1 /* 2 * 3 * ZFS filesystem ported to u-boot by 4 * Jorgen Lundman <lundman at lundman.net> 5 * 6 * GRUB -- GRand Unified Bootloader 7 * Copyright (C) 1999,2000,2001,2002,2003,2004 8 * Free Software Foundation, Inc. 9 * Copyright 2004 Sun Microsystems, Inc. 10 * 11 * GRUB is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * GRUB is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with GRUB. If not, see <http://www.gnu.org/licenses/>. 23 * 24 */ 25 26 #include <common.h> 27 #include <malloc.h> 28 #include <linux/stat.h> 29 #include <linux/time.h> 30 #include <linux/ctype.h> 31 #include <asm/byteorder.h> 32 #include "zfs_common.h" 33 #include "div64.h" 34 35 block_dev_desc_t *zfs_dev_desc; 36 37 /* 38 * The zfs plug-in routines for GRUB are: 39 * 40 * zfs_mount() - locates a valid uberblock of the root pool and reads 41 * in its MOS at the memory address MOS. 42 * 43 * zfs_open() - locates a plain file object by following the MOS 44 * and places its dnode at the memory address DNODE. 45 * 46 * zfs_read() - read in the data blocks pointed by the DNODE. 47 * 48 */ 49 50 #include <zfs/zfs.h> 51 #include <zfs/zio.h> 52 #include <zfs/dnode.h> 53 #include <zfs/uberblock_impl.h> 54 #include <zfs/vdev_impl.h> 55 #include <zfs/zio_checksum.h> 56 #include <zfs/zap_impl.h> 57 #include <zfs/zap_leaf.h> 58 #include <zfs/zfs_znode.h> 59 #include <zfs/dmu.h> 60 #include <zfs/dmu_objset.h> 61 #include <zfs/sa_impl.h> 62 #include <zfs/dsl_dir.h> 63 #include <zfs/dsl_dataset.h> 64 65 66 #define ZPOOL_PROP_BOOTFS "bootfs" 67 68 69 /* 70 * For nvlist manipulation. (from nvpair.h) 71 */ 72 #define NV_ENCODE_NATIVE 0 73 #define NV_ENCODE_XDR 1 74 #define NV_BIG_ENDIAN 0 75 #define NV_LITTLE_ENDIAN 1 76 #define DATA_TYPE_UINT64 8 77 #define DATA_TYPE_STRING 9 78 #define DATA_TYPE_NVLIST 19 79 #define DATA_TYPE_NVLIST_ARRAY 20 80 81 82 /* 83 * Macros to get fields in a bp or DVA. 84 */ 85 #define P2PHASE(x, align) ((x) & ((align) - 1)) 86 #define DVA_OFFSET_TO_PHYS_SECTOR(offset) \ 87 ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT) 88 89 /* 90 * return x rounded down to an align boundary 91 * eg, P2ALIGN(1200, 1024) == 1024 (1*align) 92 * eg, P2ALIGN(1024, 1024) == 1024 (1*align) 93 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) 94 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) 95 */ 96 #define P2ALIGN(x, align) ((x) & -(align)) 97 98 /* 99 * FAT ZAP data structures 100 */ 101 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 102 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 103 #define CHAIN_END 0xffff /* end of the chunk chain */ 104 105 /* 106 * The amount of space within the chunk available for the array is: 107 * chunk size - space for type (1) - space for next pointer (2) 108 */ 109 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) 110 111 #define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5) 112 #define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs)) 113 #define LEAF_HASH(bs, h) \ 114 ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \ 115 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len))) 116 117 /* 118 * The amount of space available for chunks is: 119 * block size shift - hash entry size (2) * number of hash 120 * entries - header space (2*chunksize) 121 */ 122 #define ZAP_LEAF_NUMCHUNKS(bs) \ 123 (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \ 124 ZAP_LEAF_CHUNKSIZE - 2) 125 126 /* 127 * The chunks start immediately after the hash table. The end of the 128 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a 129 * chunk_t. 130 */ 131 #define ZAP_LEAF_CHUNK(l, bs, idx) \ 132 ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx] 133 #define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry) 134 135 136 /* 137 * Decompression Entry - lzjb 138 */ 139 #ifndef NBBY 140 #define NBBY 8 141 #endif 142 143 144 145 typedef int zfs_decomp_func_t(void *s_start, void *d_start, 146 uint32_t s_len, uint32_t d_len); 147 typedef struct decomp_entry { 148 char *name; 149 zfs_decomp_func_t *decomp_func; 150 } decomp_entry_t; 151 152 typedef struct dnode_end { 153 dnode_phys_t dn; 154 zfs_endian_t endian; 155 } dnode_end_t; 156 157 struct zfs_data { 158 /* cache for a file block of the currently zfs_open()-ed file */ 159 char *file_buf; 160 uint64_t file_start; 161 uint64_t file_end; 162 163 /* XXX: ashift is per vdev, not per pool. We currently only ever touch 164 * a single vdev, but when/if raid-z or stripes are supported, this 165 * may need revision. 166 */ 167 uint64_t vdev_ashift; 168 uint64_t label_txg; 169 uint64_t pool_guid; 170 171 /* cache for a dnode block */ 172 dnode_phys_t *dnode_buf; 173 dnode_phys_t *dnode_mdn; 174 uint64_t dnode_start; 175 uint64_t dnode_end; 176 zfs_endian_t dnode_endian; 177 178 uberblock_t current_uberblock; 179 180 dnode_end_t mos; 181 dnode_end_t mdn; 182 dnode_end_t dnode; 183 184 uint64_t vdev_phys_sector; 185 186 int (*userhook)(const char *, const struct zfs_dirhook_info *); 187 struct zfs_dirhook_info *dirinfo; 188 189 }; 190 191 192 193 194 static int 195 zlib_decompress(void *s, void *d, 196 uint32_t slen, uint32_t dlen) 197 { 198 if (zlib_decompress(s, d, slen, dlen) < 0) 199 return ZFS_ERR_BAD_FS; 200 return ZFS_ERR_NONE; 201 } 202 203 static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = { 204 {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */ 205 {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */ 206 {"off", NULL}, /* ZIO_COMPRESS_OFF */ 207 {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */ 208 {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */ 209 {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */ 210 {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */ 211 {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */ 212 {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */ 213 {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */ 214 {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */ 215 {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */ 216 {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */ 217 {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */ 218 }; 219 220 221 222 static int zio_read_data(blkptr_t *bp, zfs_endian_t endian, 223 void *buf, struct zfs_data *data); 224 225 static int 226 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, 227 size_t *size, struct zfs_data *data); 228 229 /* 230 * Our own version of log2(). Same thing as highbit()-1. 231 */ 232 static int 233 zfs_log2(uint64_t num) 234 { 235 int i = 0; 236 237 while (num > 1) { 238 i++; 239 num = num >> 1; 240 } 241 242 return i; 243 } 244 245 246 /* Checksum Functions */ 247 static void 248 zio_checksum_off(const void *buf __attribute__ ((unused)), 249 uint64_t size __attribute__ ((unused)), 250 zfs_endian_t endian __attribute__ ((unused)), 251 zio_cksum_t *zcp) 252 { 253 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 254 } 255 256 /* Checksum Table and Values */ 257 static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { 258 {NULL, 0, 0, "inherit"}, 259 {NULL, 0, 0, "on"}, 260 {zio_checksum_off, 0, 0, "off"}, 261 {zio_checksum_SHA256, 1, 1, "label"}, 262 {zio_checksum_SHA256, 1, 1, "gang_header"}, 263 {NULL, 0, 0, "zilog"}, 264 {fletcher_2_endian, 0, 0, "fletcher2"}, 265 {fletcher_4_endian, 1, 0, "fletcher4"}, 266 {zio_checksum_SHA256, 1, 0, "SHA256"}, 267 {NULL, 0, 0, "zilog2"}, 268 }; 269 270 /* 271 * zio_checksum_verify: Provides support for checksum verification. 272 * 273 * Fletcher2, Fletcher4, and SHA256 are supported. 274 * 275 */ 276 static int 277 zio_checksum_verify(zio_cksum_t zc, uint32_t checksum, 278 zfs_endian_t endian, char *buf, int size) 279 { 280 zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1; 281 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 282 zio_cksum_t actual_cksum, expected_cksum; 283 284 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) { 285 printf("zfs unknown checksum function %d\n", checksum); 286 return ZFS_ERR_NOT_IMPLEMENTED_YET; 287 } 288 289 if (ci->ci_eck) { 290 expected_cksum = zec->zec_cksum; 291 zec->zec_cksum = zc; 292 ci->ci_func(buf, size, endian, &actual_cksum); 293 zec->zec_cksum = expected_cksum; 294 zc = expected_cksum; 295 } else { 296 ci->ci_func(buf, size, endian, &actual_cksum); 297 } 298 299 if ((actual_cksum.zc_word[0] != zc.zc_word[0]) 300 || (actual_cksum.zc_word[1] != zc.zc_word[1]) 301 || (actual_cksum.zc_word[2] != zc.zc_word[2]) 302 || (actual_cksum.zc_word[3] != zc.zc_word[3])) { 303 return ZFS_ERR_BAD_FS; 304 } 305 306 return ZFS_ERR_NONE; 307 } 308 309 /* 310 * vdev_uberblock_compare takes two uberblock structures and returns an integer 311 * indicating the more recent of the two. 312 * Return Value = 1 if ub2 is more recent 313 * Return Value = -1 if ub1 is more recent 314 * The most recent uberblock is determined using its transaction number and 315 * timestamp. The uberblock with the highest transaction number is 316 * considered "newer". If the transaction numbers of the two blocks match, the 317 * timestamps are compared to determine the "newer" of the two. 318 */ 319 static int 320 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 321 { 322 zfs_endian_t ub1_endian, ub2_endian; 323 if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) 324 ub1_endian = LITTLE_ENDIAN; 325 else 326 ub1_endian = BIG_ENDIAN; 327 if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) 328 ub2_endian = LITTLE_ENDIAN; 329 else 330 ub2_endian = BIG_ENDIAN; 331 332 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) 333 < zfs_to_cpu64(ub2->ub_txg, ub2_endian)) 334 return -1; 335 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) 336 > zfs_to_cpu64(ub2->ub_txg, ub2_endian)) 337 return 1; 338 339 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) 340 < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) 341 return -1; 342 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) 343 > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) 344 return 1; 345 346 return 0; 347 } 348 349 /* 350 * Three pieces of information are needed to verify an uberblock: the magic 351 * number, the version number, and the checksum. 352 * 353 * Currently Implemented: version number, magic number, label txg 354 * Need to Implement: checksum 355 * 356 */ 357 static int 358 uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data) 359 { 360 int err; 361 zfs_endian_t endian = UNKNOWN_ENDIAN; 362 zio_cksum_t zc; 363 364 if (uber->ub_txg < data->label_txg) { 365 debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n", 366 uber->ub_txg, data->label_txg); 367 return ZFS_ERR_BAD_FS; 368 } 369 370 if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC 371 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0 372 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION) 373 endian = LITTLE_ENDIAN; 374 375 if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC 376 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0 377 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION) 378 endian = BIG_ENDIAN; 379 380 if (endian == UNKNOWN_ENDIAN) { 381 printf("invalid uberblock magic\n"); 382 return ZFS_ERR_BAD_FS; 383 } 384 385 memset(&zc, 0, sizeof(zc)); 386 zc.zc_word[0] = cpu_to_zfs64(offset, endian); 387 err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian, 388 (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift)); 389 390 if (!err) { 391 /* Check that the data pointed by the rootbp is usable. */ 392 void *osp = NULL; 393 size_t ospsize; 394 err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data); 395 free(osp); 396 397 if (!err && ospsize < OBJSET_PHYS_SIZE_V14) { 398 printf("uberblock rootbp points to invalid data\n"); 399 return ZFS_ERR_BAD_FS; 400 } 401 } 402 403 return err; 404 } 405 406 /* 407 * Find the best uberblock. 408 * Return: 409 * Success - Pointer to the best uberblock. 410 * Failure - NULL 411 */ 412 static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data) 413 { 414 const uint64_t sector = data->vdev_phys_sector; 415 uberblock_t *ubbest = NULL; 416 uberblock_t *ubnext; 417 unsigned int i, offset, pickedub = 0; 418 int err = ZFS_ERR_NONE; 419 420 const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift); 421 const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift); 422 423 for (i = 0; i < UBCOUNT; i++) { 424 ubnext = (uberblock_t *) (i * UBBYTES + ub_array); 425 offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES); 426 427 err = uberblock_verify(ubnext, offset, data); 428 if (err) 429 continue; 430 431 if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) { 432 ubbest = ubnext; 433 pickedub = i; 434 } 435 } 436 437 if (ubbest) 438 debug("zfs Found best uberblock at idx %d, txg %llu\n", 439 pickedub, (unsigned long long) ubbest->ub_txg); 440 441 return ubbest; 442 } 443 444 static inline size_t 445 get_psize(blkptr_t *bp, zfs_endian_t endian) 446 { 447 return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1) 448 << SPA_MINBLOCKSHIFT; 449 } 450 451 static uint64_t 452 dva_get_offset(dva_t *dva, zfs_endian_t endian) 453 { 454 return zfs_to_cpu64((dva)->dva_word[1], 455 endian) << SPA_MINBLOCKSHIFT; 456 } 457 458 /* 459 * Read a block of data based on the gang block address dva, 460 * and put its data in buf. 461 * 462 */ 463 static int 464 zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf, 465 struct zfs_data *data) 466 { 467 zio_gbh_phys_t *zio_gb; 468 uint64_t offset, sector; 469 unsigned i; 470 int err; 471 zio_cksum_t zc; 472 473 memset(&zc, 0, sizeof(zc)); 474 475 zio_gb = malloc(SPA_GANGBLOCKSIZE); 476 if (!zio_gb) 477 return ZFS_ERR_OUT_OF_MEMORY; 478 479 offset = dva_get_offset(dva, endian); 480 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); 481 482 /* read in the gang block header */ 483 err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb); 484 485 if (err) { 486 free(zio_gb); 487 return err; 488 } 489 490 /* XXX */ 491 /* self checksuming the gang block header */ 492 ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva), 493 dva_get_offset(dva, endian), bp->blk_birth, 0); 494 err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian, 495 (char *) zio_gb, SPA_GANGBLOCKSIZE); 496 if (err) { 497 free(zio_gb); 498 return err; 499 } 500 501 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; 502 503 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 504 if (zio_gb->zg_blkptr[i].blk_birth == 0) 505 continue; 506 507 err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data); 508 if (err) { 509 free(zio_gb); 510 return err; 511 } 512 buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian); 513 } 514 free(zio_gb); 515 return ZFS_ERR_NONE; 516 } 517 518 /* 519 * Read in a block of raw data to buf. 520 */ 521 static int 522 zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf, 523 struct zfs_data *data) 524 { 525 int i, psize; 526 int err = ZFS_ERR_NONE; 527 528 psize = get_psize(bp, endian); 529 530 /* pick a good dva from the block pointer */ 531 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 532 uint64_t offset, sector; 533 534 if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0) 535 continue; 536 537 if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) { 538 err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data); 539 } else { 540 /* read in a data block */ 541 offset = dva_get_offset(&bp->blk_dva[i], endian); 542 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); 543 544 err = zfs_devread(sector, 0, psize, buf); 545 } 546 547 if (!err) { 548 /*Check the underlying checksum before we rule this DVA as "good"*/ 549 uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff; 550 551 err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize); 552 if (!err) 553 return ZFS_ERR_NONE; 554 } 555 556 /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/ 557 } 558 559 if (!err) { 560 printf("couldn't find a valid DVA\n"); 561 err = ZFS_ERR_BAD_FS; 562 } 563 564 return err; 565 } 566 567 /* 568 * Read in a block of data, verify its checksum, decompress if needed, 569 * and put the uncompressed data in buf. 570 */ 571 static int 572 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, 573 size_t *size, struct zfs_data *data) 574 { 575 size_t lsize, psize; 576 unsigned int comp; 577 char *compbuf = NULL; 578 int err; 579 580 *buf = NULL; 581 582 comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff; 583 lsize = (BP_IS_HOLE(bp) ? 0 : 584 (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1) 585 << SPA_MINBLOCKSHIFT)); 586 psize = get_psize(bp, endian); 587 588 if (size) 589 *size = lsize; 590 591 if (comp >= ZIO_COMPRESS_FUNCTIONS) { 592 printf("compression algorithm %u not supported\n", (unsigned int) comp); 593 return ZFS_ERR_NOT_IMPLEMENTED_YET; 594 } 595 596 if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) { 597 printf("compression algorithm %s not supported\n", decomp_table[comp].name); 598 return ZFS_ERR_NOT_IMPLEMENTED_YET; 599 } 600 601 if (comp != ZIO_COMPRESS_OFF) { 602 compbuf = malloc(psize); 603 if (!compbuf) 604 return ZFS_ERR_OUT_OF_MEMORY; 605 } else { 606 compbuf = *buf = malloc(lsize); 607 } 608 609 err = zio_read_data(bp, endian, compbuf, data); 610 if (err) { 611 free(compbuf); 612 *buf = NULL; 613 return err; 614 } 615 616 if (comp != ZIO_COMPRESS_OFF) { 617 *buf = malloc(lsize); 618 if (!*buf) { 619 free(compbuf); 620 return ZFS_ERR_OUT_OF_MEMORY; 621 } 622 623 err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize); 624 free(compbuf); 625 if (err) { 626 free(*buf); 627 *buf = NULL; 628 return err; 629 } 630 } 631 632 return ZFS_ERR_NONE; 633 } 634 635 /* 636 * Get the block from a block id. 637 * push the block onto the stack. 638 * 639 */ 640 static int 641 dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf, 642 zfs_endian_t *endian_out, struct zfs_data *data) 643 { 644 int idx, level; 645 blkptr_t *bp_array = dn->dn.dn_blkptr; 646 int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT; 647 blkptr_t *bp; 648 void *tmpbuf = 0; 649 zfs_endian_t endian; 650 int err = ZFS_ERR_NONE; 651 652 bp = malloc(sizeof(blkptr_t)); 653 if (!bp) 654 return ZFS_ERR_OUT_OF_MEMORY; 655 656 endian = dn->endian; 657 for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) { 658 idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1); 659 *bp = bp_array[idx]; 660 if (bp_array != dn->dn.dn_blkptr) { 661 free(bp_array); 662 bp_array = 0; 663 } 664 665 if (BP_IS_HOLE(bp)) { 666 size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec, 667 dn->endian) 668 << SPA_MINBLOCKSHIFT; 669 *buf = malloc(size); 670 if (*buf) { 671 err = ZFS_ERR_OUT_OF_MEMORY; 672 break; 673 } 674 memset(*buf, 0, size); 675 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; 676 break; 677 } 678 if (level == 0) { 679 err = zio_read(bp, endian, buf, 0, data); 680 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; 681 break; 682 } 683 err = zio_read(bp, endian, &tmpbuf, 0, data); 684 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; 685 if (err) 686 break; 687 bp_array = tmpbuf; 688 } 689 if (bp_array != dn->dn.dn_blkptr) 690 free(bp_array); 691 if (endian_out) 692 *endian_out = endian; 693 694 free(bp); 695 return err; 696 } 697 698 /* 699 * mzap_lookup: Looks up property described by "name" and returns the value 700 * in "value". 701 */ 702 static int 703 mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian, 704 int objsize, char *name, uint64_t * value) 705 { 706 int i, chunks; 707 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; 708 709 chunks = objsize / MZAP_ENT_LEN - 1; 710 for (i = 0; i < chunks; i++) { 711 if (strcmp(mzap_ent[i].mze_name, name) == 0) { 712 *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian); 713 return ZFS_ERR_NONE; 714 } 715 } 716 717 printf("couldn't find '%s'\n", name); 718 return ZFS_ERR_FILE_NOT_FOUND; 719 } 720 721 static int 722 mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize, 723 int (*hook)(const char *name, 724 uint64_t val, 725 struct zfs_data *data), 726 struct zfs_data *data) 727 { 728 int i, chunks; 729 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; 730 731 chunks = objsize / MZAP_ENT_LEN - 1; 732 for (i = 0; i < chunks; i++) { 733 if (hook(mzap_ent[i].mze_name, 734 zfs_to_cpu64(mzap_ent[i].mze_value, endian), 735 data)) 736 return 1; 737 } 738 739 return 0; 740 } 741 742 static uint64_t 743 zap_hash(uint64_t salt, const char *name) 744 { 745 static uint64_t table[256]; 746 const uint8_t *cp; 747 uint8_t c; 748 uint64_t crc = salt; 749 750 if (table[128] == 0) { 751 uint64_t *ct; 752 int i, j; 753 for (i = 0; i < 256; i++) { 754 for (ct = table + i, *ct = i, j = 8; j > 0; j--) 755 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 756 } 757 } 758 759 for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++) 760 crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF]; 761 762 /* 763 * Only use 28 bits, since we need 4 bits in the cookie for the 764 * collision differentiator. We MUST use the high bits, since 765 * those are the onces that we first pay attention to when 766 * chosing the bucket. 767 */ 768 crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); 769 770 return crc; 771 } 772 773 /* 774 * Only to be used on 8-bit arrays. 775 * array_len is actual len in bytes (not encoded le_value_length). 776 * buf is null-terminated. 777 */ 778 /* XXX */ 779 static int 780 zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian, 781 int blksft, int chunk, int array_len, const char *buf) 782 { 783 int bseen = 0; 784 785 while (bseen < array_len) { 786 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; 787 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); 788 789 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) 790 return 0; 791 792 if (memcmp(la->la_array, buf + bseen, toread) != 0) 793 break; 794 chunk = zfs_to_cpu16(la->la_next, endian); 795 bseen += toread; 796 } 797 return (bseen == array_len); 798 } 799 800 /* XXX */ 801 static int 802 zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft, 803 int chunk, int array_len, char *buf) 804 { 805 int bseen = 0; 806 807 while (bseen < array_len) { 808 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; 809 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); 810 811 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) 812 /* Don't use errno because this error is to be ignored. */ 813 return ZFS_ERR_BAD_FS; 814 815 memcpy(buf + bseen, la->la_array, toread); 816 chunk = zfs_to_cpu16(la->la_next, endian); 817 bseen += toread; 818 } 819 return ZFS_ERR_NONE; 820 } 821 822 823 /* 824 * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the 825 * value for the property "name". 826 * 827 */ 828 /* XXX */ 829 static int 830 zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian, 831 int blksft, uint64_t h, 832 const char *name, uint64_t *value) 833 { 834 uint16_t chunk; 835 struct zap_leaf_entry *le; 836 837 /* Verify if this is a valid leaf block */ 838 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { 839 printf("invalid leaf type\n"); 840 return ZFS_ERR_BAD_FS; 841 } 842 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { 843 printf("invalid leaf magic\n"); 844 return ZFS_ERR_BAD_FS; 845 } 846 847 for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian); 848 chunk != CHAIN_END; chunk = le->le_next) { 849 850 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) { 851 printf("invalid chunk number\n"); 852 return ZFS_ERR_BAD_FS; 853 } 854 855 le = ZAP_LEAF_ENTRY(l, blksft, chunk); 856 857 /* Verify the chunk entry */ 858 if (le->le_type != ZAP_CHUNK_ENTRY) { 859 printf("invalid chunk entry\n"); 860 return ZFS_ERR_BAD_FS; 861 } 862 863 if (zfs_to_cpu64(le->le_hash, endian) != h) 864 continue; 865 866 if (zap_leaf_array_equal(l, endian, blksft, 867 zfs_to_cpu16(le->le_name_chunk, endian), 868 zfs_to_cpu16(le->le_name_length, endian), 869 name)) { 870 struct zap_leaf_array *la; 871 872 if (le->le_int_size != 8 || le->le_value_length != 1) { 873 printf("invalid leaf chunk entry\n"); 874 return ZFS_ERR_BAD_FS; 875 } 876 /* get the uint64_t property value */ 877 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; 878 879 *value = be64_to_cpu(la->la_array64); 880 881 return ZFS_ERR_NONE; 882 } 883 } 884 885 printf("couldn't find '%s'\n", name); 886 return ZFS_ERR_FILE_NOT_FOUND; 887 } 888 889 890 /* Verify if this is a fat zap header block */ 891 static int 892 zap_verify(zap_phys_t *zap) 893 { 894 if (zap->zap_magic != (uint64_t) ZAP_MAGIC) { 895 printf("bad ZAP magic\n"); 896 return ZFS_ERR_BAD_FS; 897 } 898 899 if (zap->zap_flags != 0) { 900 printf("bad ZAP flags\n"); 901 return ZFS_ERR_BAD_FS; 902 } 903 904 if (zap->zap_salt == 0) { 905 printf("bad ZAP salt\n"); 906 return ZFS_ERR_BAD_FS; 907 } 908 909 return ZFS_ERR_NONE; 910 } 911 912 /* 913 * Fat ZAP lookup 914 * 915 */ 916 /* XXX */ 917 static int 918 fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap, 919 char *name, uint64_t *value, struct zfs_data *data) 920 { 921 void *l; 922 uint64_t hash, idx, blkid; 923 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, 924 zap_dnode->endian) << DNODE_SHIFT); 925 int err; 926 zfs_endian_t leafendian; 927 928 err = zap_verify(zap); 929 if (err) 930 return err; 931 932 hash = zap_hash(zap->zap_salt, name); 933 934 /* get block id from index */ 935 if (zap->zap_ptrtbl.zt_numblks != 0) { 936 printf("external pointer tables not supported\n"); 937 return ZFS_ERR_NOT_IMPLEMENTED_YET; 938 } 939 idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift); 940 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; 941 942 /* Get the leaf block */ 943 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { 944 printf("ZAP leaf is too small\n"); 945 return ZFS_ERR_BAD_FS; 946 } 947 err = dmu_read(zap_dnode, blkid, &l, &leafendian, data); 948 if (err) 949 return err; 950 951 err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value); 952 free(l); 953 return err; 954 } 955 956 /* XXX */ 957 static int 958 fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap, 959 int (*hook)(const char *name, 960 uint64_t val, 961 struct zfs_data *data), 962 struct zfs_data *data) 963 { 964 zap_leaf_phys_t *l; 965 void *l_in; 966 uint64_t idx, blkid; 967 uint16_t chunk; 968 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, 969 zap_dnode->endian) << DNODE_SHIFT); 970 int err; 971 zfs_endian_t endian; 972 973 if (zap_verify(zap)) 974 return 0; 975 976 /* get block id from index */ 977 if (zap->zap_ptrtbl.zt_numblks != 0) { 978 printf("external pointer tables not supported\n"); 979 return 0; 980 } 981 /* Get the leaf block */ 982 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { 983 printf("ZAP leaf is too small\n"); 984 return 0; 985 } 986 for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) { 987 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; 988 989 err = dmu_read(zap_dnode, blkid, &l_in, &endian, data); 990 l = l_in; 991 if (err) 992 continue; 993 994 /* Verify if this is a valid leaf block */ 995 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { 996 free(l); 997 continue; 998 } 999 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { 1000 free(l); 1001 continue; 1002 } 1003 1004 for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) { 1005 char *buf; 1006 struct zap_leaf_array *la; 1007 struct zap_leaf_entry *le; 1008 uint64_t val; 1009 le = ZAP_LEAF_ENTRY(l, blksft, chunk); 1010 1011 /* Verify the chunk entry */ 1012 if (le->le_type != ZAP_CHUNK_ENTRY) 1013 continue; 1014 1015 buf = malloc(zfs_to_cpu16(le->le_name_length, endian) 1016 + 1); 1017 if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk, 1018 le->le_name_length, buf)) { 1019 free(buf); 1020 continue; 1021 } 1022 buf[le->le_name_length] = 0; 1023 1024 if (le->le_int_size != 8 1025 || zfs_to_cpu16(le->le_value_length, endian) != 1) 1026 continue; 1027 1028 /* get the uint64_t property value */ 1029 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; 1030 val = be64_to_cpu(la->la_array64); 1031 if (hook(buf, val, data)) 1032 return 1; 1033 free(buf); 1034 } 1035 } 1036 return 0; 1037 } 1038 1039 1040 /* 1041 * Read in the data of a zap object and find the value for a matching 1042 * property name. 1043 * 1044 */ 1045 static int 1046 zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val, 1047 struct zfs_data *data) 1048 { 1049 uint64_t block_type; 1050 int size; 1051 void *zapbuf; 1052 int err; 1053 zfs_endian_t endian; 1054 1055 /* Read in the first block of the zap object data. */ 1056 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, 1057 zap_dnode->endian) << SPA_MINBLOCKSHIFT; 1058 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); 1059 if (err) 1060 return err; 1061 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); 1062 1063 if (block_type == ZBT_MICRO) { 1064 err = (mzap_lookup(zapbuf, endian, size, name, val)); 1065 free(zapbuf); 1066 return err; 1067 } else if (block_type == ZBT_HEADER) { 1068 /* this is a fat zap */ 1069 err = (fzap_lookup(zap_dnode, zapbuf, name, val, data)); 1070 free(zapbuf); 1071 return err; 1072 } 1073 1074 printf("unknown ZAP type\n"); 1075 return ZFS_ERR_BAD_FS; 1076 } 1077 1078 static int 1079 zap_iterate(dnode_end_t *zap_dnode, 1080 int (*hook)(const char *name, uint64_t val, 1081 struct zfs_data *data), 1082 struct zfs_data *data) 1083 { 1084 uint64_t block_type; 1085 int size; 1086 void *zapbuf; 1087 int err; 1088 int ret; 1089 zfs_endian_t endian; 1090 1091 /* Read in the first block of the zap object data. */ 1092 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT; 1093 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); 1094 if (err) 1095 return 0; 1096 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); 1097 1098 if (block_type == ZBT_MICRO) { 1099 ret = mzap_iterate(zapbuf, endian, size, hook, data); 1100 free(zapbuf); 1101 return ret; 1102 } else if (block_type == ZBT_HEADER) { 1103 /* this is a fat zap */ 1104 ret = fzap_iterate(zap_dnode, zapbuf, hook, data); 1105 free(zapbuf); 1106 return ret; 1107 } 1108 printf("unknown ZAP type\n"); 1109 return 0; 1110 } 1111 1112 1113 /* 1114 * Get the dnode of an object number from the metadnode of an object set. 1115 * 1116 * Input 1117 * mdn - metadnode to get the object dnode 1118 * objnum - object number for the object dnode 1119 * buf - data buffer that holds the returning dnode 1120 */ 1121 static int 1122 dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type, 1123 dnode_end_t *buf, struct zfs_data *data) 1124 { 1125 uint64_t blkid, blksz; /* the block id this object dnode is in */ 1126 int epbs; /* shift of number of dnodes in a block */ 1127 int idx; /* index within a block */ 1128 void *dnbuf; 1129 int err; 1130 zfs_endian_t endian; 1131 1132 blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec, 1133 mdn->endian) << SPA_MINBLOCKSHIFT; 1134 1135 epbs = zfs_log2(blksz) - DNODE_SHIFT; 1136 blkid = objnum >> epbs; 1137 idx = objnum & ((1 << epbs) - 1); 1138 1139 if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn, 1140 sizeof(*mdn)) == 0 1141 && objnum >= data->dnode_start && objnum < data->dnode_end) { 1142 memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE); 1143 buf->endian = data->dnode_endian; 1144 if (type && buf->dn.dn_type != type) { 1145 printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type); 1146 return ZFS_ERR_BAD_FS; 1147 } 1148 return ZFS_ERR_NONE; 1149 } 1150 1151 err = dmu_read(mdn, blkid, &dnbuf, &endian, data); 1152 if (err) 1153 return err; 1154 1155 free(data->dnode_buf); 1156 free(data->dnode_mdn); 1157 data->dnode_mdn = malloc(sizeof(*mdn)); 1158 if (!data->dnode_mdn) { 1159 data->dnode_buf = 0; 1160 } else { 1161 memcpy(data->dnode_mdn, mdn, sizeof(*mdn)); 1162 data->dnode_buf = dnbuf; 1163 data->dnode_start = blkid << epbs; 1164 data->dnode_end = (blkid + 1) << epbs; 1165 data->dnode_endian = endian; 1166 } 1167 1168 memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE); 1169 buf->endian = endian; 1170 if (type && buf->dn.dn_type != type) { 1171 printf("incorrect dnode type\n"); 1172 return ZFS_ERR_BAD_FS; 1173 } 1174 1175 return ZFS_ERR_NONE; 1176 } 1177 1178 /* 1179 * Get the file dnode for a given file name where mdn is the meta dnode 1180 * for this ZFS object set. When found, place the file dnode in dn. 1181 * The 'path' argument will be mangled. 1182 * 1183 */ 1184 static int 1185 dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn, 1186 struct zfs_data *data) 1187 { 1188 uint64_t objnum, version; 1189 char *cname, ch; 1190 int err = ZFS_ERR_NONE; 1191 char *path, *path_buf; 1192 struct dnode_chain { 1193 struct dnode_chain *next; 1194 dnode_end_t dn; 1195 }; 1196 struct dnode_chain *dnode_path = 0, *dn_new, *root; 1197 1198 dn_new = malloc(sizeof(*dn_new)); 1199 if (!dn_new) 1200 return ZFS_ERR_OUT_OF_MEMORY; 1201 dn_new->next = 0; 1202 dnode_path = root = dn_new; 1203 1204 err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, 1205 &(dnode_path->dn), data); 1206 if (err) { 1207 free(dn_new); 1208 return err; 1209 } 1210 1211 err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data); 1212 if (err) { 1213 free(dn_new); 1214 return err; 1215 } 1216 if (version > ZPL_VERSION) { 1217 free(dn_new); 1218 printf("too new ZPL version\n"); 1219 return ZFS_ERR_NOT_IMPLEMENTED_YET; 1220 } 1221 1222 err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data); 1223 if (err) { 1224 free(dn_new); 1225 return err; 1226 } 1227 1228 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); 1229 if (err) { 1230 free(dn_new); 1231 return err; 1232 } 1233 1234 path = path_buf = strdup(path_in); 1235 if (!path_buf) { 1236 free(dn_new); 1237 return ZFS_ERR_OUT_OF_MEMORY; 1238 } 1239 1240 while (1) { 1241 /* skip leading slashes */ 1242 while (*path == '/') 1243 path++; 1244 if (!*path) 1245 break; 1246 /* get the next component name */ 1247 cname = path; 1248 while (*path && *path != '/') 1249 path++; 1250 /* Skip dot. */ 1251 if (cname + 1 == path && cname[0] == '.') 1252 continue; 1253 /* Handle double dot. */ 1254 if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') { 1255 if (dn_new->next) { 1256 dn_new = dnode_path; 1257 dnode_path = dn_new->next; 1258 free(dn_new); 1259 } else { 1260 printf("can't resolve ..\n"); 1261 err = ZFS_ERR_FILE_NOT_FOUND; 1262 break; 1263 } 1264 continue; 1265 } 1266 1267 ch = *path; 1268 *path = 0; /* ensure null termination */ 1269 1270 if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { 1271 free(path_buf); 1272 printf("not a directory\n"); 1273 return ZFS_ERR_BAD_FILE_TYPE; 1274 } 1275 err = zap_lookup(&(dnode_path->dn), cname, &objnum, data); 1276 if (err) 1277 break; 1278 1279 dn_new = malloc(sizeof(*dn_new)); 1280 if (!dn_new) { 1281 err = ZFS_ERR_OUT_OF_MEMORY; 1282 break; 1283 } 1284 dn_new->next = dnode_path; 1285 dnode_path = dn_new; 1286 1287 objnum = ZFS_DIRENT_OBJ(objnum); 1288 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); 1289 if (err) 1290 break; 1291 1292 *path = ch; 1293 } 1294 1295 if (!err) 1296 memcpy(dn, &(dnode_path->dn), sizeof(*dn)); 1297 1298 while (dnode_path) { 1299 dn_new = dnode_path->next; 1300 free(dnode_path); 1301 dnode_path = dn_new; 1302 } 1303 free(path_buf); 1304 return err; 1305 } 1306 1307 1308 /* 1309 * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname), 1310 * e.g. pool/rootfs, or a given object number (obj), e.g. the object number 1311 * of pool/rootfs. 1312 * 1313 * If no fsname and no obj are given, return the DSL_DIR metadnode. 1314 * If fsname is given, return its metadnode and its matching object number. 1315 * If only obj is given, return the metadnode for this object number. 1316 * 1317 */ 1318 static int 1319 get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname, 1320 dnode_end_t *mdn, struct zfs_data *data) 1321 { 1322 uint64_t objnum; 1323 int err; 1324 1325 err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT, 1326 DMU_OT_OBJECT_DIRECTORY, mdn, data); 1327 if (err) 1328 return err; 1329 1330 err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data); 1331 if (err) 1332 return err; 1333 1334 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); 1335 if (err) 1336 return err; 1337 1338 while (*fsname) { 1339 uint64_t childobj; 1340 char *cname, ch; 1341 1342 while (*fsname == '/') 1343 fsname++; 1344 1345 if (!*fsname || *fsname == '@') 1346 break; 1347 1348 cname = fsname; 1349 while (*fsname && !isspace(*fsname) && *fsname != '/') 1350 fsname++; 1351 ch = *fsname; 1352 *fsname = 0; 1353 1354 childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian); 1355 err = dnode_get(mosmdn, childobj, 1356 DMU_OT_DSL_DIR_CHILD_MAP, mdn, data); 1357 if (err) 1358 return err; 1359 1360 err = zap_lookup(mdn, cname, &objnum, data); 1361 if (err) 1362 return err; 1363 1364 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); 1365 if (err) 1366 return err; 1367 1368 *fsname = ch; 1369 } 1370 return ZFS_ERR_NONE; 1371 } 1372 1373 static int 1374 make_mdn(dnode_end_t *mdn, struct zfs_data *data) 1375 { 1376 void *osp; 1377 blkptr_t *bp; 1378 size_t ospsize; 1379 int err; 1380 1381 bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp); 1382 err = zio_read(bp, mdn->endian, &osp, &ospsize, data); 1383 if (err) 1384 return err; 1385 if (ospsize < OBJSET_PHYS_SIZE_V14) { 1386 free(osp); 1387 printf("too small osp\n"); 1388 return ZFS_ERR_BAD_FS; 1389 } 1390 1391 mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1; 1392 memmove((char *) &(mdn->dn), 1393 (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); 1394 free(osp); 1395 return ZFS_ERR_NONE; 1396 } 1397 1398 static int 1399 dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn, 1400 uint64_t *mdnobj, dnode_end_t *dn, int *isfs, 1401 struct zfs_data *data) 1402 { 1403 char *fsname, *snapname; 1404 const char *ptr_at, *filename; 1405 uint64_t headobj; 1406 int err; 1407 1408 ptr_at = strchr(fullpath, '@'); 1409 if (!ptr_at) { 1410 *isfs = 1; 1411 filename = 0; 1412 snapname = 0; 1413 fsname = strdup(fullpath); 1414 } else { 1415 const char *ptr_slash = strchr(ptr_at, '/'); 1416 1417 *isfs = 0; 1418 fsname = malloc(ptr_at - fullpath + 1); 1419 if (!fsname) 1420 return ZFS_ERR_OUT_OF_MEMORY; 1421 memcpy(fsname, fullpath, ptr_at - fullpath); 1422 fsname[ptr_at - fullpath] = 0; 1423 if (ptr_at[1] && ptr_at[1] != '/') { 1424 snapname = malloc(ptr_slash - ptr_at); 1425 if (!snapname) { 1426 free(fsname); 1427 return ZFS_ERR_OUT_OF_MEMORY; 1428 } 1429 memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1); 1430 snapname[ptr_slash - ptr_at - 1] = 0; 1431 } else { 1432 snapname = 0; 1433 } 1434 if (ptr_slash) 1435 filename = ptr_slash; 1436 else 1437 filename = "/"; 1438 printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n", 1439 fsname, snapname, filename); 1440 } 1441 1442 1443 err = get_filesystem_dnode(&(data->mos), fsname, dn, data); 1444 1445 if (err) { 1446 free(fsname); 1447 free(snapname); 1448 return err; 1449 } 1450 1451 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian); 1452 1453 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); 1454 if (err) { 1455 free(fsname); 1456 free(snapname); 1457 return err; 1458 } 1459 1460 if (snapname) { 1461 uint64_t snapobj; 1462 1463 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian); 1464 1465 err = dnode_get(&(data->mos), snapobj, 1466 DMU_OT_DSL_DS_SNAP_MAP, mdn, data); 1467 if (!err) 1468 err = zap_lookup(mdn, snapname, &headobj, data); 1469 if (!err) 1470 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); 1471 if (err) { 1472 free(fsname); 1473 free(snapname); 1474 return err; 1475 } 1476 } 1477 1478 if (mdnobj) 1479 *mdnobj = headobj; 1480 1481 make_mdn(mdn, data); 1482 1483 if (*isfs) { 1484 free(fsname); 1485 free(snapname); 1486 return ZFS_ERR_NONE; 1487 } 1488 err = dnode_get_path(mdn, filename, dn, data); 1489 free(fsname); 1490 free(snapname); 1491 return err; 1492 } 1493 1494 /* 1495 * For a given XDR packed nvlist, verify the first 4 bytes and move on. 1496 * 1497 * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) : 1498 * 1499 * encoding method/host endian (4 bytes) 1500 * nvl_version (4 bytes) 1501 * nvl_nvflag (4 bytes) 1502 * encoded nvpairs: 1503 * encoded size of the nvpair (4 bytes) 1504 * decoded size of the nvpair (4 bytes) 1505 * name string size (4 bytes) 1506 * name string data (sizeof(NV_ALIGN4(string)) 1507 * data type (4 bytes) 1508 * # of elements in the nvpair (4 bytes) 1509 * data 1510 * 2 zero's for the last nvpair 1511 * (end of the entire list) (8 bytes) 1512 * 1513 */ 1514 1515 static int 1516 nvlist_find_value(char *nvlist, char *name, int valtype, char **val, 1517 size_t *size_out, size_t *nelm_out) 1518 { 1519 int name_len, type, encode_size; 1520 char *nvpair, *nvp_name; 1521 1522 /* Verify if the 1st and 2nd byte in the nvlist are valid. */ 1523 /* NOTE: independently of what endianness header announces all 1524 subsequent values are big-endian. */ 1525 if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN 1526 && nvlist[1] != NV_BIG_ENDIAN)) { 1527 printf("zfs incorrect nvlist header\n"); 1528 return ZFS_ERR_BAD_FS; 1529 } 1530 1531 /* skip the header, nvl_version, and nvl_nvflag */ 1532 nvlist = nvlist + 4 * 3; 1533 /* 1534 * Loop thru the nvpair list 1535 * The XDR representation of an integer is in big-endian byte order. 1536 */ 1537 while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) { 1538 int nelm; 1539 1540 nvpair = nvlist + 4 * 2; /* skip the encode/decode size */ 1541 1542 name_len = be32_to_cpu(*(uint32_t *) nvpair); 1543 nvpair += 4; 1544 1545 nvp_name = nvpair; 1546 nvpair = nvpair + ((name_len + 3) & ~3); /* align */ 1547 1548 type = be32_to_cpu(*(uint32_t *) nvpair); 1549 nvpair += 4; 1550 1551 nelm = be32_to_cpu(*(uint32_t *) nvpair); 1552 if (nelm < 1) { 1553 printf("empty nvpair\n"); 1554 return ZFS_ERR_BAD_FS; 1555 } 1556 1557 nvpair += 4; 1558 1559 if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) { 1560 *val = nvpair; 1561 *size_out = encode_size; 1562 if (nelm_out) 1563 *nelm_out = nelm; 1564 return 1; 1565 } 1566 1567 nvlist += encode_size; /* goto the next nvpair */ 1568 } 1569 return 0; 1570 } 1571 1572 int 1573 zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out) 1574 { 1575 char *nvpair; 1576 size_t size; 1577 int found; 1578 1579 found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0); 1580 if (!found) 1581 return 0; 1582 if (size < sizeof(uint64_t)) { 1583 printf("invalid uint64\n"); 1584 return ZFS_ERR_BAD_FS; 1585 } 1586 1587 *out = be64_to_cpu(*(uint64_t *) nvpair); 1588 return 1; 1589 } 1590 1591 char * 1592 zfs_nvlist_lookup_string(char *nvlist, char *name) 1593 { 1594 char *nvpair; 1595 char *ret; 1596 size_t slen; 1597 size_t size; 1598 int found; 1599 1600 found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0); 1601 if (!found) 1602 return 0; 1603 if (size < 4) { 1604 printf("invalid string\n"); 1605 return 0; 1606 } 1607 slen = be32_to_cpu(*(uint32_t *) nvpair); 1608 if (slen > size - 4) 1609 slen = size - 4; 1610 ret = malloc(slen + 1); 1611 if (!ret) 1612 return 0; 1613 memcpy(ret, nvpair + 4, slen); 1614 ret[slen] = 0; 1615 return ret; 1616 } 1617 1618 char * 1619 zfs_nvlist_lookup_nvlist(char *nvlist, char *name) 1620 { 1621 char *nvpair; 1622 char *ret; 1623 size_t size; 1624 int found; 1625 1626 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, 1627 &size, 0); 1628 if (!found) 1629 return 0; 1630 ret = calloc(1, size + 3 * sizeof(uint32_t)); 1631 if (!ret) 1632 return 0; 1633 memcpy(ret, nvlist, sizeof(uint32_t)); 1634 1635 memcpy(ret + sizeof(uint32_t), nvpair, size); 1636 return ret; 1637 } 1638 1639 int 1640 zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name) 1641 { 1642 char *nvpair; 1643 size_t nelm, size; 1644 int found; 1645 1646 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, 1647 &size, &nelm); 1648 if (!found) 1649 return -1; 1650 return nelm; 1651 } 1652 1653 char * 1654 zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name, 1655 size_t index) 1656 { 1657 char *nvpair, *nvpairptr; 1658 int found; 1659 char *ret; 1660 size_t size; 1661 unsigned i; 1662 size_t nelm; 1663 1664 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, 1665 &size, &nelm); 1666 if (!found) 1667 return 0; 1668 if (index >= nelm) { 1669 printf("trying to lookup past nvlist array\n"); 1670 return 0; 1671 } 1672 1673 nvpairptr = nvpair; 1674 1675 for (i = 0; i < index; i++) { 1676 uint32_t encode_size; 1677 1678 /* skip the header, nvl_version, and nvl_nvflag */ 1679 nvpairptr = nvpairptr + 4 * 2; 1680 1681 while (nvpairptr < nvpair + size 1682 && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr))) 1683 nvlist += encode_size; /* goto the next nvpair */ 1684 1685 nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */ 1686 } 1687 1688 if (nvpairptr >= nvpair + size 1689 || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) 1690 >= nvpair + size) { 1691 printf("incorrect nvlist array\n"); 1692 return 0; 1693 } 1694 1695 ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) 1696 + 3 * sizeof(uint32_t)); 1697 if (!ret) 1698 return 0; 1699 memcpy(ret, nvlist, sizeof(uint32_t)); 1700 1701 memcpy(ret + sizeof(uint32_t), nvpairptr, size); 1702 return ret; 1703 } 1704 1705 static int 1706 int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist) 1707 { 1708 int err; 1709 1710 *nvlist = malloc(VDEV_PHYS_SIZE); 1711 /* Read in the vdev name-value pair list (112K). */ 1712 err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist); 1713 if (err) { 1714 free(*nvlist); 1715 *nvlist = 0; 1716 return err; 1717 } 1718 return ZFS_ERR_NONE; 1719 } 1720 1721 /* 1722 * Check the disk label information and retrieve needed vdev name-value pairs. 1723 * 1724 */ 1725 static int 1726 check_pool_label(struct zfs_data *data) 1727 { 1728 uint64_t pool_state; 1729 char *nvlist; /* for the pool */ 1730 char *vdevnvlist; /* for the vdev */ 1731 uint64_t diskguid; 1732 uint64_t version; 1733 int found; 1734 int err; 1735 1736 err = int_zfs_fetch_nvlist(data, &nvlist); 1737 if (err) 1738 return err; 1739 1740 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE, 1741 &pool_state); 1742 if (!found) { 1743 free(nvlist); 1744 printf("zfs pool state not found\n"); 1745 return ZFS_ERR_BAD_FS; 1746 } 1747 1748 if (pool_state == POOL_STATE_DESTROYED) { 1749 free(nvlist); 1750 printf("zpool is marked as destroyed\n"); 1751 return ZFS_ERR_BAD_FS; 1752 } 1753 1754 data->label_txg = 0; 1755 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG, 1756 &data->label_txg); 1757 if (!found) { 1758 free(nvlist); 1759 printf("zfs pool txg not found\n"); 1760 return ZFS_ERR_BAD_FS; 1761 } 1762 1763 /* not an active device */ 1764 if (data->label_txg == 0) { 1765 free(nvlist); 1766 printf("zpool is not active\n"); 1767 return ZFS_ERR_BAD_FS; 1768 } 1769 1770 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION, 1771 &version); 1772 if (!found) { 1773 free(nvlist); 1774 printf("zpool config version not found\n"); 1775 return ZFS_ERR_BAD_FS; 1776 } 1777 1778 if (version > SPA_VERSION) { 1779 free(nvlist); 1780 printf("SPA version too new %llu > %llu\n", 1781 (unsigned long long) version, 1782 (unsigned long long) SPA_VERSION); 1783 return ZFS_ERR_NOT_IMPLEMENTED_YET; 1784 } 1785 1786 vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE); 1787 if (!vdevnvlist) { 1788 free(nvlist); 1789 printf("ZFS config vdev tree not found\n"); 1790 return ZFS_ERR_BAD_FS; 1791 } 1792 1793 found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT, 1794 &data->vdev_ashift); 1795 free(vdevnvlist); 1796 if (!found) { 1797 free(nvlist); 1798 printf("ZPOOL config ashift not found\n"); 1799 return ZFS_ERR_BAD_FS; 1800 } 1801 1802 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid); 1803 if (!found) { 1804 free(nvlist); 1805 printf("ZPOOL config guid not found\n"); 1806 return ZFS_ERR_BAD_FS; 1807 } 1808 1809 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid); 1810 if (!found) { 1811 free(nvlist); 1812 printf("ZPOOL config pool guid not found\n"); 1813 return ZFS_ERR_BAD_FS; 1814 } 1815 1816 free(nvlist); 1817 1818 printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n", 1819 (unsigned long long) data->pool_guid, 1820 (unsigned long long) data->pool_guid, 1821 (unsigned long long) diskguid, 1822 (unsigned long long) diskguid, 1823 (unsigned long long) data->label_txg, 1824 (unsigned long long) version, 1825 (unsigned long long) data->vdev_ashift); 1826 1827 return ZFS_ERR_NONE; 1828 } 1829 1830 /* 1831 * vdev_label_start returns the physical disk offset (in bytes) of 1832 * label "l". 1833 */ 1834 static uint64_t vdev_label_start(uint64_t psize, int l) 1835 { 1836 return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ? 1837 0 : psize - 1838 VDEV_LABELS * sizeof(vdev_label_t))); 1839 } 1840 1841 void 1842 zfs_unmount(struct zfs_data *data) 1843 { 1844 free(data->dnode_buf); 1845 free(data->dnode_mdn); 1846 free(data->file_buf); 1847 free(data); 1848 } 1849 1850 /* 1851 * zfs_mount() locates a valid uberblock of the root pool and read in its MOS 1852 * to the memory address MOS. 1853 * 1854 */ 1855 struct zfs_data * 1856 zfs_mount(device_t dev) 1857 { 1858 struct zfs_data *data = 0; 1859 int label = 0, bestlabel = -1; 1860 char *ub_array; 1861 uberblock_t *ubbest; 1862 uberblock_t *ubcur = NULL; 1863 void *osp = 0; 1864 size_t ospsize; 1865 int err; 1866 1867 data = malloc(sizeof(*data)); 1868 if (!data) 1869 return 0; 1870 memset(data, 0, sizeof(*data)); 1871 1872 ub_array = malloc(VDEV_UBERBLOCK_RING); 1873 if (!ub_array) { 1874 zfs_unmount(data); 1875 return 0; 1876 } 1877 1878 ubbest = malloc(sizeof(*ubbest)); 1879 if (!ubbest) { 1880 zfs_unmount(data); 1881 return 0; 1882 } 1883 memset(ubbest, 0, sizeof(*ubbest)); 1884 1885 /* 1886 * some eltorito stacks don't give us a size and 1887 * we end up setting the size to MAXUINT, further 1888 * some of these devices stop working once a single 1889 * read past the end has been issued. Checking 1890 * for a maximum part_length and skipping the backup 1891 * labels at the end of the slice/partition/device 1892 * avoids breaking down on such devices. 1893 */ 1894 const int vdevnum = 1895 dev->part_length == 0 ? 1896 VDEV_LABELS / 2 : VDEV_LABELS; 1897 1898 /* Size in bytes of the device (disk or partition) aligned to label size*/ 1899 uint64_t device_size = 1900 dev->part_length << SECTOR_BITS; 1901 1902 const uint64_t alignedbytes = 1903 P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t)); 1904 1905 for (label = 0; label < vdevnum; label++) { 1906 uint64_t labelstartbytes = vdev_label_start(alignedbytes, label); 1907 uint64_t labelstart = labelstartbytes >> SECTOR_BITS; 1908 1909 debug("zfs reading label %d at sector %llu (byte %llu)\n", 1910 label, (unsigned long long) labelstart, 1911 (unsigned long long) labelstartbytes); 1912 1913 data->vdev_phys_sector = labelstart + 1914 ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS); 1915 1916 err = check_pool_label(data); 1917 if (err) { 1918 printf("zfs error checking label %d\n", label); 1919 continue; 1920 } 1921 1922 /* Read in the uberblock ring (128K). */ 1923 err = zfs_devread(data->vdev_phys_sector + 1924 (VDEV_PHYS_SIZE >> SECTOR_BITS), 1925 0, VDEV_UBERBLOCK_RING, ub_array); 1926 if (err) { 1927 printf("zfs error reading uberblock ring for label %d\n", label); 1928 continue; 1929 } 1930 1931 ubcur = find_bestub(ub_array, data); 1932 if (!ubcur) { 1933 printf("zfs No good uberblocks found in label %d\n", label); 1934 continue; 1935 } 1936 1937 if (vdev_uberblock_compare(ubcur, ubbest) > 0) { 1938 /* Looks like the block is good, so use it.*/ 1939 memcpy(ubbest, ubcur, sizeof(*ubbest)); 1940 bestlabel = label; 1941 debug("zfs Current best uberblock found in label %d\n", label); 1942 } 1943 } 1944 free(ub_array); 1945 1946 /* We zero'd the structure to begin with. If we never assigned to it, 1947 magic will still be zero. */ 1948 if (!ubbest->ub_magic) { 1949 printf("couldn't find a valid ZFS label\n"); 1950 zfs_unmount(data); 1951 free(ubbest); 1952 return 0; 1953 } 1954 1955 debug("zfs ubbest %p in label %d\n", ubbest, bestlabel); 1956 1957 zfs_endian_t ub_endian = 1958 zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC 1959 ? LITTLE_ENDIAN : BIG_ENDIAN; 1960 1961 debug("zfs endian set to %s\n", !ub_endian ? "big" : "little"); 1962 1963 err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data); 1964 1965 if (err) { 1966 printf("couldn't zio_read object directory\n"); 1967 zfs_unmount(data); 1968 free(ubbest); 1969 return 0; 1970 } 1971 1972 if (ospsize < OBJSET_PHYS_SIZE_V14) { 1973 printf("osp too small\n"); 1974 zfs_unmount(data); 1975 free(osp); 1976 free(ubbest); 1977 return 0; 1978 } 1979 1980 /* Got the MOS. Save it at the memory addr MOS. */ 1981 memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); 1982 data->mos.endian = 1983 (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1; 1984 memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t)); 1985 1986 free(osp); 1987 free(ubbest); 1988 1989 return data; 1990 } 1991 1992 int 1993 zfs_fetch_nvlist(device_t dev, char **nvlist) 1994 { 1995 struct zfs_data *zfs; 1996 int err; 1997 1998 zfs = zfs_mount(dev); 1999 if (!zfs) 2000 return ZFS_ERR_BAD_FS; 2001 err = int_zfs_fetch_nvlist(zfs, nvlist); 2002 zfs_unmount(zfs); 2003 return err; 2004 } 2005 2006 /* 2007 * zfs_open() locates a file in the rootpool by following the 2008 * MOS and places the dnode of the file in the memory address DNODE. 2009 */ 2010 int 2011 zfs_open(struct zfs_file *file, const char *fsfilename) 2012 { 2013 struct zfs_data *data; 2014 int err; 2015 int isfs; 2016 2017 data = zfs_mount(file->device); 2018 if (!data) 2019 return ZFS_ERR_BAD_FS; 2020 2021 err = dnode_get_fullpath(fsfilename, &(data->mdn), 0, 2022 &(data->dnode), &isfs, data); 2023 if (err) { 2024 zfs_unmount(data); 2025 return err; 2026 } 2027 2028 if (isfs) { 2029 zfs_unmount(data); 2030 printf("Missing @ or / separator\n"); 2031 return ZFS_ERR_FILE_NOT_FOUND; 2032 } 2033 2034 /* We found the dnode for this file. Verify if it is a plain file. */ 2035 if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) { 2036 zfs_unmount(data); 2037 printf("not a file\n"); 2038 return ZFS_ERR_BAD_FILE_TYPE; 2039 } 2040 2041 /* get the file size and set the file position to 0 */ 2042 2043 /* 2044 * For DMU_OT_SA we will need to locate the SIZE attribute 2045 * attribute, which could be either in the bonus buffer 2046 * or the "spill" block. 2047 */ 2048 if (data->dnode.dn.dn_bonustype == DMU_OT_SA) { 2049 void *sahdrp; 2050 int hdrsize; 2051 2052 if (data->dnode.dn.dn_bonuslen != 0) { 2053 sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn); 2054 } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2055 blkptr_t *bp = &data->dnode.dn.dn_spill; 2056 2057 err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data); 2058 if (err) 2059 return err; 2060 } else { 2061 printf("filesystem is corrupt :(\n"); 2062 return ZFS_ERR_BAD_FS; 2063 } 2064 2065 hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp)); 2066 file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET); 2067 } else { 2068 file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian); 2069 } 2070 2071 file->data = data; 2072 file->offset = 0; 2073 2074 return ZFS_ERR_NONE; 2075 } 2076 2077 uint64_t 2078 zfs_read(zfs_file_t file, char *buf, uint64_t len) 2079 { 2080 struct zfs_data *data = (struct zfs_data *) file->data; 2081 int blksz, movesize; 2082 uint64_t length; 2083 int64_t red; 2084 int err; 2085 2086 if (data->file_buf == NULL) { 2087 data->file_buf = malloc(SPA_MAXBLOCKSIZE); 2088 if (!data->file_buf) 2089 return -1; 2090 data->file_start = data->file_end = 0; 2091 } 2092 2093 /* 2094 * If offset is in memory, move it into the buffer provided and return. 2095 */ 2096 if (file->offset >= data->file_start 2097 && file->offset + len <= data->file_end) { 2098 memmove(buf, data->file_buf + file->offset - data->file_start, 2099 len); 2100 return len; 2101 } 2102 2103 blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec, 2104 data->dnode.endian) << SPA_MINBLOCKSHIFT; 2105 2106 /* 2107 * Entire Dnode is too big to fit into the space available. We 2108 * will need to read it in chunks. This could be optimized to 2109 * read in as large a chunk as there is space available, but for 2110 * now, this only reads in one data block at a time. 2111 */ 2112 length = len; 2113 red = 0; 2114 while (length) { 2115 void *t; 2116 /* 2117 * Find requested blkid and the offset within that block. 2118 */ 2119 uint64_t blkid = file->offset + red; 2120 blkid = do_div(blkid, blksz); 2121 free(data->file_buf); 2122 data->file_buf = 0; 2123 2124 err = dmu_read(&(data->dnode), blkid, &t, 2125 0, data); 2126 data->file_buf = t; 2127 if (err) 2128 return -1; 2129 2130 data->file_start = blkid * blksz; 2131 data->file_end = data->file_start + blksz; 2132 2133 movesize = MIN(length, data->file_end - (int) file->offset - red); 2134 2135 memmove(buf, data->file_buf + file->offset + red 2136 - data->file_start, movesize); 2137 buf += movesize; 2138 length -= movesize; 2139 red += movesize; 2140 } 2141 2142 return len; 2143 } 2144 2145 int 2146 zfs_close(zfs_file_t file) 2147 { 2148 zfs_unmount((struct zfs_data *) file->data); 2149 return ZFS_ERR_NONE; 2150 } 2151 2152 int 2153 zfs_getmdnobj(device_t dev, const char *fsfilename, 2154 uint64_t *mdnobj) 2155 { 2156 struct zfs_data *data; 2157 int err; 2158 int isfs; 2159 2160 data = zfs_mount(dev); 2161 if (!data) 2162 return ZFS_ERR_BAD_FS; 2163 2164 err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj, 2165 &(data->dnode), &isfs, data); 2166 zfs_unmount(data); 2167 return err; 2168 } 2169 2170 static void 2171 fill_fs_info(struct zfs_dirhook_info *info, 2172 dnode_end_t mdn, struct zfs_data *data) 2173 { 2174 int err; 2175 dnode_end_t dn; 2176 uint64_t objnum; 2177 uint64_t headobj; 2178 2179 memset(info, 0, sizeof(*info)); 2180 2181 info->dir = 1; 2182 2183 if (mdn.dn.dn_type == DMU_OT_DSL_DIR) { 2184 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian); 2185 2186 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data); 2187 if (err) { 2188 printf("zfs failed here 1\n"); 2189 return; 2190 } 2191 } 2192 make_mdn(&mdn, data); 2193 err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, 2194 &dn, data); 2195 if (err) { 2196 printf("zfs failed here 2\n"); 2197 return; 2198 } 2199 2200 err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data); 2201 if (err) { 2202 printf("zfs failed here 3\n"); 2203 return; 2204 } 2205 2206 err = dnode_get(&mdn, objnum, 0, &dn, data); 2207 if (err) { 2208 printf("zfs failed here 4\n"); 2209 return; 2210 } 2211 2212 info->mtimeset = 1; 2213 info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); 2214 2215 return; 2216 } 2217 2218 static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data) 2219 { 2220 struct zfs_dirhook_info info; 2221 dnode_end_t dn; 2222 2223 memset(&info, 0, sizeof(info)); 2224 2225 dnode_get(&(data->mdn), val, 0, &dn, data); 2226 info.mtimeset = 1; 2227 info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); 2228 info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS); 2229 debug("zfs type=%d, name=%s\n", 2230 (int)dn.dn.dn_type, (char *)name); 2231 if (!data->userhook) 2232 return 0; 2233 return data->userhook(name, &info); 2234 } 2235 2236 static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data) 2237 { 2238 struct zfs_dirhook_info info; 2239 dnode_end_t mdn; 2240 int err; 2241 err = dnode_get(&(data->mos), val, 0, &mdn, data); 2242 if (err) 2243 return 0; 2244 if (mdn.dn.dn_type != DMU_OT_DSL_DIR) 2245 return 0; 2246 2247 fill_fs_info(&info, mdn, data); 2248 2249 if (!data->userhook) 2250 return 0; 2251 return data->userhook(name, &info); 2252 } 2253 2254 static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data) 2255 { 2256 struct zfs_dirhook_info info; 2257 char *name2; 2258 int ret = 0; 2259 dnode_end_t mdn; 2260 int err; 2261 2262 err = dnode_get(&(data->mos), val, 0, &mdn, data); 2263 if (err) 2264 return 0; 2265 2266 if (mdn.dn.dn_type != DMU_OT_DSL_DATASET) 2267 return 0; 2268 2269 fill_fs_info(&info, mdn, data); 2270 2271 name2 = malloc(strlen(name) + 2); 2272 name2[0] = '@'; 2273 memcpy(name2 + 1, name, strlen(name) + 1); 2274 if (data->userhook) 2275 ret = data->userhook(name2, &info); 2276 free(name2); 2277 return ret; 2278 } 2279 2280 int 2281 zfs_ls(device_t device, const char *path, 2282 int (*hook)(const char *, const struct zfs_dirhook_info *)) 2283 { 2284 struct zfs_data *data; 2285 int err; 2286 int isfs; 2287 2288 data = zfs_mount(device); 2289 if (!data) 2290 return ZFS_ERR_BAD_FS; 2291 2292 data->userhook = hook; 2293 2294 err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data); 2295 if (err) { 2296 zfs_unmount(data); 2297 return err; 2298 } 2299 if (isfs) { 2300 uint64_t childobj, headobj; 2301 uint64_t snapobj; 2302 dnode_end_t dn; 2303 struct zfs_dirhook_info info; 2304 2305 fill_fs_info(&info, data->dnode, data); 2306 hook("@", &info); 2307 2308 childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian); 2309 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian); 2310 err = dnode_get(&(data->mos), childobj, 2311 DMU_OT_DSL_DIR_CHILD_MAP, &dn, data); 2312 if (err) { 2313 zfs_unmount(data); 2314 return err; 2315 } 2316 2317 2318 zap_iterate(&dn, iterate_zap_fs, data); 2319 2320 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data); 2321 if (err) { 2322 zfs_unmount(data); 2323 return err; 2324 } 2325 2326 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian); 2327 2328 err = dnode_get(&(data->mos), snapobj, 2329 DMU_OT_DSL_DS_SNAP_MAP, &dn, data); 2330 if (err) { 2331 zfs_unmount(data); 2332 return err; 2333 } 2334 2335 zap_iterate(&dn, iterate_zap_snap, data); 2336 } else { 2337 if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { 2338 zfs_unmount(data); 2339 printf("not a directory\n"); 2340 return ZFS_ERR_BAD_FILE_TYPE; 2341 } 2342 zap_iterate(&(data->dnode), iterate_zap, data); 2343 } 2344 zfs_unmount(data); 2345 return ZFS_ERR_NONE; 2346 } 2347