xref: /openbmc/u-boot/include/dm/device.h (revision 9450ab2b)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (c) 2013 Google, Inc
4  *
5  * (C) Copyright 2012
6  * Pavel Herrmann <morpheus.ibis@gmail.com>
7  * Marek Vasut <marex@denx.de>
8  */
9 
10 #ifndef _DM_DEVICE_H
11 #define _DM_DEVICE_H
12 
13 #include <dm/ofnode.h>
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/printk.h>
21 
22 struct driver_info;
23 
24 /* Driver is active (probed). Cleared when it is removed */
25 #define DM_FLAG_ACTIVATED		(1 << 0)
26 
27 /* DM is responsible for allocating and freeing platdata */
28 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
29 
30 /* DM should init this device prior to relocation */
31 #define DM_FLAG_PRE_RELOC		(1 << 2)
32 
33 /* DM is responsible for allocating and freeing parent_platdata */
34 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
35 
36 /* DM is responsible for allocating and freeing uclass_platdata */
37 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
38 
39 /* Allocate driver private data on a DMA boundary */
40 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
41 
42 /* Device is bound */
43 #define DM_FLAG_BOUND			(1 << 6)
44 
45 /* Device name is allocated and should be freed on unbind() */
46 #define DM_FLAG_NAME_ALLOCED		(1 << 7)
47 
48 #define DM_FLAG_OF_PLATDATA		(1 << 8)
49 
50 /*
51  * Call driver remove function to stop currently active DMA transfers or
52  * give DMA buffers back to the HW / controller. This may be needed for
53  * some drivers to do some final stage cleanup before the OS is called
54  * (U-Boot exit)
55  */
56 #define DM_FLAG_ACTIVE_DMA		(1 << 9)
57 
58 /*
59  * Call driver remove function to do some final configuration, before
60  * U-Boot exits and the OS is started
61  */
62 #define DM_FLAG_OS_PREPARE		(1 << 10)
63 
64 /*
65  * One or multiple of these flags are passed to device_remove() so that
66  * a selective device removal as specified by the remove-stage and the
67  * driver flags can be done.
68  */
69 enum {
70 	/* Normal remove, remove all devices */
71 	DM_REMOVE_NORMAL     = 1 << 0,
72 
73 	/* Remove devices with active DMA */
74 	DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
75 
76 	/* Remove devices which need some final OS preparation steps */
77 	DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
78 
79 	/* Add more use cases here */
80 
81 	/* Remove devices with any active flag */
82 	DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
83 };
84 
85 /**
86  * struct udevice - An instance of a driver
87  *
88  * This holds information about a device, which is a driver bound to a
89  * particular port or peripheral (essentially a driver instance).
90  *
91  * A device will come into existence through a 'bind' call, either due to
92  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
93  * in the device tree (in which case of_offset is >= 0). In the latter case
94  * we translate the device tree information into platdata in a function
95  * implemented by the driver ofdata_to_platdata method (called just before the
96  * probe method if the device has a device tree node.
97  *
98  * All three of platdata, priv and uclass_priv can be allocated by the
99  * driver, or you can use the auto_alloc_size members of struct driver and
100  * struct uclass_driver to have driver model do this automatically.
101  *
102  * @driver: The driver used by this device
103  * @name: Name of device, typically the FDT node name
104  * @platdata: Configuration data for this device
105  * @parent_platdata: The parent bus's configuration data for this device
106  * @uclass_platdata: The uclass's configuration data for this device
107  * @node: Reference to device tree node for this device
108  * @driver_data: Driver data word for the entry that matched this device with
109  *		its driver
110  * @parent: Parent of this device, or NULL for the top level device
111  * @priv: Private data for this device
112  * @uclass: Pointer to uclass for this device
113  * @uclass_priv: The uclass's private data for this device
114  * @parent_priv: The parent's private data for this device
115  * @uclass_node: Used by uclass to link its devices
116  * @child_head: List of children of this device
117  * @sibling_node: Next device in list of all devices
118  * @flags: Flags for this device DM_FLAG_...
119  * @req_seq: Requested sequence number for this device (-1 = any)
120  * @seq: Allocated sequence number for this device (-1 = none). This is set up
121  * when the device is probed and will be unique within the device's uclass.
122  * @devres_head: List of memory allocations associated with this device.
123  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
124  *		add to this list. Memory so-allocated will be freed
125  *		automatically when the device is removed / unbound
126  */
127 struct udevice {
128 	const struct driver *driver;
129 	const char *name;
130 	void *platdata;
131 	void *parent_platdata;
132 	void *uclass_platdata;
133 	ofnode node;
134 	ulong driver_data;
135 	struct udevice *parent;
136 	void *priv;
137 	struct uclass *uclass;
138 	void *uclass_priv;
139 	void *parent_priv;
140 	struct list_head uclass_node;
141 	struct list_head child_head;
142 	struct list_head sibling_node;
143 	uint32_t flags;
144 	int req_seq;
145 	int seq;
146 #ifdef CONFIG_DEVRES
147 	struct list_head devres_head;
148 #endif
149 };
150 
151 /* Maximum sequence number supported */
152 #define DM_MAX_SEQ	999
153 
154 /* Returns the operations for a device */
155 #define device_get_ops(dev)	(dev->driver->ops)
156 
157 /* Returns non-zero if the device is active (probed and not removed) */
158 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
159 
dev_of_offset(const struct udevice * dev)160 static inline int dev_of_offset(const struct udevice *dev)
161 {
162 	return ofnode_to_offset(dev->node);
163 }
164 
dev_set_of_offset(struct udevice * dev,int of_offset)165 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
166 {
167 	dev->node = offset_to_ofnode(of_offset);
168 }
169 
dev_has_of_node(struct udevice * dev)170 static inline bool dev_has_of_node(struct udevice *dev)
171 {
172 	return ofnode_valid(dev->node);
173 }
174 
175 /**
176  * struct udevice_id - Lists the compatible strings supported by a driver
177  * @compatible: Compatible string
178  * @data: Data for this compatible string
179  */
180 struct udevice_id {
181 	const char *compatible;
182 	ulong data;
183 };
184 
185 #if CONFIG_IS_ENABLED(OF_CONTROL)
186 #define of_match_ptr(_ptr)	(_ptr)
187 #else
188 #define of_match_ptr(_ptr)	NULL
189 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
190 
191 /**
192  * struct driver - A driver for a feature or peripheral
193  *
194  * This holds methods for setting up a new device, and also removing it.
195  * The device needs information to set itself up - this is provided either
196  * by platdata or a device tree node (which we find by looking up
197  * matching compatible strings with of_match).
198  *
199  * Drivers all belong to a uclass, representing a class of devices of the
200  * same type. Common elements of the drivers can be implemented in the uclass,
201  * or the uclass can provide a consistent interface to the drivers within
202  * it.
203  *
204  * @name: Device name
205  * @id: Identifies the uclass we belong to
206  * @of_match: List of compatible strings to match, and any identifying data
207  * for each.
208  * @bind: Called to bind a device to its driver
209  * @probe: Called to probe a device, i.e. activate it
210  * @remove: Called to remove a device, i.e. de-activate it
211  * @unbind: Called to unbind a device from its driver
212  * @ofdata_to_platdata: Called before probe to decode device tree data
213  * @child_post_bind: Called after a new child has been bound
214  * @child_pre_probe: Called before a child device is probed. The device has
215  * memory allocated but it has not yet been probed.
216  * @child_post_remove: Called after a child device is removed. The device
217  * has memory allocated but its device_remove() method has been called.
218  * @priv_auto_alloc_size: If non-zero this is the size of the private data
219  * to be allocated in the device's ->priv pointer. If zero, then the driver
220  * is responsible for allocating any data required.
221  * @platdata_auto_alloc_size: If non-zero this is the size of the
222  * platform data to be allocated in the device's ->platdata pointer.
223  * This is typically only useful for device-tree-aware drivers (those with
224  * an of_match), since drivers which use platdata will have the data
225  * provided in the U_BOOT_DEVICE() instantiation.
226  * @per_child_auto_alloc_size: Each device can hold private data owned by
227  * its parent. If required this will be automatically allocated if this
228  * value is non-zero.
229  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
230  * its children. If non-zero this is the size of this data, to be allocated
231  * in the child's parent_platdata pointer.
232  * @ops: Driver-specific operations. This is typically a list of function
233  * pointers defined by the driver, to implement driver functions required by
234  * the uclass.
235  * @flags: driver flags - see DM_FLAGS_...
236  */
237 struct driver {
238 	char *name;
239 	enum uclass_id id;
240 	const struct udevice_id *of_match;
241 	int (*bind)(struct udevice *dev);
242 	int (*probe)(struct udevice *dev);
243 	int (*remove)(struct udevice *dev);
244 	int (*unbind)(struct udevice *dev);
245 	int (*ofdata_to_platdata)(struct udevice *dev);
246 	int (*child_post_bind)(struct udevice *dev);
247 	int (*child_pre_probe)(struct udevice *dev);
248 	int (*child_post_remove)(struct udevice *dev);
249 	int priv_auto_alloc_size;
250 	int platdata_auto_alloc_size;
251 	int per_child_auto_alloc_size;
252 	int per_child_platdata_auto_alloc_size;
253 	const void *ops;	/* driver-specific operations */
254 	uint32_t flags;
255 };
256 
257 /* Declare a new U-Boot driver */
258 #define U_BOOT_DRIVER(__name)						\
259 	ll_entry_declare(struct driver, __name, driver)
260 
261 /* Get a pointer to a given driver */
262 #define DM_GET_DRIVER(__name)						\
263 	ll_entry_get(struct driver, __name, driver)
264 
265 /**
266  * dev_get_platdata() - Get the platform data for a device
267  *
268  * This checks that dev is not NULL, but no other checks for now
269  *
270  * @dev		Device to check
271  * @return platform data, or NULL if none
272  */
273 void *dev_get_platdata(const struct udevice *dev);
274 
275 /**
276  * dev_get_parent_platdata() - Get the parent platform data for a device
277  *
278  * This checks that dev is not NULL, but no other checks for now
279  *
280  * @dev		Device to check
281  * @return parent's platform data, or NULL if none
282  */
283 void *dev_get_parent_platdata(const struct udevice *dev);
284 
285 /**
286  * dev_get_uclass_platdata() - Get the uclass platform data for a device
287  *
288  * This checks that dev is not NULL, but no other checks for now
289  *
290  * @dev		Device to check
291  * @return uclass's platform data, or NULL if none
292  */
293 void *dev_get_uclass_platdata(const struct udevice *dev);
294 
295 /**
296  * dev_get_priv() - Get the private data for a device
297  *
298  * This checks that dev is not NULL, but no other checks for now
299  *
300  * @dev		Device to check
301  * @return private data, or NULL if none
302  */
303 void *dev_get_priv(const struct udevice *dev);
304 
305 /**
306  * dev_get_parent_priv() - Get the parent private data for a device
307  *
308  * The parent private data is data stored in the device but owned by the
309  * parent. For example, a USB device may have parent data which contains
310  * information about how to talk to the device over USB.
311  *
312  * This checks that dev is not NULL, but no other checks for now
313  *
314  * @dev		Device to check
315  * @return parent data, or NULL if none
316  */
317 void *dev_get_parent_priv(const struct udevice *dev);
318 
319 /**
320  * dev_get_uclass_priv() - Get the private uclass data for a device
321  *
322  * This checks that dev is not NULL, but no other checks for now
323  *
324  * @dev		Device to check
325  * @return private uclass data for this device, or NULL if none
326  */
327 void *dev_get_uclass_priv(const struct udevice *dev);
328 
329 /**
330  * struct dev_get_parent() - Get the parent of a device
331  *
332  * @child:	Child to check
333  * @return parent of child, or NULL if this is the root device
334  */
335 struct udevice *dev_get_parent(const struct udevice *child);
336 
337 /**
338  * dev_get_driver_data() - get the driver data used to bind a device
339  *
340  * When a device is bound using a device tree node, it matches a
341  * particular compatible string in struct udevice_id. This function
342  * returns the associated data value for that compatible string. This is
343  * the 'data' field in struct udevice_id.
344  *
345  * As an example, consider this structure:
346  * static const struct udevice_id tegra_i2c_ids[] = {
347  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
348  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
349  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
350  *	{ }
351  * };
352  *
353  * When driver model finds a driver for this it will store the 'data' value
354  * corresponding to the compatible string it matches. This function returns
355  * that value. This allows the driver to handle several variants of a device.
356  *
357  * For USB devices, this is the driver_info field in struct usb_device_id.
358  *
359  * @dev:	Device to check
360  * @return driver data (0 if none is provided)
361  */
362 ulong dev_get_driver_data(const struct udevice *dev);
363 
364 /**
365  * dev_get_driver_ops() - get the device's driver's operations
366  *
367  * This checks that dev is not NULL, and returns the pointer to device's
368  * driver's operations.
369  *
370  * @dev:	Device to check
371  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
372  */
373 const void *dev_get_driver_ops(const struct udevice *dev);
374 
375 /**
376  * device_get_uclass_id() - return the uclass ID of a device
377  *
378  * @dev:	Device to check
379  * @return uclass ID for the device
380  */
381 enum uclass_id device_get_uclass_id(const struct udevice *dev);
382 
383 /**
384  * dev_get_uclass_name() - return the uclass name of a device
385  *
386  * This checks that dev is not NULL.
387  *
388  * @dev:	Device to check
389  * @return  pointer to the uclass name for the device
390  */
391 const char *dev_get_uclass_name(const struct udevice *dev);
392 
393 /**
394  * device_get_child() - Get the child of a device by index
395  *
396  * Returns the numbered child, 0 being the first. This does not use
397  * sequence numbers, only the natural order.
398  *
399  * @dev:	Parent device to check
400  * @index:	Child index
401  * @devp:	Returns pointer to device
402  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
403  *	   to probe
404  */
405 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
406 
407 /**
408  * device_find_child_by_seq() - Find a child device based on a sequence
409  *
410  * This searches for a device with the given seq or req_seq.
411  *
412  * For seq, if an active device has this sequence it will be returned.
413  * If there is no such device then this will return -ENODEV.
414  *
415  * For req_seq, if a device (whether activated or not) has this req_seq
416  * value, that device will be returned. This is a strong indication that
417  * the device will receive that sequence when activated.
418  *
419  * @parent: Parent device
420  * @seq_or_req_seq: Sequence number to find (0=first)
421  * @find_req_seq: true to find req_seq, false to find seq
422  * @devp: Returns pointer to device (there is only one per for each seq).
423  * Set to NULL if none is found
424  * @return 0 if OK, -ve on error
425  */
426 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
427 			     bool find_req_seq, struct udevice **devp);
428 
429 /**
430  * device_get_child_by_seq() - Get a child device based on a sequence
431  *
432  * If an active device has this sequence it will be returned. If there is no
433  * such device then this will check for a device that is requesting this
434  * sequence.
435  *
436  * The device is probed to activate it ready for use.
437  *
438  * @parent: Parent device
439  * @seq: Sequence number to find (0=first)
440  * @devp: Returns pointer to device (there is only one per for each seq)
441  * Set to NULL if none is found
442  * @return 0 if OK, -ve on error
443  */
444 int device_get_child_by_seq(struct udevice *parent, int seq,
445 			    struct udevice **devp);
446 
447 /**
448  * device_find_child_by_of_offset() - Find a child device based on FDT offset
449  *
450  * Locates a child device by its device tree offset.
451  *
452  * @parent: Parent device
453  * @of_offset: Device tree offset to find
454  * @devp: Returns pointer to device if found, otherwise this is set to NULL
455  * @return 0 if OK, -ve on error
456  */
457 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
458 				   struct udevice **devp);
459 
460 /**
461  * device_get_child_by_of_offset() - Get a child device based on FDT offset
462  *
463  * Locates a child device by its device tree offset.
464  *
465  * The device is probed to activate it ready for use.
466  *
467  * @parent: Parent device
468  * @of_offset: Device tree offset to find
469  * @devp: Returns pointer to device if found, otherwise this is set to NULL
470  * @return 0 if OK, -ve on error
471  */
472 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
473 				  struct udevice **devp);
474 
475 /**
476  * device_find_global_by_ofnode() - Get a device based on ofnode
477  *
478  * Locates a device by its device tree ofnode, searching globally throughout
479  * the all driver model devices.
480  *
481  * The device is NOT probed
482  *
483  * @node: Device tree ofnode to find
484  * @devp: Returns pointer to device if found, otherwise this is set to NULL
485  * @return 0 if OK, -ve on error
486  */
487 
488 int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
489 
490 /**
491  * device_get_global_by_ofnode() - Get a device based on ofnode
492  *
493  * Locates a device by its device tree ofnode, searching globally throughout
494  * the all driver model devices.
495  *
496  * The device is probed to activate it ready for use.
497  *
498  * @node: Device tree ofnode to find
499  * @devp: Returns pointer to device if found, otherwise this is set to NULL
500  * @return 0 if OK, -ve on error
501  */
502 int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
503 
504 /**
505  * device_find_first_child() - Find the first child of a device
506  *
507  * @parent: Parent device to search
508  * @devp: Returns first child device, or NULL if none
509  * @return 0
510  */
511 int device_find_first_child(struct udevice *parent, struct udevice **devp);
512 
513 /**
514  * device_find_next_child() - Find the next child of a device
515  *
516  * @devp: Pointer to previous child device on entry. Returns pointer to next
517  *		child device, or NULL if none
518  * @return 0
519  */
520 int device_find_next_child(struct udevice **devp);
521 
522 /**
523  * device_find_first_inactive_child() - Find the first inactive child
524  *
525  * This is used to locate an existing child of a device which is of a given
526  * uclass.
527  *
528  * The device is NOT probed
529  *
530  * @parent:	Parent device to search
531  * @uclass_id:	Uclass to look for
532  * @devp:	Returns device found, if any
533  * @return 0 if found, else -ENODEV
534  */
535 int device_find_first_inactive_child(struct udevice *parent,
536 				     enum uclass_id uclass_id,
537 				     struct udevice **devp);
538 
539 /**
540  * device_find_first_child_by_uclass() - Find the first child of a device in uc
541  *
542  * @parent: Parent device to search
543  * @uclass_id:	Uclass to look for
544  * @devp: Returns first child device in that uclass, if any
545  * @return 0 if found, else -ENODEV
546  */
547 int device_find_first_child_by_uclass(struct udevice *parent,
548 				      enum uclass_id uclass_id,
549 				      struct udevice **devp);
550 
551 /**
552  * device_find_child_by_name() - Find a child by device name
553  *
554  * @parent:	Parent device to search
555  * @name:	Name to look for
556  * @devp:	Returns device found, if any
557  * @return 0 if found, else -ENODEV
558  */
559 int device_find_child_by_name(struct udevice *parent, const char *name,
560 			      struct udevice **devp);
561 
562 /**
563  * device_has_children() - check if a device has any children
564  *
565  * @dev:	Device to check
566  * @return true if the device has one or more children
567  */
568 bool device_has_children(const struct udevice *dev);
569 
570 /**
571  * device_has_active_children() - check if a device has any active children
572  *
573  * @dev:	Device to check
574  * @return true if the device has one or more children and at least one of
575  * them is active (probed).
576  */
577 bool device_has_active_children(struct udevice *dev);
578 
579 /**
580  * device_is_last_sibling() - check if a device is the last sibling
581  *
582  * This function can be useful for display purposes, when special action needs
583  * to be taken when displaying the last sibling. This can happen when a tree
584  * view of devices is being displayed.
585  *
586  * @dev:	Device to check
587  * @return true if there are no more siblings after this one - i.e. is it
588  * last in the list.
589  */
590 bool device_is_last_sibling(struct udevice *dev);
591 
592 /**
593  * device_set_name() - set the name of a device
594  *
595  * This must be called in the device's bind() method and no later. Normally
596  * this is unnecessary but for probed devices which don't get a useful name
597  * this function can be helpful.
598  *
599  * The name is allocated and will be freed automatically when the device is
600  * unbound.
601  *
602  * @dev:	Device to update
603  * @name:	New name (this string is allocated new memory and attached to
604  *		the device)
605  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
606  * string
607  */
608 int device_set_name(struct udevice *dev, const char *name);
609 
610 /**
611  * device_set_name_alloced() - note that a device name is allocated
612  *
613  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
614  * unbound the name will be freed. This avoids memory leaks.
615  *
616  * @dev:	Device to update
617  */
618 void device_set_name_alloced(struct udevice *dev);
619 
620 /**
621  * device_is_compatible() - check if the device is compatible with the compat
622  *
623  * This allows to check whether the device is comaptible with the compat.
624  *
625  * @dev:	udevice pointer for which compatible needs to be verified.
626  * @compat:	Compatible string which needs to verified in the given
627  *		device
628  * @return true if OK, false if the compatible is not found
629  */
630 bool device_is_compatible(struct udevice *dev, const char *compat);
631 
632 /**
633  * of_machine_is_compatible() - check if the machine is compatible with
634  *				the compat
635  *
636  * This allows to check whether the machine is comaptible with the compat.
637  *
638  * @compat:	Compatible string which needs to verified
639  * @return true if OK, false if the compatible is not found
640  */
641 bool of_machine_is_compatible(const char *compat);
642 
643 /**
644  * dev_disable_by_path() - Disable a device given its device tree path
645  *
646  * @path:	The device tree path identifying the device to be disabled
647  * @return 0 on success, -ve on error
648  */
649 int dev_disable_by_path(const char *path);
650 
651 /**
652  * dev_enable_by_path() - Enable a device given its device tree path
653  *
654  * @path:	The device tree path identifying the device to be enabled
655  * @return 0 on success, -ve on error
656  */
657 int dev_enable_by_path(const char *path);
658 
659 /**
660  * device_is_on_pci_bus - Test if a device is on a PCI bus
661  *
662  * @dev:	device to test
663  * @return:	true if it is on a PCI bus, false otherwise
664  */
device_is_on_pci_bus(struct udevice * dev)665 static inline bool device_is_on_pci_bus(struct udevice *dev)
666 {
667 	return device_get_uclass_id(dev->parent) == UCLASS_PCI;
668 }
669 
670 /**
671  * device_foreach_child_safe() - iterate through child devices safely
672  *
673  * This allows the @pos child to be removed in the loop if required.
674  *
675  * @pos: struct udevice * for the current device
676  * @next: struct udevice * for the next device
677  * @parent: parent device to scan
678  */
679 #define device_foreach_child_safe(pos, next, parent)	\
680 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
681 
682 /**
683  * dm_scan_fdt_dev() - Bind child device in a the device tree
684  *
685  * This handles device which have sub-nodes in the device tree. It scans all
686  * sub-nodes and binds drivers for each node where a driver can be found.
687  *
688  * If this is called prior to relocation, only pre-relocation devices will be
689  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
690  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
691  * be bound.
692  *
693  * @dev:	Device to scan
694  * @return 0 if OK, -ve on error
695  */
696 int dm_scan_fdt_dev(struct udevice *dev);
697 
698 /* device resource management */
699 typedef void (*dr_release_t)(struct udevice *dev, void *res);
700 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
701 
702 #ifdef CONFIG_DEVRES
703 
704 #ifdef CONFIG_DEBUG_DEVRES
705 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
706 		     const char *name);
707 #define _devres_alloc(release, size, gfp) \
708 	__devres_alloc(release, size, gfp, #release)
709 #else
710 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
711 #endif
712 
713 /**
714  * devres_alloc() - Allocate device resource data
715  * @release: Release function devres will be associated with
716  * @size: Allocation size
717  * @gfp: Allocation flags
718  *
719  * Allocate devres of @size bytes.  The allocated area is associated
720  * with @release.  The returned pointer can be passed to
721  * other devres_*() functions.
722  *
723  * RETURNS:
724  * Pointer to allocated devres on success, NULL on failure.
725  */
726 #define devres_alloc(release, size, gfp) \
727 	_devres_alloc(release, size, gfp | __GFP_ZERO)
728 
729 /**
730  * devres_free() - Free device resource data
731  * @res: Pointer to devres data to free
732  *
733  * Free devres created with devres_alloc().
734  */
735 void devres_free(void *res);
736 
737 /**
738  * devres_add() - Register device resource
739  * @dev: Device to add resource to
740  * @res: Resource to register
741  *
742  * Register devres @res to @dev.  @res should have been allocated
743  * using devres_alloc().  On driver detach, the associated release
744  * function will be invoked and devres will be freed automatically.
745  */
746 void devres_add(struct udevice *dev, void *res);
747 
748 /**
749  * devres_find() - Find device resource
750  * @dev: Device to lookup resource from
751  * @release: Look for resources associated with this release function
752  * @match: Match function (optional)
753  * @match_data: Data for the match function
754  *
755  * Find the latest devres of @dev which is associated with @release
756  * and for which @match returns 1.  If @match is NULL, it's considered
757  * to match all.
758  *
759  * @return pointer to found devres, NULL if not found.
760  */
761 void *devres_find(struct udevice *dev, dr_release_t release,
762 		  dr_match_t match, void *match_data);
763 
764 /**
765  * devres_get() - Find devres, if non-existent, add one atomically
766  * @dev: Device to lookup or add devres for
767  * @new_res: Pointer to new initialized devres to add if not found
768  * @match: Match function (optional)
769  * @match_data: Data for the match function
770  *
771  * Find the latest devres of @dev which has the same release function
772  * as @new_res and for which @match return 1.  If found, @new_res is
773  * freed; otherwise, @new_res is added atomically.
774  *
775  * @return ointer to found or added devres.
776  */
777 void *devres_get(struct udevice *dev, void *new_res,
778 		 dr_match_t match, void *match_data);
779 
780 /**
781  * devres_remove() - Find a device resource and remove it
782  * @dev: Device to find resource from
783  * @release: Look for resources associated with this release function
784  * @match: Match function (optional)
785  * @match_data: Data for the match function
786  *
787  * Find the latest devres of @dev associated with @release and for
788  * which @match returns 1.  If @match is NULL, it's considered to
789  * match all.  If found, the resource is removed atomically and
790  * returned.
791  *
792  * @return ointer to removed devres on success, NULL if not found.
793  */
794 void *devres_remove(struct udevice *dev, dr_release_t release,
795 		    dr_match_t match, void *match_data);
796 
797 /**
798  * devres_destroy() - Find a device resource and destroy it
799  * @dev: Device to find resource from
800  * @release: Look for resources associated with this release function
801  * @match: Match function (optional)
802  * @match_data: Data for the match function
803  *
804  * Find the latest devres of @dev associated with @release and for
805  * which @match returns 1.  If @match is NULL, it's considered to
806  * match all.  If found, the resource is removed atomically and freed.
807  *
808  * Note that the release function for the resource will not be called,
809  * only the devres-allocated data will be freed.  The caller becomes
810  * responsible for freeing any other data.
811  *
812  * @return 0 if devres is found and freed, -ENOENT if not found.
813  */
814 int devres_destroy(struct udevice *dev, dr_release_t release,
815 		   dr_match_t match, void *match_data);
816 
817 /**
818  * devres_release() - Find a device resource and destroy it, calling release
819  * @dev: Device to find resource from
820  * @release: Look for resources associated with this release function
821  * @match: Match function (optional)
822  * @match_data: Data for the match function
823  *
824  * Find the latest devres of @dev associated with @release and for
825  * which @match returns 1.  If @match is NULL, it's considered to
826  * match all.  If found, the resource is removed atomically, the
827  * release function called and the resource freed.
828  *
829  * @return 0 if devres is found and freed, -ENOENT if not found.
830  */
831 int devres_release(struct udevice *dev, dr_release_t release,
832 		   dr_match_t match, void *match_data);
833 
834 /* managed devm_k.alloc/kfree for device drivers */
835 /**
836  * devm_kmalloc() - Resource-managed kmalloc
837  * @dev: Device to allocate memory for
838  * @size: Allocation size
839  * @gfp: Allocation gfp flags
840  *
841  * Managed kmalloc.  Memory allocated with this function is
842  * automatically freed on driver detach.  Like all other devres
843  * resources, guaranteed alignment is unsigned long long.
844  *
845  * @return pointer to allocated memory on success, NULL on failure.
846  */
847 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)848 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
849 {
850 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
851 }
devm_kmalloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)852 static inline void *devm_kmalloc_array(struct udevice *dev,
853 				       size_t n, size_t size, gfp_t flags)
854 {
855 	if (size != 0 && n > SIZE_MAX / size)
856 		return NULL;
857 	return devm_kmalloc(dev, n * size, flags);
858 }
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)859 static inline void *devm_kcalloc(struct udevice *dev,
860 				 size_t n, size_t size, gfp_t flags)
861 {
862 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
863 }
864 
865 /**
866  * devm_kfree() - Resource-managed kfree
867  * @dev: Device this memory belongs to
868  * @ptr: Memory to free
869  *
870  * Free memory allocated with devm_kmalloc().
871  */
872 void devm_kfree(struct udevice *dev, void *ptr);
873 
874 #else /* ! CONFIG_DEVRES */
875 
devres_alloc(dr_release_t release,size_t size,gfp_t gfp)876 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
877 {
878 	return kzalloc(size, gfp);
879 }
880 
devres_free(void * res)881 static inline void devres_free(void *res)
882 {
883 	kfree(res);
884 }
885 
devres_add(struct udevice * dev,void * res)886 static inline void devres_add(struct udevice *dev, void *res)
887 {
888 }
889 
devres_find(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)890 static inline void *devres_find(struct udevice *dev, dr_release_t release,
891 				dr_match_t match, void *match_data)
892 {
893 	return NULL;
894 }
895 
devres_get(struct udevice * dev,void * new_res,dr_match_t match,void * match_data)896 static inline void *devres_get(struct udevice *dev, void *new_res,
897 			       dr_match_t match, void *match_data)
898 {
899 	return NULL;
900 }
901 
devres_remove(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)902 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
903 				  dr_match_t match, void *match_data)
904 {
905 	return NULL;
906 }
907 
devres_destroy(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)908 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
909 				 dr_match_t match, void *match_data)
910 {
911 	return 0;
912 }
913 
devres_release(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)914 static inline int devres_release(struct udevice *dev, dr_release_t release,
915 				 dr_match_t match, void *match_data)
916 {
917 	return 0;
918 }
919 
devm_kmalloc(struct udevice * dev,size_t size,gfp_t gfp)920 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
921 {
922 	return kmalloc(size, gfp);
923 }
924 
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)925 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
926 {
927 	return kzalloc(size, gfp);
928 }
929 
devm_kmaloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)930 static inline void *devm_kmaloc_array(struct udevice *dev,
931 				      size_t n, size_t size, gfp_t flags)
932 {
933 	/* TODO: add kmalloc_array() to linux/compat.h */
934 	if (size != 0 && n > SIZE_MAX / size)
935 		return NULL;
936 	return kmalloc(n * size, flags);
937 }
938 
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)939 static inline void *devm_kcalloc(struct udevice *dev,
940 				 size_t n, size_t size, gfp_t flags)
941 {
942 	/* TODO: add kcalloc() to linux/compat.h */
943 	return kmalloc(n * size, flags | __GFP_ZERO);
944 }
945 
devm_kfree(struct udevice * dev,void * ptr)946 static inline void devm_kfree(struct udevice *dev, void *ptr)
947 {
948 	kfree(ptr);
949 }
950 
951 #endif /* ! CONFIG_DEVRES */
952 
953 /*
954  * REVISIT:
955  * remove the following after resolving conflicts with <linux/compat.h>
956  */
957 #ifdef dev_dbg
958 #undef dev_dbg
959 #endif
960 #ifdef dev_vdbg
961 #undef dev_vdbg
962 #endif
963 #ifdef dev_info
964 #undef dev_info
965 #endif
966 #ifdef dev_err
967 #undef dev_err
968 #endif
969 #ifdef dev_warn
970 #undef dev_warn
971 #endif
972 
973 /*
974  * REVISIT:
975  * print device name like Linux
976  */
977 #define dev_printk(dev, fmt, ...)				\
978 ({								\
979 	printk(fmt, ##__VA_ARGS__);				\
980 })
981 
982 #define __dev_printk(level, dev, fmt, ...)			\
983 ({								\
984 	if (level < CONFIG_VAL(LOGLEVEL))			\
985 		dev_printk(dev, fmt, ##__VA_ARGS__);		\
986 })
987 
988 #define dev_emerg(dev, fmt, ...) \
989 	__dev_printk(0, dev, fmt, ##__VA_ARGS__)
990 #define dev_alert(dev, fmt, ...) \
991 	__dev_printk(1, dev, fmt, ##__VA_ARGS__)
992 #define dev_crit(dev, fmt, ...) \
993 	__dev_printk(2, dev, fmt, ##__VA_ARGS__)
994 #define dev_err(dev, fmt, ...) \
995 	__dev_printk(3, dev, fmt, ##__VA_ARGS__)
996 #define dev_warn(dev, fmt, ...) \
997 	__dev_printk(4, dev, fmt, ##__VA_ARGS__)
998 #define dev_notice(dev, fmt, ...) \
999 	__dev_printk(5, dev, fmt, ##__VA_ARGS__)
1000 #define dev_info(dev, fmt, ...) \
1001 	__dev_printk(6, dev, fmt, ##__VA_ARGS__)
1002 
1003 #ifdef DEBUG
1004 #define dev_dbg(dev, fmt, ...) \
1005 	__dev_printk(7, dev, fmt, ##__VA_ARGS__)
1006 #else
1007 #define dev_dbg(dev, fmt, ...)					\
1008 ({								\
1009 	if (0)							\
1010 		__dev_printk(7, dev, fmt, ##__VA_ARGS__);	\
1011 })
1012 #endif
1013 
1014 #ifdef VERBOSE_DEBUG
1015 #define dev_vdbg	dev_dbg
1016 #else
1017 #define dev_vdbg(dev, fmt, ...)					\
1018 ({								\
1019 	if (0)							\
1020 		__dev_printk(7, dev, fmt, ##__VA_ARGS__);	\
1021 })
1022 #endif
1023 
1024 #endif
1025