1 /* 2 * 3 * ZFS filesystem ported to u-boot by 4 * Jorgen Lundman <lundman at lundman.net> 5 * 6 * GRUB -- GRand Unified Bootloader 7 * Copyright (C) 1999,2000,2001,2002,2003,2004 8 * Free Software Foundation, Inc. 9 * Copyright 2004 Sun Microsystems, Inc. 10 * 11 * SPDX-License-Identifier: GPL-2.0+ 12 */ 13 14 #include <common.h> 15 #include <malloc.h> 16 #include <linux/stat.h> 17 #include <linux/time.h> 18 #include <linux/ctype.h> 19 #include <asm/byteorder.h> 20 #include "zfs_common.h" 21 #include "div64.h" 22 23 block_dev_desc_t *zfs_dev_desc; 24 25 /* 26 * The zfs plug-in routines for GRUB are: 27 * 28 * zfs_mount() - locates a valid uberblock of the root pool and reads 29 * in its MOS at the memory address MOS. 30 * 31 * zfs_open() - locates a plain file object by following the MOS 32 * and places its dnode at the memory address DNODE. 33 * 34 * zfs_read() - read in the data blocks pointed by the DNODE. 35 * 36 */ 37 38 #include <zfs/zfs.h> 39 #include <zfs/zio.h> 40 #include <zfs/dnode.h> 41 #include <zfs/uberblock_impl.h> 42 #include <zfs/vdev_impl.h> 43 #include <zfs/zio_checksum.h> 44 #include <zfs/zap_impl.h> 45 #include <zfs/zap_leaf.h> 46 #include <zfs/zfs_znode.h> 47 #include <zfs/dmu.h> 48 #include <zfs/dmu_objset.h> 49 #include <zfs/sa_impl.h> 50 #include <zfs/dsl_dir.h> 51 #include <zfs/dsl_dataset.h> 52 53 54 #define ZPOOL_PROP_BOOTFS "bootfs" 55 56 57 /* 58 * For nvlist manipulation. (from nvpair.h) 59 */ 60 #define NV_ENCODE_NATIVE 0 61 #define NV_ENCODE_XDR 1 62 #define NV_BIG_ENDIAN 0 63 #define NV_LITTLE_ENDIAN 1 64 #define DATA_TYPE_UINT64 8 65 #define DATA_TYPE_STRING 9 66 #define DATA_TYPE_NVLIST 19 67 #define DATA_TYPE_NVLIST_ARRAY 20 68 69 70 /* 71 * Macros to get fields in a bp or DVA. 72 */ 73 #define P2PHASE(x, align) ((x) & ((align) - 1)) 74 #define DVA_OFFSET_TO_PHYS_SECTOR(offset) \ 75 ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT) 76 77 /* 78 * return x rounded down to an align boundary 79 * eg, P2ALIGN(1200, 1024) == 1024 (1*align) 80 * eg, P2ALIGN(1024, 1024) == 1024 (1*align) 81 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) 82 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) 83 */ 84 #define P2ALIGN(x, align) ((x) & -(align)) 85 86 /* 87 * FAT ZAP data structures 88 */ 89 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 90 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 91 #define CHAIN_END 0xffff /* end of the chunk chain */ 92 93 /* 94 * The amount of space within the chunk available for the array is: 95 * chunk size - space for type (1) - space for next pointer (2) 96 */ 97 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) 98 99 #define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5) 100 #define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs)) 101 #define LEAF_HASH(bs, h) \ 102 ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \ 103 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len))) 104 105 /* 106 * The amount of space available for chunks is: 107 * block size shift - hash entry size (2) * number of hash 108 * entries - header space (2*chunksize) 109 */ 110 #define ZAP_LEAF_NUMCHUNKS(bs) \ 111 (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \ 112 ZAP_LEAF_CHUNKSIZE - 2) 113 114 /* 115 * The chunks start immediately after the hash table. The end of the 116 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a 117 * chunk_t. 118 */ 119 #define ZAP_LEAF_CHUNK(l, bs, idx) \ 120 ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx] 121 #define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry) 122 123 124 /* 125 * Decompression Entry - lzjb 126 */ 127 #ifndef NBBY 128 #define NBBY 8 129 #endif 130 131 132 133 typedef int zfs_decomp_func_t(void *s_start, void *d_start, 134 uint32_t s_len, uint32_t d_len); 135 typedef struct decomp_entry { 136 char *name; 137 zfs_decomp_func_t *decomp_func; 138 } decomp_entry_t; 139 140 typedef struct dnode_end { 141 dnode_phys_t dn; 142 zfs_endian_t endian; 143 } dnode_end_t; 144 145 struct zfs_data { 146 /* cache for a file block of the currently zfs_open()-ed file */ 147 char *file_buf; 148 uint64_t file_start; 149 uint64_t file_end; 150 151 /* XXX: ashift is per vdev, not per pool. We currently only ever touch 152 * a single vdev, but when/if raid-z or stripes are supported, this 153 * may need revision. 154 */ 155 uint64_t vdev_ashift; 156 uint64_t label_txg; 157 uint64_t pool_guid; 158 159 /* cache for a dnode block */ 160 dnode_phys_t *dnode_buf; 161 dnode_phys_t *dnode_mdn; 162 uint64_t dnode_start; 163 uint64_t dnode_end; 164 zfs_endian_t dnode_endian; 165 166 uberblock_t current_uberblock; 167 168 dnode_end_t mos; 169 dnode_end_t mdn; 170 dnode_end_t dnode; 171 172 uint64_t vdev_phys_sector; 173 174 int (*userhook)(const char *, const struct zfs_dirhook_info *); 175 struct zfs_dirhook_info *dirinfo; 176 177 }; 178 179 180 181 182 static int 183 zlib_decompress(void *s, void *d, 184 uint32_t slen, uint32_t dlen) 185 { 186 if (zlib_decompress(s, d, slen, dlen) < 0) 187 return ZFS_ERR_BAD_FS; 188 return ZFS_ERR_NONE; 189 } 190 191 static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = { 192 {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */ 193 {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */ 194 {"off", NULL}, /* ZIO_COMPRESS_OFF */ 195 {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */ 196 {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */ 197 {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */ 198 {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */ 199 {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */ 200 {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */ 201 {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */ 202 {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */ 203 {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */ 204 {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */ 205 {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */ 206 }; 207 208 209 210 static int zio_read_data(blkptr_t *bp, zfs_endian_t endian, 211 void *buf, struct zfs_data *data); 212 213 static int 214 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, 215 size_t *size, struct zfs_data *data); 216 217 /* 218 * Our own version of log2(). Same thing as highbit()-1. 219 */ 220 static int 221 zfs_log2(uint64_t num) 222 { 223 int i = 0; 224 225 while (num > 1) { 226 i++; 227 num = num >> 1; 228 } 229 230 return i; 231 } 232 233 234 /* Checksum Functions */ 235 static void 236 zio_checksum_off(const void *buf __attribute__ ((unused)), 237 uint64_t size __attribute__ ((unused)), 238 zfs_endian_t endian __attribute__ ((unused)), 239 zio_cksum_t *zcp) 240 { 241 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 242 } 243 244 /* Checksum Table and Values */ 245 static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { 246 {NULL, 0, 0, "inherit"}, 247 {NULL, 0, 0, "on"}, 248 {zio_checksum_off, 0, 0, "off"}, 249 {zio_checksum_SHA256, 1, 1, "label"}, 250 {zio_checksum_SHA256, 1, 1, "gang_header"}, 251 {NULL, 0, 0, "zilog"}, 252 {fletcher_2_endian, 0, 0, "fletcher2"}, 253 {fletcher_4_endian, 1, 0, "fletcher4"}, 254 {zio_checksum_SHA256, 1, 0, "SHA256"}, 255 {NULL, 0, 0, "zilog2"}, 256 }; 257 258 /* 259 * zio_checksum_verify: Provides support for checksum verification. 260 * 261 * Fletcher2, Fletcher4, and SHA256 are supported. 262 * 263 */ 264 static int 265 zio_checksum_verify(zio_cksum_t zc, uint32_t checksum, 266 zfs_endian_t endian, char *buf, int size) 267 { 268 zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1; 269 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 270 zio_cksum_t actual_cksum, expected_cksum; 271 272 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) { 273 printf("zfs unknown checksum function %d\n", checksum); 274 return ZFS_ERR_NOT_IMPLEMENTED_YET; 275 } 276 277 if (ci->ci_eck) { 278 expected_cksum = zec->zec_cksum; 279 zec->zec_cksum = zc; 280 ci->ci_func(buf, size, endian, &actual_cksum); 281 zec->zec_cksum = expected_cksum; 282 zc = expected_cksum; 283 } else { 284 ci->ci_func(buf, size, endian, &actual_cksum); 285 } 286 287 if ((actual_cksum.zc_word[0] != zc.zc_word[0]) 288 || (actual_cksum.zc_word[1] != zc.zc_word[1]) 289 || (actual_cksum.zc_word[2] != zc.zc_word[2]) 290 || (actual_cksum.zc_word[3] != zc.zc_word[3])) { 291 return ZFS_ERR_BAD_FS; 292 } 293 294 return ZFS_ERR_NONE; 295 } 296 297 /* 298 * vdev_uberblock_compare takes two uberblock structures and returns an integer 299 * indicating the more recent of the two. 300 * Return Value = 1 if ub2 is more recent 301 * Return Value = -1 if ub1 is more recent 302 * The most recent uberblock is determined using its transaction number and 303 * timestamp. The uberblock with the highest transaction number is 304 * considered "newer". If the transaction numbers of the two blocks match, the 305 * timestamps are compared to determine the "newer" of the two. 306 */ 307 static int 308 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 309 { 310 zfs_endian_t ub1_endian, ub2_endian; 311 if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) 312 ub1_endian = LITTLE_ENDIAN; 313 else 314 ub1_endian = BIG_ENDIAN; 315 if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) 316 ub2_endian = LITTLE_ENDIAN; 317 else 318 ub2_endian = BIG_ENDIAN; 319 320 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) 321 < zfs_to_cpu64(ub2->ub_txg, ub2_endian)) 322 return -1; 323 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) 324 > zfs_to_cpu64(ub2->ub_txg, ub2_endian)) 325 return 1; 326 327 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) 328 < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) 329 return -1; 330 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) 331 > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) 332 return 1; 333 334 return 0; 335 } 336 337 /* 338 * Three pieces of information are needed to verify an uberblock: the magic 339 * number, the version number, and the checksum. 340 * 341 * Currently Implemented: version number, magic number, label txg 342 * Need to Implement: checksum 343 * 344 */ 345 static int 346 uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data) 347 { 348 int err; 349 zfs_endian_t endian = UNKNOWN_ENDIAN; 350 zio_cksum_t zc; 351 352 if (uber->ub_txg < data->label_txg) { 353 debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n", 354 uber->ub_txg, data->label_txg); 355 return ZFS_ERR_BAD_FS; 356 } 357 358 if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC 359 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0 360 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION) 361 endian = LITTLE_ENDIAN; 362 363 if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC 364 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0 365 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION) 366 endian = BIG_ENDIAN; 367 368 if (endian == UNKNOWN_ENDIAN) { 369 printf("invalid uberblock magic\n"); 370 return ZFS_ERR_BAD_FS; 371 } 372 373 memset(&zc, 0, sizeof(zc)); 374 zc.zc_word[0] = cpu_to_zfs64(offset, endian); 375 err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian, 376 (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift)); 377 378 if (!err) { 379 /* Check that the data pointed by the rootbp is usable. */ 380 void *osp = NULL; 381 size_t ospsize; 382 err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data); 383 free(osp); 384 385 if (!err && ospsize < OBJSET_PHYS_SIZE_V14) { 386 printf("uberblock rootbp points to invalid data\n"); 387 return ZFS_ERR_BAD_FS; 388 } 389 } 390 391 return err; 392 } 393 394 /* 395 * Find the best uberblock. 396 * Return: 397 * Success - Pointer to the best uberblock. 398 * Failure - NULL 399 */ 400 static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data) 401 { 402 const uint64_t sector = data->vdev_phys_sector; 403 uberblock_t *ubbest = NULL; 404 uberblock_t *ubnext; 405 unsigned int i, offset, pickedub = 0; 406 int err = ZFS_ERR_NONE; 407 408 const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift); 409 const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift); 410 411 for (i = 0; i < UBCOUNT; i++) { 412 ubnext = (uberblock_t *) (i * UBBYTES + ub_array); 413 offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES); 414 415 err = uberblock_verify(ubnext, offset, data); 416 if (err) 417 continue; 418 419 if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) { 420 ubbest = ubnext; 421 pickedub = i; 422 } 423 } 424 425 if (ubbest) 426 debug("zfs Found best uberblock at idx %d, txg %llu\n", 427 pickedub, (unsigned long long) ubbest->ub_txg); 428 429 return ubbest; 430 } 431 432 static inline size_t 433 get_psize(blkptr_t *bp, zfs_endian_t endian) 434 { 435 return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1) 436 << SPA_MINBLOCKSHIFT; 437 } 438 439 static uint64_t 440 dva_get_offset(dva_t *dva, zfs_endian_t endian) 441 { 442 return zfs_to_cpu64((dva)->dva_word[1], 443 endian) << SPA_MINBLOCKSHIFT; 444 } 445 446 /* 447 * Read a block of data based on the gang block address dva, 448 * and put its data in buf. 449 * 450 */ 451 static int 452 zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf, 453 struct zfs_data *data) 454 { 455 zio_gbh_phys_t *zio_gb; 456 uint64_t offset, sector; 457 unsigned i; 458 int err; 459 zio_cksum_t zc; 460 461 memset(&zc, 0, sizeof(zc)); 462 463 zio_gb = malloc(SPA_GANGBLOCKSIZE); 464 if (!zio_gb) 465 return ZFS_ERR_OUT_OF_MEMORY; 466 467 offset = dva_get_offset(dva, endian); 468 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); 469 470 /* read in the gang block header */ 471 err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb); 472 473 if (err) { 474 free(zio_gb); 475 return err; 476 } 477 478 /* XXX */ 479 /* self checksuming the gang block header */ 480 ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva), 481 dva_get_offset(dva, endian), bp->blk_birth, 0); 482 err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian, 483 (char *) zio_gb, SPA_GANGBLOCKSIZE); 484 if (err) { 485 free(zio_gb); 486 return err; 487 } 488 489 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; 490 491 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 492 if (zio_gb->zg_blkptr[i].blk_birth == 0) 493 continue; 494 495 err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data); 496 if (err) { 497 free(zio_gb); 498 return err; 499 } 500 buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian); 501 } 502 free(zio_gb); 503 return ZFS_ERR_NONE; 504 } 505 506 /* 507 * Read in a block of raw data to buf. 508 */ 509 static int 510 zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf, 511 struct zfs_data *data) 512 { 513 int i, psize; 514 int err = ZFS_ERR_NONE; 515 516 psize = get_psize(bp, endian); 517 518 /* pick a good dva from the block pointer */ 519 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 520 uint64_t offset, sector; 521 522 if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0) 523 continue; 524 525 if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) { 526 err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data); 527 } else { 528 /* read in a data block */ 529 offset = dva_get_offset(&bp->blk_dva[i], endian); 530 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); 531 532 err = zfs_devread(sector, 0, psize, buf); 533 } 534 535 if (!err) { 536 /*Check the underlying checksum before we rule this DVA as "good"*/ 537 uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff; 538 539 err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize); 540 if (!err) 541 return ZFS_ERR_NONE; 542 } 543 544 /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/ 545 } 546 547 if (!err) { 548 printf("couldn't find a valid DVA\n"); 549 err = ZFS_ERR_BAD_FS; 550 } 551 552 return err; 553 } 554 555 /* 556 * Read in a block of data, verify its checksum, decompress if needed, 557 * and put the uncompressed data in buf. 558 */ 559 static int 560 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, 561 size_t *size, struct zfs_data *data) 562 { 563 size_t lsize, psize; 564 unsigned int comp; 565 char *compbuf = NULL; 566 int err; 567 568 *buf = NULL; 569 570 comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff; 571 lsize = (BP_IS_HOLE(bp) ? 0 : 572 (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1) 573 << SPA_MINBLOCKSHIFT)); 574 psize = get_psize(bp, endian); 575 576 if (size) 577 *size = lsize; 578 579 if (comp >= ZIO_COMPRESS_FUNCTIONS) { 580 printf("compression algorithm %u not supported\n", (unsigned int) comp); 581 return ZFS_ERR_NOT_IMPLEMENTED_YET; 582 } 583 584 if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) { 585 printf("compression algorithm %s not supported\n", decomp_table[comp].name); 586 return ZFS_ERR_NOT_IMPLEMENTED_YET; 587 } 588 589 if (comp != ZIO_COMPRESS_OFF) { 590 compbuf = malloc(psize); 591 if (!compbuf) 592 return ZFS_ERR_OUT_OF_MEMORY; 593 } else { 594 compbuf = *buf = malloc(lsize); 595 } 596 597 err = zio_read_data(bp, endian, compbuf, data); 598 if (err) { 599 free(compbuf); 600 *buf = NULL; 601 return err; 602 } 603 604 if (comp != ZIO_COMPRESS_OFF) { 605 *buf = malloc(lsize); 606 if (!*buf) { 607 free(compbuf); 608 return ZFS_ERR_OUT_OF_MEMORY; 609 } 610 611 err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize); 612 free(compbuf); 613 if (err) { 614 free(*buf); 615 *buf = NULL; 616 return err; 617 } 618 } 619 620 return ZFS_ERR_NONE; 621 } 622 623 /* 624 * Get the block from a block id. 625 * push the block onto the stack. 626 * 627 */ 628 static int 629 dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf, 630 zfs_endian_t *endian_out, struct zfs_data *data) 631 { 632 int idx, level; 633 blkptr_t *bp_array = dn->dn.dn_blkptr; 634 int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT; 635 blkptr_t *bp; 636 void *tmpbuf = 0; 637 zfs_endian_t endian; 638 int err = ZFS_ERR_NONE; 639 640 bp = malloc(sizeof(blkptr_t)); 641 if (!bp) 642 return ZFS_ERR_OUT_OF_MEMORY; 643 644 endian = dn->endian; 645 for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) { 646 idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1); 647 *bp = bp_array[idx]; 648 if (bp_array != dn->dn.dn_blkptr) { 649 free(bp_array); 650 bp_array = 0; 651 } 652 653 if (BP_IS_HOLE(bp)) { 654 size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec, 655 dn->endian) 656 << SPA_MINBLOCKSHIFT; 657 *buf = malloc(size); 658 if (*buf) { 659 err = ZFS_ERR_OUT_OF_MEMORY; 660 break; 661 } 662 memset(*buf, 0, size); 663 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; 664 break; 665 } 666 if (level == 0) { 667 err = zio_read(bp, endian, buf, 0, data); 668 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; 669 break; 670 } 671 err = zio_read(bp, endian, &tmpbuf, 0, data); 672 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; 673 if (err) 674 break; 675 bp_array = tmpbuf; 676 } 677 if (bp_array != dn->dn.dn_blkptr) 678 free(bp_array); 679 if (endian_out) 680 *endian_out = endian; 681 682 free(bp); 683 return err; 684 } 685 686 /* 687 * mzap_lookup: Looks up property described by "name" and returns the value 688 * in "value". 689 */ 690 static int 691 mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian, 692 int objsize, char *name, uint64_t * value) 693 { 694 int i, chunks; 695 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; 696 697 chunks = objsize / MZAP_ENT_LEN - 1; 698 for (i = 0; i < chunks; i++) { 699 if (strcmp(mzap_ent[i].mze_name, name) == 0) { 700 *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian); 701 return ZFS_ERR_NONE; 702 } 703 } 704 705 printf("couldn't find '%s'\n", name); 706 return ZFS_ERR_FILE_NOT_FOUND; 707 } 708 709 static int 710 mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize, 711 int (*hook)(const char *name, 712 uint64_t val, 713 struct zfs_data *data), 714 struct zfs_data *data) 715 { 716 int i, chunks; 717 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; 718 719 chunks = objsize / MZAP_ENT_LEN - 1; 720 for (i = 0; i < chunks; i++) { 721 if (hook(mzap_ent[i].mze_name, 722 zfs_to_cpu64(mzap_ent[i].mze_value, endian), 723 data)) 724 return 1; 725 } 726 727 return 0; 728 } 729 730 static uint64_t 731 zap_hash(uint64_t salt, const char *name) 732 { 733 static uint64_t table[256]; 734 const uint8_t *cp; 735 uint8_t c; 736 uint64_t crc = salt; 737 738 if (table[128] == 0) { 739 uint64_t *ct; 740 int i, j; 741 for (i = 0; i < 256; i++) { 742 for (ct = table + i, *ct = i, j = 8; j > 0; j--) 743 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 744 } 745 } 746 747 for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++) 748 crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF]; 749 750 /* 751 * Only use 28 bits, since we need 4 bits in the cookie for the 752 * collision differentiator. We MUST use the high bits, since 753 * those are the onces that we first pay attention to when 754 * chosing the bucket. 755 */ 756 crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); 757 758 return crc; 759 } 760 761 /* 762 * Only to be used on 8-bit arrays. 763 * array_len is actual len in bytes (not encoded le_value_length). 764 * buf is null-terminated. 765 */ 766 /* XXX */ 767 static int 768 zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian, 769 int blksft, int chunk, int array_len, const char *buf) 770 { 771 int bseen = 0; 772 773 while (bseen < array_len) { 774 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; 775 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); 776 777 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) 778 return 0; 779 780 if (memcmp(la->la_array, buf + bseen, toread) != 0) 781 break; 782 chunk = zfs_to_cpu16(la->la_next, endian); 783 bseen += toread; 784 } 785 return (bseen == array_len); 786 } 787 788 /* XXX */ 789 static int 790 zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft, 791 int chunk, int array_len, char *buf) 792 { 793 int bseen = 0; 794 795 while (bseen < array_len) { 796 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; 797 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); 798 799 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) 800 /* Don't use errno because this error is to be ignored. */ 801 return ZFS_ERR_BAD_FS; 802 803 memcpy(buf + bseen, la->la_array, toread); 804 chunk = zfs_to_cpu16(la->la_next, endian); 805 bseen += toread; 806 } 807 return ZFS_ERR_NONE; 808 } 809 810 811 /* 812 * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the 813 * value for the property "name". 814 * 815 */ 816 /* XXX */ 817 static int 818 zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian, 819 int blksft, uint64_t h, 820 const char *name, uint64_t *value) 821 { 822 uint16_t chunk; 823 struct zap_leaf_entry *le; 824 825 /* Verify if this is a valid leaf block */ 826 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { 827 printf("invalid leaf type\n"); 828 return ZFS_ERR_BAD_FS; 829 } 830 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { 831 printf("invalid leaf magic\n"); 832 return ZFS_ERR_BAD_FS; 833 } 834 835 for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian); 836 chunk != CHAIN_END; chunk = le->le_next) { 837 838 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) { 839 printf("invalid chunk number\n"); 840 return ZFS_ERR_BAD_FS; 841 } 842 843 le = ZAP_LEAF_ENTRY(l, blksft, chunk); 844 845 /* Verify the chunk entry */ 846 if (le->le_type != ZAP_CHUNK_ENTRY) { 847 printf("invalid chunk entry\n"); 848 return ZFS_ERR_BAD_FS; 849 } 850 851 if (zfs_to_cpu64(le->le_hash, endian) != h) 852 continue; 853 854 if (zap_leaf_array_equal(l, endian, blksft, 855 zfs_to_cpu16(le->le_name_chunk, endian), 856 zfs_to_cpu16(le->le_name_length, endian), 857 name)) { 858 struct zap_leaf_array *la; 859 860 if (le->le_int_size != 8 || le->le_value_length != 1) { 861 printf("invalid leaf chunk entry\n"); 862 return ZFS_ERR_BAD_FS; 863 } 864 /* get the uint64_t property value */ 865 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; 866 867 *value = be64_to_cpu(la->la_array64); 868 869 return ZFS_ERR_NONE; 870 } 871 } 872 873 printf("couldn't find '%s'\n", name); 874 return ZFS_ERR_FILE_NOT_FOUND; 875 } 876 877 878 /* Verify if this is a fat zap header block */ 879 static int 880 zap_verify(zap_phys_t *zap) 881 { 882 if (zap->zap_magic != (uint64_t) ZAP_MAGIC) { 883 printf("bad ZAP magic\n"); 884 return ZFS_ERR_BAD_FS; 885 } 886 887 if (zap->zap_flags != 0) { 888 printf("bad ZAP flags\n"); 889 return ZFS_ERR_BAD_FS; 890 } 891 892 if (zap->zap_salt == 0) { 893 printf("bad ZAP salt\n"); 894 return ZFS_ERR_BAD_FS; 895 } 896 897 return ZFS_ERR_NONE; 898 } 899 900 /* 901 * Fat ZAP lookup 902 * 903 */ 904 /* XXX */ 905 static int 906 fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap, 907 char *name, uint64_t *value, struct zfs_data *data) 908 { 909 void *l; 910 uint64_t hash, idx, blkid; 911 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, 912 zap_dnode->endian) << DNODE_SHIFT); 913 int err; 914 zfs_endian_t leafendian; 915 916 err = zap_verify(zap); 917 if (err) 918 return err; 919 920 hash = zap_hash(zap->zap_salt, name); 921 922 /* get block id from index */ 923 if (zap->zap_ptrtbl.zt_numblks != 0) { 924 printf("external pointer tables not supported\n"); 925 return ZFS_ERR_NOT_IMPLEMENTED_YET; 926 } 927 idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift); 928 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; 929 930 /* Get the leaf block */ 931 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { 932 printf("ZAP leaf is too small\n"); 933 return ZFS_ERR_BAD_FS; 934 } 935 err = dmu_read(zap_dnode, blkid, &l, &leafendian, data); 936 if (err) 937 return err; 938 939 err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value); 940 free(l); 941 return err; 942 } 943 944 /* XXX */ 945 static int 946 fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap, 947 int (*hook)(const char *name, 948 uint64_t val, 949 struct zfs_data *data), 950 struct zfs_data *data) 951 { 952 zap_leaf_phys_t *l; 953 void *l_in; 954 uint64_t idx, blkid; 955 uint16_t chunk; 956 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, 957 zap_dnode->endian) << DNODE_SHIFT); 958 int err; 959 zfs_endian_t endian; 960 961 if (zap_verify(zap)) 962 return 0; 963 964 /* get block id from index */ 965 if (zap->zap_ptrtbl.zt_numblks != 0) { 966 printf("external pointer tables not supported\n"); 967 return 0; 968 } 969 /* Get the leaf block */ 970 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { 971 printf("ZAP leaf is too small\n"); 972 return 0; 973 } 974 for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) { 975 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; 976 977 err = dmu_read(zap_dnode, blkid, &l_in, &endian, data); 978 l = l_in; 979 if (err) 980 continue; 981 982 /* Verify if this is a valid leaf block */ 983 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { 984 free(l); 985 continue; 986 } 987 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { 988 free(l); 989 continue; 990 } 991 992 for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) { 993 char *buf; 994 struct zap_leaf_array *la; 995 struct zap_leaf_entry *le; 996 uint64_t val; 997 le = ZAP_LEAF_ENTRY(l, blksft, chunk); 998 999 /* Verify the chunk entry */ 1000 if (le->le_type != ZAP_CHUNK_ENTRY) 1001 continue; 1002 1003 buf = malloc(zfs_to_cpu16(le->le_name_length, endian) 1004 + 1); 1005 if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk, 1006 le->le_name_length, buf)) { 1007 free(buf); 1008 continue; 1009 } 1010 buf[le->le_name_length] = 0; 1011 1012 if (le->le_int_size != 8 1013 || zfs_to_cpu16(le->le_value_length, endian) != 1) 1014 continue; 1015 1016 /* get the uint64_t property value */ 1017 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; 1018 val = be64_to_cpu(la->la_array64); 1019 if (hook(buf, val, data)) 1020 return 1; 1021 free(buf); 1022 } 1023 } 1024 return 0; 1025 } 1026 1027 1028 /* 1029 * Read in the data of a zap object and find the value for a matching 1030 * property name. 1031 * 1032 */ 1033 static int 1034 zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val, 1035 struct zfs_data *data) 1036 { 1037 uint64_t block_type; 1038 int size; 1039 void *zapbuf; 1040 int err; 1041 zfs_endian_t endian; 1042 1043 /* Read in the first block of the zap object data. */ 1044 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, 1045 zap_dnode->endian) << SPA_MINBLOCKSHIFT; 1046 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); 1047 if (err) 1048 return err; 1049 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); 1050 1051 if (block_type == ZBT_MICRO) { 1052 err = (mzap_lookup(zapbuf, endian, size, name, val)); 1053 free(zapbuf); 1054 return err; 1055 } else if (block_type == ZBT_HEADER) { 1056 /* this is a fat zap */ 1057 err = (fzap_lookup(zap_dnode, zapbuf, name, val, data)); 1058 free(zapbuf); 1059 return err; 1060 } 1061 1062 printf("unknown ZAP type\n"); 1063 return ZFS_ERR_BAD_FS; 1064 } 1065 1066 static int 1067 zap_iterate(dnode_end_t *zap_dnode, 1068 int (*hook)(const char *name, uint64_t val, 1069 struct zfs_data *data), 1070 struct zfs_data *data) 1071 { 1072 uint64_t block_type; 1073 int size; 1074 void *zapbuf; 1075 int err; 1076 int ret; 1077 zfs_endian_t endian; 1078 1079 /* Read in the first block of the zap object data. */ 1080 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT; 1081 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); 1082 if (err) 1083 return 0; 1084 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); 1085 1086 if (block_type == ZBT_MICRO) { 1087 ret = mzap_iterate(zapbuf, endian, size, hook, data); 1088 free(zapbuf); 1089 return ret; 1090 } else if (block_type == ZBT_HEADER) { 1091 /* this is a fat zap */ 1092 ret = fzap_iterate(zap_dnode, zapbuf, hook, data); 1093 free(zapbuf); 1094 return ret; 1095 } 1096 printf("unknown ZAP type\n"); 1097 return 0; 1098 } 1099 1100 1101 /* 1102 * Get the dnode of an object number from the metadnode of an object set. 1103 * 1104 * Input 1105 * mdn - metadnode to get the object dnode 1106 * objnum - object number for the object dnode 1107 * buf - data buffer that holds the returning dnode 1108 */ 1109 static int 1110 dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type, 1111 dnode_end_t *buf, struct zfs_data *data) 1112 { 1113 uint64_t blkid, blksz; /* the block id this object dnode is in */ 1114 int epbs; /* shift of number of dnodes in a block */ 1115 int idx; /* index within a block */ 1116 void *dnbuf; 1117 int err; 1118 zfs_endian_t endian; 1119 1120 blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec, 1121 mdn->endian) << SPA_MINBLOCKSHIFT; 1122 1123 epbs = zfs_log2(blksz) - DNODE_SHIFT; 1124 blkid = objnum >> epbs; 1125 idx = objnum & ((1 << epbs) - 1); 1126 1127 if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn, 1128 sizeof(*mdn)) == 0 1129 && objnum >= data->dnode_start && objnum < data->dnode_end) { 1130 memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE); 1131 buf->endian = data->dnode_endian; 1132 if (type && buf->dn.dn_type != type) { 1133 printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type); 1134 return ZFS_ERR_BAD_FS; 1135 } 1136 return ZFS_ERR_NONE; 1137 } 1138 1139 err = dmu_read(mdn, blkid, &dnbuf, &endian, data); 1140 if (err) 1141 return err; 1142 1143 free(data->dnode_buf); 1144 free(data->dnode_mdn); 1145 data->dnode_mdn = malloc(sizeof(*mdn)); 1146 if (!data->dnode_mdn) { 1147 data->dnode_buf = 0; 1148 } else { 1149 memcpy(data->dnode_mdn, mdn, sizeof(*mdn)); 1150 data->dnode_buf = dnbuf; 1151 data->dnode_start = blkid << epbs; 1152 data->dnode_end = (blkid + 1) << epbs; 1153 data->dnode_endian = endian; 1154 } 1155 1156 memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE); 1157 buf->endian = endian; 1158 if (type && buf->dn.dn_type != type) { 1159 printf("incorrect dnode type\n"); 1160 return ZFS_ERR_BAD_FS; 1161 } 1162 1163 return ZFS_ERR_NONE; 1164 } 1165 1166 /* 1167 * Get the file dnode for a given file name where mdn is the meta dnode 1168 * for this ZFS object set. When found, place the file dnode in dn. 1169 * The 'path' argument will be mangled. 1170 * 1171 */ 1172 static int 1173 dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn, 1174 struct zfs_data *data) 1175 { 1176 uint64_t objnum, version; 1177 char *cname, ch; 1178 int err = ZFS_ERR_NONE; 1179 char *path, *path_buf; 1180 struct dnode_chain { 1181 struct dnode_chain *next; 1182 dnode_end_t dn; 1183 }; 1184 struct dnode_chain *dnode_path = 0, *dn_new, *root; 1185 1186 dn_new = malloc(sizeof(*dn_new)); 1187 if (!dn_new) 1188 return ZFS_ERR_OUT_OF_MEMORY; 1189 dn_new->next = 0; 1190 dnode_path = root = dn_new; 1191 1192 err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, 1193 &(dnode_path->dn), data); 1194 if (err) { 1195 free(dn_new); 1196 return err; 1197 } 1198 1199 err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data); 1200 if (err) { 1201 free(dn_new); 1202 return err; 1203 } 1204 if (version > ZPL_VERSION) { 1205 free(dn_new); 1206 printf("too new ZPL version\n"); 1207 return ZFS_ERR_NOT_IMPLEMENTED_YET; 1208 } 1209 1210 err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data); 1211 if (err) { 1212 free(dn_new); 1213 return err; 1214 } 1215 1216 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); 1217 if (err) { 1218 free(dn_new); 1219 return err; 1220 } 1221 1222 path = path_buf = strdup(path_in); 1223 if (!path_buf) { 1224 free(dn_new); 1225 return ZFS_ERR_OUT_OF_MEMORY; 1226 } 1227 1228 while (1) { 1229 /* skip leading slashes */ 1230 while (*path == '/') 1231 path++; 1232 if (!*path) 1233 break; 1234 /* get the next component name */ 1235 cname = path; 1236 while (*path && *path != '/') 1237 path++; 1238 /* Skip dot. */ 1239 if (cname + 1 == path && cname[0] == '.') 1240 continue; 1241 /* Handle double dot. */ 1242 if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') { 1243 if (dn_new->next) { 1244 dn_new = dnode_path; 1245 dnode_path = dn_new->next; 1246 free(dn_new); 1247 } else { 1248 printf("can't resolve ..\n"); 1249 err = ZFS_ERR_FILE_NOT_FOUND; 1250 break; 1251 } 1252 continue; 1253 } 1254 1255 ch = *path; 1256 *path = 0; /* ensure null termination */ 1257 1258 if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { 1259 free(path_buf); 1260 printf("not a directory\n"); 1261 return ZFS_ERR_BAD_FILE_TYPE; 1262 } 1263 err = zap_lookup(&(dnode_path->dn), cname, &objnum, data); 1264 if (err) 1265 break; 1266 1267 dn_new = malloc(sizeof(*dn_new)); 1268 if (!dn_new) { 1269 err = ZFS_ERR_OUT_OF_MEMORY; 1270 break; 1271 } 1272 dn_new->next = dnode_path; 1273 dnode_path = dn_new; 1274 1275 objnum = ZFS_DIRENT_OBJ(objnum); 1276 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); 1277 if (err) 1278 break; 1279 1280 *path = ch; 1281 } 1282 1283 if (!err) 1284 memcpy(dn, &(dnode_path->dn), sizeof(*dn)); 1285 1286 while (dnode_path) { 1287 dn_new = dnode_path->next; 1288 free(dnode_path); 1289 dnode_path = dn_new; 1290 } 1291 free(path_buf); 1292 return err; 1293 } 1294 1295 1296 /* 1297 * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname), 1298 * e.g. pool/rootfs, or a given object number (obj), e.g. the object number 1299 * of pool/rootfs. 1300 * 1301 * If no fsname and no obj are given, return the DSL_DIR metadnode. 1302 * If fsname is given, return its metadnode and its matching object number. 1303 * If only obj is given, return the metadnode for this object number. 1304 * 1305 */ 1306 static int 1307 get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname, 1308 dnode_end_t *mdn, struct zfs_data *data) 1309 { 1310 uint64_t objnum; 1311 int err; 1312 1313 err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT, 1314 DMU_OT_OBJECT_DIRECTORY, mdn, data); 1315 if (err) 1316 return err; 1317 1318 err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data); 1319 if (err) 1320 return err; 1321 1322 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); 1323 if (err) 1324 return err; 1325 1326 while (*fsname) { 1327 uint64_t childobj; 1328 char *cname, ch; 1329 1330 while (*fsname == '/') 1331 fsname++; 1332 1333 if (!*fsname || *fsname == '@') 1334 break; 1335 1336 cname = fsname; 1337 while (*fsname && !isspace(*fsname) && *fsname != '/') 1338 fsname++; 1339 ch = *fsname; 1340 *fsname = 0; 1341 1342 childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian); 1343 err = dnode_get(mosmdn, childobj, 1344 DMU_OT_DSL_DIR_CHILD_MAP, mdn, data); 1345 if (err) 1346 return err; 1347 1348 err = zap_lookup(mdn, cname, &objnum, data); 1349 if (err) 1350 return err; 1351 1352 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); 1353 if (err) 1354 return err; 1355 1356 *fsname = ch; 1357 } 1358 return ZFS_ERR_NONE; 1359 } 1360 1361 static int 1362 make_mdn(dnode_end_t *mdn, struct zfs_data *data) 1363 { 1364 void *osp; 1365 blkptr_t *bp; 1366 size_t ospsize; 1367 int err; 1368 1369 bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp); 1370 err = zio_read(bp, mdn->endian, &osp, &ospsize, data); 1371 if (err) 1372 return err; 1373 if (ospsize < OBJSET_PHYS_SIZE_V14) { 1374 free(osp); 1375 printf("too small osp\n"); 1376 return ZFS_ERR_BAD_FS; 1377 } 1378 1379 mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1; 1380 memmove((char *) &(mdn->dn), 1381 (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); 1382 free(osp); 1383 return ZFS_ERR_NONE; 1384 } 1385 1386 static int 1387 dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn, 1388 uint64_t *mdnobj, dnode_end_t *dn, int *isfs, 1389 struct zfs_data *data) 1390 { 1391 char *fsname, *snapname; 1392 const char *ptr_at, *filename; 1393 uint64_t headobj; 1394 int err; 1395 1396 ptr_at = strchr(fullpath, '@'); 1397 if (!ptr_at) { 1398 *isfs = 1; 1399 filename = 0; 1400 snapname = 0; 1401 fsname = strdup(fullpath); 1402 } else { 1403 const char *ptr_slash = strchr(ptr_at, '/'); 1404 1405 *isfs = 0; 1406 fsname = malloc(ptr_at - fullpath + 1); 1407 if (!fsname) 1408 return ZFS_ERR_OUT_OF_MEMORY; 1409 memcpy(fsname, fullpath, ptr_at - fullpath); 1410 fsname[ptr_at - fullpath] = 0; 1411 if (ptr_at[1] && ptr_at[1] != '/') { 1412 snapname = malloc(ptr_slash - ptr_at); 1413 if (!snapname) { 1414 free(fsname); 1415 return ZFS_ERR_OUT_OF_MEMORY; 1416 } 1417 memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1); 1418 snapname[ptr_slash - ptr_at - 1] = 0; 1419 } else { 1420 snapname = 0; 1421 } 1422 if (ptr_slash) 1423 filename = ptr_slash; 1424 else 1425 filename = "/"; 1426 printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n", 1427 fsname, snapname, filename); 1428 } 1429 1430 1431 err = get_filesystem_dnode(&(data->mos), fsname, dn, data); 1432 1433 if (err) { 1434 free(fsname); 1435 free(snapname); 1436 return err; 1437 } 1438 1439 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian); 1440 1441 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); 1442 if (err) { 1443 free(fsname); 1444 free(snapname); 1445 return err; 1446 } 1447 1448 if (snapname) { 1449 uint64_t snapobj; 1450 1451 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian); 1452 1453 err = dnode_get(&(data->mos), snapobj, 1454 DMU_OT_DSL_DS_SNAP_MAP, mdn, data); 1455 if (!err) 1456 err = zap_lookup(mdn, snapname, &headobj, data); 1457 if (!err) 1458 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); 1459 if (err) { 1460 free(fsname); 1461 free(snapname); 1462 return err; 1463 } 1464 } 1465 1466 if (mdnobj) 1467 *mdnobj = headobj; 1468 1469 make_mdn(mdn, data); 1470 1471 if (*isfs) { 1472 free(fsname); 1473 free(snapname); 1474 return ZFS_ERR_NONE; 1475 } 1476 err = dnode_get_path(mdn, filename, dn, data); 1477 free(fsname); 1478 free(snapname); 1479 return err; 1480 } 1481 1482 /* 1483 * For a given XDR packed nvlist, verify the first 4 bytes and move on. 1484 * 1485 * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) : 1486 * 1487 * encoding method/host endian (4 bytes) 1488 * nvl_version (4 bytes) 1489 * nvl_nvflag (4 bytes) 1490 * encoded nvpairs: 1491 * encoded size of the nvpair (4 bytes) 1492 * decoded size of the nvpair (4 bytes) 1493 * name string size (4 bytes) 1494 * name string data (sizeof(NV_ALIGN4(string)) 1495 * data type (4 bytes) 1496 * # of elements in the nvpair (4 bytes) 1497 * data 1498 * 2 zero's for the last nvpair 1499 * (end of the entire list) (8 bytes) 1500 * 1501 */ 1502 1503 static int 1504 nvlist_find_value(char *nvlist, char *name, int valtype, char **val, 1505 size_t *size_out, size_t *nelm_out) 1506 { 1507 int name_len, type, encode_size; 1508 char *nvpair, *nvp_name; 1509 1510 /* Verify if the 1st and 2nd byte in the nvlist are valid. */ 1511 /* NOTE: independently of what endianness header announces all 1512 subsequent values are big-endian. */ 1513 if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN 1514 && nvlist[1] != NV_BIG_ENDIAN)) { 1515 printf("zfs incorrect nvlist header\n"); 1516 return ZFS_ERR_BAD_FS; 1517 } 1518 1519 /* skip the header, nvl_version, and nvl_nvflag */ 1520 nvlist = nvlist + 4 * 3; 1521 /* 1522 * Loop thru the nvpair list 1523 * The XDR representation of an integer is in big-endian byte order. 1524 */ 1525 while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) { 1526 int nelm; 1527 1528 nvpair = nvlist + 4 * 2; /* skip the encode/decode size */ 1529 1530 name_len = be32_to_cpu(*(uint32_t *) nvpair); 1531 nvpair += 4; 1532 1533 nvp_name = nvpair; 1534 nvpair = nvpair + ((name_len + 3) & ~3); /* align */ 1535 1536 type = be32_to_cpu(*(uint32_t *) nvpair); 1537 nvpair += 4; 1538 1539 nelm = be32_to_cpu(*(uint32_t *) nvpair); 1540 if (nelm < 1) { 1541 printf("empty nvpair\n"); 1542 return ZFS_ERR_BAD_FS; 1543 } 1544 1545 nvpair += 4; 1546 1547 if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) { 1548 *val = nvpair; 1549 *size_out = encode_size; 1550 if (nelm_out) 1551 *nelm_out = nelm; 1552 return 1; 1553 } 1554 1555 nvlist += encode_size; /* goto the next nvpair */ 1556 } 1557 return 0; 1558 } 1559 1560 int 1561 zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out) 1562 { 1563 char *nvpair; 1564 size_t size; 1565 int found; 1566 1567 found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0); 1568 if (!found) 1569 return 0; 1570 if (size < sizeof(uint64_t)) { 1571 printf("invalid uint64\n"); 1572 return ZFS_ERR_BAD_FS; 1573 } 1574 1575 *out = be64_to_cpu(*(uint64_t *) nvpair); 1576 return 1; 1577 } 1578 1579 char * 1580 zfs_nvlist_lookup_string(char *nvlist, char *name) 1581 { 1582 char *nvpair; 1583 char *ret; 1584 size_t slen; 1585 size_t size; 1586 int found; 1587 1588 found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0); 1589 if (!found) 1590 return 0; 1591 if (size < 4) { 1592 printf("invalid string\n"); 1593 return 0; 1594 } 1595 slen = be32_to_cpu(*(uint32_t *) nvpair); 1596 if (slen > size - 4) 1597 slen = size - 4; 1598 ret = malloc(slen + 1); 1599 if (!ret) 1600 return 0; 1601 memcpy(ret, nvpair + 4, slen); 1602 ret[slen] = 0; 1603 return ret; 1604 } 1605 1606 char * 1607 zfs_nvlist_lookup_nvlist(char *nvlist, char *name) 1608 { 1609 char *nvpair; 1610 char *ret; 1611 size_t size; 1612 int found; 1613 1614 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, 1615 &size, 0); 1616 if (!found) 1617 return 0; 1618 ret = calloc(1, size + 3 * sizeof(uint32_t)); 1619 if (!ret) 1620 return 0; 1621 memcpy(ret, nvlist, sizeof(uint32_t)); 1622 1623 memcpy(ret + sizeof(uint32_t), nvpair, size); 1624 return ret; 1625 } 1626 1627 int 1628 zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name) 1629 { 1630 char *nvpair; 1631 size_t nelm, size; 1632 int found; 1633 1634 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, 1635 &size, &nelm); 1636 if (!found) 1637 return -1; 1638 return nelm; 1639 } 1640 1641 char * 1642 zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name, 1643 size_t index) 1644 { 1645 char *nvpair, *nvpairptr; 1646 int found; 1647 char *ret; 1648 size_t size; 1649 unsigned i; 1650 size_t nelm; 1651 1652 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, 1653 &size, &nelm); 1654 if (!found) 1655 return 0; 1656 if (index >= nelm) { 1657 printf("trying to lookup past nvlist array\n"); 1658 return 0; 1659 } 1660 1661 nvpairptr = nvpair; 1662 1663 for (i = 0; i < index; i++) { 1664 uint32_t encode_size; 1665 1666 /* skip the header, nvl_version, and nvl_nvflag */ 1667 nvpairptr = nvpairptr + 4 * 2; 1668 1669 while (nvpairptr < nvpair + size 1670 && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr))) 1671 nvlist += encode_size; /* goto the next nvpair */ 1672 1673 nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */ 1674 } 1675 1676 if (nvpairptr >= nvpair + size 1677 || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) 1678 >= nvpair + size) { 1679 printf("incorrect nvlist array\n"); 1680 return 0; 1681 } 1682 1683 ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) 1684 + 3 * sizeof(uint32_t)); 1685 if (!ret) 1686 return 0; 1687 memcpy(ret, nvlist, sizeof(uint32_t)); 1688 1689 memcpy(ret + sizeof(uint32_t), nvpairptr, size); 1690 return ret; 1691 } 1692 1693 static int 1694 int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist) 1695 { 1696 int err; 1697 1698 *nvlist = malloc(VDEV_PHYS_SIZE); 1699 /* Read in the vdev name-value pair list (112K). */ 1700 err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist); 1701 if (err) { 1702 free(*nvlist); 1703 *nvlist = 0; 1704 return err; 1705 } 1706 return ZFS_ERR_NONE; 1707 } 1708 1709 /* 1710 * Check the disk label information and retrieve needed vdev name-value pairs. 1711 * 1712 */ 1713 static int 1714 check_pool_label(struct zfs_data *data) 1715 { 1716 uint64_t pool_state; 1717 char *nvlist; /* for the pool */ 1718 char *vdevnvlist; /* for the vdev */ 1719 uint64_t diskguid; 1720 uint64_t version; 1721 int found; 1722 int err; 1723 1724 err = int_zfs_fetch_nvlist(data, &nvlist); 1725 if (err) 1726 return err; 1727 1728 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE, 1729 &pool_state); 1730 if (!found) { 1731 free(nvlist); 1732 printf("zfs pool state not found\n"); 1733 return ZFS_ERR_BAD_FS; 1734 } 1735 1736 if (pool_state == POOL_STATE_DESTROYED) { 1737 free(nvlist); 1738 printf("zpool is marked as destroyed\n"); 1739 return ZFS_ERR_BAD_FS; 1740 } 1741 1742 data->label_txg = 0; 1743 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG, 1744 &data->label_txg); 1745 if (!found) { 1746 free(nvlist); 1747 printf("zfs pool txg not found\n"); 1748 return ZFS_ERR_BAD_FS; 1749 } 1750 1751 /* not an active device */ 1752 if (data->label_txg == 0) { 1753 free(nvlist); 1754 printf("zpool is not active\n"); 1755 return ZFS_ERR_BAD_FS; 1756 } 1757 1758 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION, 1759 &version); 1760 if (!found) { 1761 free(nvlist); 1762 printf("zpool config version not found\n"); 1763 return ZFS_ERR_BAD_FS; 1764 } 1765 1766 if (version > SPA_VERSION) { 1767 free(nvlist); 1768 printf("SPA version too new %llu > %llu\n", 1769 (unsigned long long) version, 1770 (unsigned long long) SPA_VERSION); 1771 return ZFS_ERR_NOT_IMPLEMENTED_YET; 1772 } 1773 1774 vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE); 1775 if (!vdevnvlist) { 1776 free(nvlist); 1777 printf("ZFS config vdev tree not found\n"); 1778 return ZFS_ERR_BAD_FS; 1779 } 1780 1781 found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT, 1782 &data->vdev_ashift); 1783 free(vdevnvlist); 1784 if (!found) { 1785 free(nvlist); 1786 printf("ZPOOL config ashift not found\n"); 1787 return ZFS_ERR_BAD_FS; 1788 } 1789 1790 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid); 1791 if (!found) { 1792 free(nvlist); 1793 printf("ZPOOL config guid not found\n"); 1794 return ZFS_ERR_BAD_FS; 1795 } 1796 1797 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid); 1798 if (!found) { 1799 free(nvlist); 1800 printf("ZPOOL config pool guid not found\n"); 1801 return ZFS_ERR_BAD_FS; 1802 } 1803 1804 free(nvlist); 1805 1806 printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n", 1807 (unsigned long long) data->pool_guid, 1808 (unsigned long long) data->pool_guid, 1809 (unsigned long long) diskguid, 1810 (unsigned long long) diskguid, 1811 (unsigned long long) data->label_txg, 1812 (unsigned long long) version, 1813 (unsigned long long) data->vdev_ashift); 1814 1815 return ZFS_ERR_NONE; 1816 } 1817 1818 /* 1819 * vdev_label_start returns the physical disk offset (in bytes) of 1820 * label "l". 1821 */ 1822 static uint64_t vdev_label_start(uint64_t psize, int l) 1823 { 1824 return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ? 1825 0 : psize - 1826 VDEV_LABELS * sizeof(vdev_label_t))); 1827 } 1828 1829 void 1830 zfs_unmount(struct zfs_data *data) 1831 { 1832 free(data->dnode_buf); 1833 free(data->dnode_mdn); 1834 free(data->file_buf); 1835 free(data); 1836 } 1837 1838 /* 1839 * zfs_mount() locates a valid uberblock of the root pool and read in its MOS 1840 * to the memory address MOS. 1841 * 1842 */ 1843 struct zfs_data * 1844 zfs_mount(device_t dev) 1845 { 1846 struct zfs_data *data = 0; 1847 int label = 0, bestlabel = -1; 1848 char *ub_array; 1849 uberblock_t *ubbest; 1850 uberblock_t *ubcur = NULL; 1851 void *osp = 0; 1852 size_t ospsize; 1853 int err; 1854 1855 data = malloc(sizeof(*data)); 1856 if (!data) 1857 return 0; 1858 memset(data, 0, sizeof(*data)); 1859 1860 ub_array = malloc(VDEV_UBERBLOCK_RING); 1861 if (!ub_array) { 1862 zfs_unmount(data); 1863 return 0; 1864 } 1865 1866 ubbest = malloc(sizeof(*ubbest)); 1867 if (!ubbest) { 1868 zfs_unmount(data); 1869 return 0; 1870 } 1871 memset(ubbest, 0, sizeof(*ubbest)); 1872 1873 /* 1874 * some eltorito stacks don't give us a size and 1875 * we end up setting the size to MAXUINT, further 1876 * some of these devices stop working once a single 1877 * read past the end has been issued. Checking 1878 * for a maximum part_length and skipping the backup 1879 * labels at the end of the slice/partition/device 1880 * avoids breaking down on such devices. 1881 */ 1882 const int vdevnum = 1883 dev->part_length == 0 ? 1884 VDEV_LABELS / 2 : VDEV_LABELS; 1885 1886 /* Size in bytes of the device (disk or partition) aligned to label size*/ 1887 uint64_t device_size = 1888 dev->part_length << SECTOR_BITS; 1889 1890 const uint64_t alignedbytes = 1891 P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t)); 1892 1893 for (label = 0; label < vdevnum; label++) { 1894 uint64_t labelstartbytes = vdev_label_start(alignedbytes, label); 1895 uint64_t labelstart = labelstartbytes >> SECTOR_BITS; 1896 1897 debug("zfs reading label %d at sector %llu (byte %llu)\n", 1898 label, (unsigned long long) labelstart, 1899 (unsigned long long) labelstartbytes); 1900 1901 data->vdev_phys_sector = labelstart + 1902 ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS); 1903 1904 err = check_pool_label(data); 1905 if (err) { 1906 printf("zfs error checking label %d\n", label); 1907 continue; 1908 } 1909 1910 /* Read in the uberblock ring (128K). */ 1911 err = zfs_devread(data->vdev_phys_sector + 1912 (VDEV_PHYS_SIZE >> SECTOR_BITS), 1913 0, VDEV_UBERBLOCK_RING, ub_array); 1914 if (err) { 1915 printf("zfs error reading uberblock ring for label %d\n", label); 1916 continue; 1917 } 1918 1919 ubcur = find_bestub(ub_array, data); 1920 if (!ubcur) { 1921 printf("zfs No good uberblocks found in label %d\n", label); 1922 continue; 1923 } 1924 1925 if (vdev_uberblock_compare(ubcur, ubbest) > 0) { 1926 /* Looks like the block is good, so use it.*/ 1927 memcpy(ubbest, ubcur, sizeof(*ubbest)); 1928 bestlabel = label; 1929 debug("zfs Current best uberblock found in label %d\n", label); 1930 } 1931 } 1932 free(ub_array); 1933 1934 /* We zero'd the structure to begin with. If we never assigned to it, 1935 magic will still be zero. */ 1936 if (!ubbest->ub_magic) { 1937 printf("couldn't find a valid ZFS label\n"); 1938 zfs_unmount(data); 1939 free(ubbest); 1940 return 0; 1941 } 1942 1943 debug("zfs ubbest %p in label %d\n", ubbest, bestlabel); 1944 1945 zfs_endian_t ub_endian = 1946 zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC 1947 ? LITTLE_ENDIAN : BIG_ENDIAN; 1948 1949 debug("zfs endian set to %s\n", !ub_endian ? "big" : "little"); 1950 1951 err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data); 1952 1953 if (err) { 1954 printf("couldn't zio_read object directory\n"); 1955 zfs_unmount(data); 1956 free(ubbest); 1957 return 0; 1958 } 1959 1960 if (ospsize < OBJSET_PHYS_SIZE_V14) { 1961 printf("osp too small\n"); 1962 zfs_unmount(data); 1963 free(osp); 1964 free(ubbest); 1965 return 0; 1966 } 1967 1968 /* Got the MOS. Save it at the memory addr MOS. */ 1969 memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); 1970 data->mos.endian = 1971 (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1; 1972 memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t)); 1973 1974 free(osp); 1975 free(ubbest); 1976 1977 return data; 1978 } 1979 1980 int 1981 zfs_fetch_nvlist(device_t dev, char **nvlist) 1982 { 1983 struct zfs_data *zfs; 1984 int err; 1985 1986 zfs = zfs_mount(dev); 1987 if (!zfs) 1988 return ZFS_ERR_BAD_FS; 1989 err = int_zfs_fetch_nvlist(zfs, nvlist); 1990 zfs_unmount(zfs); 1991 return err; 1992 } 1993 1994 /* 1995 * zfs_open() locates a file in the rootpool by following the 1996 * MOS and places the dnode of the file in the memory address DNODE. 1997 */ 1998 int 1999 zfs_open(struct zfs_file *file, const char *fsfilename) 2000 { 2001 struct zfs_data *data; 2002 int err; 2003 int isfs; 2004 2005 data = zfs_mount(file->device); 2006 if (!data) 2007 return ZFS_ERR_BAD_FS; 2008 2009 err = dnode_get_fullpath(fsfilename, &(data->mdn), 0, 2010 &(data->dnode), &isfs, data); 2011 if (err) { 2012 zfs_unmount(data); 2013 return err; 2014 } 2015 2016 if (isfs) { 2017 zfs_unmount(data); 2018 printf("Missing @ or / separator\n"); 2019 return ZFS_ERR_FILE_NOT_FOUND; 2020 } 2021 2022 /* We found the dnode for this file. Verify if it is a plain file. */ 2023 if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) { 2024 zfs_unmount(data); 2025 printf("not a file\n"); 2026 return ZFS_ERR_BAD_FILE_TYPE; 2027 } 2028 2029 /* get the file size and set the file position to 0 */ 2030 2031 /* 2032 * For DMU_OT_SA we will need to locate the SIZE attribute 2033 * attribute, which could be either in the bonus buffer 2034 * or the "spill" block. 2035 */ 2036 if (data->dnode.dn.dn_bonustype == DMU_OT_SA) { 2037 void *sahdrp; 2038 int hdrsize; 2039 2040 if (data->dnode.dn.dn_bonuslen != 0) { 2041 sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn); 2042 } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2043 blkptr_t *bp = &data->dnode.dn.dn_spill; 2044 2045 err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data); 2046 if (err) 2047 return err; 2048 } else { 2049 printf("filesystem is corrupt :(\n"); 2050 return ZFS_ERR_BAD_FS; 2051 } 2052 2053 hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp)); 2054 file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET); 2055 } else { 2056 file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian); 2057 } 2058 2059 file->data = data; 2060 file->offset = 0; 2061 2062 return ZFS_ERR_NONE; 2063 } 2064 2065 uint64_t 2066 zfs_read(zfs_file_t file, char *buf, uint64_t len) 2067 { 2068 struct zfs_data *data = (struct zfs_data *) file->data; 2069 int blksz, movesize; 2070 uint64_t length; 2071 int64_t red; 2072 int err; 2073 2074 if (data->file_buf == NULL) { 2075 data->file_buf = malloc(SPA_MAXBLOCKSIZE); 2076 if (!data->file_buf) 2077 return -1; 2078 data->file_start = data->file_end = 0; 2079 } 2080 2081 /* 2082 * If offset is in memory, move it into the buffer provided and return. 2083 */ 2084 if (file->offset >= data->file_start 2085 && file->offset + len <= data->file_end) { 2086 memmove(buf, data->file_buf + file->offset - data->file_start, 2087 len); 2088 return len; 2089 } 2090 2091 blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec, 2092 data->dnode.endian) << SPA_MINBLOCKSHIFT; 2093 2094 /* 2095 * Entire Dnode is too big to fit into the space available. We 2096 * will need to read it in chunks. This could be optimized to 2097 * read in as large a chunk as there is space available, but for 2098 * now, this only reads in one data block at a time. 2099 */ 2100 length = len; 2101 red = 0; 2102 while (length) { 2103 void *t; 2104 /* 2105 * Find requested blkid and the offset within that block. 2106 */ 2107 uint64_t blkid = file->offset + red; 2108 blkid = do_div(blkid, blksz); 2109 free(data->file_buf); 2110 data->file_buf = 0; 2111 2112 err = dmu_read(&(data->dnode), blkid, &t, 2113 0, data); 2114 data->file_buf = t; 2115 if (err) 2116 return -1; 2117 2118 data->file_start = blkid * blksz; 2119 data->file_end = data->file_start + blksz; 2120 2121 movesize = MIN(length, data->file_end - (int) file->offset - red); 2122 2123 memmove(buf, data->file_buf + file->offset + red 2124 - data->file_start, movesize); 2125 buf += movesize; 2126 length -= movesize; 2127 red += movesize; 2128 } 2129 2130 return len; 2131 } 2132 2133 int 2134 zfs_close(zfs_file_t file) 2135 { 2136 zfs_unmount((struct zfs_data *) file->data); 2137 return ZFS_ERR_NONE; 2138 } 2139 2140 int 2141 zfs_getmdnobj(device_t dev, const char *fsfilename, 2142 uint64_t *mdnobj) 2143 { 2144 struct zfs_data *data; 2145 int err; 2146 int isfs; 2147 2148 data = zfs_mount(dev); 2149 if (!data) 2150 return ZFS_ERR_BAD_FS; 2151 2152 err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj, 2153 &(data->dnode), &isfs, data); 2154 zfs_unmount(data); 2155 return err; 2156 } 2157 2158 static void 2159 fill_fs_info(struct zfs_dirhook_info *info, 2160 dnode_end_t mdn, struct zfs_data *data) 2161 { 2162 int err; 2163 dnode_end_t dn; 2164 uint64_t objnum; 2165 uint64_t headobj; 2166 2167 memset(info, 0, sizeof(*info)); 2168 2169 info->dir = 1; 2170 2171 if (mdn.dn.dn_type == DMU_OT_DSL_DIR) { 2172 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian); 2173 2174 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data); 2175 if (err) { 2176 printf("zfs failed here 1\n"); 2177 return; 2178 } 2179 } 2180 make_mdn(&mdn, data); 2181 err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, 2182 &dn, data); 2183 if (err) { 2184 printf("zfs failed here 2\n"); 2185 return; 2186 } 2187 2188 err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data); 2189 if (err) { 2190 printf("zfs failed here 3\n"); 2191 return; 2192 } 2193 2194 err = dnode_get(&mdn, objnum, 0, &dn, data); 2195 if (err) { 2196 printf("zfs failed here 4\n"); 2197 return; 2198 } 2199 2200 info->mtimeset = 1; 2201 info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); 2202 2203 return; 2204 } 2205 2206 static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data) 2207 { 2208 struct zfs_dirhook_info info; 2209 dnode_end_t dn; 2210 2211 memset(&info, 0, sizeof(info)); 2212 2213 dnode_get(&(data->mdn), val, 0, &dn, data); 2214 info.mtimeset = 1; 2215 info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); 2216 info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS); 2217 debug("zfs type=%d, name=%s\n", 2218 (int)dn.dn.dn_type, (char *)name); 2219 if (!data->userhook) 2220 return 0; 2221 return data->userhook(name, &info); 2222 } 2223 2224 static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data) 2225 { 2226 struct zfs_dirhook_info info; 2227 dnode_end_t mdn; 2228 int err; 2229 err = dnode_get(&(data->mos), val, 0, &mdn, data); 2230 if (err) 2231 return 0; 2232 if (mdn.dn.dn_type != DMU_OT_DSL_DIR) 2233 return 0; 2234 2235 fill_fs_info(&info, mdn, data); 2236 2237 if (!data->userhook) 2238 return 0; 2239 return data->userhook(name, &info); 2240 } 2241 2242 static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data) 2243 { 2244 struct zfs_dirhook_info info; 2245 char *name2; 2246 int ret = 0; 2247 dnode_end_t mdn; 2248 int err; 2249 2250 err = dnode_get(&(data->mos), val, 0, &mdn, data); 2251 if (err) 2252 return 0; 2253 2254 if (mdn.dn.dn_type != DMU_OT_DSL_DATASET) 2255 return 0; 2256 2257 fill_fs_info(&info, mdn, data); 2258 2259 name2 = malloc(strlen(name) + 2); 2260 name2[0] = '@'; 2261 memcpy(name2 + 1, name, strlen(name) + 1); 2262 if (data->userhook) 2263 ret = data->userhook(name2, &info); 2264 free(name2); 2265 return ret; 2266 } 2267 2268 int 2269 zfs_ls(device_t device, const char *path, 2270 int (*hook)(const char *, const struct zfs_dirhook_info *)) 2271 { 2272 struct zfs_data *data; 2273 int err; 2274 int isfs; 2275 2276 data = zfs_mount(device); 2277 if (!data) 2278 return ZFS_ERR_BAD_FS; 2279 2280 data->userhook = hook; 2281 2282 err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data); 2283 if (err) { 2284 zfs_unmount(data); 2285 return err; 2286 } 2287 if (isfs) { 2288 uint64_t childobj, headobj; 2289 uint64_t snapobj; 2290 dnode_end_t dn; 2291 struct zfs_dirhook_info info; 2292 2293 fill_fs_info(&info, data->dnode, data); 2294 hook("@", &info); 2295 2296 childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian); 2297 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian); 2298 err = dnode_get(&(data->mos), childobj, 2299 DMU_OT_DSL_DIR_CHILD_MAP, &dn, data); 2300 if (err) { 2301 zfs_unmount(data); 2302 return err; 2303 } 2304 2305 2306 zap_iterate(&dn, iterate_zap_fs, data); 2307 2308 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data); 2309 if (err) { 2310 zfs_unmount(data); 2311 return err; 2312 } 2313 2314 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian); 2315 2316 err = dnode_get(&(data->mos), snapobj, 2317 DMU_OT_DSL_DS_SNAP_MAP, &dn, data); 2318 if (err) { 2319 zfs_unmount(data); 2320 return err; 2321 } 2322 2323 zap_iterate(&dn, iterate_zap_snap, data); 2324 } else { 2325 if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { 2326 zfs_unmount(data); 2327 printf("not a directory\n"); 2328 return ZFS_ERR_BAD_FILE_TYPE; 2329 } 2330 zap_iterate(&(data->dnode), iterate_zap, data); 2331 } 2332 zfs_unmount(data); 2333 return ZFS_ERR_NONE; 2334 } 2335