xref: /openbmc/u-boot/fs/zfs/zfs.c (revision e874d5b0)
1 /*
2  *
3  * ZFS filesystem ported to u-boot by
4  * Jorgen Lundman <lundman at lundman.net>
5  *
6  *	GRUB  --  GRand Unified Bootloader
7  *	Copyright (C) 1999,2000,2001,2002,2003,2004
8  *	Free Software Foundation, Inc.
9  *	Copyright 2004	Sun Microsystems, Inc.
10  *
11  *	GRUB is free software; you can redistribute it and/or modify
12  *	it under the terms of the GNU General Public License as published by
13  *	the Free Software Foundation; either version 2 of the License, or
14  *	(at your option) any later version.
15  *
16  *	GRUB is distributed in the hope that it will be useful,
17  *	but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *	GNU General Public License for more details.
20  *
21  *	You should have received a copy of the GNU General Public License
22  *	along with GRUB.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  */
25 
26 #include <common.h>
27 #include <malloc.h>
28 #include <linux/stat.h>
29 #include <linux/time.h>
30 #include <linux/ctype.h>
31 #include <asm/byteorder.h>
32 #include "zfs_common.h"
33 #include "div64.h"
34 
35 block_dev_desc_t *zfs_dev_desc;
36 
37 /*
38  * The zfs plug-in routines for GRUB are:
39  *
40  * zfs_mount() - locates a valid uberblock of the root pool and reads
41  *		in its MOS at the memory address MOS.
42  *
43  * zfs_open() - locates a plain file object by following the MOS
44  *		and places its dnode at the memory address DNODE.
45  *
46  * zfs_read() - read in the data blocks pointed by the DNODE.
47  *
48  */
49 
50 #include <zfs/zfs.h>
51 #include <zfs/zio.h>
52 #include <zfs/dnode.h>
53 #include <zfs/uberblock_impl.h>
54 #include <zfs/vdev_impl.h>
55 #include <zfs/zio_checksum.h>
56 #include <zfs/zap_impl.h>
57 #include <zfs/zap_leaf.h>
58 #include <zfs/zfs_znode.h>
59 #include <zfs/dmu.h>
60 #include <zfs/dmu_objset.h>
61 #include <zfs/sa_impl.h>
62 #include <zfs/dsl_dir.h>
63 #include <zfs/dsl_dataset.h>
64 
65 
66 #define	ZPOOL_PROP_BOOTFS		"bootfs"
67 
68 
69 /*
70  * For nvlist manipulation. (from nvpair.h)
71  */
72 #define	NV_ENCODE_NATIVE	0
73 #define	NV_ENCODE_XDR		1
74 #define	NV_BIG_ENDIAN			0
75 #define	NV_LITTLE_ENDIAN	1
76 #define	DATA_TYPE_UINT64	8
77 #define	DATA_TYPE_STRING	9
78 #define	DATA_TYPE_NVLIST	19
79 #define	DATA_TYPE_NVLIST_ARRAY	20
80 
81 
82 /*
83  * Macros to get fields in a bp or DVA.
84  */
85 #define	P2PHASE(x, align)		((x) & ((align) - 1))
86 #define	DVA_OFFSET_TO_PHYS_SECTOR(offset)					\
87 	((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
88 
89 /*
90  * return x rounded down to an align boundary
91  * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
92  * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
93  * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
94  * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
95  */
96 #define	P2ALIGN(x, align)		((x) & -(align))
97 
98 /*
99  * FAT ZAP data structures
100  */
101 #define	ZFS_CRC64_POLY 0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
102 #define	ZAP_HASH_IDX(hash, n)	(((n) == 0) ? 0 : ((hash) >> (64 - (n))))
103 #define	CHAIN_END	0xffff	/* end of the chunk chain */
104 
105 /*
106  * The amount of space within the chunk available for the array is:
107  * chunk size - space for type (1) - space for next pointer (2)
108  */
109 #define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
110 
111 #define	ZAP_LEAF_HASH_SHIFT(bs)	(bs - 5)
112 #define	ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
113 #define	LEAF_HASH(bs, h)												\
114 	((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) &									\
115 	 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
116 
117 /*
118  * The amount of space available for chunks is:
119  * block size shift - hash entry size (2) * number of hash
120  * entries - header space (2*chunksize)
121  */
122 #define	ZAP_LEAF_NUMCHUNKS(bs)						\
123 	(((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) /	\
124 	 ZAP_LEAF_CHUNKSIZE - 2)
125 
126 /*
127  * The chunks start immediately after the hash table.  The end of the
128  * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
129  * chunk_t.
130  */
131 #define	ZAP_LEAF_CHUNK(l, bs, idx)										\
132 	((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
133 #define	ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
134 
135 
136 /*
137  * Decompression Entry - lzjb
138  */
139 #ifndef	NBBY
140 #define	NBBY	8
141 #endif
142 
143 
144 
145 typedef int zfs_decomp_func_t(void *s_start, void *d_start,
146 							  uint32_t s_len, uint32_t d_len);
147 typedef struct decomp_entry {
148 	char *name;
149 	zfs_decomp_func_t *decomp_func;
150 } decomp_entry_t;
151 
152 typedef struct dnode_end {
153 	dnode_phys_t dn;
154 	zfs_endian_t endian;
155 } dnode_end_t;
156 
157 struct zfs_data {
158 	/* cache for a file block of the currently zfs_open()-ed file */
159 	char *file_buf;
160 	uint64_t file_start;
161 	uint64_t file_end;
162 
163 	/* XXX: ashift is per vdev, not per pool.  We currently only ever touch
164 	 * a single vdev, but when/if raid-z or stripes are supported, this
165 	 * may need revision.
166 	 */
167 	uint64_t vdev_ashift;
168 	uint64_t label_txg;
169 	uint64_t pool_guid;
170 
171 	/* cache for a dnode block */
172 	dnode_phys_t *dnode_buf;
173 	dnode_phys_t *dnode_mdn;
174 	uint64_t dnode_start;
175 	uint64_t dnode_end;
176 	zfs_endian_t dnode_endian;
177 
178 	uberblock_t current_uberblock;
179 
180 	dnode_end_t mos;
181 	dnode_end_t mdn;
182 	dnode_end_t dnode;
183 
184 	uint64_t vdev_phys_sector;
185 
186 	int (*userhook)(const char *, const struct zfs_dirhook_info *);
187 	struct zfs_dirhook_info *dirinfo;
188 
189 };
190 
191 
192 
193 
194 static int
195 zlib_decompress(void *s, void *d,
196 				uint32_t slen, uint32_t dlen)
197 {
198 	if (zlib_decompress(s, d, slen, dlen) < 0)
199 		return ZFS_ERR_BAD_FS;
200 	return ZFS_ERR_NONE;
201 }
202 
203 static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
204 	{"inherit", NULL},		/* ZIO_COMPRESS_INHERIT */
205 	{"on", lzjb_decompress},	/* ZIO_COMPRESS_ON */
206 	{"off", NULL},		/* ZIO_COMPRESS_OFF */
207 	{"lzjb", lzjb_decompress},	/* ZIO_COMPRESS_LZJB */
208 	{"empty", NULL},		/* ZIO_COMPRESS_EMPTY */
209 	{"gzip-1", zlib_decompress},  /* ZIO_COMPRESS_GZIP1 */
210 	{"gzip-2", zlib_decompress},  /* ZIO_COMPRESS_GZIP2 */
211 	{"gzip-3", zlib_decompress},  /* ZIO_COMPRESS_GZIP3 */
212 	{"gzip-4", zlib_decompress},  /* ZIO_COMPRESS_GZIP4 */
213 	{"gzip-5", zlib_decompress},  /* ZIO_COMPRESS_GZIP5 */
214 	{"gzip-6", zlib_decompress},  /* ZIO_COMPRESS_GZIP6 */
215 	{"gzip-7", zlib_decompress},  /* ZIO_COMPRESS_GZIP7 */
216 	{"gzip-8", zlib_decompress},  /* ZIO_COMPRESS_GZIP8 */
217 	{"gzip-9", zlib_decompress},  /* ZIO_COMPRESS_GZIP9 */
218 };
219 
220 
221 
222 static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
223 						 void *buf, struct zfs_data *data);
224 
225 static int
226 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
227 		 size_t *size, struct zfs_data *data);
228 
229 /*
230  * Our own version of log2().  Same thing as highbit()-1.
231  */
232 static int
233 zfs_log2(uint64_t num)
234 {
235 	int i = 0;
236 
237 	while (num > 1) {
238 		i++;
239 		num = num >> 1;
240 	}
241 
242 	return i;
243 }
244 
245 
246 /* Checksum Functions */
247 static void
248 zio_checksum_off(const void *buf __attribute__ ((unused)),
249 				 uint64_t size __attribute__ ((unused)),
250 				 zfs_endian_t endian __attribute__ ((unused)),
251 				 zio_cksum_t *zcp)
252 {
253 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
254 }
255 
256 /* Checksum Table and Values */
257 static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
258 	{NULL, 0, 0, "inherit"},
259 	{NULL, 0, 0, "on"},
260 	{zio_checksum_off, 0, 0, "off"},
261 	{zio_checksum_SHA256, 1, 1, "label"},
262 	{zio_checksum_SHA256, 1, 1, "gang_header"},
263 	{NULL, 0, 0, "zilog"},
264 	{fletcher_2_endian, 0, 0, "fletcher2"},
265 	{fletcher_4_endian, 1, 0, "fletcher4"},
266 	{zio_checksum_SHA256, 1, 0, "SHA256"},
267 	{NULL, 0, 0, "zilog2"},
268 };
269 
270 /*
271  * zio_checksum_verify: Provides support for checksum verification.
272  *
273  * Fletcher2, Fletcher4, and SHA256 are supported.
274  *
275  */
276 static int
277 zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
278 					zfs_endian_t endian, char *buf, int size)
279 {
280 	zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
281 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
282 	zio_cksum_t actual_cksum, expected_cksum;
283 
284 	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
285 		printf("zfs unknown checksum function %d\n", checksum);
286 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
287 	}
288 
289 	if (ci->ci_eck) {
290 		expected_cksum = zec->zec_cksum;
291 		zec->zec_cksum = zc;
292 		ci->ci_func(buf, size, endian, &actual_cksum);
293 		zec->zec_cksum = expected_cksum;
294 		zc = expected_cksum;
295 	} else {
296 		ci->ci_func(buf, size, endian, &actual_cksum);
297 	}
298 
299 	if ((actual_cksum.zc_word[0] != zc.zc_word[0])
300 		|| (actual_cksum.zc_word[1] != zc.zc_word[1])
301 		|| (actual_cksum.zc_word[2] != zc.zc_word[2])
302 		|| (actual_cksum.zc_word[3] != zc.zc_word[3])) {
303 		return ZFS_ERR_BAD_FS;
304 	}
305 
306 	return ZFS_ERR_NONE;
307 }
308 
309 /*
310  * vdev_uberblock_compare takes two uberblock structures and returns an integer
311  * indicating the more recent of the two.
312  *	Return Value = 1 if ub2 is more recent
313  *	Return Value = -1 if ub1 is more recent
314  * The most recent uberblock is determined using its transaction number and
315  * timestamp.  The uberblock with the highest transaction number is
316  * considered "newer".	If the transaction numbers of the two blocks match, the
317  * timestamps are compared to determine the "newer" of the two.
318  */
319 static int
320 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
321 {
322 	zfs_endian_t ub1_endian, ub2_endian;
323 	if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
324 		ub1_endian = LITTLE_ENDIAN;
325 	else
326 		ub1_endian = BIG_ENDIAN;
327 	if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
328 		ub2_endian = LITTLE_ENDIAN;
329 	else
330 		ub2_endian = BIG_ENDIAN;
331 
332 	if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
333 		< zfs_to_cpu64(ub2->ub_txg, ub2_endian))
334 		return -1;
335 	if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
336 		> zfs_to_cpu64(ub2->ub_txg, ub2_endian))
337 		return 1;
338 
339 	if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
340 		< zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
341 		return -1;
342 	if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
343 		> zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
344 		return 1;
345 
346 	return 0;
347 }
348 
349 /*
350  * Three pieces of information are needed to verify an uberblock: the magic
351  * number, the version number, and the checksum.
352  *
353  * Currently Implemented: version number, magic number, label txg
354  * Need to Implement: checksum
355  *
356  */
357 static int
358 uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
359 {
360 	int err;
361 	zfs_endian_t endian = UNKNOWN_ENDIAN;
362 	zio_cksum_t zc;
363 
364 	if (uber->ub_txg < data->label_txg) {
365 		debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
366 			  uber->ub_txg, data->label_txg);
367 		return ZFS_ERR_BAD_FS;
368 	}
369 
370 	if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
371 		&& zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0
372 		&& zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION)
373 		endian = LITTLE_ENDIAN;
374 
375 	if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC
376 		&& zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0
377 		&& zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION)
378 		endian = BIG_ENDIAN;
379 
380 	if (endian == UNKNOWN_ENDIAN) {
381 		printf("invalid uberblock magic\n");
382 		return ZFS_ERR_BAD_FS;
383 	}
384 
385 	memset(&zc, 0, sizeof(zc));
386 	zc.zc_word[0] = cpu_to_zfs64(offset, endian);
387 	err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
388 							  (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
389 
390 	if (!err) {
391 		/* Check that the data pointed by the rootbp is usable. */
392 		void *osp = NULL;
393 		size_t ospsize;
394 		err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
395 		free(osp);
396 
397 		if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
398 			printf("uberblock rootbp points to invalid data\n");
399 			return ZFS_ERR_BAD_FS;
400 		}
401 	}
402 
403 	return err;
404 }
405 
406 /*
407  * Find the best uberblock.
408  * Return:
409  *	  Success - Pointer to the best uberblock.
410  *	  Failure - NULL
411  */
412 static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
413 {
414 	const uint64_t sector = data->vdev_phys_sector;
415 	uberblock_t *ubbest = NULL;
416 	uberblock_t *ubnext;
417 	unsigned int i, offset, pickedub = 0;
418 	int err = ZFS_ERR_NONE;
419 
420 	const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
421 	const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
422 
423 	for (i = 0; i < UBCOUNT; i++) {
424 		ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
425 		offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
426 
427 		err = uberblock_verify(ubnext, offset, data);
428 		if (err)
429 			continue;
430 
431 		if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
432 			ubbest = ubnext;
433 			pickedub = i;
434 		}
435 	}
436 
437 	if (ubbest)
438 		debug("zfs Found best uberblock at idx %d, txg %llu\n",
439 			  pickedub, (unsigned long long) ubbest->ub_txg);
440 
441 	return ubbest;
442 }
443 
444 static inline size_t
445 get_psize(blkptr_t *bp, zfs_endian_t endian)
446 {
447 	return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
448 			<< SPA_MINBLOCKSHIFT;
449 }
450 
451 static uint64_t
452 dva_get_offset(dva_t *dva, zfs_endian_t endian)
453 {
454 	return zfs_to_cpu64((dva)->dva_word[1],
455 							 endian) << SPA_MINBLOCKSHIFT;
456 }
457 
458 /*
459  * Read a block of data based on the gang block address dva,
460  * and put its data in buf.
461  *
462  */
463 static int
464 zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
465 			  struct zfs_data *data)
466 {
467 	zio_gbh_phys_t *zio_gb;
468 	uint64_t offset, sector;
469 	unsigned i;
470 	int err;
471 	zio_cksum_t zc;
472 
473 	memset(&zc, 0, sizeof(zc));
474 
475 	zio_gb = malloc(SPA_GANGBLOCKSIZE);
476 	if (!zio_gb)
477 		return ZFS_ERR_OUT_OF_MEMORY;
478 
479 	offset = dva_get_offset(dva, endian);
480 	sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
481 
482 	/* read in the gang block header */
483 	err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
484 
485 	if (err) {
486 		free(zio_gb);
487 		return err;
488 	}
489 
490 	/* XXX */
491 	/* self checksuming the gang block header */
492 	ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
493 					 dva_get_offset(dva, endian), bp->blk_birth, 0);
494 	err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
495 							  (char *) zio_gb, SPA_GANGBLOCKSIZE);
496 	if (err) {
497 		free(zio_gb);
498 		return err;
499 	}
500 
501 	endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
502 
503 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
504 		if (zio_gb->zg_blkptr[i].blk_birth == 0)
505 			continue;
506 
507 		err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
508 		if (err) {
509 			free(zio_gb);
510 			return err;
511 		}
512 		buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
513 	}
514 	free(zio_gb);
515 	return ZFS_ERR_NONE;
516 }
517 
518 /*
519  * Read in a block of raw data to buf.
520  */
521 static int
522 zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
523 			  struct zfs_data *data)
524 {
525 	int i, psize;
526 	int err = ZFS_ERR_NONE;
527 
528 	psize = get_psize(bp, endian);
529 
530 	/* pick a good dva from the block pointer */
531 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
532 		uint64_t offset, sector;
533 
534 		if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
535 			continue;
536 
537 		if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
538 			err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
539 		} else {
540 			/* read in a data block */
541 			offset = dva_get_offset(&bp->blk_dva[i], endian);
542 			sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
543 
544 			err = zfs_devread(sector, 0, psize, buf);
545 		}
546 
547 		if (!err) {
548 			/*Check the underlying checksum before we rule this DVA as "good"*/
549 			uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
550 
551 			err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
552 			if (!err)
553 				return ZFS_ERR_NONE;
554 		}
555 
556 		/* If read failed or checksum bad, reset the error.	 Hopefully we've got some more DVA's to try.*/
557 	}
558 
559 	if (!err) {
560 		printf("couldn't find a valid DVA\n");
561 		err = ZFS_ERR_BAD_FS;
562 	}
563 
564 	return err;
565 }
566 
567 /*
568  * Read in a block of data, verify its checksum, decompress if needed,
569  * and put the uncompressed data in buf.
570  */
571 static int
572 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
573 		 size_t *size, struct zfs_data *data)
574 {
575 	size_t lsize, psize;
576 	unsigned int comp;
577 	char *compbuf = NULL;
578 	int err;
579 
580 	*buf = NULL;
581 
582 	comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
583 	lsize = (BP_IS_HOLE(bp) ? 0 :
584 			 (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
585 			  << SPA_MINBLOCKSHIFT));
586 	psize = get_psize(bp, endian);
587 
588 	if (size)
589 		*size = lsize;
590 
591 	if (comp >= ZIO_COMPRESS_FUNCTIONS) {
592 		printf("compression algorithm %u not supported\n", (unsigned int) comp);
593 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
594 	}
595 
596 	if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
597 		printf("compression algorithm %s not supported\n", decomp_table[comp].name);
598 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
599 	}
600 
601 	if (comp != ZIO_COMPRESS_OFF) {
602 		compbuf = malloc(psize);
603 		if (!compbuf)
604 			return ZFS_ERR_OUT_OF_MEMORY;
605 	} else {
606 		compbuf = *buf = malloc(lsize);
607 	}
608 
609 	err = zio_read_data(bp, endian, compbuf, data);
610 	if (err) {
611 		free(compbuf);
612 		*buf = NULL;
613 		return err;
614 	}
615 
616 	if (comp != ZIO_COMPRESS_OFF) {
617 		*buf = malloc(lsize);
618 		if (!*buf) {
619 			free(compbuf);
620 			return ZFS_ERR_OUT_OF_MEMORY;
621 		}
622 
623 		err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
624 		free(compbuf);
625 		if (err) {
626 			free(*buf);
627 			*buf = NULL;
628 			return err;
629 		}
630 	}
631 
632 	return ZFS_ERR_NONE;
633 }
634 
635 /*
636  * Get the block from a block id.
637  * push the block onto the stack.
638  *
639  */
640 static int
641 dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
642 		 zfs_endian_t *endian_out, struct zfs_data *data)
643 {
644 	int idx, level;
645 	blkptr_t *bp_array = dn->dn.dn_blkptr;
646 	int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
647 	blkptr_t *bp;
648 	void *tmpbuf = 0;
649 	zfs_endian_t endian;
650 	int err = ZFS_ERR_NONE;
651 
652 	bp = malloc(sizeof(blkptr_t));
653 	if (!bp)
654 		return ZFS_ERR_OUT_OF_MEMORY;
655 
656 	endian = dn->endian;
657 	for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
658 		idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
659 		*bp = bp_array[idx];
660 		if (bp_array != dn->dn.dn_blkptr) {
661 			free(bp_array);
662 			bp_array = 0;
663 		}
664 
665 		if (BP_IS_HOLE(bp)) {
666 			size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
667 											dn->endian)
668 				<< SPA_MINBLOCKSHIFT;
669 			*buf = malloc(size);
670 			if (*buf) {
671 				err = ZFS_ERR_OUT_OF_MEMORY;
672 				break;
673 			}
674 			memset(*buf, 0, size);
675 			endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
676 			break;
677 		}
678 		if (level == 0) {
679 			err = zio_read(bp, endian, buf, 0, data);
680 			endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
681 			break;
682 		}
683 		err = zio_read(bp, endian, &tmpbuf, 0, data);
684 		endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
685 		if (err)
686 			break;
687 		bp_array = tmpbuf;
688 	}
689 	if (bp_array != dn->dn.dn_blkptr)
690 		free(bp_array);
691 	if (endian_out)
692 		*endian_out = endian;
693 
694 	free(bp);
695 	return err;
696 }
697 
698 /*
699  * mzap_lookup: Looks up property described by "name" and returns the value
700  * in "value".
701  */
702 static int
703 mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
704 			int objsize, char *name, uint64_t * value)
705 {
706 	int i, chunks;
707 	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
708 
709 	chunks = objsize / MZAP_ENT_LEN - 1;
710 	for (i = 0; i < chunks; i++) {
711 		if (strcmp(mzap_ent[i].mze_name, name) == 0) {
712 			*value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
713 			return ZFS_ERR_NONE;
714 		}
715 	}
716 
717 	printf("couldn't find '%s'\n", name);
718 	return ZFS_ERR_FILE_NOT_FOUND;
719 }
720 
721 static int
722 mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
723 			 int (*hook)(const char *name,
724 						 uint64_t val,
725 						 struct zfs_data *data),
726 			 struct zfs_data *data)
727 {
728 	int i, chunks;
729 	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
730 
731 	chunks = objsize / MZAP_ENT_LEN - 1;
732 	for (i = 0; i < chunks; i++) {
733 		if (hook(mzap_ent[i].mze_name,
734 				 zfs_to_cpu64(mzap_ent[i].mze_value, endian),
735 				 data))
736 			return 1;
737 	}
738 
739 	return 0;
740 }
741 
742 static uint64_t
743 zap_hash(uint64_t salt, const char *name)
744 {
745 	static uint64_t table[256];
746 	const uint8_t *cp;
747 	uint8_t c;
748 	uint64_t crc = salt;
749 
750 	if (table[128] == 0) {
751 		uint64_t *ct;
752 		int i, j;
753 		for (i = 0; i < 256; i++) {
754 			for (ct = table + i, *ct = i, j = 8; j > 0; j--)
755 				*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
756 		}
757 	}
758 
759 	for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
760 		crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
761 
762 	/*
763 	 * Only use 28 bits, since we need 4 bits in the cookie for the
764 	 * collision differentiator.  We MUST use the high bits, since
765 	 * those are the onces that we first pay attention to when
766 	 * chosing the bucket.
767 	 */
768 	crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
769 
770 	return crc;
771 }
772 
773 /*
774  * Only to be used on 8-bit arrays.
775  * array_len is actual len in bytes (not encoded le_value_length).
776  * buf is null-terminated.
777  */
778 /* XXX */
779 static int
780 zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
781 					 int blksft, int chunk, int array_len, const char *buf)
782 {
783 	int bseen = 0;
784 
785 	while (bseen < array_len) {
786 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
787 		int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
788 
789 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
790 			return 0;
791 
792 		if (memcmp(la->la_array, buf + bseen, toread) != 0)
793 			break;
794 		chunk = zfs_to_cpu16(la->la_next, endian);
795 		bseen += toread;
796 	}
797 	return (bseen == array_len);
798 }
799 
800 /* XXX */
801 static int
802 zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
803 				   int chunk, int array_len, char *buf)
804 {
805 	int bseen = 0;
806 
807 	while (bseen < array_len) {
808 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
809 		int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
810 
811 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
812 			/* Don't use errno because this error is to be ignored.  */
813 			return ZFS_ERR_BAD_FS;
814 
815 		memcpy(buf + bseen, la->la_array,  toread);
816 		chunk = zfs_to_cpu16(la->la_next, endian);
817 		bseen += toread;
818 	}
819 	return ZFS_ERR_NONE;
820 }
821 
822 
823 /*
824  * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
825  * value for the property "name".
826  *
827  */
828 /* XXX */
829 static int
830 zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
831 				int blksft, uint64_t h,
832 				const char *name, uint64_t *value)
833 {
834 	uint16_t chunk;
835 	struct zap_leaf_entry *le;
836 
837 	/* Verify if this is a valid leaf block */
838 	if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
839 		printf("invalid leaf type\n");
840 		return ZFS_ERR_BAD_FS;
841 	}
842 	if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
843 		printf("invalid leaf magic\n");
844 		return ZFS_ERR_BAD_FS;
845 	}
846 
847 	for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
848 		 chunk != CHAIN_END; chunk = le->le_next) {
849 
850 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
851 			printf("invalid chunk number\n");
852 			return ZFS_ERR_BAD_FS;
853 		}
854 
855 		le = ZAP_LEAF_ENTRY(l, blksft, chunk);
856 
857 		/* Verify the chunk entry */
858 		if (le->le_type != ZAP_CHUNK_ENTRY) {
859 			printf("invalid chunk entry\n");
860 			return ZFS_ERR_BAD_FS;
861 		}
862 
863 		if (zfs_to_cpu64(le->le_hash, endian) != h)
864 			continue;
865 
866 		if (zap_leaf_array_equal(l, endian, blksft,
867 								 zfs_to_cpu16(le->le_name_chunk, endian),
868 								 zfs_to_cpu16(le->le_name_length, endian),
869 								 name)) {
870 			struct zap_leaf_array *la;
871 
872 			if (le->le_int_size != 8 || le->le_value_length != 1) {
873 				printf("invalid leaf chunk entry\n");
874 				return ZFS_ERR_BAD_FS;
875 			}
876 			/* get the uint64_t property value */
877 			la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
878 
879 			*value = be64_to_cpu(la->la_array64);
880 
881 			return ZFS_ERR_NONE;
882 		}
883 	}
884 
885 	printf("couldn't find '%s'\n", name);
886 	return ZFS_ERR_FILE_NOT_FOUND;
887 }
888 
889 
890 /* Verify if this is a fat zap header block */
891 static int
892 zap_verify(zap_phys_t *zap)
893 {
894 	if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
895 		printf("bad ZAP magic\n");
896 		return ZFS_ERR_BAD_FS;
897 	}
898 
899 	if (zap->zap_flags != 0) {
900 		printf("bad ZAP flags\n");
901 		return ZFS_ERR_BAD_FS;
902 	}
903 
904 	if (zap->zap_salt == 0) {
905 		printf("bad ZAP salt\n");
906 		return ZFS_ERR_BAD_FS;
907 	}
908 
909 	return ZFS_ERR_NONE;
910 }
911 
912 /*
913  * Fat ZAP lookup
914  *
915  */
916 /* XXX */
917 static int
918 fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
919 			char *name, uint64_t *value, struct zfs_data *data)
920 {
921 	void *l;
922 	uint64_t hash, idx, blkid;
923 	int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
924 											zap_dnode->endian) << DNODE_SHIFT);
925 	int err;
926 	zfs_endian_t leafendian;
927 
928 	err = zap_verify(zap);
929 	if (err)
930 		return err;
931 
932 	hash = zap_hash(zap->zap_salt, name);
933 
934 	/* get block id from index */
935 	if (zap->zap_ptrtbl.zt_numblks != 0) {
936 		printf("external pointer tables not supported\n");
937 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
938 	}
939 	idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
940 	blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
941 
942 	/* Get the leaf block */
943 	if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
944 		printf("ZAP leaf is too small\n");
945 		return ZFS_ERR_BAD_FS;
946 	}
947 	err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
948 	if (err)
949 		return err;
950 
951 	err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
952 	free(l);
953 	return err;
954 }
955 
956 /* XXX */
957 static int
958 fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
959 			 int (*hook)(const char *name,
960 						 uint64_t val,
961 						 struct zfs_data *data),
962 			 struct zfs_data *data)
963 {
964 	zap_leaf_phys_t *l;
965 	void *l_in;
966 	uint64_t idx, blkid;
967 	uint16_t chunk;
968 	int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
969 											zap_dnode->endian) << DNODE_SHIFT);
970 	int err;
971 	zfs_endian_t endian;
972 
973 	if (zap_verify(zap))
974 		return 0;
975 
976 	/* get block id from index */
977 	if (zap->zap_ptrtbl.zt_numblks != 0) {
978 		printf("external pointer tables not supported\n");
979 		return 0;
980 	}
981 	/* Get the leaf block */
982 	if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
983 		printf("ZAP leaf is too small\n");
984 		return 0;
985 	}
986 	for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
987 		blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
988 
989 		err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
990 		l = l_in;
991 		if (err)
992 			continue;
993 
994 		/* Verify if this is a valid leaf block */
995 		if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
996 			free(l);
997 			continue;
998 		}
999 		if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
1000 			free(l);
1001 			continue;
1002 		}
1003 
1004 		for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
1005 			char *buf;
1006 			struct zap_leaf_array *la;
1007 			struct zap_leaf_entry *le;
1008 			uint64_t val;
1009 			le = ZAP_LEAF_ENTRY(l, blksft, chunk);
1010 
1011 			/* Verify the chunk entry */
1012 			if (le->le_type != ZAP_CHUNK_ENTRY)
1013 				continue;
1014 
1015 			buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
1016 						 + 1);
1017 			if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
1018 								   le->le_name_length, buf)) {
1019 				free(buf);
1020 				continue;
1021 			}
1022 			buf[le->le_name_length] = 0;
1023 
1024 			if (le->le_int_size != 8
1025 				|| zfs_to_cpu16(le->le_value_length, endian) != 1)
1026 				continue;
1027 
1028 			/* get the uint64_t property value */
1029 			la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
1030 			val = be64_to_cpu(la->la_array64);
1031 			if (hook(buf, val, data))
1032 				return 1;
1033 			free(buf);
1034 		}
1035 	}
1036 	return 0;
1037 }
1038 
1039 
1040 /*
1041  * Read in the data of a zap object and find the value for a matching
1042  * property name.
1043  *
1044  */
1045 static int
1046 zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
1047 		   struct zfs_data *data)
1048 {
1049 	uint64_t block_type;
1050 	int size;
1051 	void *zapbuf;
1052 	int err;
1053 	zfs_endian_t endian;
1054 
1055 	/* Read in the first block of the zap object data. */
1056 	size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
1057 							 zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1058 	err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1059 	if (err)
1060 		return err;
1061 	block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1062 
1063 	if (block_type == ZBT_MICRO) {
1064 		err = (mzap_lookup(zapbuf, endian, size, name, val));
1065 		free(zapbuf);
1066 		return err;
1067 	} else if (block_type == ZBT_HEADER) {
1068 		/* this is a fat zap */
1069 		err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
1070 		free(zapbuf);
1071 		return err;
1072 	}
1073 
1074 	printf("unknown ZAP type\n");
1075 	return ZFS_ERR_BAD_FS;
1076 }
1077 
1078 static int
1079 zap_iterate(dnode_end_t *zap_dnode,
1080 			int (*hook)(const char *name, uint64_t val,
1081 						struct zfs_data *data),
1082 			struct zfs_data *data)
1083 {
1084 	uint64_t block_type;
1085 	int size;
1086 	void *zapbuf;
1087 	int err;
1088 	int ret;
1089 	zfs_endian_t endian;
1090 
1091 	/* Read in the first block of the zap object data. */
1092 	size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1093 	err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1094 	if (err)
1095 		return 0;
1096 	block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1097 
1098 	if (block_type == ZBT_MICRO) {
1099 		ret = mzap_iterate(zapbuf, endian, size, hook, data);
1100 		free(zapbuf);
1101 		return ret;
1102 	} else if (block_type == ZBT_HEADER) {
1103 		/* this is a fat zap */
1104 		ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
1105 		free(zapbuf);
1106 		return ret;
1107 	}
1108 	printf("unknown ZAP type\n");
1109 	return 0;
1110 }
1111 
1112 
1113 /*
1114  * Get the dnode of an object number from the metadnode of an object set.
1115  *
1116  * Input
1117  *	mdn - metadnode to get the object dnode
1118  *	objnum - object number for the object dnode
1119  *	buf - data buffer that holds the returning dnode
1120  */
1121 static int
1122 dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
1123 		  dnode_end_t *buf, struct zfs_data *data)
1124 {
1125 	uint64_t blkid, blksz;	/* the block id this object dnode is in */
1126 	int epbs;			/* shift of number of dnodes in a block */
1127 	int idx;			/* index within a block */
1128 	void *dnbuf;
1129 	int err;
1130 	zfs_endian_t endian;
1131 
1132 	blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
1133 							  mdn->endian) << SPA_MINBLOCKSHIFT;
1134 
1135 	epbs = zfs_log2(blksz) - DNODE_SHIFT;
1136 	blkid = objnum >> epbs;
1137 	idx = objnum & ((1 << epbs) - 1);
1138 
1139 	if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
1140 										  sizeof(*mdn)) == 0
1141 		&& objnum >= data->dnode_start && objnum < data->dnode_end) {
1142 		memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
1143 		buf->endian = data->dnode_endian;
1144 		if (type && buf->dn.dn_type != type)  {
1145 			printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
1146 			return ZFS_ERR_BAD_FS;
1147 		}
1148 		return ZFS_ERR_NONE;
1149 	}
1150 
1151 	err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
1152 	if (err)
1153 		return err;
1154 
1155 	free(data->dnode_buf);
1156 	free(data->dnode_mdn);
1157 	data->dnode_mdn = malloc(sizeof(*mdn));
1158 	if (!data->dnode_mdn) {
1159 		data->dnode_buf = 0;
1160 	} else {
1161 		memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
1162 		data->dnode_buf = dnbuf;
1163 		data->dnode_start = blkid << epbs;
1164 		data->dnode_end = (blkid + 1) << epbs;
1165 		data->dnode_endian = endian;
1166 	}
1167 
1168 	memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
1169 	buf->endian = endian;
1170 	if (type && buf->dn.dn_type != type) {
1171 		printf("incorrect dnode type\n");
1172 		return ZFS_ERR_BAD_FS;
1173 	}
1174 
1175 	return ZFS_ERR_NONE;
1176 }
1177 
1178 /*
1179  * Get the file dnode for a given file name where mdn is the meta dnode
1180  * for this ZFS object set. When found, place the file dnode in dn.
1181  * The 'path' argument will be mangled.
1182  *
1183  */
1184 static int
1185 dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
1186 			   struct zfs_data *data)
1187 {
1188 	uint64_t objnum, version;
1189 	char *cname, ch;
1190 	int err = ZFS_ERR_NONE;
1191 	char *path, *path_buf;
1192 	struct dnode_chain {
1193 		struct dnode_chain *next;
1194 		dnode_end_t dn;
1195 	};
1196 	struct dnode_chain *dnode_path = 0, *dn_new, *root;
1197 
1198 	dn_new = malloc(sizeof(*dn_new));
1199 	if (!dn_new)
1200 		return ZFS_ERR_OUT_OF_MEMORY;
1201 	dn_new->next = 0;
1202 	dnode_path = root = dn_new;
1203 
1204 	err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
1205 					&(dnode_path->dn), data);
1206 	if (err) {
1207 		free(dn_new);
1208 		return err;
1209 	}
1210 
1211 	err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
1212 	if (err) {
1213 		free(dn_new);
1214 		return err;
1215 	}
1216 	if (version > ZPL_VERSION) {
1217 		free(dn_new);
1218 		printf("too new ZPL version\n");
1219 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
1220 	}
1221 
1222 	err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
1223 	if (err) {
1224 		free(dn_new);
1225 		return err;
1226 	}
1227 
1228 	err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1229 	if (err) {
1230 		free(dn_new);
1231 		return err;
1232 	}
1233 
1234 	path = path_buf = strdup(path_in);
1235 	if (!path_buf) {
1236 		free(dn_new);
1237 		return ZFS_ERR_OUT_OF_MEMORY;
1238 	}
1239 
1240 	while (1) {
1241 		/* skip leading slashes */
1242 		while (*path == '/')
1243 			path++;
1244 		if (!*path)
1245 			break;
1246 		/* get the next component name */
1247 		cname = path;
1248 		while (*path && *path != '/')
1249 			path++;
1250 		/* Skip dot.  */
1251 		if (cname + 1 == path && cname[0] == '.')
1252 			continue;
1253 		/* Handle double dot.  */
1254 		if (cname + 2 == path && cname[0] == '.' && cname[1] == '.')  {
1255 			if (dn_new->next) {
1256 				dn_new = dnode_path;
1257 				dnode_path = dn_new->next;
1258 				free(dn_new);
1259 			} else {
1260 				printf("can't resolve ..\n");
1261 				err = ZFS_ERR_FILE_NOT_FOUND;
1262 				break;
1263 			}
1264 			continue;
1265 		}
1266 
1267 		ch = *path;
1268 		*path = 0;		/* ensure null termination */
1269 
1270 		if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
1271 			free(path_buf);
1272 			printf("not a directory\n");
1273 			return ZFS_ERR_BAD_FILE_TYPE;
1274 		}
1275 		err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
1276 		if (err)
1277 			break;
1278 
1279 		dn_new = malloc(sizeof(*dn_new));
1280 		if (!dn_new) {
1281 			err = ZFS_ERR_OUT_OF_MEMORY;
1282 			break;
1283 		}
1284 		dn_new->next = dnode_path;
1285 		dnode_path = dn_new;
1286 
1287 		objnum = ZFS_DIRENT_OBJ(objnum);
1288 		err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1289 		if (err)
1290 			break;
1291 
1292 		*path = ch;
1293 	}
1294 
1295 	if (!err)
1296 		memcpy(dn, &(dnode_path->dn), sizeof(*dn));
1297 
1298 	while (dnode_path) {
1299 		dn_new = dnode_path->next;
1300 		free(dnode_path);
1301 		dnode_path = dn_new;
1302 	}
1303 	free(path_buf);
1304 	return err;
1305 }
1306 
1307 
1308 /*
1309  * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
1310  * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
1311  * of pool/rootfs.
1312  *
1313  * If no fsname and no obj are given, return the DSL_DIR metadnode.
1314  * If fsname is given, return its metadnode and its matching object number.
1315  * If only obj is given, return the metadnode for this object number.
1316  *
1317  */
1318 static int
1319 get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
1320 					 dnode_end_t *mdn, struct zfs_data *data)
1321 {
1322 	uint64_t objnum;
1323 	int err;
1324 
1325 	err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1326 					DMU_OT_OBJECT_DIRECTORY, mdn, data);
1327 	if (err)
1328 		return err;
1329 
1330 	err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
1331 	if (err)
1332 		return err;
1333 
1334 	err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1335 	if (err)
1336 		return err;
1337 
1338 	while (*fsname) {
1339 		uint64_t childobj;
1340 		char *cname, ch;
1341 
1342 		while (*fsname == '/')
1343 			fsname++;
1344 
1345 		if (!*fsname || *fsname == '@')
1346 			break;
1347 
1348 		cname = fsname;
1349 		while (*fsname && !isspace(*fsname) && *fsname != '/')
1350 			fsname++;
1351 		ch = *fsname;
1352 		*fsname = 0;
1353 
1354 		childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
1355 		err = dnode_get(mosmdn, childobj,
1356 						DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
1357 		if (err)
1358 			return err;
1359 
1360 		err = zap_lookup(mdn, cname, &objnum, data);
1361 		if (err)
1362 			return err;
1363 
1364 		err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1365 		if (err)
1366 			return err;
1367 
1368 		*fsname = ch;
1369 	}
1370 	return ZFS_ERR_NONE;
1371 }
1372 
1373 static int
1374 make_mdn(dnode_end_t *mdn, struct zfs_data *data)
1375 {
1376 	void *osp;
1377 	blkptr_t *bp;
1378 	size_t ospsize;
1379 	int err;
1380 
1381 	bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
1382 	err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
1383 	if (err)
1384 		return err;
1385 	if (ospsize < OBJSET_PHYS_SIZE_V14) {
1386 		free(osp);
1387 		printf("too small osp\n");
1388 		return ZFS_ERR_BAD_FS;
1389 	}
1390 
1391 	mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
1392 	memmove((char *) &(mdn->dn),
1393 			(char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1394 	free(osp);
1395 	return ZFS_ERR_NONE;
1396 }
1397 
1398 static int
1399 dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
1400 				   uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
1401 				   struct zfs_data *data)
1402 {
1403 	char *fsname, *snapname;
1404 	const char *ptr_at, *filename;
1405 	uint64_t headobj;
1406 	int err;
1407 
1408 	ptr_at = strchr(fullpath, '@');
1409 	if (!ptr_at) {
1410 		*isfs = 1;
1411 		filename = 0;
1412 		snapname = 0;
1413 		fsname = strdup(fullpath);
1414 	} else {
1415 		const char *ptr_slash = strchr(ptr_at, '/');
1416 
1417 		*isfs = 0;
1418 		fsname = malloc(ptr_at - fullpath + 1);
1419 		if (!fsname)
1420 			return ZFS_ERR_OUT_OF_MEMORY;
1421 		memcpy(fsname, fullpath, ptr_at - fullpath);
1422 		fsname[ptr_at - fullpath] = 0;
1423 		if (ptr_at[1] && ptr_at[1] != '/') {
1424 			snapname = malloc(ptr_slash - ptr_at);
1425 			if (!snapname) {
1426 				free(fsname);
1427 				return ZFS_ERR_OUT_OF_MEMORY;
1428 			}
1429 			memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
1430 			snapname[ptr_slash - ptr_at - 1] = 0;
1431 		} else {
1432 			snapname = 0;
1433 		}
1434 		if (ptr_slash)
1435 			filename = ptr_slash;
1436 		else
1437 			filename = "/";
1438 		printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
1439 			   fsname, snapname, filename);
1440 	}
1441 
1442 
1443 	err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
1444 
1445 	if (err) {
1446 		free(fsname);
1447 		free(snapname);
1448 		return err;
1449 	}
1450 
1451 	headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
1452 
1453 	err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1454 	if (err) {
1455 		free(fsname);
1456 		free(snapname);
1457 		return err;
1458 	}
1459 
1460 	if (snapname) {
1461 		uint64_t snapobj;
1462 
1463 		snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
1464 
1465 		err = dnode_get(&(data->mos), snapobj,
1466 						DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
1467 		if (!err)
1468 			err = zap_lookup(mdn, snapname, &headobj, data);
1469 		if (!err)
1470 			err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1471 		if (err) {
1472 			free(fsname);
1473 			free(snapname);
1474 			return err;
1475 		}
1476 	}
1477 
1478 	if (mdnobj)
1479 		*mdnobj = headobj;
1480 
1481 	make_mdn(mdn, data);
1482 
1483 	if (*isfs) {
1484 		free(fsname);
1485 		free(snapname);
1486 		return ZFS_ERR_NONE;
1487 	}
1488 	err = dnode_get_path(mdn, filename, dn, data);
1489 	free(fsname);
1490 	free(snapname);
1491 	return err;
1492 }
1493 
1494 /*
1495  * For a given XDR packed nvlist, verify the first 4 bytes and move on.
1496  *
1497  * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
1498  *
1499  *		encoding method/host endian		(4 bytes)
1500  *		nvl_version						(4 bytes)
1501  *		nvl_nvflag						(4 bytes)
1502  *	encoded nvpairs:
1503  *		encoded size of the nvpair		(4 bytes)
1504  *		decoded size of the nvpair		(4 bytes)
1505  *		name string size				(4 bytes)
1506  *		name string data				(sizeof(NV_ALIGN4(string))
1507  *		data type						(4 bytes)
1508  *		# of elements in the nvpair		(4 bytes)
1509  *		data
1510  *		2 zero's for the last nvpair
1511  *		(end of the entire list)	(8 bytes)
1512  *
1513  */
1514 
1515 static int
1516 nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
1517 				  size_t *size_out, size_t *nelm_out)
1518 {
1519 	int name_len, type, encode_size;
1520 	char *nvpair, *nvp_name;
1521 
1522 	/* Verify if the 1st and 2nd byte in the nvlist are valid. */
1523 	/* NOTE: independently of what endianness header announces all
1524 	   subsequent values are big-endian.  */
1525 	if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
1526 									   && nvlist[1] != NV_BIG_ENDIAN)) {
1527 		printf("zfs incorrect nvlist header\n");
1528 		return ZFS_ERR_BAD_FS;
1529 	}
1530 
1531 	/* skip the header, nvl_version, and nvl_nvflag */
1532 	nvlist = nvlist + 4 * 3;
1533 	/*
1534 	 * Loop thru the nvpair list
1535 	 * The XDR representation of an integer is in big-endian byte order.
1536 	 */
1537 	while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
1538 		int nelm;
1539 
1540 		nvpair = nvlist + 4 * 2;	/* skip the encode/decode size */
1541 
1542 		name_len = be32_to_cpu(*(uint32_t *) nvpair);
1543 		nvpair += 4;
1544 
1545 		nvp_name = nvpair;
1546 		nvpair = nvpair + ((name_len + 3) & ~3);	/* align */
1547 
1548 		type = be32_to_cpu(*(uint32_t *) nvpair);
1549 		nvpair += 4;
1550 
1551 		nelm = be32_to_cpu(*(uint32_t *) nvpair);
1552 		if (nelm < 1) {
1553 			printf("empty nvpair\n");
1554 			return ZFS_ERR_BAD_FS;
1555 		}
1556 
1557 		nvpair += 4;
1558 
1559 		if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
1560 			*val = nvpair;
1561 			*size_out = encode_size;
1562 			if (nelm_out)
1563 				*nelm_out = nelm;
1564 			return 1;
1565 		}
1566 
1567 		nvlist += encode_size;	/* goto the next nvpair */
1568 	}
1569 	return 0;
1570 }
1571 
1572 int
1573 zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
1574 {
1575 	char *nvpair;
1576 	size_t size;
1577 	int found;
1578 
1579 	found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
1580 	if (!found)
1581 		return 0;
1582 	if (size < sizeof(uint64_t)) {
1583 		printf("invalid uint64\n");
1584 		return ZFS_ERR_BAD_FS;
1585 	}
1586 
1587 	*out = be64_to_cpu(*(uint64_t *) nvpair);
1588 	return 1;
1589 }
1590 
1591 char *
1592 zfs_nvlist_lookup_string(char *nvlist, char *name)
1593 {
1594 	char *nvpair;
1595 	char *ret;
1596 	size_t slen;
1597 	size_t size;
1598 	int found;
1599 
1600 	found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
1601 	if (!found)
1602 		return 0;
1603 	if (size < 4) {
1604 		printf("invalid string\n");
1605 		return 0;
1606 	}
1607 	slen = be32_to_cpu(*(uint32_t *) nvpair);
1608 	if (slen > size - 4)
1609 		slen = size - 4;
1610 	ret = malloc(slen + 1);
1611 	if (!ret)
1612 		return 0;
1613 	memcpy(ret, nvpair + 4, slen);
1614 	ret[slen] = 0;
1615 	return ret;
1616 }
1617 
1618 char *
1619 zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
1620 {
1621 	char *nvpair;
1622 	char *ret;
1623 	size_t size;
1624 	int found;
1625 
1626 	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1627 							  &size, 0);
1628 	if (!found)
1629 		return 0;
1630 	ret = calloc(1, size + 3 * sizeof(uint32_t));
1631 	if (!ret)
1632 		return 0;
1633 	memcpy(ret, nvlist, sizeof(uint32_t));
1634 
1635 	memcpy(ret + sizeof(uint32_t), nvpair, size);
1636 	return ret;
1637 }
1638 
1639 int
1640 zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
1641 {
1642 	char *nvpair;
1643 	size_t nelm, size;
1644 	int found;
1645 
1646 	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1647 							  &size, &nelm);
1648 	if (!found)
1649 		return -1;
1650 	return nelm;
1651 }
1652 
1653 char *
1654 zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
1655 									size_t index)
1656 {
1657 	char *nvpair, *nvpairptr;
1658 	int found;
1659 	char *ret;
1660 	size_t size;
1661 	unsigned i;
1662 	size_t nelm;
1663 
1664 	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1665 							  &size, &nelm);
1666 	if (!found)
1667 		return 0;
1668 	if (index >= nelm) {
1669 		printf("trying to lookup past nvlist array\n");
1670 		return 0;
1671 	}
1672 
1673 	nvpairptr = nvpair;
1674 
1675 	for (i = 0; i < index; i++) {
1676 		uint32_t encode_size;
1677 
1678 		/* skip the header, nvl_version, and nvl_nvflag */
1679 		nvpairptr = nvpairptr + 4 * 2;
1680 
1681 		while (nvpairptr < nvpair + size
1682 			   && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
1683 			nvlist += encode_size;	/* goto the next nvpair */
1684 
1685 		nvlist = nvlist + 4 * 2;	/* skip the ending 2 zeros - 8 bytes */
1686 	}
1687 
1688 	if (nvpairptr >= nvpair + size
1689 		|| nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1690 		>= nvpair + size) {
1691 		printf("incorrect nvlist array\n");
1692 		return 0;
1693 	}
1694 
1695 	ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1696 				 + 3 * sizeof(uint32_t));
1697 	if (!ret)
1698 		return 0;
1699 	memcpy(ret, nvlist, sizeof(uint32_t));
1700 
1701 	memcpy(ret + sizeof(uint32_t), nvpairptr, size);
1702 	return ret;
1703 }
1704 
1705 static int
1706 int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
1707 {
1708 	int err;
1709 
1710 	*nvlist = malloc(VDEV_PHYS_SIZE);
1711 	/* Read in the vdev name-value pair list (112K). */
1712 	err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
1713 	if (err) {
1714 		free(*nvlist);
1715 		*nvlist = 0;
1716 		return err;
1717 	}
1718 	return ZFS_ERR_NONE;
1719 }
1720 
1721 /*
1722  * Check the disk label information and retrieve needed vdev name-value pairs.
1723  *
1724  */
1725 static int
1726 check_pool_label(struct zfs_data *data)
1727 {
1728 	uint64_t pool_state;
1729 	char *nvlist;			/* for the pool */
1730 	char *vdevnvlist;		/* for the vdev */
1731 	uint64_t diskguid;
1732 	uint64_t version;
1733 	int found;
1734 	int err;
1735 
1736 	err = int_zfs_fetch_nvlist(data, &nvlist);
1737 	if (err)
1738 		return err;
1739 
1740 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
1741 										  &pool_state);
1742 	if (!found) {
1743 		free(nvlist);
1744 		printf("zfs pool state not found\n");
1745 		return ZFS_ERR_BAD_FS;
1746 	}
1747 
1748 	if (pool_state == POOL_STATE_DESTROYED) {
1749 		free(nvlist);
1750 		printf("zpool is marked as destroyed\n");
1751 		return ZFS_ERR_BAD_FS;
1752 	}
1753 
1754 	data->label_txg = 0;
1755 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
1756 										  &data->label_txg);
1757 	if (!found) {
1758 		free(nvlist);
1759 		printf("zfs pool txg not found\n");
1760 		return ZFS_ERR_BAD_FS;
1761 	}
1762 
1763 	/* not an active device */
1764 	if (data->label_txg == 0) {
1765 		free(nvlist);
1766 		printf("zpool is not active\n");
1767 		return ZFS_ERR_BAD_FS;
1768 	}
1769 
1770 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
1771 										  &version);
1772 	if (!found) {
1773 		free(nvlist);
1774 		printf("zpool config version not found\n");
1775 		return ZFS_ERR_BAD_FS;
1776 	}
1777 
1778 	if (version > SPA_VERSION) {
1779 		free(nvlist);
1780 		printf("SPA version too new %llu > %llu\n",
1781 			   (unsigned long long) version,
1782 			   (unsigned long long) SPA_VERSION);
1783 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
1784 	}
1785 
1786 	vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
1787 	if (!vdevnvlist) {
1788 		free(nvlist);
1789 		printf("ZFS config vdev tree not found\n");
1790 		return ZFS_ERR_BAD_FS;
1791 	}
1792 
1793 	found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
1794 										  &data->vdev_ashift);
1795 	free(vdevnvlist);
1796 	if (!found) {
1797 		free(nvlist);
1798 		printf("ZPOOL config ashift not found\n");
1799 		return ZFS_ERR_BAD_FS;
1800 	}
1801 
1802 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
1803 	if (!found) {
1804 		free(nvlist);
1805 		printf("ZPOOL config guid not found\n");
1806 		return ZFS_ERR_BAD_FS;
1807 	}
1808 
1809 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
1810 	if (!found) {
1811 		free(nvlist);
1812 		printf("ZPOOL config pool guid not found\n");
1813 		return ZFS_ERR_BAD_FS;
1814 	}
1815 
1816 	free(nvlist);
1817 
1818 	printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
1819 		   (unsigned long long) data->pool_guid,
1820 		   (unsigned long long) data->pool_guid,
1821 		   (unsigned long long) diskguid,
1822 		   (unsigned long long) diskguid,
1823 		   (unsigned long long) data->label_txg,
1824 		   (unsigned long long) version,
1825 		   (unsigned long long) data->vdev_ashift);
1826 
1827 	return ZFS_ERR_NONE;
1828 }
1829 
1830 /*
1831  * vdev_label_start returns the physical disk offset (in bytes) of
1832  * label "l".
1833  */
1834 static uint64_t vdev_label_start(uint64_t psize, int l)
1835 {
1836 	return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
1837 										0 : psize -
1838 										VDEV_LABELS * sizeof(vdev_label_t)));
1839 }
1840 
1841 void
1842 zfs_unmount(struct zfs_data *data)
1843 {
1844 	free(data->dnode_buf);
1845 	free(data->dnode_mdn);
1846 	free(data->file_buf);
1847 	free(data);
1848 }
1849 
1850 /*
1851  * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
1852  * to the memory address MOS.
1853  *
1854  */
1855 struct zfs_data *
1856 zfs_mount(device_t dev)
1857 {
1858 	struct zfs_data *data = 0;
1859 	int label = 0, bestlabel = -1;
1860 	char *ub_array;
1861 	uberblock_t *ubbest;
1862 	uberblock_t *ubcur = NULL;
1863 	void *osp = 0;
1864 	size_t ospsize;
1865 	int err;
1866 
1867 	data = malloc(sizeof(*data));
1868 	if (!data)
1869 		return 0;
1870 	memset(data, 0, sizeof(*data));
1871 
1872 	ub_array = malloc(VDEV_UBERBLOCK_RING);
1873 	if (!ub_array) {
1874 		zfs_unmount(data);
1875 		return 0;
1876 	}
1877 
1878 	ubbest = malloc(sizeof(*ubbest));
1879 	if (!ubbest) {
1880 		zfs_unmount(data);
1881 		return 0;
1882 	}
1883 	memset(ubbest, 0, sizeof(*ubbest));
1884 
1885 	/*
1886 	 * some eltorito stacks don't give us a size and
1887 	 * we end up setting the size to MAXUINT, further
1888 	 * some of these devices stop working once a single
1889 	 * read past the end has been issued. Checking
1890 	 * for a maximum part_length and skipping the backup
1891 	 * labels at the end of the slice/partition/device
1892 	 * avoids breaking down on such devices.
1893 	 */
1894 	const int vdevnum =
1895 		dev->part_length == 0 ?
1896 		VDEV_LABELS / 2 : VDEV_LABELS;
1897 
1898 	/* Size in bytes of the device (disk or partition) aligned to label size*/
1899 	uint64_t device_size =
1900 		dev->part_length << SECTOR_BITS;
1901 
1902 	const uint64_t alignedbytes =
1903 		P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
1904 
1905 	for (label = 0; label < vdevnum; label++) {
1906 		uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
1907 		uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
1908 
1909 		debug("zfs reading label %d at sector %llu (byte %llu)\n",
1910 			  label, (unsigned long long) labelstart,
1911 			  (unsigned long long) labelstartbytes);
1912 
1913 		data->vdev_phys_sector = labelstart +
1914 			((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
1915 
1916 		err = check_pool_label(data);
1917 		if (err) {
1918 			printf("zfs error checking label %d\n", label);
1919 			continue;
1920 		}
1921 
1922 		/* Read in the uberblock ring (128K). */
1923 		err = zfs_devread(data->vdev_phys_sector  +
1924 						  (VDEV_PHYS_SIZE >> SECTOR_BITS),
1925 						  0, VDEV_UBERBLOCK_RING, ub_array);
1926 		if (err) {
1927 			printf("zfs error reading uberblock ring for label %d\n", label);
1928 			continue;
1929 		}
1930 
1931 		ubcur = find_bestub(ub_array, data);
1932 		if (!ubcur) {
1933 			printf("zfs No good uberblocks found in label %d\n", label);
1934 			continue;
1935 		}
1936 
1937 		if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
1938 			/* Looks like the block is good, so use it.*/
1939 			memcpy(ubbest, ubcur, sizeof(*ubbest));
1940 			bestlabel = label;
1941 			debug("zfs Current best uberblock found in label %d\n", label);
1942 		}
1943 	}
1944 	free(ub_array);
1945 
1946 	/* We zero'd the structure to begin with.  If we never assigned to it,
1947 	   magic will still be zero. */
1948 	if (!ubbest->ub_magic) {
1949 		printf("couldn't find a valid ZFS label\n");
1950 		zfs_unmount(data);
1951 		free(ubbest);
1952 		return 0;
1953 	}
1954 
1955 	debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
1956 
1957 	zfs_endian_t ub_endian =
1958 		zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
1959 		? LITTLE_ENDIAN : BIG_ENDIAN;
1960 
1961 	debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
1962 
1963 	err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
1964 
1965 	if (err) {
1966 		printf("couldn't zio_read object directory\n");
1967 		zfs_unmount(data);
1968 		free(ubbest);
1969 		return 0;
1970 	}
1971 
1972 	if (ospsize < OBJSET_PHYS_SIZE_V14) {
1973 		printf("osp too small\n");
1974 		zfs_unmount(data);
1975 		free(osp);
1976 		free(ubbest);
1977 		return 0;
1978 	}
1979 
1980 	/* Got the MOS. Save it at the memory addr MOS. */
1981 	memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1982 	data->mos.endian =
1983 		(zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
1984 	memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
1985 
1986 	free(osp);
1987 	free(ubbest);
1988 
1989 	return data;
1990 }
1991 
1992 int
1993 zfs_fetch_nvlist(device_t dev, char **nvlist)
1994 {
1995 	struct zfs_data *zfs;
1996 	int err;
1997 
1998 	zfs = zfs_mount(dev);
1999 	if (!zfs)
2000 		return ZFS_ERR_BAD_FS;
2001 	err = int_zfs_fetch_nvlist(zfs, nvlist);
2002 	zfs_unmount(zfs);
2003 	return err;
2004 }
2005 
2006 /*
2007  * zfs_open() locates a file in the rootpool by following the
2008  * MOS and places the dnode of the file in the memory address DNODE.
2009  */
2010 int
2011 zfs_open(struct zfs_file *file, const char *fsfilename)
2012 {
2013 	struct zfs_data *data;
2014 	int err;
2015 	int isfs;
2016 
2017 	data = zfs_mount(file->device);
2018 	if (!data)
2019 		return ZFS_ERR_BAD_FS;
2020 
2021 	err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
2022 							 &(data->dnode), &isfs, data);
2023 	if (err) {
2024 		zfs_unmount(data);
2025 		return err;
2026 	}
2027 
2028 	if (isfs) {
2029 		zfs_unmount(data);
2030 		printf("Missing @ or / separator\n");
2031 		return ZFS_ERR_FILE_NOT_FOUND;
2032 	}
2033 
2034 	/* We found the dnode for this file. Verify if it is a plain file. */
2035 	if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
2036 		zfs_unmount(data);
2037 		printf("not a file\n");
2038 		return ZFS_ERR_BAD_FILE_TYPE;
2039 	}
2040 
2041 	/* get the file size and set the file position to 0 */
2042 
2043 	/*
2044 	 * For DMU_OT_SA we will need to locate the SIZE attribute
2045 	 * attribute, which could be either in the bonus buffer
2046 	 * or the "spill" block.
2047 	 */
2048 	if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
2049 		void *sahdrp;
2050 		int hdrsize;
2051 
2052 		if (data->dnode.dn.dn_bonuslen != 0) {
2053 			sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
2054 		} else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2055 			blkptr_t *bp = &data->dnode.dn.dn_spill;
2056 
2057 			err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
2058 			if (err)
2059 				return err;
2060 		} else {
2061 			printf("filesystem is corrupt :(\n");
2062 			return ZFS_ERR_BAD_FS;
2063 		}
2064 
2065 		hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
2066 		file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
2067 	} else {
2068 		file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
2069 	}
2070 
2071 	file->data = data;
2072 	file->offset = 0;
2073 
2074 	return ZFS_ERR_NONE;
2075 }
2076 
2077 uint64_t
2078 zfs_read(zfs_file_t file, char *buf, uint64_t len)
2079 {
2080 	struct zfs_data *data = (struct zfs_data *) file->data;
2081 	int blksz, movesize;
2082 	uint64_t length;
2083 	int64_t red;
2084 	int err;
2085 
2086 	if (data->file_buf == NULL) {
2087 		data->file_buf = malloc(SPA_MAXBLOCKSIZE);
2088 		if (!data->file_buf)
2089 			return -1;
2090 		data->file_start = data->file_end = 0;
2091 	}
2092 
2093 	/*
2094 	 * If offset is in memory, move it into the buffer provided and return.
2095 	 */
2096 	if (file->offset >= data->file_start
2097 		&& file->offset + len <= data->file_end) {
2098 		memmove(buf, data->file_buf + file->offset - data->file_start,
2099 				len);
2100 		return len;
2101 	}
2102 
2103 	blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
2104 							  data->dnode.endian) << SPA_MINBLOCKSHIFT;
2105 
2106 	/*
2107 	 * Entire Dnode is too big to fit into the space available.	 We
2108 	 * will need to read it in chunks.	This could be optimized to
2109 	 * read in as large a chunk as there is space available, but for
2110 	 * now, this only reads in one data block at a time.
2111 	 */
2112 	length = len;
2113 	red = 0;
2114 	while (length) {
2115 		void *t;
2116 		/*
2117 		 * Find requested blkid and the offset within that block.
2118 		 */
2119 		uint64_t blkid = file->offset + red;
2120 		blkid = do_div(blkid, blksz);
2121 		free(data->file_buf);
2122 		data->file_buf = 0;
2123 
2124 		err = dmu_read(&(data->dnode), blkid, &t,
2125 					   0, data);
2126 		data->file_buf = t;
2127 		if (err)
2128 			return -1;
2129 
2130 		data->file_start = blkid * blksz;
2131 		data->file_end = data->file_start + blksz;
2132 
2133 		movesize = MIN(length, data->file_end - (int) file->offset - red);
2134 
2135 		memmove(buf, data->file_buf + file->offset + red
2136 				- data->file_start, movesize);
2137 		buf += movesize;
2138 		length -= movesize;
2139 		red += movesize;
2140 	}
2141 
2142 	return len;
2143 }
2144 
2145 int
2146 zfs_close(zfs_file_t file)
2147 {
2148 	zfs_unmount((struct zfs_data *) file->data);
2149 	return ZFS_ERR_NONE;
2150 }
2151 
2152 int
2153 zfs_getmdnobj(device_t dev, const char *fsfilename,
2154 				   uint64_t *mdnobj)
2155 {
2156 	struct zfs_data *data;
2157 	int err;
2158 	int isfs;
2159 
2160 	data = zfs_mount(dev);
2161 	if (!data)
2162 		return ZFS_ERR_BAD_FS;
2163 
2164 	err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
2165 							 &(data->dnode), &isfs, data);
2166 	zfs_unmount(data);
2167 	return err;
2168 }
2169 
2170 static void
2171 fill_fs_info(struct zfs_dirhook_info *info,
2172 			 dnode_end_t mdn, struct zfs_data *data)
2173 {
2174 	int err;
2175 	dnode_end_t dn;
2176 	uint64_t objnum;
2177 	uint64_t headobj;
2178 
2179 	memset(info, 0, sizeof(*info));
2180 
2181 	info->dir = 1;
2182 
2183 	if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
2184 		headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
2185 
2186 		err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
2187 		if (err) {
2188 			printf("zfs failed here 1\n");
2189 			return;
2190 		}
2191 	}
2192 	make_mdn(&mdn, data);
2193 	err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
2194 					&dn, data);
2195 	if (err) {
2196 		printf("zfs failed here 2\n");
2197 		return;
2198 	}
2199 
2200 	err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
2201 	if (err) {
2202 		printf("zfs failed here 3\n");
2203 		return;
2204 	}
2205 
2206 	err = dnode_get(&mdn, objnum, 0, &dn, data);
2207 	if (err) {
2208 		printf("zfs failed here 4\n");
2209 		return;
2210 	}
2211 
2212 	info->mtimeset = 1;
2213 	info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2214 
2215 	return;
2216 }
2217 
2218 static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
2219 {
2220 	struct zfs_dirhook_info info;
2221 	dnode_end_t dn;
2222 
2223 	memset(&info, 0, sizeof(info));
2224 
2225 	dnode_get(&(data->mdn), val, 0, &dn, data);
2226 	info.mtimeset = 1;
2227 	info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2228 	info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
2229 	debug("zfs type=%d, name=%s\n",
2230 		  (int)dn.dn.dn_type, (char *)name);
2231 	if (!data->userhook)
2232 		return 0;
2233 	return data->userhook(name, &info);
2234 }
2235 
2236 static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
2237 {
2238 	struct zfs_dirhook_info info;
2239 	dnode_end_t mdn;
2240 	int err;
2241 	err = dnode_get(&(data->mos), val, 0, &mdn, data);
2242 	if (err)
2243 		return 0;
2244 	if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
2245 		return 0;
2246 
2247 	fill_fs_info(&info, mdn, data);
2248 
2249 	if (!data->userhook)
2250 		return 0;
2251 	return data->userhook(name, &info);
2252 }
2253 
2254 static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
2255 {
2256 	struct zfs_dirhook_info info;
2257 	char *name2;
2258 	int ret = 0;
2259 	dnode_end_t mdn;
2260 	int err;
2261 
2262 	err = dnode_get(&(data->mos), val, 0, &mdn, data);
2263 	if (err)
2264 		return 0;
2265 
2266 	if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
2267 		return 0;
2268 
2269 	fill_fs_info(&info, mdn, data);
2270 
2271 	name2 = malloc(strlen(name) + 2);
2272 	name2[0] = '@';
2273 	memcpy(name2 + 1, name, strlen(name) + 1);
2274 	if (data->userhook)
2275 		ret = data->userhook(name2, &info);
2276 	free(name2);
2277 	return ret;
2278 }
2279 
2280 int
2281 zfs_ls(device_t device, const char *path,
2282 	   int (*hook)(const char *, const struct zfs_dirhook_info *))
2283 {
2284 	struct zfs_data *data;
2285 	int err;
2286 	int isfs;
2287 
2288 	data = zfs_mount(device);
2289 	if (!data)
2290 		return ZFS_ERR_BAD_FS;
2291 
2292 	data->userhook = hook;
2293 
2294 	err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
2295 	if (err) {
2296 		zfs_unmount(data);
2297 		return err;
2298 	}
2299 	if (isfs) {
2300 		uint64_t childobj, headobj;
2301 		uint64_t snapobj;
2302 		dnode_end_t dn;
2303 		struct zfs_dirhook_info info;
2304 
2305 		fill_fs_info(&info, data->dnode, data);
2306 		hook("@", &info);
2307 
2308 		childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
2309 		headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
2310 		err = dnode_get(&(data->mos), childobj,
2311 						DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
2312 		if (err) {
2313 			zfs_unmount(data);
2314 			return err;
2315 		}
2316 
2317 
2318 		zap_iterate(&dn, iterate_zap_fs, data);
2319 
2320 		err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
2321 		if (err) {
2322 			zfs_unmount(data);
2323 			return err;
2324 		}
2325 
2326 		snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
2327 
2328 		err = dnode_get(&(data->mos), snapobj,
2329 						DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
2330 		if (err) {
2331 			zfs_unmount(data);
2332 			return err;
2333 		}
2334 
2335 		zap_iterate(&dn, iterate_zap_snap, data);
2336 	} else {
2337 		if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
2338 			zfs_unmount(data);
2339 			printf("not a directory\n");
2340 			return ZFS_ERR_BAD_FILE_TYPE;
2341 		}
2342 		zap_iterate(&(data->dnode), iterate_zap, data);
2343 	}
2344 	zfs_unmount(data);
2345 	return ZFS_ERR_NONE;
2346 }
2347