1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Copyright (c) 2013 Google, Inc
4 *
5 * (C) Copyright 2012
6 * Pavel Herrmann <morpheus.ibis@gmail.com>
7 * Marek Vasut <marex@denx.de>
8 */
9
10 #ifndef _DM_DEVICE_H
11 #define _DM_DEVICE_H
12
13 #include <dm/ofnode.h>
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/printk.h>
21
22 struct driver_info;
23
24 /* Driver is active (probed). Cleared when it is removed */
25 #define DM_FLAG_ACTIVATED (1 << 0)
26
27 /* DM is responsible for allocating and freeing platdata */
28 #define DM_FLAG_ALLOC_PDATA (1 << 1)
29
30 /* DM should init this device prior to relocation */
31 #define DM_FLAG_PRE_RELOC (1 << 2)
32
33 /* DM is responsible for allocating and freeing parent_platdata */
34 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3)
35
36 /* DM is responsible for allocating and freeing uclass_platdata */
37 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4)
38
39 /* Allocate driver private data on a DMA boundary */
40 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5)
41
42 /* Device is bound */
43 #define DM_FLAG_BOUND (1 << 6)
44
45 /* Device name is allocated and should be freed on unbind() */
46 #define DM_FLAG_NAME_ALLOCED (1 << 7)
47
48 #define DM_FLAG_OF_PLATDATA (1 << 8)
49
50 /*
51 * Call driver remove function to stop currently active DMA transfers or
52 * give DMA buffers back to the HW / controller. This may be needed for
53 * some drivers to do some final stage cleanup before the OS is called
54 * (U-Boot exit)
55 */
56 #define DM_FLAG_ACTIVE_DMA (1 << 9)
57
58 /*
59 * Call driver remove function to do some final configuration, before
60 * U-Boot exits and the OS is started
61 */
62 #define DM_FLAG_OS_PREPARE (1 << 10)
63
64 /*
65 * One or multiple of these flags are passed to device_remove() so that
66 * a selective device removal as specified by the remove-stage and the
67 * driver flags can be done.
68 */
69 enum {
70 /* Normal remove, remove all devices */
71 DM_REMOVE_NORMAL = 1 << 0,
72
73 /* Remove devices with active DMA */
74 DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
75
76 /* Remove devices which need some final OS preparation steps */
77 DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
78
79 /* Add more use cases here */
80
81 /* Remove devices with any active flag */
82 DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
83 };
84
85 /**
86 * struct udevice - An instance of a driver
87 *
88 * This holds information about a device, which is a driver bound to a
89 * particular port or peripheral (essentially a driver instance).
90 *
91 * A device will come into existence through a 'bind' call, either due to
92 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
93 * in the device tree (in which case of_offset is >= 0). In the latter case
94 * we translate the device tree information into platdata in a function
95 * implemented by the driver ofdata_to_platdata method (called just before the
96 * probe method if the device has a device tree node.
97 *
98 * All three of platdata, priv and uclass_priv can be allocated by the
99 * driver, or you can use the auto_alloc_size members of struct driver and
100 * struct uclass_driver to have driver model do this automatically.
101 *
102 * @driver: The driver used by this device
103 * @name: Name of device, typically the FDT node name
104 * @platdata: Configuration data for this device
105 * @parent_platdata: The parent bus's configuration data for this device
106 * @uclass_platdata: The uclass's configuration data for this device
107 * @node: Reference to device tree node for this device
108 * @driver_data: Driver data word for the entry that matched this device with
109 * its driver
110 * @parent: Parent of this device, or NULL for the top level device
111 * @priv: Private data for this device
112 * @uclass: Pointer to uclass for this device
113 * @uclass_priv: The uclass's private data for this device
114 * @parent_priv: The parent's private data for this device
115 * @uclass_node: Used by uclass to link its devices
116 * @child_head: List of children of this device
117 * @sibling_node: Next device in list of all devices
118 * @flags: Flags for this device DM_FLAG_...
119 * @req_seq: Requested sequence number for this device (-1 = any)
120 * @seq: Allocated sequence number for this device (-1 = none). This is set up
121 * when the device is probed and will be unique within the device's uclass.
122 * @devres_head: List of memory allocations associated with this device.
123 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
124 * add to this list. Memory so-allocated will be freed
125 * automatically when the device is removed / unbound
126 */
127 struct udevice {
128 const struct driver *driver;
129 const char *name;
130 void *platdata;
131 void *parent_platdata;
132 void *uclass_platdata;
133 ofnode node;
134 ulong driver_data;
135 struct udevice *parent;
136 void *priv;
137 struct uclass *uclass;
138 void *uclass_priv;
139 void *parent_priv;
140 struct list_head uclass_node;
141 struct list_head child_head;
142 struct list_head sibling_node;
143 uint32_t flags;
144 int req_seq;
145 int seq;
146 #ifdef CONFIG_DEVRES
147 struct list_head devres_head;
148 #endif
149 };
150
151 /* Maximum sequence number supported */
152 #define DM_MAX_SEQ 999
153
154 /* Returns the operations for a device */
155 #define device_get_ops(dev) (dev->driver->ops)
156
157 /* Returns non-zero if the device is active (probed and not removed) */
158 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED)
159
dev_of_offset(const struct udevice * dev)160 static inline int dev_of_offset(const struct udevice *dev)
161 {
162 return ofnode_to_offset(dev->node);
163 }
164
dev_set_of_offset(struct udevice * dev,int of_offset)165 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
166 {
167 dev->node = offset_to_ofnode(of_offset);
168 }
169
dev_has_of_node(struct udevice * dev)170 static inline bool dev_has_of_node(struct udevice *dev)
171 {
172 return ofnode_valid(dev->node);
173 }
174
175 /**
176 * struct udevice_id - Lists the compatible strings supported by a driver
177 * @compatible: Compatible string
178 * @data: Data for this compatible string
179 */
180 struct udevice_id {
181 const char *compatible;
182 ulong data;
183 };
184
185 #if CONFIG_IS_ENABLED(OF_CONTROL)
186 #define of_match_ptr(_ptr) (_ptr)
187 #else
188 #define of_match_ptr(_ptr) NULL
189 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
190
191 /**
192 * struct driver - A driver for a feature or peripheral
193 *
194 * This holds methods for setting up a new device, and also removing it.
195 * The device needs information to set itself up - this is provided either
196 * by platdata or a device tree node (which we find by looking up
197 * matching compatible strings with of_match).
198 *
199 * Drivers all belong to a uclass, representing a class of devices of the
200 * same type. Common elements of the drivers can be implemented in the uclass,
201 * or the uclass can provide a consistent interface to the drivers within
202 * it.
203 *
204 * @name: Device name
205 * @id: Identifies the uclass we belong to
206 * @of_match: List of compatible strings to match, and any identifying data
207 * for each.
208 * @bind: Called to bind a device to its driver
209 * @probe: Called to probe a device, i.e. activate it
210 * @remove: Called to remove a device, i.e. de-activate it
211 * @unbind: Called to unbind a device from its driver
212 * @ofdata_to_platdata: Called before probe to decode device tree data
213 * @child_post_bind: Called after a new child has been bound
214 * @child_pre_probe: Called before a child device is probed. The device has
215 * memory allocated but it has not yet been probed.
216 * @child_post_remove: Called after a child device is removed. The device
217 * has memory allocated but its device_remove() method has been called.
218 * @priv_auto_alloc_size: If non-zero this is the size of the private data
219 * to be allocated in the device's ->priv pointer. If zero, then the driver
220 * is responsible for allocating any data required.
221 * @platdata_auto_alloc_size: If non-zero this is the size of the
222 * platform data to be allocated in the device's ->platdata pointer.
223 * This is typically only useful for device-tree-aware drivers (those with
224 * an of_match), since drivers which use platdata will have the data
225 * provided in the U_BOOT_DEVICE() instantiation.
226 * @per_child_auto_alloc_size: Each device can hold private data owned by
227 * its parent. If required this will be automatically allocated if this
228 * value is non-zero.
229 * @per_child_platdata_auto_alloc_size: A bus likes to store information about
230 * its children. If non-zero this is the size of this data, to be allocated
231 * in the child's parent_platdata pointer.
232 * @ops: Driver-specific operations. This is typically a list of function
233 * pointers defined by the driver, to implement driver functions required by
234 * the uclass.
235 * @flags: driver flags - see DM_FLAGS_...
236 */
237 struct driver {
238 char *name;
239 enum uclass_id id;
240 const struct udevice_id *of_match;
241 int (*bind)(struct udevice *dev);
242 int (*probe)(struct udevice *dev);
243 int (*remove)(struct udevice *dev);
244 int (*unbind)(struct udevice *dev);
245 int (*ofdata_to_platdata)(struct udevice *dev);
246 int (*child_post_bind)(struct udevice *dev);
247 int (*child_pre_probe)(struct udevice *dev);
248 int (*child_post_remove)(struct udevice *dev);
249 int priv_auto_alloc_size;
250 int platdata_auto_alloc_size;
251 int per_child_auto_alloc_size;
252 int per_child_platdata_auto_alloc_size;
253 const void *ops; /* driver-specific operations */
254 uint32_t flags;
255 };
256
257 /* Declare a new U-Boot driver */
258 #define U_BOOT_DRIVER(__name) \
259 ll_entry_declare(struct driver, __name, driver)
260
261 /* Get a pointer to a given driver */
262 #define DM_GET_DRIVER(__name) \
263 ll_entry_get(struct driver, __name, driver)
264
265 /**
266 * dev_get_platdata() - Get the platform data for a device
267 *
268 * This checks that dev is not NULL, but no other checks for now
269 *
270 * @dev Device to check
271 * @return platform data, or NULL if none
272 */
273 void *dev_get_platdata(const struct udevice *dev);
274
275 /**
276 * dev_get_parent_platdata() - Get the parent platform data for a device
277 *
278 * This checks that dev is not NULL, but no other checks for now
279 *
280 * @dev Device to check
281 * @return parent's platform data, or NULL if none
282 */
283 void *dev_get_parent_platdata(const struct udevice *dev);
284
285 /**
286 * dev_get_uclass_platdata() - Get the uclass platform data for a device
287 *
288 * This checks that dev is not NULL, but no other checks for now
289 *
290 * @dev Device to check
291 * @return uclass's platform data, or NULL if none
292 */
293 void *dev_get_uclass_platdata(const struct udevice *dev);
294
295 /**
296 * dev_get_priv() - Get the private data for a device
297 *
298 * This checks that dev is not NULL, but no other checks for now
299 *
300 * @dev Device to check
301 * @return private data, or NULL if none
302 */
303 void *dev_get_priv(const struct udevice *dev);
304
305 /**
306 * dev_get_parent_priv() - Get the parent private data for a device
307 *
308 * The parent private data is data stored in the device but owned by the
309 * parent. For example, a USB device may have parent data which contains
310 * information about how to talk to the device over USB.
311 *
312 * This checks that dev is not NULL, but no other checks for now
313 *
314 * @dev Device to check
315 * @return parent data, or NULL if none
316 */
317 void *dev_get_parent_priv(const struct udevice *dev);
318
319 /**
320 * dev_get_uclass_priv() - Get the private uclass data for a device
321 *
322 * This checks that dev is not NULL, but no other checks for now
323 *
324 * @dev Device to check
325 * @return private uclass data for this device, or NULL if none
326 */
327 void *dev_get_uclass_priv(const struct udevice *dev);
328
329 /**
330 * struct dev_get_parent() - Get the parent of a device
331 *
332 * @child: Child to check
333 * @return parent of child, or NULL if this is the root device
334 */
335 struct udevice *dev_get_parent(const struct udevice *child);
336
337 /**
338 * dev_get_driver_data() - get the driver data used to bind a device
339 *
340 * When a device is bound using a device tree node, it matches a
341 * particular compatible string in struct udevice_id. This function
342 * returns the associated data value for that compatible string. This is
343 * the 'data' field in struct udevice_id.
344 *
345 * As an example, consider this structure:
346 * static const struct udevice_id tegra_i2c_ids[] = {
347 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
348 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
349 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
350 * { }
351 * };
352 *
353 * When driver model finds a driver for this it will store the 'data' value
354 * corresponding to the compatible string it matches. This function returns
355 * that value. This allows the driver to handle several variants of a device.
356 *
357 * For USB devices, this is the driver_info field in struct usb_device_id.
358 *
359 * @dev: Device to check
360 * @return driver data (0 if none is provided)
361 */
362 ulong dev_get_driver_data(const struct udevice *dev);
363
364 /**
365 * dev_get_driver_ops() - get the device's driver's operations
366 *
367 * This checks that dev is not NULL, and returns the pointer to device's
368 * driver's operations.
369 *
370 * @dev: Device to check
371 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
372 */
373 const void *dev_get_driver_ops(const struct udevice *dev);
374
375 /**
376 * device_get_uclass_id() - return the uclass ID of a device
377 *
378 * @dev: Device to check
379 * @return uclass ID for the device
380 */
381 enum uclass_id device_get_uclass_id(const struct udevice *dev);
382
383 /**
384 * dev_get_uclass_name() - return the uclass name of a device
385 *
386 * This checks that dev is not NULL.
387 *
388 * @dev: Device to check
389 * @return pointer to the uclass name for the device
390 */
391 const char *dev_get_uclass_name(const struct udevice *dev);
392
393 /**
394 * device_get_child() - Get the child of a device by index
395 *
396 * Returns the numbered child, 0 being the first. This does not use
397 * sequence numbers, only the natural order.
398 *
399 * @dev: Parent device to check
400 * @index: Child index
401 * @devp: Returns pointer to device
402 * @return 0 if OK, -ENODEV if no such device, other error if the device fails
403 * to probe
404 */
405 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
406
407 /**
408 * device_find_child_by_seq() - Find a child device based on a sequence
409 *
410 * This searches for a device with the given seq or req_seq.
411 *
412 * For seq, if an active device has this sequence it will be returned.
413 * If there is no such device then this will return -ENODEV.
414 *
415 * For req_seq, if a device (whether activated or not) has this req_seq
416 * value, that device will be returned. This is a strong indication that
417 * the device will receive that sequence when activated.
418 *
419 * @parent: Parent device
420 * @seq_or_req_seq: Sequence number to find (0=first)
421 * @find_req_seq: true to find req_seq, false to find seq
422 * @devp: Returns pointer to device (there is only one per for each seq).
423 * Set to NULL if none is found
424 * @return 0 if OK, -ve on error
425 */
426 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
427 bool find_req_seq, struct udevice **devp);
428
429 /**
430 * device_get_child_by_seq() - Get a child device based on a sequence
431 *
432 * If an active device has this sequence it will be returned. If there is no
433 * such device then this will check for a device that is requesting this
434 * sequence.
435 *
436 * The device is probed to activate it ready for use.
437 *
438 * @parent: Parent device
439 * @seq: Sequence number to find (0=first)
440 * @devp: Returns pointer to device (there is only one per for each seq)
441 * Set to NULL if none is found
442 * @return 0 if OK, -ve on error
443 */
444 int device_get_child_by_seq(struct udevice *parent, int seq,
445 struct udevice **devp);
446
447 /**
448 * device_find_child_by_of_offset() - Find a child device based on FDT offset
449 *
450 * Locates a child device by its device tree offset.
451 *
452 * @parent: Parent device
453 * @of_offset: Device tree offset to find
454 * @devp: Returns pointer to device if found, otherwise this is set to NULL
455 * @return 0 if OK, -ve on error
456 */
457 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
458 struct udevice **devp);
459
460 /**
461 * device_get_child_by_of_offset() - Get a child device based on FDT offset
462 *
463 * Locates a child device by its device tree offset.
464 *
465 * The device is probed to activate it ready for use.
466 *
467 * @parent: Parent device
468 * @of_offset: Device tree offset to find
469 * @devp: Returns pointer to device if found, otherwise this is set to NULL
470 * @return 0 if OK, -ve on error
471 */
472 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
473 struct udevice **devp);
474
475 /**
476 * device_find_global_by_ofnode() - Get a device based on ofnode
477 *
478 * Locates a device by its device tree ofnode, searching globally throughout
479 * the all driver model devices.
480 *
481 * The device is NOT probed
482 *
483 * @node: Device tree ofnode to find
484 * @devp: Returns pointer to device if found, otherwise this is set to NULL
485 * @return 0 if OK, -ve on error
486 */
487
488 int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
489
490 /**
491 * device_get_global_by_ofnode() - Get a device based on ofnode
492 *
493 * Locates a device by its device tree ofnode, searching globally throughout
494 * the all driver model devices.
495 *
496 * The device is probed to activate it ready for use.
497 *
498 * @node: Device tree ofnode to find
499 * @devp: Returns pointer to device if found, otherwise this is set to NULL
500 * @return 0 if OK, -ve on error
501 */
502 int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
503
504 /**
505 * device_find_first_child() - Find the first child of a device
506 *
507 * @parent: Parent device to search
508 * @devp: Returns first child device, or NULL if none
509 * @return 0
510 */
511 int device_find_first_child(struct udevice *parent, struct udevice **devp);
512
513 /**
514 * device_find_next_child() - Find the next child of a device
515 *
516 * @devp: Pointer to previous child device on entry. Returns pointer to next
517 * child device, or NULL if none
518 * @return 0
519 */
520 int device_find_next_child(struct udevice **devp);
521
522 /**
523 * device_find_first_inactive_child() - Find the first inactive child
524 *
525 * This is used to locate an existing child of a device which is of a given
526 * uclass.
527 *
528 * The device is NOT probed
529 *
530 * @parent: Parent device to search
531 * @uclass_id: Uclass to look for
532 * @devp: Returns device found, if any
533 * @return 0 if found, else -ENODEV
534 */
535 int device_find_first_inactive_child(struct udevice *parent,
536 enum uclass_id uclass_id,
537 struct udevice **devp);
538
539 /**
540 * device_find_first_child_by_uclass() - Find the first child of a device in uc
541 *
542 * @parent: Parent device to search
543 * @uclass_id: Uclass to look for
544 * @devp: Returns first child device in that uclass, if any
545 * @return 0 if found, else -ENODEV
546 */
547 int device_find_first_child_by_uclass(struct udevice *parent,
548 enum uclass_id uclass_id,
549 struct udevice **devp);
550
551 /**
552 * device_find_child_by_name() - Find a child by device name
553 *
554 * @parent: Parent device to search
555 * @name: Name to look for
556 * @devp: Returns device found, if any
557 * @return 0 if found, else -ENODEV
558 */
559 int device_find_child_by_name(struct udevice *parent, const char *name,
560 struct udevice **devp);
561
562 /**
563 * device_has_children() - check if a device has any children
564 *
565 * @dev: Device to check
566 * @return true if the device has one or more children
567 */
568 bool device_has_children(const struct udevice *dev);
569
570 /**
571 * device_has_active_children() - check if a device has any active children
572 *
573 * @dev: Device to check
574 * @return true if the device has one or more children and at least one of
575 * them is active (probed).
576 */
577 bool device_has_active_children(struct udevice *dev);
578
579 /**
580 * device_is_last_sibling() - check if a device is the last sibling
581 *
582 * This function can be useful for display purposes, when special action needs
583 * to be taken when displaying the last sibling. This can happen when a tree
584 * view of devices is being displayed.
585 *
586 * @dev: Device to check
587 * @return true if there are no more siblings after this one - i.e. is it
588 * last in the list.
589 */
590 bool device_is_last_sibling(struct udevice *dev);
591
592 /**
593 * device_set_name() - set the name of a device
594 *
595 * This must be called in the device's bind() method and no later. Normally
596 * this is unnecessary but for probed devices which don't get a useful name
597 * this function can be helpful.
598 *
599 * The name is allocated and will be freed automatically when the device is
600 * unbound.
601 *
602 * @dev: Device to update
603 * @name: New name (this string is allocated new memory and attached to
604 * the device)
605 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
606 * string
607 */
608 int device_set_name(struct udevice *dev, const char *name);
609
610 /**
611 * device_set_name_alloced() - note that a device name is allocated
612 *
613 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
614 * unbound the name will be freed. This avoids memory leaks.
615 *
616 * @dev: Device to update
617 */
618 void device_set_name_alloced(struct udevice *dev);
619
620 /**
621 * device_is_compatible() - check if the device is compatible with the compat
622 *
623 * This allows to check whether the device is comaptible with the compat.
624 *
625 * @dev: udevice pointer for which compatible needs to be verified.
626 * @compat: Compatible string which needs to verified in the given
627 * device
628 * @return true if OK, false if the compatible is not found
629 */
630 bool device_is_compatible(struct udevice *dev, const char *compat);
631
632 /**
633 * of_machine_is_compatible() - check if the machine is compatible with
634 * the compat
635 *
636 * This allows to check whether the machine is comaptible with the compat.
637 *
638 * @compat: Compatible string which needs to verified
639 * @return true if OK, false if the compatible is not found
640 */
641 bool of_machine_is_compatible(const char *compat);
642
643 /**
644 * dev_disable_by_path() - Disable a device given its device tree path
645 *
646 * @path: The device tree path identifying the device to be disabled
647 * @return 0 on success, -ve on error
648 */
649 int dev_disable_by_path(const char *path);
650
651 /**
652 * dev_enable_by_path() - Enable a device given its device tree path
653 *
654 * @path: The device tree path identifying the device to be enabled
655 * @return 0 on success, -ve on error
656 */
657 int dev_enable_by_path(const char *path);
658
659 /**
660 * device_is_on_pci_bus - Test if a device is on a PCI bus
661 *
662 * @dev: device to test
663 * @return: true if it is on a PCI bus, false otherwise
664 */
device_is_on_pci_bus(struct udevice * dev)665 static inline bool device_is_on_pci_bus(struct udevice *dev)
666 {
667 return device_get_uclass_id(dev->parent) == UCLASS_PCI;
668 }
669
670 /**
671 * device_foreach_child_safe() - iterate through child devices safely
672 *
673 * This allows the @pos child to be removed in the loop if required.
674 *
675 * @pos: struct udevice * for the current device
676 * @next: struct udevice * for the next device
677 * @parent: parent device to scan
678 */
679 #define device_foreach_child_safe(pos, next, parent) \
680 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
681
682 /**
683 * dm_scan_fdt_dev() - Bind child device in a the device tree
684 *
685 * This handles device which have sub-nodes in the device tree. It scans all
686 * sub-nodes and binds drivers for each node where a driver can be found.
687 *
688 * If this is called prior to relocation, only pre-relocation devices will be
689 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
690 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
691 * be bound.
692 *
693 * @dev: Device to scan
694 * @return 0 if OK, -ve on error
695 */
696 int dm_scan_fdt_dev(struct udevice *dev);
697
698 /* device resource management */
699 typedef void (*dr_release_t)(struct udevice *dev, void *res);
700 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
701
702 #ifdef CONFIG_DEVRES
703
704 #ifdef CONFIG_DEBUG_DEVRES
705 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
706 const char *name);
707 #define _devres_alloc(release, size, gfp) \
708 __devres_alloc(release, size, gfp, #release)
709 #else
710 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
711 #endif
712
713 /**
714 * devres_alloc() - Allocate device resource data
715 * @release: Release function devres will be associated with
716 * @size: Allocation size
717 * @gfp: Allocation flags
718 *
719 * Allocate devres of @size bytes. The allocated area is associated
720 * with @release. The returned pointer can be passed to
721 * other devres_*() functions.
722 *
723 * RETURNS:
724 * Pointer to allocated devres on success, NULL on failure.
725 */
726 #define devres_alloc(release, size, gfp) \
727 _devres_alloc(release, size, gfp | __GFP_ZERO)
728
729 /**
730 * devres_free() - Free device resource data
731 * @res: Pointer to devres data to free
732 *
733 * Free devres created with devres_alloc().
734 */
735 void devres_free(void *res);
736
737 /**
738 * devres_add() - Register device resource
739 * @dev: Device to add resource to
740 * @res: Resource to register
741 *
742 * Register devres @res to @dev. @res should have been allocated
743 * using devres_alloc(). On driver detach, the associated release
744 * function will be invoked and devres will be freed automatically.
745 */
746 void devres_add(struct udevice *dev, void *res);
747
748 /**
749 * devres_find() - Find device resource
750 * @dev: Device to lookup resource from
751 * @release: Look for resources associated with this release function
752 * @match: Match function (optional)
753 * @match_data: Data for the match function
754 *
755 * Find the latest devres of @dev which is associated with @release
756 * and for which @match returns 1. If @match is NULL, it's considered
757 * to match all.
758 *
759 * @return pointer to found devres, NULL if not found.
760 */
761 void *devres_find(struct udevice *dev, dr_release_t release,
762 dr_match_t match, void *match_data);
763
764 /**
765 * devres_get() - Find devres, if non-existent, add one atomically
766 * @dev: Device to lookup or add devres for
767 * @new_res: Pointer to new initialized devres to add if not found
768 * @match: Match function (optional)
769 * @match_data: Data for the match function
770 *
771 * Find the latest devres of @dev which has the same release function
772 * as @new_res and for which @match return 1. If found, @new_res is
773 * freed; otherwise, @new_res is added atomically.
774 *
775 * @return ointer to found or added devres.
776 */
777 void *devres_get(struct udevice *dev, void *new_res,
778 dr_match_t match, void *match_data);
779
780 /**
781 * devres_remove() - Find a device resource and remove it
782 * @dev: Device to find resource from
783 * @release: Look for resources associated with this release function
784 * @match: Match function (optional)
785 * @match_data: Data for the match function
786 *
787 * Find the latest devres of @dev associated with @release and for
788 * which @match returns 1. If @match is NULL, it's considered to
789 * match all. If found, the resource is removed atomically and
790 * returned.
791 *
792 * @return ointer to removed devres on success, NULL if not found.
793 */
794 void *devres_remove(struct udevice *dev, dr_release_t release,
795 dr_match_t match, void *match_data);
796
797 /**
798 * devres_destroy() - Find a device resource and destroy it
799 * @dev: Device to find resource from
800 * @release: Look for resources associated with this release function
801 * @match: Match function (optional)
802 * @match_data: Data for the match function
803 *
804 * Find the latest devres of @dev associated with @release and for
805 * which @match returns 1. If @match is NULL, it's considered to
806 * match all. If found, the resource is removed atomically and freed.
807 *
808 * Note that the release function for the resource will not be called,
809 * only the devres-allocated data will be freed. The caller becomes
810 * responsible for freeing any other data.
811 *
812 * @return 0 if devres is found and freed, -ENOENT if not found.
813 */
814 int devres_destroy(struct udevice *dev, dr_release_t release,
815 dr_match_t match, void *match_data);
816
817 /**
818 * devres_release() - Find a device resource and destroy it, calling release
819 * @dev: Device to find resource from
820 * @release: Look for resources associated with this release function
821 * @match: Match function (optional)
822 * @match_data: Data for the match function
823 *
824 * Find the latest devres of @dev associated with @release and for
825 * which @match returns 1. If @match is NULL, it's considered to
826 * match all. If found, the resource is removed atomically, the
827 * release function called and the resource freed.
828 *
829 * @return 0 if devres is found and freed, -ENOENT if not found.
830 */
831 int devres_release(struct udevice *dev, dr_release_t release,
832 dr_match_t match, void *match_data);
833
834 /* managed devm_k.alloc/kfree for device drivers */
835 /**
836 * devm_kmalloc() - Resource-managed kmalloc
837 * @dev: Device to allocate memory for
838 * @size: Allocation size
839 * @gfp: Allocation gfp flags
840 *
841 * Managed kmalloc. Memory allocated with this function is
842 * automatically freed on driver detach. Like all other devres
843 * resources, guaranteed alignment is unsigned long long.
844 *
845 * @return pointer to allocated memory on success, NULL on failure.
846 */
847 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)848 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
849 {
850 return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
851 }
devm_kmalloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)852 static inline void *devm_kmalloc_array(struct udevice *dev,
853 size_t n, size_t size, gfp_t flags)
854 {
855 if (size != 0 && n > SIZE_MAX / size)
856 return NULL;
857 return devm_kmalloc(dev, n * size, flags);
858 }
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)859 static inline void *devm_kcalloc(struct udevice *dev,
860 size_t n, size_t size, gfp_t flags)
861 {
862 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
863 }
864
865 /**
866 * devm_kfree() - Resource-managed kfree
867 * @dev: Device this memory belongs to
868 * @ptr: Memory to free
869 *
870 * Free memory allocated with devm_kmalloc().
871 */
872 void devm_kfree(struct udevice *dev, void *ptr);
873
874 #else /* ! CONFIG_DEVRES */
875
devres_alloc(dr_release_t release,size_t size,gfp_t gfp)876 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
877 {
878 return kzalloc(size, gfp);
879 }
880
devres_free(void * res)881 static inline void devres_free(void *res)
882 {
883 kfree(res);
884 }
885
devres_add(struct udevice * dev,void * res)886 static inline void devres_add(struct udevice *dev, void *res)
887 {
888 }
889
devres_find(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)890 static inline void *devres_find(struct udevice *dev, dr_release_t release,
891 dr_match_t match, void *match_data)
892 {
893 return NULL;
894 }
895
devres_get(struct udevice * dev,void * new_res,dr_match_t match,void * match_data)896 static inline void *devres_get(struct udevice *dev, void *new_res,
897 dr_match_t match, void *match_data)
898 {
899 return NULL;
900 }
901
devres_remove(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)902 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
903 dr_match_t match, void *match_data)
904 {
905 return NULL;
906 }
907
devres_destroy(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)908 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
909 dr_match_t match, void *match_data)
910 {
911 return 0;
912 }
913
devres_release(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)914 static inline int devres_release(struct udevice *dev, dr_release_t release,
915 dr_match_t match, void *match_data)
916 {
917 return 0;
918 }
919
devm_kmalloc(struct udevice * dev,size_t size,gfp_t gfp)920 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
921 {
922 return kmalloc(size, gfp);
923 }
924
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)925 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
926 {
927 return kzalloc(size, gfp);
928 }
929
devm_kmaloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)930 static inline void *devm_kmaloc_array(struct udevice *dev,
931 size_t n, size_t size, gfp_t flags)
932 {
933 /* TODO: add kmalloc_array() to linux/compat.h */
934 if (size != 0 && n > SIZE_MAX / size)
935 return NULL;
936 return kmalloc(n * size, flags);
937 }
938
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)939 static inline void *devm_kcalloc(struct udevice *dev,
940 size_t n, size_t size, gfp_t flags)
941 {
942 /* TODO: add kcalloc() to linux/compat.h */
943 return kmalloc(n * size, flags | __GFP_ZERO);
944 }
945
devm_kfree(struct udevice * dev,void * ptr)946 static inline void devm_kfree(struct udevice *dev, void *ptr)
947 {
948 kfree(ptr);
949 }
950
951 #endif /* ! CONFIG_DEVRES */
952
953 /*
954 * REVISIT:
955 * remove the following after resolving conflicts with <linux/compat.h>
956 */
957 #ifdef dev_dbg
958 #undef dev_dbg
959 #endif
960 #ifdef dev_vdbg
961 #undef dev_vdbg
962 #endif
963 #ifdef dev_info
964 #undef dev_info
965 #endif
966 #ifdef dev_err
967 #undef dev_err
968 #endif
969 #ifdef dev_warn
970 #undef dev_warn
971 #endif
972
973 /*
974 * REVISIT:
975 * print device name like Linux
976 */
977 #define dev_printk(dev, fmt, ...) \
978 ({ \
979 printk(fmt, ##__VA_ARGS__); \
980 })
981
982 #define __dev_printk(level, dev, fmt, ...) \
983 ({ \
984 if (level < CONFIG_VAL(LOGLEVEL)) \
985 dev_printk(dev, fmt, ##__VA_ARGS__); \
986 })
987
988 #define dev_emerg(dev, fmt, ...) \
989 __dev_printk(0, dev, fmt, ##__VA_ARGS__)
990 #define dev_alert(dev, fmt, ...) \
991 __dev_printk(1, dev, fmt, ##__VA_ARGS__)
992 #define dev_crit(dev, fmt, ...) \
993 __dev_printk(2, dev, fmt, ##__VA_ARGS__)
994 #define dev_err(dev, fmt, ...) \
995 __dev_printk(3, dev, fmt, ##__VA_ARGS__)
996 #define dev_warn(dev, fmt, ...) \
997 __dev_printk(4, dev, fmt, ##__VA_ARGS__)
998 #define dev_notice(dev, fmt, ...) \
999 __dev_printk(5, dev, fmt, ##__VA_ARGS__)
1000 #define dev_info(dev, fmt, ...) \
1001 __dev_printk(6, dev, fmt, ##__VA_ARGS__)
1002
1003 #ifdef DEBUG
1004 #define dev_dbg(dev, fmt, ...) \
1005 __dev_printk(7, dev, fmt, ##__VA_ARGS__)
1006 #else
1007 #define dev_dbg(dev, fmt, ...) \
1008 ({ \
1009 if (0) \
1010 __dev_printk(7, dev, fmt, ##__VA_ARGS__); \
1011 })
1012 #endif
1013
1014 #ifdef VERBOSE_DEBUG
1015 #define dev_vdbg dev_dbg
1016 #else
1017 #define dev_vdbg(dev, fmt, ...) \
1018 ({ \
1019 if (0) \
1020 __dev_printk(7, dev, fmt, ##__VA_ARGS__); \
1021 })
1022 #endif
1023
1024 #endif
1025