1 /* 2 * GRUB -- GRand Unified Bootloader 3 * Copyright (C) 1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc. 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 /* 8 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 9 * Use is subject to license terms. 10 */ 11 12 #include <common.h> 13 #include <malloc.h> 14 #include <linux/stat.h> 15 #include <linux/time.h> 16 #include <linux/ctype.h> 17 #include <asm/byteorder.h> 18 #include "zfs_common.h" 19 20 #include <zfs/zfs.h> 21 #include <zfs/zio.h> 22 #include <zfs/dnode.h> 23 #include <zfs/uberblock_impl.h> 24 #include <zfs/vdev_impl.h> 25 #include <zfs/zio_checksum.h> 26 #include <zfs/zap_impl.h> 27 #include <zfs/zap_leaf.h> 28 #include <zfs/zfs_znode.h> 29 #include <zfs/dmu.h> 30 #include <zfs/dmu_objset.h> 31 #include <zfs/dsl_dir.h> 32 #include <zfs/dsl_dataset.h> 33 34 /* 35 * SHA-256 checksum, as specified in FIPS 180-2, available at: 36 * http://csrc.nist.gov/cryptval 37 * 38 * This is a very compact implementation of SHA-256. 39 * It is designed to be simple and portable, not to be fast. 40 */ 41 42 /* 43 * The literal definitions according to FIPS180-2 would be: 44 * 45 * Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) 46 * Maj(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z))) 47 * 48 * We use logical equivalents which require one less op. 49 */ 50 #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 51 #define Maj(x, y, z) (((x) & (y)) ^ ((z) & ((x) ^ (y)))) 52 #define Rot32(x, s) (((x) >> s) | ((x) << (32 - s))) 53 #define SIGMA0(x) (Rot32(x, 2) ^ Rot32(x, 13) ^ Rot32(x, 22)) 54 #define SIGMA1(x) (Rot32(x, 6) ^ Rot32(x, 11) ^ Rot32(x, 25)) 55 #define sigma0(x) (Rot32(x, 7) ^ Rot32(x, 18) ^ ((x) >> 3)) 56 #define sigma1(x) (Rot32(x, 17) ^ Rot32(x, 19) ^ ((x) >> 10)) 57 58 static const uint32_t SHA256_K[64] = { 59 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 60 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 61 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 62 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 63 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 64 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 65 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 66 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 67 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 68 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 69 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 70 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 71 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 72 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 73 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 74 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 75 }; 76 77 static void 78 SHA256Transform(uint32_t *H, const uint8_t *cp) 79 { 80 uint32_t a, b, c, d, e, f, g, h, t, T1, T2, W[64]; 81 82 for (t = 0; t < 16; t++, cp += 4) 83 W[t] = (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | cp[3]; 84 85 for (t = 16; t < 64; t++) 86 W[t] = sigma1(W[t - 2]) + W[t - 7] + 87 sigma0(W[t - 15]) + W[t - 16]; 88 89 a = H[0]; b = H[1]; c = H[2]; d = H[3]; 90 e = H[4]; f = H[5]; g = H[6]; h = H[7]; 91 92 for (t = 0; t < 64; t++) { 93 T1 = h + SIGMA1(e) + Ch(e, f, g) + SHA256_K[t] + W[t]; 94 T2 = SIGMA0(a) + Maj(a, b, c); 95 h = g; g = f; f = e; e = d + T1; 96 d = c; c = b; b = a; a = T1 + T2; 97 } 98 99 H[0] += a; H[1] += b; H[2] += c; H[3] += d; 100 H[4] += e; H[5] += f; H[6] += g; H[7] += h; 101 } 102 103 void 104 zio_checksum_SHA256(const void *buf, uint64_t size, 105 zfs_endian_t endian, zio_cksum_t *zcp) 106 { 107 uint32_t H[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 108 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; 109 uint8_t pad[128]; 110 unsigned padsize = size & 63; 111 unsigned i; 112 113 for (i = 0; i < size - padsize; i += 64) 114 SHA256Transform(H, (uint8_t *)buf + i); 115 116 for (i = 0; i < padsize; i++) 117 pad[i] = ((uint8_t *)buf)[i]; 118 119 for (pad[padsize++] = 0x80; (padsize & 63) != 56; padsize++) 120 pad[padsize] = 0; 121 122 for (i = 0; i < 8; i++) 123 pad[padsize++] = (size << 3) >> (56 - 8 * i); 124 125 for (i = 0; i < padsize; i += 64) 126 SHA256Transform(H, pad + i); 127 128 zcp->zc_word[0] = cpu_to_zfs64((uint64_t)H[0] << 32 | H[1], 129 endian); 130 zcp->zc_word[1] = cpu_to_zfs64((uint64_t)H[2] << 32 | H[3], 131 endian); 132 zcp->zc_word[2] = cpu_to_zfs64((uint64_t)H[4] << 32 | H[5], 133 endian); 134 zcp->zc_word[3] = cpu_to_zfs64((uint64_t)H[6] << 32 | H[7], 135 endian); 136 } 137