1 /* 2 * This file implements recording of each stage of the boot process. It is 3 * intended to implement timing of each stage, reporting this information 4 * to the user and passing it to the OS for logging / further analysis. 5 * 6 * Copyright (c) 2011 The Chromium OS Authors. 7 * See file CREDITS for list of people who contributed to this 8 * project. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of 13 * the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 23 * MA 02111-1307 USA 24 */ 25 26 #ifndef _BOOTSTAGE_H 27 #define _BOOTSTAGE_H 28 29 /* The number of boot stage records available for the user */ 30 #ifndef CONFIG_BOOTSTAGE_USER_COUNT 31 #define CONFIG_BOOTSTAGE_USER_COUNT 20 32 #endif 33 34 /* Flags for each bootstage record */ 35 enum bootstage_flags { 36 BOOTSTAGEF_ERROR = 1 << 0, /* Error record */ 37 BOOTSTAGEF_ALLOC = 1 << 1, /* Allocate an id */ 38 }; 39 40 /* 41 * A list of boot stages that we know about. Each of these indicates the 42 * state that we are at, and the action that we are about to perform. For 43 * errors, we issue an error for an item when it fails. Therefore the 44 * normal sequence is: 45 * 46 * progress action1 47 * progress action2 48 * progress action3 49 * 50 * and an error condition where action 3 failed would be: 51 * 52 * progress action1 53 * progress action2 54 * progress action3 55 * error on action3 56 */ 57 enum bootstage_id { 58 BOOTSTAGE_ID_START = 0, 59 BOOTSTAGE_ID_CHECK_MAGIC, /* Checking image magic */ 60 BOOTSTAGE_ID_CHECK_HEADER, /* Checking image header */ 61 BOOTSTAGE_ID_CHECK_CHECKSUM, /* Checking image checksum */ 62 BOOTSTAGE_ID_CHECK_ARCH, /* Checking architecture */ 63 64 BOOTSTAGE_ID_CHECK_IMAGETYPE = 5,/* Checking image type */ 65 BOOTSTAGE_ID_DECOMP_IMAGE, /* Decompressing image */ 66 BOOTSTAGE_ID_KERNEL_LOADED, /* Kernel has been loaded */ 67 BOOTSTAGE_ID_DECOMP_UNIMPL = 7, /* Odd decompression algorithm */ 68 BOOTSTAGE_ID_CHECK_BOOT_OS, /* Calling OS-specific boot function */ 69 BOOTSTAGE_ID_BOOT_OS_RETURNED, /* Tried to boot OS, but it returned */ 70 BOOTSTAGE_ID_CHECK_RAMDISK = 9, /* Checking ram disk */ 71 72 BOOTSTAGE_ID_RD_MAGIC, /* Checking ram disk magic */ 73 BOOTSTAGE_ID_RD_HDR_CHECKSUM, /* Checking ram disk heder checksum */ 74 BOOTSTAGE_ID_RD_CHECKSUM, /* Checking ram disk checksum */ 75 BOOTSTAGE_ID_COPY_RAMDISK = 12, /* Copying ram disk into place */ 76 BOOTSTAGE_ID_RAMDISK, /* Checking for valid ramdisk */ 77 BOOTSTAGE_ID_NO_RAMDISK, /* No ram disk found (not an error) */ 78 79 BOOTSTAGE_ID_RUN_OS = 15, /* Exiting U-Boot, entering OS */ 80 81 BOOTSTAGE_ID_NEED_RESET = 30, 82 BOOTSTAGE_ID_POST_FAIL, /* Post failure */ 83 BOOTSTAGE_ID_POST_FAIL_R, /* Post failure reported after reloc */ 84 85 /* 86 * This set is reported ony by x86, and the meaning is different. In 87 * this case we are reporting completion of a particular stage. 88 * This should probably change in he x86 code (which doesn't report 89 * errors in any case), but discussion this can perhaps wait until we 90 * have a generic board implementation. 91 */ 92 BOOTSTAGE_ID_BOARD_INIT_R, /* We have relocated */ 93 BOOTSTAGE_ID_BOARD_GLOBAL_DATA, /* Global data is set up */ 94 95 BOOTSTAGE_ID_BOARD_INIT_SEQ, /* We completed the init sequence */ 96 BOOTSTAGE_ID_BOARD_FLASH, /* We have configured flash banks */ 97 BOOTSTAGE_ID_BOARD_FLASH_37, /* In case you didn't hear... */ 98 BOOTSTAGE_ID_BOARD_ENV, /* Environment is relocated & ready */ 99 BOOTSTAGE_ID_BOARD_PCI, /* PCI is up */ 100 101 BOOTSTAGE_ID_BOARD_INTERRUPTS, /* Exceptions / interrupts ready */ 102 BOOTSTAGE_ID_BOARD_DONE, /* Board init done, off to main loop */ 103 /* ^^^ here ends the x86 sequence */ 104 105 /* Boot stages related to loading a kernel from an IDE device */ 106 BOOTSTAGE_ID_IDE_START = 41, 107 BOOTSTAGE_ID_IDE_ADDR, 108 BOOTSTAGE_ID_IDE_BOOT_DEVICE, 109 BOOTSTAGE_ID_IDE_TYPE, 110 111 BOOTSTAGE_ID_IDE_PART, 112 BOOTSTAGE_ID_IDE_PART_INFO, 113 BOOTSTAGE_ID_IDE_PART_TYPE, 114 BOOTSTAGE_ID_IDE_PART_READ, 115 BOOTSTAGE_ID_IDE_FORMAT, 116 117 BOOTSTAGE_ID_IDE_CHECKSUM, /* 50 */ 118 BOOTSTAGE_ID_IDE_READ, 119 120 /* Boot stages related to loading a kernel from an NAND device */ 121 BOOTSTAGE_ID_NAND_PART, 122 BOOTSTAGE_ID_NAND_SUFFIX, 123 BOOTSTAGE_ID_NAND_BOOT_DEVICE, 124 BOOTSTAGE_ID_NAND_HDR_READ = 55, 125 BOOTSTAGE_ID_NAND_AVAILABLE = 55, 126 BOOTSTAGE_ID_NAND_TYPE = 57, 127 BOOTSTAGE_ID_NAND_READ, 128 129 /* Boot stages related to loading a kernel from an network device */ 130 BOOTSTAGE_ID_NET_CHECKSUM = 60, 131 BOOTSTAGE_ID_NET_ETH_START = 64, 132 BOOTSTAGE_ID_NET_ETH_INIT, 133 134 BOOTSTAGE_ID_NET_START = 80, 135 BOOTSTAGE_ID_NET_NETLOOP_OK, 136 BOOTSTAGE_ID_NET_LOADED, 137 BOOTSTAGE_ID_NET_DONE_ERR, 138 BOOTSTAGE_ID_NET_DONE, 139 140 /* 141 * Boot stages related to loading a FIT image. Some of these are a 142 * bit wonky. 143 */ 144 BOOTSTAGE_ID_FIT_FORMAT = 100, 145 BOOTSTAGE_ID_FIT_NO_UNIT_NAME, 146 BOOTSTAGE_ID_FIT_UNIT_NAME, 147 BOOTSTAGE_ID_FIT_CONFIG, 148 BOOTSTAGE_ID_FIT_CHECK_SUBIMAGE, 149 BOOTSTAGE_ID_FIT_CHECK_HASH = 104, 150 151 BOOTSTAGE_ID_FIT_CHECK_ARCH, 152 BOOTSTAGE_ID_FIT_CHECK_KERNEL, 153 BOOTSTAGE_ID_FIT_CHECKED, 154 155 BOOTSTAGE_ID_FIT_KERNEL_INFO_ERR = 107, 156 BOOTSTAGE_ID_FIT_KERNEL_INFO, 157 BOOTSTAGE_ID_FIT_TYPE, 158 159 BOOTSTAGE_ID_FIT_COMPRESSION, 160 BOOTSTAGE_ID_FIT_OS, 161 BOOTSTAGE_ID_FIT_LOADADDR, 162 BOOTSTAGE_ID_OVERWRITTEN, 163 164 BOOTSTAGE_ID_FIT_RD_FORMAT = 120, 165 BOOTSTAGE_ID_FIT_RD_FORMAT_OK, 166 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME, 167 BOOTSTAGE_ID_FIT_RD_UNIT_NAME, 168 BOOTSTAGE_ID_FIT_RD_SUBNODE, 169 170 BOOTSTAGE_ID_FIT_RD_CHECK, 171 BOOTSTAGE_ID_FIT_RD_HASH = 125, 172 BOOTSTAGE_ID_FIT_RD_CHECK_ALL, 173 BOOTSTAGE_ID_FIT_RD_GET_DATA, 174 BOOTSTAGE_ID_FIT_RD_CHECK_ALL_OK = 127, 175 BOOTSTAGE_ID_FIT_RD_GET_DATA_OK, 176 BOOTSTAGE_ID_FIT_RD_LOAD, 177 178 BOOTSTAGE_ID_IDE_FIT_READ = 140, 179 BOOTSTAGE_ID_IDE_FIT_READ_OK, 180 181 BOOTSTAGE_ID_NAND_FIT_READ = 150, 182 BOOTSTAGE_ID_NAND_FIT_READ_OK, 183 184 /* 185 * These boot stages are new, higher level, and not directly related 186 * to the old boot progress numbers. They are useful for recording 187 * rough boot timing information. 188 */ 189 BOOTSTAGE_ID_AWAKE, 190 BOOTSTAGE_ID_START_SPL, 191 BOOTSTAGE_ID_START_UBOOT_F, 192 BOOTSTAGE_ID_START_UBOOT_R, 193 BOOTSTAGE_ID_USB_START, 194 BOOTSTAGE_ID_ETH_START, 195 BOOTSTAGE_ID_BOOTP_START, 196 BOOTSTAGE_ID_BOOTP_STOP, 197 BOOTSTAGE_ID_BOOTM_START, 198 BOOTSTAGE_ID_BOOTM_HANDOFF, 199 BOOTSTAGE_ID_MAIN_LOOP, 200 BOOTSTAGE_KERNELREAD_START, 201 BOOTSTAGE_KERNELREAD_STOP, 202 BOOTSTAGE_ID_BOARD_INIT, 203 BOOTSTAGE_ID_BOARD_INIT_DONE, 204 205 BOOTSTAGE_ID_CPU_AWAKE, 206 BOOTSTAGE_ID_MAIN_CPU_AWAKE, 207 BOOTSTAGE_ID_MAIN_CPU_READY, 208 209 BOOTSTAGE_ID_ACCUM_LCD, 210 211 /* a few spare for the user, from here */ 212 BOOTSTAGE_ID_USER, 213 BOOTSTAGE_ID_COUNT = BOOTSTAGE_ID_USER + CONFIG_BOOTSTAGE_USER_COUNT, 214 BOOTSTAGE_ID_ALLOC, 215 }; 216 217 /* 218 * Return the time since boot in microseconds, This is needed for bootstage 219 * and should be defined in CPU- or board-specific code. If undefined then 220 * millisecond resolution will be used (the standard get_timer()). 221 */ 222 ulong timer_get_boot_us(void); 223 224 #ifndef CONFIG_SPL_BUILD 225 /* 226 * Board code can implement show_boot_progress() if needed. 227 * 228 * @param val Progress state (enum bootstage_id), or -id if an error 229 * has occurred. 230 */ 231 void show_boot_progress(int val); 232 #else 233 #define show_boot_progress(val) do {} while (0) 234 #endif 235 236 #if defined(CONFIG_BOOTSTAGE) && !defined(CONFIG_SPL_BUILD) 237 /* This is the full bootstage implementation */ 238 239 /** 240 * Add a new bootstage record 241 * 242 * @param id Bootstage ID to use (ignored if flags & BOOTSTAGEF_ALLOC) 243 * @param name Name of record, or NULL for none 244 * @param flags Flags (BOOTSTAGEF_...) 245 * @param mark Time to record in this record, in microseconds 246 */ 247 ulong bootstage_add_record(enum bootstage_id id, const char *name, 248 int flags, ulong mark); 249 250 /* 251 * Mark a time stamp for the current boot stage. 252 */ 253 ulong bootstage_mark(enum bootstage_id id); 254 255 ulong bootstage_error(enum bootstage_id id); 256 257 ulong bootstage_mark_name(enum bootstage_id id, const char *name); 258 259 /** 260 * Mark the start of a bootstage activity. The end will be marked later with 261 * bootstage_accum() and at that point we accumulate the time taken. Calling 262 * this function turns the given id into a accumulator rather than and 263 * absolute mark in time. Accumulators record the total amount of time spent 264 * in an activty during boot. 265 * 266 * @param id Bootstage id to record this timestamp against 267 * @param name Textual name to display for this id in the report (maybe NULL) 268 * @return start timestamp in microseconds 269 */ 270 uint32_t bootstage_start(enum bootstage_id id, const char *name); 271 272 /** 273 * Mark the end of a bootstage activity 274 * 275 * After previously marking the start of an activity with bootstage_start(), 276 * call this function to mark the end. You can call these functions in pairs 277 * as many times as you like. 278 * 279 * @param id Bootstage id to record this timestamp against 280 * @return time spent in this iteration of the activity (i.e. the time now 281 * less the start time recorded in the last bootstage_start() call 282 * with this id. 283 */ 284 uint32_t bootstage_accum(enum bootstage_id id); 285 286 /* Print a report about boot time */ 287 void bootstage_report(void); 288 289 /** 290 * Add bootstage information to the device tree 291 * 292 * @return 0 if ok, -ve on error 293 */ 294 int bootstage_fdt_add_report(void); 295 296 /* 297 * Stash bootstage data into memory 298 * 299 * @param base Base address of memory buffer 300 * @param size Size of memory buffer 301 * @return 0 if stashed ok, -1 if out of space 302 */ 303 int bootstage_stash(void *base, int size); 304 305 /** 306 * Read bootstage data from memory 307 * 308 * Bootstage data is read from memory and placed in the bootstage table 309 * in the user records. 310 * 311 * @param base Base address of memory buffer 312 * @param size Size of memory buffer (-1 if unknown) 313 * @return 0 if unstashed ok, -1 if bootstage info not found, or out of space 314 */ 315 int bootstage_unstash(void *base, int size); 316 317 #else 318 /* 319 * This is a dummy implementation which just calls show_boot_progress(), 320 * and won't even do that unless CONFIG_SHOW_BOOT_PROGRESS is defined 321 */ 322 323 static inline ulong bootstage_mark(enum bootstage_id id) 324 { 325 show_boot_progress(id); 326 return 0; 327 } 328 329 static inline ulong bootstage_error(enum bootstage_id id) 330 { 331 show_boot_progress(-id); 332 return 0; 333 } 334 335 static inline ulong bootstage_mark_name(enum bootstage_id id, const char *name) 336 { 337 return 0; 338 } 339 340 static inline int bootstage_stash(void *base, int size) 341 { 342 return 0; /* Pretend to succeed */ 343 } 344 345 static inline int bootstage_unstash(void *base, int size) 346 { 347 return 0; /* Pretend to succeed */ 348 } 349 #endif /* CONFIG_BOOTSTAGE */ 350 351 #endif 352