (0=first) 434 * @devp: Returns pointer to device (there is only one per for each seq) 435 * Set to NULL if none is found 436 * @return 0 if OK, -ve on error 437 */ 438 int device_get_child_by_seq(struct udevice *parent, int seq, 439 struct udevice **devp); 440 441 /** 442 * device_find_child_by_of_offset() - Find a child device based on FDT offset 443 * 444 * Locates a child device by its device tree offset. 445 * 446 * @parent: Parent device 447 * @of_offset: Device tree offset to find 448 * @devp: Returns pointer to device if found, otherwise this is set to NULL 449 * @return 0 if OK, -ve on error 450 */ 451 int device_find_child_by_of_offset(struct udevice *parent, int of_offset, 452 struct udevice **devp); 453 454 /** 455 * device_get_child_by_of_offset() - Get a child device based on FDT offset 456 * 457 * Locates a child device by its device tree offset. 458 * 459 * The device is probed to activate it ready for use. 460 * 461 * @parent: Parent device 462 * @of_offset: Device tree offset to find 463 * @devp: Returns pointer to device if found, otherwise this is set to NULL 464 * @return 0 if OK, -ve on error 465 */ 466 int device_get_child_by_of_offset(struct udevice *parent, int of_offset, 467 struct udevice **devp); 468 469 /** 470 * device_get_global_by_of_offset() - Get a device based on FDT offset 471 * 472 * Locates a device by its device tree offset, searching globally throughout 473 * the all driver model devices. 474 * 475 * The device is probed to activate it ready for use. 476 * 477 * @of_offset: Device tree offset to find 478 * @devp: Returns pointer to device if found, otherwise this is set to NULL 479 * @return 0 if OK, -ve on error 480 */ 481 int device_get_global_by_of_offset(int of_offset, struct udevice **devp); 482 483 /** 484 * device_find_first_child() - Find the first child of a device 485 * 486 * @parent: Parent device to search 487 * @devp: Returns first child device, or NULL if none 488 * @return 0 489 */ 490 int device_find_first_child(struct udevice *parent, struct udevice **devp); 491 492 /** 493 * device_find_next_child() - Find the next child of a device 494 * 495 * @devp: Pointer to previous child device on entry. Returns pointer to next 496 * child device, or NULL if none 497 * @return 0 498 */ 499 int device_find_next_child(struct udevice **devp); 500 501 /** 502 * dev_get_addr() - Get the reg property of a device 503 * 504 * @dev: Pointer to a device 505 * 506 * @return addr 507 */ 508 fdt_addr_t dev_get_addr(struct udevice *dev); 509 510 /** 511 * dev_get_addr_ptr() - Return pointer to the address of the reg property 512 * of a device 513 * 514 * @dev: Pointer to a device 515 * 516 * @return Pointer to addr, or NULL if there is no such property 517 */ 518 void *dev_get_addr_ptr(struct udevice *dev); 519 520 /** 521 * dev_map_physmem() - Read device address from reg property of the 522 * device node and map the address into CPU address 523 * space. 524 * 525 * @dev: Pointer to device 526 * @size: size of the memory to map 527 * 528 * @return mapped address, or NULL if the device does not have reg 529 * property. 530 */ 531 void *dev_map_physmem(struct udevice *dev, unsigned long size); 532 533 /** 534 * dev_get_addr_index() - Get the indexed reg property of a device 535 * 536 * @dev: Pointer to a device 537 * @index: the 'reg' property can hold a list of <addr, size> pairs 538 * and @index is used to select which one is required 539 * 540 * @return addr 541 */ 542 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index); 543 544 /** 545 * dev_get_addr_size_index() - Get the indexed reg property of a device 546 * 547 * Returns the address and size specified in the 'reg' property of a device. 548 * 549 * @dev: Pointer to a device 550 * @index: the 'reg' property can hold a list of <addr, size> pairs 551 * and @index is used to select which one is required 552 * @size: Pointer to size varible - this function returns the size 553 * specified in the 'reg' property here 554 * 555 * @return addr 556 */ 557 fdt_addr_t dev_get_addr_size_index(struct udevice *dev, int index, 558 fdt_size_t *size); 559 560 /** 561 * dev_get_addr_name() - Get the reg property of a device, indexed by name 562 * 563 * @dev: Pointer to a device 564 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the 565 * 'reg-names' property providing named-based identification. @index 566 * indicates the value to search for in 'reg-names'. 567 * 568 * @return addr 569 */ 570 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name); 571 572 /** 573 * device_has_children() - check if a device has any children 574 * 575 * @dev: Device to check 576 * @return true if the device has one or more children 577 */ 578 bool device_has_children(struct udevice *dev); 579 580 /** 581 * device_has_active_children() - check if a device has any active children 582 * 583 * @dev: Device to check 584 * @return true if the device has one or more children and at least one of 585 * them is active (probed). 586 */ 587 bool device_has_active_children(struct udevice *dev); 588 589 /** 590 * device_is_last_sibling() - check if a device is the last sibling 591 * 592 * This function can be useful for display purposes, when special action needs 593 * to be taken when displaying the last sibling. This can happen when a tree 594 * view of devices is being displayed. 595 * 596 * @dev: Device to check 597 * @return true if there are no more siblings after this one - i.e. is it 598 * last in the list. 599 */ 600 bool device_is_last_sibling(struct udevice *dev); 601 602 /** 603 * device_set_name() - set the name of a device 604 * 605 * This must be called in the device's bind() method and no later. Normally 606 * this is unnecessary but for probed devices which don't get a useful name 607 * this function can be helpful. 608 * 609 * The name is allocated and will be freed automatically when the device is 610 * unbound. 611 * 612 * @dev: Device to update 613 * @name: New name (this string is allocated new memory and attached to 614 * the device) 615 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the 616 * string 617 */ 618 int device_set_name(struct udevice *dev, const char *name); 619 620 /** 621 * device_set_name_alloced() - note that a device name is allocated 622 * 623 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is 624 * unbound the name will be freed. This avoids memory leaks. 625 * 626 * @dev: Device to update 627 */ 628 void device_set_name_alloced(struct udevice *dev); 629 630 /** 631 * of_device_is_compatible() - check if the device is compatible with the compat 632 * 633 * This allows to check whether the device is comaptible with the compat. 634 * 635 * @dev: udevice pointer for which compatible needs to be verified. 636 * @compat: Compatible string which needs to verified in the given 637 * device 638 * @return true if OK, false if the compatible is not found 639 */ 640 bool of_device_is_compatible(struct udevice *dev, const char *compat); 641 642 /** 643 * of_machine_is_compatible() - check if the machine is compatible with 644 * the compat 645 * 646 * This allows to check whether the machine is comaptible with the compat. 647 * 648 * @compat: Compatible string which needs to verified 649 * @return true if OK, false if the compatible is not found 650 */ 651 bool of_machine_is_compatible(const char *compat); 652 653 /** 654 * device_is_on_pci_bus - Test if a device is on a PCI bus 655 * 656 * @dev: device to test 657 * @return: true if it is on a PCI bus, false otherwise 658 */ 659 static inline bool device_is_on_pci_bus(struct udevice *dev) 660 { 661 return device_get_uclass_id(dev->parent) == UCLASS_PCI; 662 } 663 664 /** 665 * device_foreach_child_safe() - iterate through child devices safely 666 * 667 * This allows the @pos child to be removed in the loop if required. 668 * 669 * @pos: struct udevice * for the current device 670 * @next: struct udevice * for the next device 671 * @parent: parent device to scan 672 */ 673 #define device_foreach_child_safe(pos, next, parent) \ 674 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node) 675 676 /** 677 * dm_scan_fdt_dev() - Bind child device in a the device tree 678 * 679 * This handles device which have sub-nodes in the device tree. It scans all 680 * sub-nodes and binds drivers for each node where a driver can be found. 681 * 682 * If this is called prior to relocation, only pre-relocation devices will be 683 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where 684 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will 685 * be bound. 686 * 687 * @dev: Device to scan 688 * @return 0 if OK, -ve on error 689 */ 690 int dm_scan_fdt_dev(struct udevice *dev); 691 692 /* device resource management */ 693 typedef void (*dr_release_t)(struct udevice *dev, void *res); 694 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data); 695 696 #ifdef CONFIG_DEVRES 697 698 #ifdef CONFIG_DEBUG_DEVRES 699 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp, 700 const char *name); 701 #define _devres_alloc(release, size, gfp) \ 702 __devres_alloc(release, size, gfp, #release) 703 #else 704 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp); 705 #endif 706 707 /** 708 * devres_alloc() - Allocate device resource data 709 * @release: Release function devres will be associated with 710 * @size: Allocation size 711 * @gfp: Allocation flags 712 * 713 * Allocate devres of @size bytes. The allocated area is associated 714 * with @release. The returned pointer can be passed to 715 * other devres_*() functions. 716 * 717 * RETURNS: 718 * Pointer to allocated devres on success, NULL on failure. 719 */ 720 #define devres_alloc(release, size, gfp) \ 721 _devres_alloc(release, size, gfp | __GFP_ZERO) 722 723 /** 724 * devres_free() - Free device resource data 725 * @res: Pointer to devres data to free 726 * 727 * Free devres created with devres_alloc(). 728 */ 729 void devres_free(void *res); 730 731 /** 732 * devres_add() - Register device resource 733 * @dev: Device to add resource to 734 * @res: Resource to register 735 * 736 * Register devres @res to @dev. @res should have been allocated 737 * using devres_alloc(). On driver detach, the associated release 738 * function will be invoked and devres will be freed automatically. 739 */ 740 void devres_add(struct udevice *dev, void *res); 741 742 /** 743 * devres_find() - Find device resource 744 * @dev: Device to lookup resource from 745 * @release: Look for resources associated with this release function 746 * @match: Match function (optional) 747 * @match_data: Data for the match function 748 * 749 * Find the latest devres of @dev which is associated with @release 750 * and for which @match returns 1. If @match is NULL, it's considered 751 * to match all. 752 * 753 * @return pointer to found devres, NULL if not found. 754 */ 755 void *devres_find(struct udevice *dev, dr_release_t release, 756 dr_match_t match, void *match_data); 757 758 /** 759 * devres_get() - Find devres, if non-existent, add one atomically 760 * @dev: Device to lookup or add devres for 761 * @new_res: Pointer to new initialized devres to add if not found 762 * @match: Match function (optional) 763 * @match_data: Data for the match function 764 * 765 * Find the latest devres of @dev which has the same release function 766 * as @new_res and for which @match return 1. If found, @new_res is 767 * freed; otherwise, @new_res is added atomically. 768 * 769 * @return ointer to found or added devres. 770 */ 771 void *devres_get(struct udevice *dev, void *new_res, 772 dr_match_t match, void *match_data); 773 774 /** 775 * devres_remove() - Find a device resource and remove it 776 * @dev: Device to find resource from 777 * @release: Look for resources associated with this release function 778 * @match: Match function (optional) 779 * @match_data: Data for the match function 780 * 781 * Find the latest devres of @dev associated with @release and for 782 * which @match returns 1. If @match is NULL, it's considered to 783 * match all. If found, the resource is removed atomically and 784 * returned. 785 * 786 * @return ointer to removed devres on success, NULL if not found. 787 */ 788 void *devres_remove(struct udevice *dev, dr_release_t release, 789 dr_match_t match, void *match_data); 790 791 /** 792 * devres_destroy() - Find a device resource and destroy it 793 * @dev: Device to find resource from 794 * @release: Look for resources associated with this release function 795 * @match: Match function (optional) 796 * @match_data: Data for the match function 797 * 798 * Find the latest devres of @dev associated with @release and for 799 * which @match returns 1. If @match is NULL, it's considered to 800 * match all. If found, the resource is removed atomically and freed. 801 * 802 * Note that the release function for the resource will not be called, 803 * only the devres-allocated data will be freed. The caller becomes 804 * responsible for freeing any other data. 805 * 806 * @return 0 if devres is found and freed, -ENOENT if not found. 807 */ 808 int devres_destroy(struct udevice *dev, dr_release_t release, 809 dr_match_t match, void *match_data); 810 811 /** 812 * devres_release() - Find a device resource and destroy it, calling release 813 * @dev: Device to find resource from 814 * @release: Look for resources associated with this release function 815 * @match: Match function (optional) 816 * @match_data: Data for the match function 817 * 818 * Find the latest devres of @dev associated with @release and for 819 * which @match returns 1. If @match is NULL, it's considered to 820 * match all. If found, the resource is removed atomically, the 821 * release function called and the resource freed. 822 * 823 * @return 0 if devres is found and freed, -ENOENT if not found. 824 */ 825 int devres_release(struct udevice *dev, dr_release_t release, 826 dr_match_t match, void *match_data); 827 828 /* managed devm_k.alloc/kfree for device drivers */ 829 /** 830 * devm_kmalloc() - Resource-managed kmalloc 831 * @dev: Device to allocate memory for 832 * @size: Allocation size 833 * @gfp: Allocation gfp flags 834 * 835 * Managed kmalloc. Memory allocated with this function is 836 * automatically freed on driver detach. Like all other devres 837 * resources, guaranteed alignment is unsigned long long. 838 * 839 * @return pointer to allocated memory on success, NULL on failure. 840 */ 841 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp); 842 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 843 { 844 return devm_kmalloc(dev, size, gfp | __GFP_ZERO); 845 } 846 static inline void *devm_kmalloc_array(struct udevice *dev, 847 size_t n, size_t size, gfp_t flags) 848 { 849 if (size != 0 && n > SIZE_MAX / size) 850 return NULL; 851 return devm_kmalloc(dev, n * size, flags); 852 } 853 static inline void *devm_kcalloc(struct udevice *dev, 854 size_t n, size_t size, gfp_t flags) 855 { 856 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); 857 } 858 859 /** 860 * devm_kfree() - Resource-managed kfree 861 * @dev: Device this memory belongs to 862 * @ptr: Memory to free 863 * 864 * Free memory allocated with devm_kmalloc(). 865 */ 866 void devm_kfree(struct udevice *dev, void *ptr); 867 868 #else /* ! CONFIG_DEVRES */ 869 870 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) 871 { 872 return kzalloc(size, gfp); 873 } 874 875 static inline void devres_free(void *res) 876 { 877 kfree(res); 878 } 879 880 static inline void devres_add(struct udevice *dev, void *res) 881 { 882 } 883 884 static inline void *devres_find(struct udevice *dev, dr_release_t release, 885 dr_match_t match, void *match_data) 886 { 887 return NULL; 888 } 889 890 static inline void *devres_get(struct udevice *dev, void *new_res, 891 dr_match_t match, void *match_data) 892 { 893 return NULL; 894 } 895 896 static inline void *devres_remove(struct udevice *dev, dr_release_t release, 897 dr_match_t match, void *match_data) 898 { 899 return NULL; 900 } 901 902 static inline int devres_destroy(struct udevice *dev, dr_release_t release, 903 dr_match_t match, void *match_data) 904 { 905 return 0; 906 } 907 908 static inline int devres_release(struct udevice *dev, dr_release_t release, 909 dr_match_t match, void *match_data) 910 { 911 return 0; 912 } 913 914 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp) 915 { 916 return kmalloc(size, gfp); 917 } 918 919 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp) 920 { 921 return kzalloc(size, gfp); 922 } 923 924 static inline void *devm_kmaloc_array(struct udevice *dev, 925 size_t n, size_t size, gfp_t flags) 926 { 927 /* TODO: add kmalloc_array() to linux/compat.h */ 928 if (size != 0 && n > SIZE_MAX / size) 929 return NULL; 930 return kmalloc(n * size, flags); 931 } 932 933 static inline void *devm_kcalloc(struct udevice *dev, 934 size_t n, size_t size, gfp_t flags) 935 { 936 /* TODO: add kcalloc() to linux/compat.h */ 937 return kmalloc(n * size, flags | __GFP_ZERO); 938 } 939 940 static inline void devm_kfree(struct udevice *dev, void *ptr) 941 { 942 kfree(ptr); 943 } 944 945 #endif /* ! CONFIG_DEVRES */ 946 947 /** 948 * dm_set_translation_offset() - Set translation offset 949 * @offs: Translation offset 950 * 951 * Some platforms need a special address translation. Those 952 * platforms (e.g. mvebu in SPL) can configure a translation 953 * offset in the DM by calling this function. It will be 954 * added to all addresses returned in dev_get_addr(). 955 */ 956 void dm_set_translation_offset(fdt_addr_t offs); 957 958 /** 959 * dm_get_translation_offset() - Get translation offset 960 * 961 * This function returns the translation offset that can 962 * be configured by calling dm_set_translation_offset(). 963 * 964 * @return translation offset for the device address (0 as default). 965 */ 966 fdt_addr_t dm_get_translation_offset(void); 967 968 #endif 969