xref: /openbmc/u-boot/include/dm/device.h (revision 014a953c)
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13 
14 #include <dm/ofnode.h>
15 #include <dm/uclass-id.h>
16 #include <fdtdec.h>
17 #include <linker_lists.h>
18 #include <linux/compat.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/printk.h>
22 
23 struct driver_info;
24 
25 /* Driver is active (probed). Cleared when it is removed */
26 #define DM_FLAG_ACTIVATED		(1 << 0)
27 
28 /* DM is responsible for allocating and freeing platdata */
29 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
30 
31 /* DM should init this device prior to relocation */
32 #define DM_FLAG_PRE_RELOC		(1 << 2)
33 
34 /* DM is responsible for allocating and freeing parent_platdata */
35 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
36 
37 /* DM is responsible for allocating and freeing uclass_platdata */
38 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
39 
40 /* Allocate driver private data on a DMA boundary */
41 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
42 
43 /* Device is bound */
44 #define DM_FLAG_BOUND			(1 << 6)
45 
46 /* Device name is allocated and should be freed on unbind() */
47 #define DM_FLAG_NAME_ALLOCED		(1 << 7)
48 
49 #define DM_FLAG_OF_PLATDATA		(1 << 8)
50 
51 /*
52  * Call driver remove function to stop currently active DMA transfers or
53  * give DMA buffers back to the HW / controller. This may be needed for
54  * some drivers to do some final stage cleanup before the OS is called
55  * (U-Boot exit)
56  */
57 #define DM_FLAG_ACTIVE_DMA		(1 << 9)
58 
59 /*
60  * Call driver remove function to do some final configuration, before
61  * U-Boot exits and the OS is started
62  */
63 #define DM_FLAG_OS_PREPARE		(1 << 10)
64 
65 /*
66  * One or multiple of these flags are passed to device_remove() so that
67  * a selective device removal as specified by the remove-stage and the
68  * driver flags can be done.
69  */
70 enum {
71 	/* Normal remove, remove all devices */
72 	DM_REMOVE_NORMAL     = 1 << 0,
73 
74 	/* Remove devices with active DMA */
75 	DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
76 
77 	/* Remove devices which need some final OS preparation steps */
78 	DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
79 
80 	/* Add more use cases here */
81 
82 	/* Remove devices with any active flag */
83 	DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
84 };
85 
86 /**
87  * struct udevice - An instance of a driver
88  *
89  * This holds information about a device, which is a driver bound to a
90  * particular port or peripheral (essentially a driver instance).
91  *
92  * A device will come into existence through a 'bind' call, either due to
93  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
94  * in the device tree (in which case of_offset is >= 0). In the latter case
95  * we translate the device tree information into platdata in a function
96  * implemented by the driver ofdata_to_platdata method (called just before the
97  * probe method if the device has a device tree node.
98  *
99  * All three of platdata, priv and uclass_priv can be allocated by the
100  * driver, or you can use the auto_alloc_size members of struct driver and
101  * struct uclass_driver to have driver model do this automatically.
102  *
103  * @driver: The driver used by this device
104  * @name: Name of device, typically the FDT node name
105  * @platdata: Configuration data for this device
106  * @parent_platdata: The parent bus's configuration data for this device
107  * @uclass_platdata: The uclass's configuration data for this device
108  * @node: Reference to device tree node for this device
109  * @driver_data: Driver data word for the entry that matched this device with
110  *		its driver
111  * @parent: Parent of this device, or NULL for the top level device
112  * @priv: Private data for this device
113  * @uclass: Pointer to uclass for this device
114  * @uclass_priv: The uclass's private data for this device
115  * @parent_priv: The parent's private data for this device
116  * @uclass_node: Used by uclass to link its devices
117  * @child_head: List of children of this device
118  * @sibling_node: Next device in list of all devices
119  * @flags: Flags for this device DM_FLAG_...
120  * @req_seq: Requested sequence number for this device (-1 = any)
121  * @seq: Allocated sequence number for this device (-1 = none). This is set up
122  * when the device is probed and will be unique within the device's uclass.
123  * @devres_head: List of memory allocations associated with this device.
124  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
125  *		add to this list. Memory so-allocated will be freed
126  *		automatically when the device is removed / unbound
127  */
128 struct udevice {
129 	const struct driver *driver;
130 	const char *name;
131 	void *platdata;
132 	void *parent_platdata;
133 	void *uclass_platdata;
134 	ofnode node;
135 	ulong driver_data;
136 	struct udevice *parent;
137 	void *priv;
138 	struct uclass *uclass;
139 	void *uclass_priv;
140 	void *parent_priv;
141 	struct list_head uclass_node;
142 	struct list_head child_head;
143 	struct list_head sibling_node;
144 	uint32_t flags;
145 	int req_seq;
146 	int seq;
147 #ifdef CONFIG_DEVRES
148 	struct list_head devres_head;
149 #endif
150 };
151 
152 /* Maximum sequence number supported */
153 #define DM_MAX_SEQ	999
154 
155 /* Returns the operations for a device */
156 #define device_get_ops(dev)	(dev->driver->ops)
157 
158 /* Returns non-zero if the device is active (probed and not removed) */
159 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
160 
161 static inline int dev_of_offset(const struct udevice *dev)
162 {
163 	return ofnode_to_offset(dev->node);
164 }
165 
166 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
167 {
168 	dev->node = offset_to_ofnode(of_offset);
169 }
170 
171 static inline bool dev_has_of_node(struct udevice *dev)
172 {
173 	return ofnode_valid(dev->node);
174 }
175 
176 /**
177  * struct udevice_id - Lists the compatible strings supported by a driver
178  * @compatible: Compatible string
179  * @data: Data for this compatible string
180  */
181 struct udevice_id {
182 	const char *compatible;
183 	ulong data;
184 };
185 
186 #if CONFIG_IS_ENABLED(OF_CONTROL)
187 #define of_match_ptr(_ptr)	(_ptr)
188 #else
189 #define of_match_ptr(_ptr)	NULL
190 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
191 
192 /**
193  * struct driver - A driver for a feature or peripheral
194  *
195  * This holds methods for setting up a new device, and also removing it.
196  * The device needs information to set itself up - this is provided either
197  * by platdata or a device tree node (which we find by looking up
198  * matching compatible strings with of_match).
199  *
200  * Drivers all belong to a uclass, representing a class of devices of the
201  * same type. Common elements of the drivers can be implemented in the uclass,
202  * or the uclass can provide a consistent interface to the drivers within
203  * it.
204  *
205  * @name: Device name
206  * @id: Identiies the uclass we belong to
207  * @of_match: List of compatible strings to match, and any identifying data
208  * for each.
209  * @bind: Called to bind a device to its driver
210  * @probe: Called to probe a device, i.e. activate it
211  * @remove: Called to remove a device, i.e. de-activate it
212  * @unbind: Called to unbind a device from its driver
213  * @ofdata_to_platdata: Called before probe to decode device tree data
214  * @child_post_bind: Called after a new child has been bound
215  * @child_pre_probe: Called before a child device is probed. The device has
216  * memory allocated but it has not yet been probed.
217  * @child_post_remove: Called after a child device is removed. The device
218  * has memory allocated but its device_remove() method has been called.
219  * @priv_auto_alloc_size: If non-zero this is the size of the private data
220  * to be allocated in the device's ->priv pointer. If zero, then the driver
221  * is responsible for allocating any data required.
222  * @platdata_auto_alloc_size: If non-zero this is the size of the
223  * platform data to be allocated in the device's ->platdata pointer.
224  * This is typically only useful for device-tree-aware drivers (those with
225  * an of_match), since drivers which use platdata will have the data
226  * provided in the U_BOOT_DEVICE() instantiation.
227  * @per_child_auto_alloc_size: Each device can hold private data owned by
228  * its parent. If required this will be automatically allocated if this
229  * value is non-zero.
230  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
231  * its children. If non-zero this is the size of this data, to be allocated
232  * in the child's parent_platdata pointer.
233  * @ops: Driver-specific operations. This is typically a list of function
234  * pointers defined by the driver, to implement driver functions required by
235  * the uclass.
236  * @flags: driver flags - see DM_FLAGS_...
237  */
238 struct driver {
239 	char *name;
240 	enum uclass_id id;
241 	const struct udevice_id *of_match;
242 	int (*bind)(struct udevice *dev);
243 	int (*probe)(struct udevice *dev);
244 	int (*remove)(struct udevice *dev);
245 	int (*unbind)(struct udevice *dev);
246 	int (*ofdata_to_platdata)(struct udevice *dev);
247 	int (*child_post_bind)(struct udevice *dev);
248 	int (*child_pre_probe)(struct udevice *dev);
249 	int (*child_post_remove)(struct udevice *dev);
250 	int priv_auto_alloc_size;
251 	int platdata_auto_alloc_size;
252 	int per_child_auto_alloc_size;
253 	int per_child_platdata_auto_alloc_size;
254 	const void *ops;	/* driver-specific operations */
255 	uint32_t flags;
256 };
257 
258 /* Declare a new U-Boot driver */
259 #define U_BOOT_DRIVER(__name)						\
260 	ll_entry_declare(struct driver, __name, driver)
261 
262 /* Get a pointer to a given driver */
263 #define DM_GET_DRIVER(__name)						\
264 	ll_entry_get(struct driver, __name, driver)
265 
266 /**
267  * dev_get_platdata() - Get the platform data for a device
268  *
269  * This checks that dev is not NULL, but no other checks for now
270  *
271  * @dev		Device to check
272  * @return platform data, or NULL if none
273  */
274 void *dev_get_platdata(struct udevice *dev);
275 
276 /**
277  * dev_get_parent_platdata() - Get the parent platform data for a device
278  *
279  * This checks that dev is not NULL, but no other checks for now
280  *
281  * @dev		Device to check
282  * @return parent's platform data, or NULL if none
283  */
284 void *dev_get_parent_platdata(struct udevice *dev);
285 
286 /**
287  * dev_get_uclass_platdata() - Get the uclass platform data for a device
288  *
289  * This checks that dev is not NULL, but no other checks for now
290  *
291  * @dev		Device to check
292  * @return uclass's platform data, or NULL if none
293  */
294 void *dev_get_uclass_platdata(struct udevice *dev);
295 
296 /**
297  * dev_get_priv() - Get the private data for a device
298  *
299  * This checks that dev is not NULL, but no other checks for now
300  *
301  * @dev		Device to check
302  * @return private data, or NULL if none
303  */
304 void *dev_get_priv(struct udevice *dev);
305 
306 /**
307  * dev_get_parent_priv() - Get the parent private data for a device
308  *
309  * The parent private data is data stored in the device but owned by the
310  * parent. For example, a USB device may have parent data which contains
311  * information about how to talk to the device over USB.
312  *
313  * This checks that dev is not NULL, but no other checks for now
314  *
315  * @dev		Device to check
316  * @return parent data, or NULL if none
317  */
318 void *dev_get_parent_priv(struct udevice *dev);
319 
320 /**
321  * dev_get_uclass_priv() - Get the private uclass data for a device
322  *
323  * This checks that dev is not NULL, but no other checks for now
324  *
325  * @dev		Device to check
326  * @return private uclass data for this device, or NULL if none
327  */
328 void *dev_get_uclass_priv(struct udevice *dev);
329 
330 /**
331  * struct dev_get_parent() - Get the parent of a device
332  *
333  * @child:	Child to check
334  * @return parent of child, or NULL if this is the root device
335  */
336 struct udevice *dev_get_parent(struct udevice *child);
337 
338 /**
339  * dev_get_driver_data() - get the driver data used to bind a device
340  *
341  * When a device is bound using a device tree node, it matches a
342  * particular compatible string in struct udevice_id. This function
343  * returns the associated data value for that compatible string. This is
344  * the 'data' field in struct udevice_id.
345  *
346  * As an example, consider this structure:
347  * static const struct udevice_id tegra_i2c_ids[] = {
348  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
349  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
350  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
351  *	{ }
352  * };
353  *
354  * When driver model finds a driver for this it will store the 'data' value
355  * corresponding to the compatible string it matches. This function returns
356  * that value. This allows the driver to handle several variants of a device.
357  *
358  * For USB devices, this is the driver_info field in struct usb_device_id.
359  *
360  * @dev:	Device to check
361  * @return driver data (0 if none is provided)
362  */
363 ulong dev_get_driver_data(struct udevice *dev);
364 
365 /**
366  * dev_get_driver_ops() - get the device's driver's operations
367  *
368  * This checks that dev is not NULL, and returns the pointer to device's
369  * driver's operations.
370  *
371  * @dev:	Device to check
372  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
373  */
374 const void *dev_get_driver_ops(struct udevice *dev);
375 
376 /**
377  * device_get_uclass_id() - return the uclass ID of a device
378  *
379  * @dev:	Device to check
380  * @return uclass ID for the device
381  */
382 enum uclass_id device_get_uclass_id(struct udevice *dev);
383 
384 /**
385  * dev_get_uclass_name() - return the uclass name of a device
386  *
387  * This checks that dev is not NULL.
388  *
389  * @dev:	Device to check
390  * @return  pointer to the uclass name for the device
391  */
392 const char *dev_get_uclass_name(struct udevice *dev);
393 
394 /**
395  * device_get_child() - Get the child of a device by index
396  *
397  * Returns the numbered child, 0 being the first. This does not use
398  * sequence numbers, only the natural order.
399  *
400  * @dev:	Parent device to check
401  * @index:	Child index
402  * @devp:	Returns pointer to device
403  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
404  *	   to probe
405  */
406 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
407 
408 /**
409  * device_find_child_by_seq() - Find a child device based on a sequence
410  *
411  * This searches for a device with the given seq or req_seq.
412  *
413  * For seq, if an active device has this sequence it will be returned.
414  * If there is no such device then this will return -ENODEV.
415  *
416  * For req_seq, if a device (whether activated or not) has this req_seq
417  * value, that device will be returned. This is a strong indication that
418  * the device will receive that sequence when activated.
419  *
420  * @parent: Parent device
421  * @seq_or_req_seq: Sequence number to find (0=first)
422  * @find_req_seq: true to find req_seq, false to find seq
423  * @devp: Returns pointer to device (there is only one per for each seq).
424  * Set to NULL if none is found
425  * @return 0 if OK, -ve on error
426  */
427 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
428 			     bool find_req_seq, struct udevice **devp);
429 
430 /**
431  * device_get_child_by_seq() - Get a child device based on a sequence
432  *
433  * If an active device has this sequence it will be returned. If there is no
434  * such device then this will check for a device that is requesting this
435  * sequence.
436  *
437  * The device is probed to activate it ready for use.
438  *
439  * @parent: Parent device
440  * @seq: Sequence number to find (0=first)
441  * @devp: Returns pointer to device (there is only one per for each seq)
442  * Set to NULL if none is found
443  * @return 0 if OK, -ve on error
444  */
445 int device_get_child_by_seq(struct udevice *parent, int seq,
446 			    struct udevice **devp);
447 
448 /**
449  * device_find_child_by_of_offset() - Find a child device based on FDT offset
450  *
451  * Locates a child device by its device tree offset.
452  *
453  * @parent: Parent device
454  * @of_offset: Device tree offset to find
455  * @devp: Returns pointer to device if found, otherwise this is set to NULL
456  * @return 0 if OK, -ve on error
457  */
458 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
459 				   struct udevice **devp);
460 
461 /**
462  * device_get_child_by_of_offset() - Get a child device based on FDT offset
463  *
464  * Locates a child device by its device tree offset.
465  *
466  * The device is probed to activate it ready for use.
467  *
468  * @parent: Parent device
469  * @of_offset: Device tree offset to find
470  * @devp: Returns pointer to device if found, otherwise this is set to NULL
471  * @return 0 if OK, -ve on error
472  */
473 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
474 				  struct udevice **devp);
475 
476 /**
477  * device_get_global_by_of_offset() - Get a device based on FDT offset
478  *
479  * Locates a device by its device tree offset, searching globally throughout
480  * the all driver model devices.
481  *
482  * The device is probed to activate it ready for use.
483  *
484  * @of_offset: Device tree offset to find
485  * @devp: Returns pointer to device if found, otherwise this is set to NULL
486  * @return 0 if OK, -ve on error
487  */
488 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
489 
490 /**
491  * device_find_first_child() - Find the first child of a device
492  *
493  * @parent: Parent device to search
494  * @devp: Returns first child device, or NULL if none
495  * @return 0
496  */
497 int device_find_first_child(struct udevice *parent, struct udevice **devp);
498 
499 /**
500  * device_find_next_child() - Find the next child of a device
501  *
502  * @devp: Pointer to previous child device on entry. Returns pointer to next
503  *		child device, or NULL if none
504  * @return 0
505  */
506 int device_find_next_child(struct udevice **devp);
507 
508 /**
509  * device_has_children() - check if a device has any children
510  *
511  * @dev:	Device to check
512  * @return true if the device has one or more children
513  */
514 bool device_has_children(struct udevice *dev);
515 
516 /**
517  * device_has_active_children() - check if a device has any active children
518  *
519  * @dev:	Device to check
520  * @return true if the device has one or more children and at least one of
521  * them is active (probed).
522  */
523 bool device_has_active_children(struct udevice *dev);
524 
525 /**
526  * device_is_last_sibling() - check if a device is the last sibling
527  *
528  * This function can be useful for display purposes, when special action needs
529  * to be taken when displaying the last sibling. This can happen when a tree
530  * view of devices is being displayed.
531  *
532  * @dev:	Device to check
533  * @return true if there are no more siblings after this one - i.e. is it
534  * last in the list.
535  */
536 bool device_is_last_sibling(struct udevice *dev);
537 
538 /**
539  * device_set_name() - set the name of a device
540  *
541  * This must be called in the device's bind() method and no later. Normally
542  * this is unnecessary but for probed devices which don't get a useful name
543  * this function can be helpful.
544  *
545  * The name is allocated and will be freed automatically when the device is
546  * unbound.
547  *
548  * @dev:	Device to update
549  * @name:	New name (this string is allocated new memory and attached to
550  *		the device)
551  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
552  * string
553  */
554 int device_set_name(struct udevice *dev, const char *name);
555 
556 /**
557  * device_set_name_alloced() - note that a device name is allocated
558  *
559  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
560  * unbound the name will be freed. This avoids memory leaks.
561  *
562  * @dev:	Device to update
563  */
564 void device_set_name_alloced(struct udevice *dev);
565 
566 /**
567  * device_is_compatible() - check if the device is compatible with the compat
568  *
569  * This allows to check whether the device is comaptible with the compat.
570  *
571  * @dev:	udevice pointer for which compatible needs to be verified.
572  * @compat:	Compatible string which needs to verified in the given
573  *		device
574  * @return true if OK, false if the compatible is not found
575  */
576 bool device_is_compatible(struct udevice *dev, const char *compat);
577 
578 /**
579  * of_machine_is_compatible() - check if the machine is compatible with
580  *				the compat
581  *
582  * This allows to check whether the machine is comaptible with the compat.
583  *
584  * @compat:	Compatible string which needs to verified
585  * @return true if OK, false if the compatible is not found
586  */
587 bool of_machine_is_compatible(const char *compat);
588 
589 /**
590  * device_is_on_pci_bus - Test if a device is on a PCI bus
591  *
592  * @dev:	device to test
593  * @return:	true if it is on a PCI bus, false otherwise
594  */
595 static inline bool device_is_on_pci_bus(struct udevice *dev)
596 {
597 	return device_get_uclass_id(dev->parent) == UCLASS_PCI;
598 }
599 
600 /**
601  * device_foreach_child_safe() - iterate through child devices safely
602  *
603  * This allows the @pos child to be removed in the loop if required.
604  *
605  * @pos: struct udevice * for the current device
606  * @next: struct udevice * for the next device
607  * @parent: parent device to scan
608  */
609 #define device_foreach_child_safe(pos, next, parent)	\
610 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
611 
612 /**
613  * dm_scan_fdt_dev() - Bind child device in a the device tree
614  *
615  * This handles device which have sub-nodes in the device tree. It scans all
616  * sub-nodes and binds drivers for each node where a driver can be found.
617  *
618  * If this is called prior to relocation, only pre-relocation devices will be
619  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
620  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
621  * be bound.
622  *
623  * @dev:	Device to scan
624  * @return 0 if OK, -ve on error
625  */
626 int dm_scan_fdt_dev(struct udevice *dev);
627 
628 /* device resource management */
629 typedef void (*dr_release_t)(struct udevice *dev, void *res);
630 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
631 
632 #ifdef CONFIG_DEVRES
633 
634 #ifdef CONFIG_DEBUG_DEVRES
635 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
636 		     const char *name);
637 #define _devres_alloc(release, size, gfp) \
638 	__devres_alloc(release, size, gfp, #release)
639 #else
640 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
641 #endif
642 
643 /**
644  * devres_alloc() - Allocate device resource data
645  * @release: Release function devres will be associated with
646  * @size: Allocation size
647  * @gfp: Allocation flags
648  *
649  * Allocate devres of @size bytes.  The allocated area is associated
650  * with @release.  The returned pointer can be passed to
651  * other devres_*() functions.
652  *
653  * RETURNS:
654  * Pointer to allocated devres on success, NULL on failure.
655  */
656 #define devres_alloc(release, size, gfp) \
657 	_devres_alloc(release, size, gfp | __GFP_ZERO)
658 
659 /**
660  * devres_free() - Free device resource data
661  * @res: Pointer to devres data to free
662  *
663  * Free devres created with devres_alloc().
664  */
665 void devres_free(void *res);
666 
667 /**
668  * devres_add() - Register device resource
669  * @dev: Device to add resource to
670  * @res: Resource to register
671  *
672  * Register devres @res to @dev.  @res should have been allocated
673  * using devres_alloc().  On driver detach, the associated release
674  * function will be invoked and devres will be freed automatically.
675  */
676 void devres_add(struct udevice *dev, void *res);
677 
678 /**
679  * devres_find() - Find device resource
680  * @dev: Device to lookup resource from
681  * @release: Look for resources associated with this release function
682  * @match: Match function (optional)
683  * @match_data: Data for the match function
684  *
685  * Find the latest devres of @dev which is associated with @release
686  * and for which @match returns 1.  If @match is NULL, it's considered
687  * to match all.
688  *
689  * @return pointer to found devres, NULL if not found.
690  */
691 void *devres_find(struct udevice *dev, dr_release_t release,
692 		  dr_match_t match, void *match_data);
693 
694 /**
695  * devres_get() - Find devres, if non-existent, add one atomically
696  * @dev: Device to lookup or add devres for
697  * @new_res: Pointer to new initialized devres to add if not found
698  * @match: Match function (optional)
699  * @match_data: Data for the match function
700  *
701  * Find the latest devres of @dev which has the same release function
702  * as @new_res and for which @match return 1.  If found, @new_res is
703  * freed; otherwise, @new_res is added atomically.
704  *
705  * @return ointer to found or added devres.
706  */
707 void *devres_get(struct udevice *dev, void *new_res,
708 		 dr_match_t match, void *match_data);
709 
710 /**
711  * devres_remove() - Find a device resource and remove it
712  * @dev: Device to find resource from
713  * @release: Look for resources associated with this release function
714  * @match: Match function (optional)
715  * @match_data: Data for the match function
716  *
717  * Find the latest devres of @dev associated with @release and for
718  * which @match returns 1.  If @match is NULL, it's considered to
719  * match all.  If found, the resource is removed atomically and
720  * returned.
721  *
722  * @return ointer to removed devres on success, NULL if not found.
723  */
724 void *devres_remove(struct udevice *dev, dr_release_t release,
725 		    dr_match_t match, void *match_data);
726 
727 /**
728  * devres_destroy() - Find a device resource and destroy it
729  * @dev: Device to find resource from
730  * @release: Look for resources associated with this release function
731  * @match: Match function (optional)
732  * @match_data: Data for the match function
733  *
734  * Find the latest devres of @dev associated with @release and for
735  * which @match returns 1.  If @match is NULL, it's considered to
736  * match all.  If found, the resource is removed atomically and freed.
737  *
738  * Note that the release function for the resource will not be called,
739  * only the devres-allocated data will be freed.  The caller becomes
740  * responsible for freeing any other data.
741  *
742  * @return 0 if devres is found and freed, -ENOENT if not found.
743  */
744 int devres_destroy(struct udevice *dev, dr_release_t release,
745 		   dr_match_t match, void *match_data);
746 
747 /**
748  * devres_release() - Find a device resource and destroy it, calling release
749  * @dev: Device to find resource from
750  * @release: Look for resources associated with this release function
751  * @match: Match function (optional)
752  * @match_data: Data for the match function
753  *
754  * Find the latest devres of @dev associated with @release and for
755  * which @match returns 1.  If @match is NULL, it's considered to
756  * match all.  If found, the resource is removed atomically, the
757  * release function called and the resource freed.
758  *
759  * @return 0 if devres is found and freed, -ENOENT if not found.
760  */
761 int devres_release(struct udevice *dev, dr_release_t release,
762 		   dr_match_t match, void *match_data);
763 
764 /* managed devm_k.alloc/kfree for device drivers */
765 /**
766  * devm_kmalloc() - Resource-managed kmalloc
767  * @dev: Device to allocate memory for
768  * @size: Allocation size
769  * @gfp: Allocation gfp flags
770  *
771  * Managed kmalloc.  Memory allocated with this function is
772  * automatically freed on driver detach.  Like all other devres
773  * resources, guaranteed alignment is unsigned long long.
774  *
775  * @return pointer to allocated memory on success, NULL on failure.
776  */
777 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
778 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
779 {
780 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
781 }
782 static inline void *devm_kmalloc_array(struct udevice *dev,
783 				       size_t n, size_t size, gfp_t flags)
784 {
785 	if (size != 0 && n > SIZE_MAX / size)
786 		return NULL;
787 	return devm_kmalloc(dev, n * size, flags);
788 }
789 static inline void *devm_kcalloc(struct udevice *dev,
790 				 size_t n, size_t size, gfp_t flags)
791 {
792 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
793 }
794 
795 /**
796  * devm_kfree() - Resource-managed kfree
797  * @dev: Device this memory belongs to
798  * @ptr: Memory to free
799  *
800  * Free memory allocated with devm_kmalloc().
801  */
802 void devm_kfree(struct udevice *dev, void *ptr);
803 
804 #else /* ! CONFIG_DEVRES */
805 
806 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
807 {
808 	return kzalloc(size, gfp);
809 }
810 
811 static inline void devres_free(void *res)
812 {
813 	kfree(res);
814 }
815 
816 static inline void devres_add(struct udevice *dev, void *res)
817 {
818 }
819 
820 static inline void *devres_find(struct udevice *dev, dr_release_t release,
821 				dr_match_t match, void *match_data)
822 {
823 	return NULL;
824 }
825 
826 static inline void *devres_get(struct udevice *dev, void *new_res,
827 			       dr_match_t match, void *match_data)
828 {
829 	return NULL;
830 }
831 
832 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
833 				  dr_match_t match, void *match_data)
834 {
835 	return NULL;
836 }
837 
838 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
839 				 dr_match_t match, void *match_data)
840 {
841 	return 0;
842 }
843 
844 static inline int devres_release(struct udevice *dev, dr_release_t release,
845 				 dr_match_t match, void *match_data)
846 {
847 	return 0;
848 }
849 
850 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
851 {
852 	return kmalloc(size, gfp);
853 }
854 
855 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
856 {
857 	return kzalloc(size, gfp);
858 }
859 
860 static inline void *devm_kmaloc_array(struct udevice *dev,
861 				      size_t n, size_t size, gfp_t flags)
862 {
863 	/* TODO: add kmalloc_array() to linux/compat.h */
864 	if (size != 0 && n > SIZE_MAX / size)
865 		return NULL;
866 	return kmalloc(n * size, flags);
867 }
868 
869 static inline void *devm_kcalloc(struct udevice *dev,
870 				 size_t n, size_t size, gfp_t flags)
871 {
872 	/* TODO: add kcalloc() to linux/compat.h */
873 	return kmalloc(n * size, flags | __GFP_ZERO);
874 }
875 
876 static inline void devm_kfree(struct udevice *dev, void *ptr)
877 {
878 	kfree(ptr);
879 }
880 
881 #endif /* ! CONFIG_DEVRES */
882 
883 /*
884  * REVISIT:
885  * remove the following after resolving conflicts with <linux/compat.h>
886  */
887 #ifdef dev_dbg
888 #undef dev_dbg
889 #endif
890 #ifdef dev_vdbg
891 #undef dev_vdbg
892 #endif
893 #ifdef dev_info
894 #undef dev_info
895 #endif
896 #ifdef dev_err
897 #undef dev_err
898 #endif
899 #ifdef dev_warn
900 #undef dev_warn
901 #endif
902 
903 /*
904  * REVISIT:
905  * print device name like Linux
906  */
907 #define dev_printk(dev, fmt, ...)				\
908 ({								\
909 	printk(fmt, ##__VA_ARGS__);				\
910 })
911 
912 #define __dev_printk(level, dev, fmt, ...)			\
913 ({								\
914 	if (level < CONFIG_VAL(LOGLEVEL))			\
915 		dev_printk(dev, fmt, ##__VA_ARGS__);		\
916 })
917 
918 #define dev_emerg(dev, fmt, ...) \
919 	__dev_printk(0, dev, fmt, ##__VA_ARGS__)
920 #define dev_alert(dev, fmt, ...) \
921 	__dev_printk(1, dev, fmt, ##__VA_ARGS__)
922 #define dev_crit(dev, fmt, ...) \
923 	__dev_printk(2, dev, fmt, ##__VA_ARGS__)
924 #define dev_err(dev, fmt, ...) \
925 	__dev_printk(3, dev, fmt, ##__VA_ARGS__)
926 #define dev_warn(dev, fmt, ...) \
927 	__dev_printk(4, dev, fmt, ##__VA_ARGS__)
928 #define dev_notice(dev, fmt, ...) \
929 	__dev_printk(5, dev, fmt, ##__VA_ARGS__)
930 #define dev_info(dev, fmt, ...) \
931 	__dev_printk(6, dev, fmt, ##__VA_ARGS__)
932 
933 #ifdef DEBUG
934 #define dev_dbg(dev, fmt, ...) \
935 	__dev_printk(7, dev, fmt, ##__VA_ARGS__)
936 #else
937 #define dev_dbg(dev, fmt, ...)					\
938 ({								\
939 	if (0)							\
940 		__dev_printk(7, dev, fmt, ##__VA_ARGS__);	\
941 })
942 #endif
943 
944 #ifdef VERBOSE_DEBUG
945 #define dev_vdbg	dev_dbg
946 #else
947 #define dev_vdbg(dev, fmt, ...)					\
948 ({								\
949 	if (0)							\
950 		__dev_printk(7, dev, fmt, ##__VA_ARGS__);	\
951 })
952 #endif
953 
954 #endif
955