xref: /openbmc/u-boot/fs/zfs/zfs_sha256.c (revision 301e8038)
1 /*
2  *  GRUB  --  GRand Unified Bootloader
3  *  Copyright (C) 1999,2000,2001,2002,2003,2004  Free Software Foundation, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  This program is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *  GNU General Public License for more details.
14  *
15  *  You should have received a copy of the GNU General Public License
16  *  along with this program; if not, write to the Free Software
17  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 /*
20  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
21  * Use is subject to license terms.
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <linux/stat.h>
27 #include <linux/time.h>
28 #include <linux/ctype.h>
29 #include <asm/byteorder.h>
30 #include "zfs_common.h"
31 
32 #include <zfs/zfs.h>
33 #include <zfs/zio.h>
34 #include <zfs/dnode.h>
35 #include <zfs/uberblock_impl.h>
36 #include <zfs/vdev_impl.h>
37 #include <zfs/zio_checksum.h>
38 #include <zfs/zap_impl.h>
39 #include <zfs/zap_leaf.h>
40 #include <zfs/zfs_znode.h>
41 #include <zfs/dmu.h>
42 #include <zfs/dmu_objset.h>
43 #include <zfs/dsl_dir.h>
44 #include <zfs/dsl_dataset.h>
45 
46 /*
47  * SHA-256 checksum, as specified in FIPS 180-2, available at:
48  * http://csrc.nist.gov/cryptval
49  *
50  * This is a very compact implementation of SHA-256.
51  * It is designed to be simple and portable, not to be fast.
52  */
53 
54 /*
55  * The literal definitions according to FIPS180-2 would be:
56  *
57  *	Ch(x, y, z)		(((x) & (y)) ^ ((~(x)) & (z)))
58  *	Maj(x, y, z)	(((x) & (y)) | ((x) & (z)) | ((y) & (z)))
59  *
60  * We use logical equivalents which require one less op.
61  */
62 #define	Ch(x, y, z)	((z) ^ ((x) & ((y) ^ (z))))
63 #define	Maj(x, y, z)	(((x) & (y)) ^ ((z) & ((x) ^ (y))))
64 #define	Rot32(x, s)	(((x) >> s) | ((x) << (32 - s)))
65 #define	SIGMA0(x)	(Rot32(x, 2) ^ Rot32(x, 13) ^ Rot32(x, 22))
66 #define	SIGMA1(x)	(Rot32(x, 6) ^ Rot32(x, 11) ^ Rot32(x, 25))
67 #define	sigma0(x)	(Rot32(x, 7) ^ Rot32(x, 18) ^ ((x) >> 3))
68 #define	sigma1(x)	(Rot32(x, 17) ^ Rot32(x, 19) ^ ((x) >> 10))
69 
70 static const uint32_t SHA256_K[64] = {
71 	0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
72 	0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
73 	0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
74 	0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
75 	0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
76 	0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
77 	0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
78 	0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
79 	0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
80 	0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
81 	0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
82 	0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
83 	0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
84 	0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
85 	0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
86 	0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
87 };
88 
89 static void
90 SHA256Transform(uint32_t *H, const uint8_t *cp)
91 {
92 	uint32_t a, b, c, d, e, f, g, h, t, T1, T2, W[64];
93 
94 	for (t = 0; t < 16; t++, cp += 4)
95 		W[t] = (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | cp[3];
96 
97 	for (t = 16; t < 64; t++)
98 		W[t] = sigma1(W[t - 2]) + W[t - 7] +
99 			sigma0(W[t - 15]) + W[t - 16];
100 
101 	a = H[0]; b = H[1]; c = H[2]; d = H[3];
102 	e = H[4]; f = H[5]; g = H[6]; h = H[7];
103 
104 	for (t = 0; t < 64; t++) {
105 		T1 = h + SIGMA1(e) + Ch(e, f, g) + SHA256_K[t] + W[t];
106 		T2 = SIGMA0(a) + Maj(a, b, c);
107 		h = g; g = f; f = e; e = d + T1;
108 		d = c; c = b; b = a; a = T1 + T2;
109 	}
110 
111 	H[0] += a; H[1] += b; H[2] += c; H[3] += d;
112 	H[4] += e; H[5] += f; H[6] += g; H[7] += h;
113 }
114 
115 void
116 zio_checksum_SHA256(const void *buf, uint64_t size,
117 					zfs_endian_t endian, zio_cksum_t *zcp)
118 {
119 	uint32_t H[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
120 					  0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
121 	uint8_t pad[128];
122 	unsigned padsize = size & 63;
123 	unsigned i;
124 
125 	for (i = 0; i < size - padsize; i += 64)
126 		SHA256Transform(H, (uint8_t *)buf + i);
127 
128 	for (i = 0; i < padsize; i++)
129 		pad[i] = ((uint8_t *)buf)[i];
130 
131 	for (pad[padsize++] = 0x80; (padsize & 63) != 56; padsize++)
132 		pad[padsize] = 0;
133 
134 	for (i = 0; i < 8; i++)
135 		pad[padsize++] = (size << 3) >> (56 - 8 * i);
136 
137 	for (i = 0; i < padsize; i += 64)
138 		SHA256Transform(H, pad + i);
139 
140 	zcp->zc_word[0] = cpu_to_zfs64((uint64_t)H[0] << 32 | H[1],
141 										endian);
142 	zcp->zc_word[1] = cpu_to_zfs64((uint64_t)H[2] << 32 | H[3],
143 										endian);
144 	zcp->zc_word[2] = cpu_to_zfs64((uint64_t)H[4] << 32 | H[5],
145 										endian);
146 	zcp->zc_word[3] = cpu_to_zfs64((uint64_t)H[6] << 32 | H[7],
147 										endian);
148 }
149