1 /* 2 * YAFFS: Yet Another Flash File System. A NAND-flash specific file system. 3 * 4 * Copyright (C) 2002-2011 Aleph One Ltd. 5 * for Toby Churchill Ltd and Brightstar Engineering 6 * 7 * Created by Charles Manning <charles@aleph1.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include "yportenv.h" 15 #include "yaffs_trace.h" 16 17 #include "yaffs_guts.h" 18 #include "yaffs_getblockinfo.h" 19 #include "yaffs_tagscompat.h" 20 #include "yaffs_nand.h" 21 #include "yaffs_yaffs1.h" 22 #include "yaffs_yaffs2.h" 23 #include "yaffs_bitmap.h" 24 #include "yaffs_verify.h" 25 #include "yaffs_nand.h" 26 #include "yaffs_packedtags2.h" 27 #include "yaffs_nameval.h" 28 #include "yaffs_allocator.h" 29 #include "yaffs_attribs.h" 30 #include "yaffs_summary.h" 31 32 /* Note YAFFS_GC_GOOD_ENOUGH must be <= YAFFS_GC_PASSIVE_THRESHOLD */ 33 #define YAFFS_GC_GOOD_ENOUGH 2 34 #define YAFFS_GC_PASSIVE_THRESHOLD 4 35 36 #include "yaffs_ecc.h" 37 38 /* Forward declarations */ 39 40 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk, 41 const u8 *buffer, int n_bytes, int use_reserve); 42 43 44 45 /* Function to calculate chunk and offset */ 46 47 void yaffs_addr_to_chunk(struct yaffs_dev *dev, loff_t addr, 48 int *chunk_out, u32 *offset_out) 49 { 50 int chunk; 51 u32 offset; 52 53 chunk = (u32) (addr >> dev->chunk_shift); 54 55 if (dev->chunk_div == 1) { 56 /* easy power of 2 case */ 57 offset = (u32) (addr & dev->chunk_mask); 58 } else { 59 /* Non power-of-2 case */ 60 61 loff_t chunk_base; 62 63 chunk /= dev->chunk_div; 64 65 chunk_base = ((loff_t) chunk) * dev->data_bytes_per_chunk; 66 offset = (u32) (addr - chunk_base); 67 } 68 69 *chunk_out = chunk; 70 *offset_out = offset; 71 } 72 73 /* Function to return the number of shifts for a power of 2 greater than or 74 * equal to the given number 75 * Note we don't try to cater for all possible numbers and this does not have to 76 * be hellishly efficient. 77 */ 78 79 static inline u32 calc_shifts_ceiling(u32 x) 80 { 81 int extra_bits; 82 int shifts; 83 84 shifts = extra_bits = 0; 85 86 while (x > 1) { 87 if (x & 1) 88 extra_bits++; 89 x >>= 1; 90 shifts++; 91 } 92 93 if (extra_bits) 94 shifts++; 95 96 return shifts; 97 } 98 99 /* Function to return the number of shifts to get a 1 in bit 0 100 */ 101 102 static inline u32 calc_shifts(u32 x) 103 { 104 u32 shifts; 105 106 shifts = 0; 107 108 if (!x) 109 return 0; 110 111 while (!(x & 1)) { 112 x >>= 1; 113 shifts++; 114 } 115 116 return shifts; 117 } 118 119 /* 120 * Temporary buffer manipulations. 121 */ 122 123 static int yaffs_init_tmp_buffers(struct yaffs_dev *dev) 124 { 125 int i; 126 u8 *buf = (u8 *) 1; 127 128 memset(dev->temp_buffer, 0, sizeof(dev->temp_buffer)); 129 130 for (i = 0; buf && i < YAFFS_N_TEMP_BUFFERS; i++) { 131 dev->temp_buffer[i].in_use = 0; 132 buf = kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS); 133 dev->temp_buffer[i].buffer = buf; 134 } 135 136 return buf ? YAFFS_OK : YAFFS_FAIL; 137 } 138 139 u8 *yaffs_get_temp_buffer(struct yaffs_dev * dev) 140 { 141 int i; 142 143 dev->temp_in_use++; 144 if (dev->temp_in_use > dev->max_temp) 145 dev->max_temp = dev->temp_in_use; 146 147 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) { 148 if (dev->temp_buffer[i].in_use == 0) { 149 dev->temp_buffer[i].in_use = 1; 150 return dev->temp_buffer[i].buffer; 151 } 152 } 153 154 yaffs_trace(YAFFS_TRACE_BUFFERS, "Out of temp buffers"); 155 /* 156 * If we got here then we have to allocate an unmanaged one 157 * This is not good. 158 */ 159 160 dev->unmanaged_buffer_allocs++; 161 return kmalloc(dev->data_bytes_per_chunk, GFP_NOFS); 162 163 } 164 165 void yaffs_release_temp_buffer(struct yaffs_dev *dev, u8 *buffer) 166 { 167 int i; 168 169 dev->temp_in_use--; 170 171 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) { 172 if (dev->temp_buffer[i].buffer == buffer) { 173 dev->temp_buffer[i].in_use = 0; 174 return; 175 } 176 } 177 178 if (buffer) { 179 /* assume it is an unmanaged one. */ 180 yaffs_trace(YAFFS_TRACE_BUFFERS, 181 "Releasing unmanaged temp buffer"); 182 kfree(buffer); 183 dev->unmanaged_buffer_deallocs++; 184 } 185 186 } 187 188 /* 189 * Determine if we have a managed buffer. 190 */ 191 int yaffs_is_managed_tmp_buffer(struct yaffs_dev *dev, const u8 *buffer) 192 { 193 int i; 194 195 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) { 196 if (dev->temp_buffer[i].buffer == buffer) 197 return 1; 198 } 199 200 for (i = 0; i < dev->param.n_caches; i++) { 201 if (dev->cache[i].data == buffer) 202 return 1; 203 } 204 205 if (buffer == dev->checkpt_buffer) 206 return 1; 207 208 yaffs_trace(YAFFS_TRACE_ALWAYS, 209 "yaffs: unmaged buffer detected."); 210 return 0; 211 } 212 213 /* 214 * Functions for robustisizing TODO 215 * 216 */ 217 218 static void yaffs_handle_chunk_wr_ok(struct yaffs_dev *dev, int nand_chunk, 219 const u8 *data, 220 const struct yaffs_ext_tags *tags) 221 { 222 dev = dev; 223 nand_chunk = nand_chunk; 224 data = data; 225 tags = tags; 226 } 227 228 static void yaffs_handle_chunk_update(struct yaffs_dev *dev, int nand_chunk, 229 const struct yaffs_ext_tags *tags) 230 { 231 dev = dev; 232 nand_chunk = nand_chunk; 233 tags = tags; 234 } 235 236 void yaffs_handle_chunk_error(struct yaffs_dev *dev, 237 struct yaffs_block_info *bi) 238 { 239 if (!bi->gc_prioritise) { 240 bi->gc_prioritise = 1; 241 dev->has_pending_prioritised_gc = 1; 242 bi->chunk_error_strikes++; 243 244 if (bi->chunk_error_strikes > 3) { 245 bi->needs_retiring = 1; /* Too many stikes, so retire */ 246 yaffs_trace(YAFFS_TRACE_ALWAYS, 247 "yaffs: Block struck out"); 248 249 } 250 } 251 } 252 253 static void yaffs_handle_chunk_wr_error(struct yaffs_dev *dev, int nand_chunk, 254 int erased_ok) 255 { 256 int flash_block = nand_chunk / dev->param.chunks_per_block; 257 struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block); 258 259 yaffs_handle_chunk_error(dev, bi); 260 261 if (erased_ok) { 262 /* Was an actual write failure, 263 * so mark the block for retirement.*/ 264 bi->needs_retiring = 1; 265 yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS, 266 "**>> Block %d needs retiring", flash_block); 267 } 268 269 /* Delete the chunk */ 270 yaffs_chunk_del(dev, nand_chunk, 1, __LINE__); 271 yaffs_skip_rest_of_block(dev); 272 } 273 274 /* 275 * Verification code 276 */ 277 278 /* 279 * Simple hash function. Needs to have a reasonable spread 280 */ 281 282 static inline int yaffs_hash_fn(int n) 283 { 284 if (n < 0) 285 n = -n; 286 return n % YAFFS_NOBJECT_BUCKETS; 287 } 288 289 /* 290 * Access functions to useful fake objects. 291 * Note that root might have a presence in NAND if permissions are set. 292 */ 293 294 struct yaffs_obj *yaffs_root(struct yaffs_dev *dev) 295 { 296 return dev->root_dir; 297 } 298 299 struct yaffs_obj *yaffs_lost_n_found(struct yaffs_dev *dev) 300 { 301 return dev->lost_n_found; 302 } 303 304 /* 305 * Erased NAND checking functions 306 */ 307 308 int yaffs_check_ff(u8 *buffer, int n_bytes) 309 { 310 /* Horrible, slow implementation */ 311 while (n_bytes--) { 312 if (*buffer != 0xff) 313 return 0; 314 buffer++; 315 } 316 return 1; 317 } 318 319 static int yaffs_check_chunk_erased(struct yaffs_dev *dev, int nand_chunk) 320 { 321 int retval = YAFFS_OK; 322 u8 *data = yaffs_get_temp_buffer(dev); 323 struct yaffs_ext_tags tags; 324 int result; 325 326 result = yaffs_rd_chunk_tags_nand(dev, nand_chunk, data, &tags); 327 328 if (tags.ecc_result > YAFFS_ECC_RESULT_NO_ERROR) 329 retval = YAFFS_FAIL; 330 331 if (!yaffs_check_ff(data, dev->data_bytes_per_chunk) || 332 tags.chunk_used) { 333 yaffs_trace(YAFFS_TRACE_NANDACCESS, 334 "Chunk %d not erased", nand_chunk); 335 retval = YAFFS_FAIL; 336 } 337 338 yaffs_release_temp_buffer(dev, data); 339 340 return retval; 341 342 } 343 344 static int yaffs_verify_chunk_written(struct yaffs_dev *dev, 345 int nand_chunk, 346 const u8 *data, 347 struct yaffs_ext_tags *tags) 348 { 349 int retval = YAFFS_OK; 350 struct yaffs_ext_tags temp_tags; 351 u8 *buffer = yaffs_get_temp_buffer(dev); 352 int result; 353 354 result = yaffs_rd_chunk_tags_nand(dev, nand_chunk, buffer, &temp_tags); 355 if (memcmp(buffer, data, dev->data_bytes_per_chunk) || 356 temp_tags.obj_id != tags->obj_id || 357 temp_tags.chunk_id != tags->chunk_id || 358 temp_tags.n_bytes != tags->n_bytes) 359 retval = YAFFS_FAIL; 360 361 yaffs_release_temp_buffer(dev, buffer); 362 363 return retval; 364 } 365 366 367 int yaffs_check_alloc_available(struct yaffs_dev *dev, int n_chunks) 368 { 369 int reserved_chunks; 370 int reserved_blocks = dev->param.n_reserved_blocks; 371 int checkpt_blocks; 372 373 checkpt_blocks = yaffs_calc_checkpt_blocks_required(dev); 374 375 reserved_chunks = 376 (reserved_blocks + checkpt_blocks) * dev->param.chunks_per_block; 377 378 return (dev->n_free_chunks > (reserved_chunks + n_chunks)); 379 } 380 381 static int yaffs_find_alloc_block(struct yaffs_dev *dev) 382 { 383 int i; 384 struct yaffs_block_info *bi; 385 386 if (dev->n_erased_blocks < 1) { 387 /* Hoosterman we've got a problem. 388 * Can't get space to gc 389 */ 390 yaffs_trace(YAFFS_TRACE_ERROR, 391 "yaffs tragedy: no more erased blocks"); 392 393 return -1; 394 } 395 396 /* Find an empty block. */ 397 398 for (i = dev->internal_start_block; i <= dev->internal_end_block; i++) { 399 dev->alloc_block_finder++; 400 if (dev->alloc_block_finder < dev->internal_start_block 401 || dev->alloc_block_finder > dev->internal_end_block) { 402 dev->alloc_block_finder = dev->internal_start_block; 403 } 404 405 bi = yaffs_get_block_info(dev, dev->alloc_block_finder); 406 407 if (bi->block_state == YAFFS_BLOCK_STATE_EMPTY) { 408 bi->block_state = YAFFS_BLOCK_STATE_ALLOCATING; 409 dev->seq_number++; 410 bi->seq_number = dev->seq_number; 411 dev->n_erased_blocks--; 412 yaffs_trace(YAFFS_TRACE_ALLOCATE, 413 "Allocated block %d, seq %d, %d left" , 414 dev->alloc_block_finder, dev->seq_number, 415 dev->n_erased_blocks); 416 return dev->alloc_block_finder; 417 } 418 } 419 420 yaffs_trace(YAFFS_TRACE_ALWAYS, 421 "yaffs tragedy: no more erased blocks, but there should have been %d", 422 dev->n_erased_blocks); 423 424 return -1; 425 } 426 427 static int yaffs_alloc_chunk(struct yaffs_dev *dev, int use_reserver, 428 struct yaffs_block_info **block_ptr) 429 { 430 int ret_val; 431 struct yaffs_block_info *bi; 432 433 if (dev->alloc_block < 0) { 434 /* Get next block to allocate off */ 435 dev->alloc_block = yaffs_find_alloc_block(dev); 436 dev->alloc_page = 0; 437 } 438 439 if (!use_reserver && !yaffs_check_alloc_available(dev, 1)) { 440 /* No space unless we're allowed to use the reserve. */ 441 return -1; 442 } 443 444 if (dev->n_erased_blocks < dev->param.n_reserved_blocks 445 && dev->alloc_page == 0) 446 yaffs_trace(YAFFS_TRACE_ALLOCATE, "Allocating reserve"); 447 448 /* Next page please.... */ 449 if (dev->alloc_block >= 0) { 450 bi = yaffs_get_block_info(dev, dev->alloc_block); 451 452 ret_val = (dev->alloc_block * dev->param.chunks_per_block) + 453 dev->alloc_page; 454 bi->pages_in_use++; 455 yaffs_set_chunk_bit(dev, dev->alloc_block, dev->alloc_page); 456 457 dev->alloc_page++; 458 459 dev->n_free_chunks--; 460 461 /* If the block is full set the state to full */ 462 if (dev->alloc_page >= dev->param.chunks_per_block) { 463 bi->block_state = YAFFS_BLOCK_STATE_FULL; 464 dev->alloc_block = -1; 465 } 466 467 if (block_ptr) 468 *block_ptr = bi; 469 470 return ret_val; 471 } 472 473 yaffs_trace(YAFFS_TRACE_ERROR, 474 "!!!!!!!!! Allocator out !!!!!!!!!!!!!!!!!"); 475 476 return -1; 477 } 478 479 static int yaffs_get_erased_chunks(struct yaffs_dev *dev) 480 { 481 int n; 482 483 n = dev->n_erased_blocks * dev->param.chunks_per_block; 484 485 if (dev->alloc_block > 0) 486 n += (dev->param.chunks_per_block - dev->alloc_page); 487 488 return n; 489 490 } 491 492 /* 493 * yaffs_skip_rest_of_block() skips over the rest of the allocation block 494 * if we don't want to write to it. 495 */ 496 void yaffs_skip_rest_of_block(struct yaffs_dev *dev) 497 { 498 struct yaffs_block_info *bi; 499 500 if (dev->alloc_block > 0) { 501 bi = yaffs_get_block_info(dev, dev->alloc_block); 502 if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING) { 503 bi->block_state = YAFFS_BLOCK_STATE_FULL; 504 dev->alloc_block = -1; 505 } 506 } 507 } 508 509 static int yaffs_write_new_chunk(struct yaffs_dev *dev, 510 const u8 *data, 511 struct yaffs_ext_tags *tags, int use_reserver) 512 { 513 int attempts = 0; 514 int write_ok = 0; 515 int chunk; 516 517 yaffs2_checkpt_invalidate(dev); 518 519 do { 520 struct yaffs_block_info *bi = 0; 521 int erased_ok = 0; 522 523 chunk = yaffs_alloc_chunk(dev, use_reserver, &bi); 524 if (chunk < 0) { 525 /* no space */ 526 break; 527 } 528 529 /* First check this chunk is erased, if it needs 530 * checking. The checking policy (unless forced 531 * always on) is as follows: 532 * 533 * Check the first page we try to write in a block. 534 * If the check passes then we don't need to check any 535 * more. If the check fails, we check again... 536 * If the block has been erased, we don't need to check. 537 * 538 * However, if the block has been prioritised for gc, 539 * then we think there might be something odd about 540 * this block and stop using it. 541 * 542 * Rationale: We should only ever see chunks that have 543 * not been erased if there was a partially written 544 * chunk due to power loss. This checking policy should 545 * catch that case with very few checks and thus save a 546 * lot of checks that are most likely not needed. 547 * 548 * Mods to the above 549 * If an erase check fails or the write fails we skip the 550 * rest of the block. 551 */ 552 553 /* let's give it a try */ 554 attempts++; 555 556 if (dev->param.always_check_erased) 557 bi->skip_erased_check = 0; 558 559 if (!bi->skip_erased_check) { 560 erased_ok = yaffs_check_chunk_erased(dev, chunk); 561 if (erased_ok != YAFFS_OK) { 562 yaffs_trace(YAFFS_TRACE_ERROR, 563 "**>> yaffs chunk %d was not erased", 564 chunk); 565 566 /* If not erased, delete this one, 567 * skip rest of block and 568 * try another chunk */ 569 yaffs_chunk_del(dev, chunk, 1, __LINE__); 570 yaffs_skip_rest_of_block(dev); 571 continue; 572 } 573 } 574 575 write_ok = yaffs_wr_chunk_tags_nand(dev, chunk, data, tags); 576 577 if (!bi->skip_erased_check) 578 write_ok = 579 yaffs_verify_chunk_written(dev, chunk, data, tags); 580 581 if (write_ok != YAFFS_OK) { 582 /* Clean up aborted write, skip to next block and 583 * try another chunk */ 584 yaffs_handle_chunk_wr_error(dev, chunk, erased_ok); 585 continue; 586 } 587 588 bi->skip_erased_check = 1; 589 590 /* Copy the data into the robustification buffer */ 591 yaffs_handle_chunk_wr_ok(dev, chunk, data, tags); 592 593 } while (write_ok != YAFFS_OK && 594 (yaffs_wr_attempts <= 0 || attempts <= yaffs_wr_attempts)); 595 596 if (!write_ok) 597 chunk = -1; 598 599 if (attempts > 1) { 600 yaffs_trace(YAFFS_TRACE_ERROR, 601 "**>> yaffs write required %d attempts", 602 attempts); 603 dev->n_retried_writes += (attempts - 1); 604 } 605 606 return chunk; 607 } 608 609 /* 610 * Block retiring for handling a broken block. 611 */ 612 613 static void yaffs_retire_block(struct yaffs_dev *dev, int flash_block) 614 { 615 struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block); 616 617 yaffs2_checkpt_invalidate(dev); 618 619 yaffs2_clear_oldest_dirty_seq(dev, bi); 620 621 if (yaffs_mark_bad(dev, flash_block) != YAFFS_OK) { 622 if (yaffs_erase_block(dev, flash_block) != YAFFS_OK) { 623 yaffs_trace(YAFFS_TRACE_ALWAYS, 624 "yaffs: Failed to mark bad and erase block %d", 625 flash_block); 626 } else { 627 struct yaffs_ext_tags tags; 628 int chunk_id = 629 flash_block * dev->param.chunks_per_block; 630 631 u8 *buffer = yaffs_get_temp_buffer(dev); 632 633 memset(buffer, 0xff, dev->data_bytes_per_chunk); 634 memset(&tags, 0, sizeof(tags)); 635 tags.seq_number = YAFFS_SEQUENCE_BAD_BLOCK; 636 if (dev->param.write_chunk_tags_fn(dev, chunk_id - 637 dev->chunk_offset, 638 buffer, 639 &tags) != YAFFS_OK) 640 yaffs_trace(YAFFS_TRACE_ALWAYS, 641 "yaffs: Failed to write bad block marker to block %d", 642 flash_block); 643 644 yaffs_release_temp_buffer(dev, buffer); 645 } 646 } 647 648 bi->block_state = YAFFS_BLOCK_STATE_DEAD; 649 bi->gc_prioritise = 0; 650 bi->needs_retiring = 0; 651 652 dev->n_retired_blocks++; 653 } 654 655 /*---------------- Name handling functions ------------*/ 656 657 static u16 yaffs_calc_name_sum(const YCHAR *name) 658 { 659 u16 sum = 0; 660 u16 i = 1; 661 662 if (!name) 663 return 0; 664 665 while ((*name) && i < (YAFFS_MAX_NAME_LENGTH / 2)) { 666 667 /* 0x1f mask is case insensitive */ 668 sum += ((*name) & 0x1f) * i; 669 i++; 670 name++; 671 } 672 return sum; 673 } 674 675 void yaffs_set_obj_name(struct yaffs_obj *obj, const YCHAR * name) 676 { 677 memset(obj->short_name, 0, sizeof(obj->short_name)); 678 if (name && 679 yaffs_strnlen(name, YAFFS_SHORT_NAME_LENGTH + 1) <= 680 YAFFS_SHORT_NAME_LENGTH) 681 yaffs_strcpy(obj->short_name, name); 682 else 683 obj->short_name[0] = _Y('\0'); 684 obj->sum = yaffs_calc_name_sum(name); 685 } 686 687 void yaffs_set_obj_name_from_oh(struct yaffs_obj *obj, 688 const struct yaffs_obj_hdr *oh) 689 { 690 #ifdef CONFIG_YAFFS_AUTO_UNICODE 691 YCHAR tmp_name[YAFFS_MAX_NAME_LENGTH + 1]; 692 memset(tmp_name, 0, sizeof(tmp_name)); 693 yaffs_load_name_from_oh(obj->my_dev, tmp_name, oh->name, 694 YAFFS_MAX_NAME_LENGTH + 1); 695 yaffs_set_obj_name(obj, tmp_name); 696 #else 697 yaffs_set_obj_name(obj, oh->name); 698 #endif 699 } 700 701 loff_t yaffs_max_file_size(struct yaffs_dev *dev) 702 { 703 return ((loff_t) YAFFS_MAX_CHUNK_ID) * dev->data_bytes_per_chunk; 704 } 705 706 /*-------------------- TNODES ------------------- 707 708 * List of spare tnodes 709 * The list is hooked together using the first pointer 710 * in the tnode. 711 */ 712 713 struct yaffs_tnode *yaffs_get_tnode(struct yaffs_dev *dev) 714 { 715 struct yaffs_tnode *tn = yaffs_alloc_raw_tnode(dev); 716 717 if (tn) { 718 memset(tn, 0, dev->tnode_size); 719 dev->n_tnodes++; 720 } 721 722 dev->checkpoint_blocks_required = 0; /* force recalculation */ 723 724 return tn; 725 } 726 727 /* FreeTnode frees up a tnode and puts it back on the free list */ 728 static void yaffs_free_tnode(struct yaffs_dev *dev, struct yaffs_tnode *tn) 729 { 730 yaffs_free_raw_tnode(dev, tn); 731 dev->n_tnodes--; 732 dev->checkpoint_blocks_required = 0; /* force recalculation */ 733 } 734 735 static void yaffs_deinit_tnodes_and_objs(struct yaffs_dev *dev) 736 { 737 yaffs_deinit_raw_tnodes_and_objs(dev); 738 dev->n_obj = 0; 739 dev->n_tnodes = 0; 740 } 741 742 void yaffs_load_tnode_0(struct yaffs_dev *dev, struct yaffs_tnode *tn, 743 unsigned pos, unsigned val) 744 { 745 u32 *map = (u32 *) tn; 746 u32 bit_in_map; 747 u32 bit_in_word; 748 u32 word_in_map; 749 u32 mask; 750 751 pos &= YAFFS_TNODES_LEVEL0_MASK; 752 val >>= dev->chunk_grp_bits; 753 754 bit_in_map = pos * dev->tnode_width; 755 word_in_map = bit_in_map / 32; 756 bit_in_word = bit_in_map & (32 - 1); 757 758 mask = dev->tnode_mask << bit_in_word; 759 760 map[word_in_map] &= ~mask; 761 map[word_in_map] |= (mask & (val << bit_in_word)); 762 763 if (dev->tnode_width > (32 - bit_in_word)) { 764 bit_in_word = (32 - bit_in_word); 765 word_in_map++; 766 mask = 767 dev->tnode_mask >> bit_in_word; 768 map[word_in_map] &= ~mask; 769 map[word_in_map] |= (mask & (val >> bit_in_word)); 770 } 771 } 772 773 u32 yaffs_get_group_base(struct yaffs_dev *dev, struct yaffs_tnode *tn, 774 unsigned pos) 775 { 776 u32 *map = (u32 *) tn; 777 u32 bit_in_map; 778 u32 bit_in_word; 779 u32 word_in_map; 780 u32 val; 781 782 pos &= YAFFS_TNODES_LEVEL0_MASK; 783 784 bit_in_map = pos * dev->tnode_width; 785 word_in_map = bit_in_map / 32; 786 bit_in_word = bit_in_map & (32 - 1); 787 788 val = map[word_in_map] >> bit_in_word; 789 790 if (dev->tnode_width > (32 - bit_in_word)) { 791 bit_in_word = (32 - bit_in_word); 792 word_in_map++; 793 val |= (map[word_in_map] << bit_in_word); 794 } 795 796 val &= dev->tnode_mask; 797 val <<= dev->chunk_grp_bits; 798 799 return val; 800 } 801 802 /* ------------------- End of individual tnode manipulation -----------------*/ 803 804 /* ---------Functions to manipulate the look-up tree (made up of tnodes) ------ 805 * The look up tree is represented by the top tnode and the number of top_level 806 * in the tree. 0 means only the level 0 tnode is in the tree. 807 */ 808 809 /* FindLevel0Tnode finds the level 0 tnode, if one exists. */ 810 struct yaffs_tnode *yaffs_find_tnode_0(struct yaffs_dev *dev, 811 struct yaffs_file_var *file_struct, 812 u32 chunk_id) 813 { 814 struct yaffs_tnode *tn = file_struct->top; 815 u32 i; 816 int required_depth; 817 int level = file_struct->top_level; 818 819 dev = dev; 820 821 /* Check sane level and chunk Id */ 822 if (level < 0 || level > YAFFS_TNODES_MAX_LEVEL) 823 return NULL; 824 825 if (chunk_id > YAFFS_MAX_CHUNK_ID) 826 return NULL; 827 828 /* First check we're tall enough (ie enough top_level) */ 829 830 i = chunk_id >> YAFFS_TNODES_LEVEL0_BITS; 831 required_depth = 0; 832 while (i) { 833 i >>= YAFFS_TNODES_INTERNAL_BITS; 834 required_depth++; 835 } 836 837 if (required_depth > file_struct->top_level) 838 return NULL; /* Not tall enough, so we can't find it */ 839 840 /* Traverse down to level 0 */ 841 while (level > 0 && tn) { 842 tn = tn->internal[(chunk_id >> 843 (YAFFS_TNODES_LEVEL0_BITS + 844 (level - 1) * 845 YAFFS_TNODES_INTERNAL_BITS)) & 846 YAFFS_TNODES_INTERNAL_MASK]; 847 level--; 848 } 849 850 return tn; 851 } 852 853 /* add_find_tnode_0 finds the level 0 tnode if it exists, 854 * otherwise first expands the tree. 855 * This happens in two steps: 856 * 1. If the tree isn't tall enough, then make it taller. 857 * 2. Scan down the tree towards the level 0 tnode adding tnodes if required. 858 * 859 * Used when modifying the tree. 860 * 861 * If the tn argument is NULL, then a fresh tnode will be added otherwise the 862 * specified tn will be plugged into the ttree. 863 */ 864 865 struct yaffs_tnode *yaffs_add_find_tnode_0(struct yaffs_dev *dev, 866 struct yaffs_file_var *file_struct, 867 u32 chunk_id, 868 struct yaffs_tnode *passed_tn) 869 { 870 int required_depth; 871 int i; 872 int l; 873 struct yaffs_tnode *tn; 874 u32 x; 875 876 /* Check sane level and page Id */ 877 if (file_struct->top_level < 0 || 878 file_struct->top_level > YAFFS_TNODES_MAX_LEVEL) 879 return NULL; 880 881 if (chunk_id > YAFFS_MAX_CHUNK_ID) 882 return NULL; 883 884 /* First check we're tall enough (ie enough top_level) */ 885 886 x = chunk_id >> YAFFS_TNODES_LEVEL0_BITS; 887 required_depth = 0; 888 while (x) { 889 x >>= YAFFS_TNODES_INTERNAL_BITS; 890 required_depth++; 891 } 892 893 if (required_depth > file_struct->top_level) { 894 /* Not tall enough, gotta make the tree taller */ 895 for (i = file_struct->top_level; i < required_depth; i++) { 896 897 tn = yaffs_get_tnode(dev); 898 899 if (tn) { 900 tn->internal[0] = file_struct->top; 901 file_struct->top = tn; 902 file_struct->top_level++; 903 } else { 904 yaffs_trace(YAFFS_TRACE_ERROR, 905 "yaffs: no more tnodes"); 906 return NULL; 907 } 908 } 909 } 910 911 /* Traverse down to level 0, adding anything we need */ 912 913 l = file_struct->top_level; 914 tn = file_struct->top; 915 916 if (l > 0) { 917 while (l > 0 && tn) { 918 x = (chunk_id >> 919 (YAFFS_TNODES_LEVEL0_BITS + 920 (l - 1) * YAFFS_TNODES_INTERNAL_BITS)) & 921 YAFFS_TNODES_INTERNAL_MASK; 922 923 if ((l > 1) && !tn->internal[x]) { 924 /* Add missing non-level-zero tnode */ 925 tn->internal[x] = yaffs_get_tnode(dev); 926 if (!tn->internal[x]) 927 return NULL; 928 } else if (l == 1) { 929 /* Looking from level 1 at level 0 */ 930 if (passed_tn) { 931 /* If we already have one, release it */ 932 if (tn->internal[x]) 933 yaffs_free_tnode(dev, 934 tn->internal[x]); 935 tn->internal[x] = passed_tn; 936 937 } else if (!tn->internal[x]) { 938 /* Don't have one, none passed in */ 939 tn->internal[x] = yaffs_get_tnode(dev); 940 if (!tn->internal[x]) 941 return NULL; 942 } 943 } 944 945 tn = tn->internal[x]; 946 l--; 947 } 948 } else { 949 /* top is level 0 */ 950 if (passed_tn) { 951 memcpy(tn, passed_tn, 952 (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8); 953 yaffs_free_tnode(dev, passed_tn); 954 } 955 } 956 957 return tn; 958 } 959 960 static int yaffs_tags_match(const struct yaffs_ext_tags *tags, int obj_id, 961 int chunk_obj) 962 { 963 return (tags->chunk_id == chunk_obj && 964 tags->obj_id == obj_id && 965 !tags->is_deleted) ? 1 : 0; 966 967 } 968 969 static int yaffs_find_chunk_in_group(struct yaffs_dev *dev, int the_chunk, 970 struct yaffs_ext_tags *tags, int obj_id, 971 int inode_chunk) 972 { 973 int j; 974 975 for (j = 0; the_chunk && j < dev->chunk_grp_size; j++) { 976 if (yaffs_check_chunk_bit 977 (dev, the_chunk / dev->param.chunks_per_block, 978 the_chunk % dev->param.chunks_per_block)) { 979 980 if (dev->chunk_grp_size == 1) 981 return the_chunk; 982 else { 983 yaffs_rd_chunk_tags_nand(dev, the_chunk, NULL, 984 tags); 985 if (yaffs_tags_match(tags, 986 obj_id, inode_chunk)) { 987 /* found it; */ 988 return the_chunk; 989 } 990 } 991 } 992 the_chunk++; 993 } 994 return -1; 995 } 996 997 static int yaffs_find_chunk_in_file(struct yaffs_obj *in, int inode_chunk, 998 struct yaffs_ext_tags *tags) 999 { 1000 /*Get the Tnode, then get the level 0 offset chunk offset */ 1001 struct yaffs_tnode *tn; 1002 int the_chunk = -1; 1003 struct yaffs_ext_tags local_tags; 1004 int ret_val = -1; 1005 struct yaffs_dev *dev = in->my_dev; 1006 1007 if (!tags) { 1008 /* Passed a NULL, so use our own tags space */ 1009 tags = &local_tags; 1010 } 1011 1012 tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk); 1013 1014 if (!tn) 1015 return ret_val; 1016 1017 the_chunk = yaffs_get_group_base(dev, tn, inode_chunk); 1018 1019 ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id, 1020 inode_chunk); 1021 return ret_val; 1022 } 1023 1024 static int yaffs_find_del_file_chunk(struct yaffs_obj *in, int inode_chunk, 1025 struct yaffs_ext_tags *tags) 1026 { 1027 /* Get the Tnode, then get the level 0 offset chunk offset */ 1028 struct yaffs_tnode *tn; 1029 int the_chunk = -1; 1030 struct yaffs_ext_tags local_tags; 1031 struct yaffs_dev *dev = in->my_dev; 1032 int ret_val = -1; 1033 1034 if (!tags) { 1035 /* Passed a NULL, so use our own tags space */ 1036 tags = &local_tags; 1037 } 1038 1039 tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk); 1040 1041 if (!tn) 1042 return ret_val; 1043 1044 the_chunk = yaffs_get_group_base(dev, tn, inode_chunk); 1045 1046 ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id, 1047 inode_chunk); 1048 1049 /* Delete the entry in the filestructure (if found) */ 1050 if (ret_val != -1) 1051 yaffs_load_tnode_0(dev, tn, inode_chunk, 0); 1052 1053 return ret_val; 1054 } 1055 1056 int yaffs_put_chunk_in_file(struct yaffs_obj *in, int inode_chunk, 1057 int nand_chunk, int in_scan) 1058 { 1059 /* NB in_scan is zero unless scanning. 1060 * For forward scanning, in_scan is > 0; 1061 * for backward scanning in_scan is < 0 1062 * 1063 * nand_chunk = 0 is a dummy insert to make sure the tnodes are there. 1064 */ 1065 1066 struct yaffs_tnode *tn; 1067 struct yaffs_dev *dev = in->my_dev; 1068 int existing_cunk; 1069 struct yaffs_ext_tags existing_tags; 1070 struct yaffs_ext_tags new_tags; 1071 unsigned existing_serial, new_serial; 1072 1073 if (in->variant_type != YAFFS_OBJECT_TYPE_FILE) { 1074 /* Just ignore an attempt at putting a chunk into a non-file 1075 * during scanning. 1076 * If it is not during Scanning then something went wrong! 1077 */ 1078 if (!in_scan) { 1079 yaffs_trace(YAFFS_TRACE_ERROR, 1080 "yaffs tragedy:attempt to put data chunk into a non-file" 1081 ); 1082 BUG(); 1083 } 1084 1085 yaffs_chunk_del(dev, nand_chunk, 1, __LINE__); 1086 return YAFFS_OK; 1087 } 1088 1089 tn = yaffs_add_find_tnode_0(dev, 1090 &in->variant.file_variant, 1091 inode_chunk, NULL); 1092 if (!tn) 1093 return YAFFS_FAIL; 1094 1095 if (!nand_chunk) 1096 /* Dummy insert, bail now */ 1097 return YAFFS_OK; 1098 1099 existing_cunk = yaffs_get_group_base(dev, tn, inode_chunk); 1100 1101 if (in_scan != 0) { 1102 /* If we're scanning then we need to test for duplicates 1103 * NB This does not need to be efficient since it should only 1104 * happen when the power fails during a write, then only one 1105 * chunk should ever be affected. 1106 * 1107 * Correction for YAFFS2: This could happen quite a lot and we 1108 * need to think about efficiency! TODO 1109 * Update: For backward scanning we don't need to re-read tags 1110 * so this is quite cheap. 1111 */ 1112 1113 if (existing_cunk > 0) { 1114 /* NB Right now existing chunk will not be real 1115 * chunk_id if the chunk group size > 1 1116 * thus we have to do a FindChunkInFile to get the 1117 * real chunk id. 1118 * 1119 * We have a duplicate now we need to decide which 1120 * one to use: 1121 * 1122 * Backwards scanning YAFFS2: The old one is what 1123 * we use, dump the new one. 1124 * YAFFS1: Get both sets of tags and compare serial 1125 * numbers. 1126 */ 1127 1128 if (in_scan > 0) { 1129 /* Only do this for forward scanning */ 1130 yaffs_rd_chunk_tags_nand(dev, 1131 nand_chunk, 1132 NULL, &new_tags); 1133 1134 /* Do a proper find */ 1135 existing_cunk = 1136 yaffs_find_chunk_in_file(in, inode_chunk, 1137 &existing_tags); 1138 } 1139 1140 if (existing_cunk <= 0) { 1141 /*Hoosterman - how did this happen? */ 1142 1143 yaffs_trace(YAFFS_TRACE_ERROR, 1144 "yaffs tragedy: existing chunk < 0 in scan" 1145 ); 1146 1147 } 1148 1149 /* NB The deleted flags should be false, otherwise 1150 * the chunks will not be loaded during a scan 1151 */ 1152 1153 if (in_scan > 0) { 1154 new_serial = new_tags.serial_number; 1155 existing_serial = existing_tags.serial_number; 1156 } 1157 1158 if ((in_scan > 0) && 1159 (existing_cunk <= 0 || 1160 ((existing_serial + 1) & 3) == new_serial)) { 1161 /* Forward scanning. 1162 * Use new 1163 * Delete the old one and drop through to 1164 * update the tnode 1165 */ 1166 yaffs_chunk_del(dev, existing_cunk, 1, 1167 __LINE__); 1168 } else { 1169 /* Backward scanning or we want to use the 1170 * existing one 1171 * Delete the new one and return early so that 1172 * the tnode isn't changed 1173 */ 1174 yaffs_chunk_del(dev, nand_chunk, 1, __LINE__); 1175 return YAFFS_OK; 1176 } 1177 } 1178 1179 } 1180 1181 if (existing_cunk == 0) 1182 in->n_data_chunks++; 1183 1184 yaffs_load_tnode_0(dev, tn, inode_chunk, nand_chunk); 1185 1186 return YAFFS_OK; 1187 } 1188 1189 static void yaffs_soft_del_chunk(struct yaffs_dev *dev, int chunk) 1190 { 1191 struct yaffs_block_info *the_block; 1192 unsigned block_no; 1193 1194 yaffs_trace(YAFFS_TRACE_DELETION, "soft delete chunk %d", chunk); 1195 1196 block_no = chunk / dev->param.chunks_per_block; 1197 the_block = yaffs_get_block_info(dev, block_no); 1198 if (the_block) { 1199 the_block->soft_del_pages++; 1200 dev->n_free_chunks++; 1201 yaffs2_update_oldest_dirty_seq(dev, block_no, the_block); 1202 } 1203 } 1204 1205 /* SoftDeleteWorker scans backwards through the tnode tree and soft deletes all 1206 * the chunks in the file. 1207 * All soft deleting does is increment the block's softdelete count and pulls 1208 * the chunk out of the tnode. 1209 * Thus, essentially this is the same as DeleteWorker except that the chunks 1210 * are soft deleted. 1211 */ 1212 1213 static int yaffs_soft_del_worker(struct yaffs_obj *in, struct yaffs_tnode *tn, 1214 u32 level, int chunk_offset) 1215 { 1216 int i; 1217 int the_chunk; 1218 int all_done = 1; 1219 struct yaffs_dev *dev = in->my_dev; 1220 1221 if (!tn) 1222 return 1; 1223 1224 if (level > 0) { 1225 for (i = YAFFS_NTNODES_INTERNAL - 1; 1226 all_done && i >= 0; 1227 i--) { 1228 if (tn->internal[i]) { 1229 all_done = 1230 yaffs_soft_del_worker(in, 1231 tn->internal[i], 1232 level - 1, 1233 (chunk_offset << 1234 YAFFS_TNODES_INTERNAL_BITS) 1235 + i); 1236 if (all_done) { 1237 yaffs_free_tnode(dev, 1238 tn->internal[i]); 1239 tn->internal[i] = NULL; 1240 } else { 1241 /* Can this happen? */ 1242 } 1243 } 1244 } 1245 return (all_done) ? 1 : 0; 1246 } 1247 1248 /* level 0 */ 1249 for (i = YAFFS_NTNODES_LEVEL0 - 1; i >= 0; i--) { 1250 the_chunk = yaffs_get_group_base(dev, tn, i); 1251 if (the_chunk) { 1252 yaffs_soft_del_chunk(dev, the_chunk); 1253 yaffs_load_tnode_0(dev, tn, i, 0); 1254 } 1255 } 1256 return 1; 1257 } 1258 1259 static void yaffs_remove_obj_from_dir(struct yaffs_obj *obj) 1260 { 1261 struct yaffs_dev *dev = obj->my_dev; 1262 struct yaffs_obj *parent; 1263 1264 yaffs_verify_obj_in_dir(obj); 1265 parent = obj->parent; 1266 1267 yaffs_verify_dir(parent); 1268 1269 if (dev && dev->param.remove_obj_fn) 1270 dev->param.remove_obj_fn(obj); 1271 1272 list_del_init(&obj->siblings); 1273 obj->parent = NULL; 1274 1275 yaffs_verify_dir(parent); 1276 } 1277 1278 void yaffs_add_obj_to_dir(struct yaffs_obj *directory, struct yaffs_obj *obj) 1279 { 1280 if (!directory) { 1281 yaffs_trace(YAFFS_TRACE_ALWAYS, 1282 "tragedy: Trying to add an object to a null pointer directory" 1283 ); 1284 BUG(); 1285 return; 1286 } 1287 if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { 1288 yaffs_trace(YAFFS_TRACE_ALWAYS, 1289 "tragedy: Trying to add an object to a non-directory" 1290 ); 1291 BUG(); 1292 } 1293 1294 if (obj->siblings.prev == NULL) { 1295 /* Not initialised */ 1296 BUG(); 1297 } 1298 1299 yaffs_verify_dir(directory); 1300 1301 yaffs_remove_obj_from_dir(obj); 1302 1303 /* Now add it */ 1304 list_add(&obj->siblings, &directory->variant.dir_variant.children); 1305 obj->parent = directory; 1306 1307 if (directory == obj->my_dev->unlinked_dir 1308 || directory == obj->my_dev->del_dir) { 1309 obj->unlinked = 1; 1310 obj->my_dev->n_unlinked_files++; 1311 obj->rename_allowed = 0; 1312 } 1313 1314 yaffs_verify_dir(directory); 1315 yaffs_verify_obj_in_dir(obj); 1316 } 1317 1318 static int yaffs_change_obj_name(struct yaffs_obj *obj, 1319 struct yaffs_obj *new_dir, 1320 const YCHAR *new_name, int force, int shadows) 1321 { 1322 int unlink_op; 1323 int del_op; 1324 struct yaffs_obj *existing_target; 1325 1326 if (new_dir == NULL) 1327 new_dir = obj->parent; /* use the old directory */ 1328 1329 if (new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { 1330 yaffs_trace(YAFFS_TRACE_ALWAYS, 1331 "tragedy: yaffs_change_obj_name: new_dir is not a directory" 1332 ); 1333 BUG(); 1334 } 1335 1336 unlink_op = (new_dir == obj->my_dev->unlinked_dir); 1337 del_op = (new_dir == obj->my_dev->del_dir); 1338 1339 existing_target = yaffs_find_by_name(new_dir, new_name); 1340 1341 /* If the object is a file going into the unlinked directory, 1342 * then it is OK to just stuff it in since duplicate names are OK. 1343 * else only proceed if the new name does not exist and we're putting 1344 * it into a directory. 1345 */ 1346 if (!(unlink_op || del_op || force || 1347 shadows > 0 || !existing_target) || 1348 new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) 1349 return YAFFS_FAIL; 1350 1351 yaffs_set_obj_name(obj, new_name); 1352 obj->dirty = 1; 1353 yaffs_add_obj_to_dir(new_dir, obj); 1354 1355 if (unlink_op) 1356 obj->unlinked = 1; 1357 1358 /* If it is a deletion then we mark it as a shrink for gc */ 1359 if (yaffs_update_oh(obj, new_name, 0, del_op, shadows, NULL) >= 0) 1360 return YAFFS_OK; 1361 1362 return YAFFS_FAIL; 1363 } 1364 1365 /*------------------------ Short Operations Cache ------------------------------ 1366 * In many situations where there is no high level buffering a lot of 1367 * reads might be short sequential reads, and a lot of writes may be short 1368 * sequential writes. eg. scanning/writing a jpeg file. 1369 * In these cases, a short read/write cache can provide a huge perfomance 1370 * benefit with dumb-as-a-rock code. 1371 * In Linux, the page cache provides read buffering and the short op cache 1372 * provides write buffering. 1373 * 1374 * There are a small number (~10) of cache chunks per device so that we don't 1375 * need a very intelligent search. 1376 */ 1377 1378 static int yaffs_obj_cache_dirty(struct yaffs_obj *obj) 1379 { 1380 struct yaffs_dev *dev = obj->my_dev; 1381 int i; 1382 struct yaffs_cache *cache; 1383 int n_caches = obj->my_dev->param.n_caches; 1384 1385 for (i = 0; i < n_caches; i++) { 1386 cache = &dev->cache[i]; 1387 if (cache->object == obj && cache->dirty) 1388 return 1; 1389 } 1390 1391 return 0; 1392 } 1393 1394 static void yaffs_flush_file_cache(struct yaffs_obj *obj) 1395 { 1396 struct yaffs_dev *dev = obj->my_dev; 1397 int lowest = -99; /* Stop compiler whining. */ 1398 int i; 1399 struct yaffs_cache *cache; 1400 int chunk_written = 0; 1401 int n_caches = obj->my_dev->param.n_caches; 1402 1403 if (n_caches < 1) 1404 return; 1405 do { 1406 cache = NULL; 1407 1408 /* Find the lowest dirty chunk for this object */ 1409 for (i = 0; i < n_caches; i++) { 1410 if (dev->cache[i].object == obj && 1411 dev->cache[i].dirty) { 1412 if (!cache || 1413 dev->cache[i].chunk_id < lowest) { 1414 cache = &dev->cache[i]; 1415 lowest = cache->chunk_id; 1416 } 1417 } 1418 } 1419 1420 if (cache && !cache->locked) { 1421 /* Write it out and free it up */ 1422 chunk_written = 1423 yaffs_wr_data_obj(cache->object, 1424 cache->chunk_id, 1425 cache->data, 1426 cache->n_bytes, 1); 1427 cache->dirty = 0; 1428 cache->object = NULL; 1429 } 1430 } while (cache && chunk_written > 0); 1431 1432 if (cache) 1433 /* Hoosterman, disk full while writing cache out. */ 1434 yaffs_trace(YAFFS_TRACE_ERROR, 1435 "yaffs tragedy: no space during cache write"); 1436 } 1437 1438 /*yaffs_flush_whole_cache(dev) 1439 * 1440 * 1441 */ 1442 1443 void yaffs_flush_whole_cache(struct yaffs_dev *dev) 1444 { 1445 struct yaffs_obj *obj; 1446 int n_caches = dev->param.n_caches; 1447 int i; 1448 1449 /* Find a dirty object in the cache and flush it... 1450 * until there are no further dirty objects. 1451 */ 1452 do { 1453 obj = NULL; 1454 for (i = 0; i < n_caches && !obj; i++) { 1455 if (dev->cache[i].object && dev->cache[i].dirty) 1456 obj = dev->cache[i].object; 1457 } 1458 if (obj) 1459 yaffs_flush_file_cache(obj); 1460 } while (obj); 1461 1462 } 1463 1464 /* Grab us a cache chunk for use. 1465 * First look for an empty one. 1466 * Then look for the least recently used non-dirty one. 1467 * Then look for the least recently used dirty one...., flush and look again. 1468 */ 1469 static struct yaffs_cache *yaffs_grab_chunk_worker(struct yaffs_dev *dev) 1470 { 1471 int i; 1472 1473 if (dev->param.n_caches > 0) { 1474 for (i = 0; i < dev->param.n_caches; i++) { 1475 if (!dev->cache[i].object) 1476 return &dev->cache[i]; 1477 } 1478 } 1479 return NULL; 1480 } 1481 1482 static struct yaffs_cache *yaffs_grab_chunk_cache(struct yaffs_dev *dev) 1483 { 1484 struct yaffs_cache *cache; 1485 struct yaffs_obj *the_obj; 1486 int usage; 1487 int i; 1488 int pushout; 1489 1490 if (dev->param.n_caches < 1) 1491 return NULL; 1492 1493 /* Try find a non-dirty one... */ 1494 1495 cache = yaffs_grab_chunk_worker(dev); 1496 1497 if (!cache) { 1498 /* They were all dirty, find the LRU object and flush 1499 * its cache, then find again. 1500 * NB what's here is not very accurate, 1501 * we actually flush the object with the LRU chunk. 1502 */ 1503 1504 /* With locking we can't assume we can use entry zero, 1505 * Set the_obj to a valid pointer for Coverity. */ 1506 the_obj = dev->cache[0].object; 1507 usage = -1; 1508 cache = NULL; 1509 pushout = -1; 1510 1511 for (i = 0; i < dev->param.n_caches; i++) { 1512 if (dev->cache[i].object && 1513 !dev->cache[i].locked && 1514 (dev->cache[i].last_use < usage || 1515 !cache)) { 1516 usage = dev->cache[i].last_use; 1517 the_obj = dev->cache[i].object; 1518 cache = &dev->cache[i]; 1519 pushout = i; 1520 } 1521 } 1522 1523 if (!cache || cache->dirty) { 1524 /* Flush and try again */ 1525 yaffs_flush_file_cache(the_obj); 1526 cache = yaffs_grab_chunk_worker(dev); 1527 } 1528 } 1529 return cache; 1530 } 1531 1532 /* Find a cached chunk */ 1533 static struct yaffs_cache *yaffs_find_chunk_cache(const struct yaffs_obj *obj, 1534 int chunk_id) 1535 { 1536 struct yaffs_dev *dev = obj->my_dev; 1537 int i; 1538 1539 if (dev->param.n_caches < 1) 1540 return NULL; 1541 1542 for (i = 0; i < dev->param.n_caches; i++) { 1543 if (dev->cache[i].object == obj && 1544 dev->cache[i].chunk_id == chunk_id) { 1545 dev->cache_hits++; 1546 1547 return &dev->cache[i]; 1548 } 1549 } 1550 return NULL; 1551 } 1552 1553 /* Mark the chunk for the least recently used algorithym */ 1554 static void yaffs_use_cache(struct yaffs_dev *dev, struct yaffs_cache *cache, 1555 int is_write) 1556 { 1557 int i; 1558 1559 if (dev->param.n_caches < 1) 1560 return; 1561 1562 if (dev->cache_last_use < 0 || 1563 dev->cache_last_use > 100000000) { 1564 /* Reset the cache usages */ 1565 for (i = 1; i < dev->param.n_caches; i++) 1566 dev->cache[i].last_use = 0; 1567 1568 dev->cache_last_use = 0; 1569 } 1570 dev->cache_last_use++; 1571 cache->last_use = dev->cache_last_use; 1572 1573 if (is_write) 1574 cache->dirty = 1; 1575 } 1576 1577 /* Invalidate a single cache page. 1578 * Do this when a whole page gets written, 1579 * ie the short cache for this page is no longer valid. 1580 */ 1581 static void yaffs_invalidate_chunk_cache(struct yaffs_obj *object, int chunk_id) 1582 { 1583 struct yaffs_cache *cache; 1584 1585 if (object->my_dev->param.n_caches > 0) { 1586 cache = yaffs_find_chunk_cache(object, chunk_id); 1587 1588 if (cache) 1589 cache->object = NULL; 1590 } 1591 } 1592 1593 /* Invalidate all the cache pages associated with this object 1594 * Do this whenever ther file is deleted or resized. 1595 */ 1596 static void yaffs_invalidate_whole_cache(struct yaffs_obj *in) 1597 { 1598 int i; 1599 struct yaffs_dev *dev = in->my_dev; 1600 1601 if (dev->param.n_caches > 0) { 1602 /* Invalidate it. */ 1603 for (i = 0; i < dev->param.n_caches; i++) { 1604 if (dev->cache[i].object == in) 1605 dev->cache[i].object = NULL; 1606 } 1607 } 1608 } 1609 1610 static void yaffs_unhash_obj(struct yaffs_obj *obj) 1611 { 1612 int bucket; 1613 struct yaffs_dev *dev = obj->my_dev; 1614 1615 /* If it is still linked into the bucket list, free from the list */ 1616 if (!list_empty(&obj->hash_link)) { 1617 list_del_init(&obj->hash_link); 1618 bucket = yaffs_hash_fn(obj->obj_id); 1619 dev->obj_bucket[bucket].count--; 1620 } 1621 } 1622 1623 /* FreeObject frees up a Object and puts it back on the free list */ 1624 static void yaffs_free_obj(struct yaffs_obj *obj) 1625 { 1626 struct yaffs_dev *dev; 1627 1628 if (!obj) { 1629 BUG(); 1630 return; 1631 } 1632 dev = obj->my_dev; 1633 yaffs_trace(YAFFS_TRACE_OS, "FreeObject %p inode %p", 1634 obj, obj->my_inode); 1635 if (obj->parent) 1636 BUG(); 1637 if (!list_empty(&obj->siblings)) 1638 BUG(); 1639 1640 if (obj->my_inode) { 1641 /* We're still hooked up to a cached inode. 1642 * Don't delete now, but mark for later deletion 1643 */ 1644 obj->defered_free = 1; 1645 return; 1646 } 1647 1648 yaffs_unhash_obj(obj); 1649 1650 yaffs_free_raw_obj(dev, obj); 1651 dev->n_obj--; 1652 dev->checkpoint_blocks_required = 0; /* force recalculation */ 1653 } 1654 1655 void yaffs_handle_defered_free(struct yaffs_obj *obj) 1656 { 1657 if (obj->defered_free) 1658 yaffs_free_obj(obj); 1659 } 1660 1661 static int yaffs_generic_obj_del(struct yaffs_obj *in) 1662 { 1663 /* Iinvalidate the file's data in the cache, without flushing. */ 1664 yaffs_invalidate_whole_cache(in); 1665 1666 if (in->my_dev->param.is_yaffs2 && in->parent != in->my_dev->del_dir) { 1667 /* Move to unlinked directory so we have a deletion record */ 1668 yaffs_change_obj_name(in, in->my_dev->del_dir, _Y("deleted"), 0, 1669 0); 1670 } 1671 1672 yaffs_remove_obj_from_dir(in); 1673 yaffs_chunk_del(in->my_dev, in->hdr_chunk, 1, __LINE__); 1674 in->hdr_chunk = 0; 1675 1676 yaffs_free_obj(in); 1677 return YAFFS_OK; 1678 1679 } 1680 1681 static void yaffs_soft_del_file(struct yaffs_obj *obj) 1682 { 1683 if (!obj->deleted || 1684 obj->variant_type != YAFFS_OBJECT_TYPE_FILE || 1685 obj->soft_del) 1686 return; 1687 1688 if (obj->n_data_chunks <= 0) { 1689 /* Empty file with no duplicate object headers, 1690 * just delete it immediately */ 1691 yaffs_free_tnode(obj->my_dev, obj->variant.file_variant.top); 1692 obj->variant.file_variant.top = NULL; 1693 yaffs_trace(YAFFS_TRACE_TRACING, 1694 "yaffs: Deleting empty file %d", 1695 obj->obj_id); 1696 yaffs_generic_obj_del(obj); 1697 } else { 1698 yaffs_soft_del_worker(obj, 1699 obj->variant.file_variant.top, 1700 obj->variant. 1701 file_variant.top_level, 0); 1702 obj->soft_del = 1; 1703 } 1704 } 1705 1706 /* Pruning removes any part of the file structure tree that is beyond the 1707 * bounds of the file (ie that does not point to chunks). 1708 * 1709 * A file should only get pruned when its size is reduced. 1710 * 1711 * Before pruning, the chunks must be pulled from the tree and the 1712 * level 0 tnode entries must be zeroed out. 1713 * Could also use this for file deletion, but that's probably better handled 1714 * by a special case. 1715 * 1716 * This function is recursive. For levels > 0 the function is called again on 1717 * any sub-tree. For level == 0 we just check if the sub-tree has data. 1718 * If there is no data in a subtree then it is pruned. 1719 */ 1720 1721 static struct yaffs_tnode *yaffs_prune_worker(struct yaffs_dev *dev, 1722 struct yaffs_tnode *tn, u32 level, 1723 int del0) 1724 { 1725 int i; 1726 int has_data; 1727 1728 if (!tn) 1729 return tn; 1730 1731 has_data = 0; 1732 1733 if (level > 0) { 1734 for (i = 0; i < YAFFS_NTNODES_INTERNAL; i++) { 1735 if (tn->internal[i]) { 1736 tn->internal[i] = 1737 yaffs_prune_worker(dev, 1738 tn->internal[i], 1739 level - 1, 1740 (i == 0) ? del0 : 1); 1741 } 1742 1743 if (tn->internal[i]) 1744 has_data++; 1745 } 1746 } else { 1747 int tnode_size_u32 = dev->tnode_size / sizeof(u32); 1748 u32 *map = (u32 *) tn; 1749 1750 for (i = 0; !has_data && i < tnode_size_u32; i++) { 1751 if (map[i]) 1752 has_data++; 1753 } 1754 } 1755 1756 if (has_data == 0 && del0) { 1757 /* Free and return NULL */ 1758 yaffs_free_tnode(dev, tn); 1759 tn = NULL; 1760 } 1761 return tn; 1762 } 1763 1764 static int yaffs_prune_tree(struct yaffs_dev *dev, 1765 struct yaffs_file_var *file_struct) 1766 { 1767 int i; 1768 int has_data; 1769 int done = 0; 1770 struct yaffs_tnode *tn; 1771 1772 if (file_struct->top_level < 1) 1773 return YAFFS_OK; 1774 1775 file_struct->top = 1776 yaffs_prune_worker(dev, file_struct->top, file_struct->top_level, 0); 1777 1778 /* Now we have a tree with all the non-zero branches NULL but 1779 * the height is the same as it was. 1780 * Let's see if we can trim internal tnodes to shorten the tree. 1781 * We can do this if only the 0th element in the tnode is in use 1782 * (ie all the non-zero are NULL) 1783 */ 1784 1785 while (file_struct->top_level && !done) { 1786 tn = file_struct->top; 1787 1788 has_data = 0; 1789 for (i = 1; i < YAFFS_NTNODES_INTERNAL; i++) { 1790 if (tn->internal[i]) 1791 has_data++; 1792 } 1793 1794 if (!has_data) { 1795 file_struct->top = tn->internal[0]; 1796 file_struct->top_level--; 1797 yaffs_free_tnode(dev, tn); 1798 } else { 1799 done = 1; 1800 } 1801 } 1802 1803 return YAFFS_OK; 1804 } 1805 1806 /*-------------------- End of File Structure functions.-------------------*/ 1807 1808 /* alloc_empty_obj gets us a clean Object.*/ 1809 static struct yaffs_obj *yaffs_alloc_empty_obj(struct yaffs_dev *dev) 1810 { 1811 struct yaffs_obj *obj = yaffs_alloc_raw_obj(dev); 1812 1813 if (!obj) 1814 return obj; 1815 1816 dev->n_obj++; 1817 1818 /* Now sweeten it up... */ 1819 1820 memset(obj, 0, sizeof(struct yaffs_obj)); 1821 obj->being_created = 1; 1822 1823 obj->my_dev = dev; 1824 obj->hdr_chunk = 0; 1825 obj->variant_type = YAFFS_OBJECT_TYPE_UNKNOWN; 1826 INIT_LIST_HEAD(&(obj->hard_links)); 1827 INIT_LIST_HEAD(&(obj->hash_link)); 1828 INIT_LIST_HEAD(&obj->siblings); 1829 1830 /* Now make the directory sane */ 1831 if (dev->root_dir) { 1832 obj->parent = dev->root_dir; 1833 list_add(&(obj->siblings), 1834 &dev->root_dir->variant.dir_variant.children); 1835 } 1836 1837 /* Add it to the lost and found directory. 1838 * NB Can't put root or lost-n-found in lost-n-found so 1839 * check if lost-n-found exists first 1840 */ 1841 if (dev->lost_n_found) 1842 yaffs_add_obj_to_dir(dev->lost_n_found, obj); 1843 1844 obj->being_created = 0; 1845 1846 dev->checkpoint_blocks_required = 0; /* force recalculation */ 1847 1848 return obj; 1849 } 1850 1851 static int yaffs_find_nice_bucket(struct yaffs_dev *dev) 1852 { 1853 int i; 1854 int l = 999; 1855 int lowest = 999999; 1856 1857 /* Search for the shortest list or one that 1858 * isn't too long. 1859 */ 1860 1861 for (i = 0; i < 10 && lowest > 4; i++) { 1862 dev->bucket_finder++; 1863 dev->bucket_finder %= YAFFS_NOBJECT_BUCKETS; 1864 if (dev->obj_bucket[dev->bucket_finder].count < lowest) { 1865 lowest = dev->obj_bucket[dev->bucket_finder].count; 1866 l = dev->bucket_finder; 1867 } 1868 } 1869 1870 return l; 1871 } 1872 1873 static int yaffs_new_obj_id(struct yaffs_dev *dev) 1874 { 1875 int bucket = yaffs_find_nice_bucket(dev); 1876 int found = 0; 1877 struct list_head *i; 1878 u32 n = (u32) bucket; 1879 1880 /* Now find an object value that has not already been taken 1881 * by scanning the list. 1882 */ 1883 1884 while (!found) { 1885 found = 1; 1886 n += YAFFS_NOBJECT_BUCKETS; 1887 if (1 || dev->obj_bucket[bucket].count > 0) { 1888 list_for_each(i, &dev->obj_bucket[bucket].list) { 1889 /* If there is already one in the list */ 1890 if (i && list_entry(i, struct yaffs_obj, 1891 hash_link)->obj_id == n) { 1892 found = 0; 1893 } 1894 } 1895 } 1896 } 1897 return n; 1898 } 1899 1900 static void yaffs_hash_obj(struct yaffs_obj *in) 1901 { 1902 int bucket = yaffs_hash_fn(in->obj_id); 1903 struct yaffs_dev *dev = in->my_dev; 1904 1905 list_add(&in->hash_link, &dev->obj_bucket[bucket].list); 1906 dev->obj_bucket[bucket].count++; 1907 } 1908 1909 struct yaffs_obj *yaffs_find_by_number(struct yaffs_dev *dev, u32 number) 1910 { 1911 int bucket = yaffs_hash_fn(number); 1912 struct list_head *i; 1913 struct yaffs_obj *in; 1914 1915 list_for_each(i, &dev->obj_bucket[bucket].list) { 1916 /* Look if it is in the list */ 1917 in = list_entry(i, struct yaffs_obj, hash_link); 1918 if (in->obj_id == number) { 1919 /* Don't show if it is defered free */ 1920 if (in->defered_free) 1921 return NULL; 1922 return in; 1923 } 1924 } 1925 1926 return NULL; 1927 } 1928 1929 struct yaffs_obj *yaffs_new_obj(struct yaffs_dev *dev, int number, 1930 enum yaffs_obj_type type) 1931 { 1932 struct yaffs_obj *the_obj = NULL; 1933 struct yaffs_tnode *tn = NULL; 1934 1935 if (number < 0) 1936 number = yaffs_new_obj_id(dev); 1937 1938 if (type == YAFFS_OBJECT_TYPE_FILE) { 1939 tn = yaffs_get_tnode(dev); 1940 if (!tn) 1941 return NULL; 1942 } 1943 1944 the_obj = yaffs_alloc_empty_obj(dev); 1945 if (!the_obj) { 1946 if (tn) 1947 yaffs_free_tnode(dev, tn); 1948 return NULL; 1949 } 1950 1951 the_obj->fake = 0; 1952 the_obj->rename_allowed = 1; 1953 the_obj->unlink_allowed = 1; 1954 the_obj->obj_id = number; 1955 yaffs_hash_obj(the_obj); 1956 the_obj->variant_type = type; 1957 yaffs_load_current_time(the_obj, 1, 1); 1958 1959 switch (type) { 1960 case YAFFS_OBJECT_TYPE_FILE: 1961 the_obj->variant.file_variant.file_size = 0; 1962 the_obj->variant.file_variant.scanned_size = 0; 1963 the_obj->variant.file_variant.shrink_size = 1964 yaffs_max_file_size(dev); 1965 the_obj->variant.file_variant.top_level = 0; 1966 the_obj->variant.file_variant.top = tn; 1967 break; 1968 case YAFFS_OBJECT_TYPE_DIRECTORY: 1969 INIT_LIST_HEAD(&the_obj->variant.dir_variant.children); 1970 INIT_LIST_HEAD(&the_obj->variant.dir_variant.dirty); 1971 break; 1972 case YAFFS_OBJECT_TYPE_SYMLINK: 1973 case YAFFS_OBJECT_TYPE_HARDLINK: 1974 case YAFFS_OBJECT_TYPE_SPECIAL: 1975 /* No action required */ 1976 break; 1977 case YAFFS_OBJECT_TYPE_UNKNOWN: 1978 /* todo this should not happen */ 1979 break; 1980 } 1981 return the_obj; 1982 } 1983 1984 static struct yaffs_obj *yaffs_create_fake_dir(struct yaffs_dev *dev, 1985 int number, u32 mode) 1986 { 1987 1988 struct yaffs_obj *obj = 1989 yaffs_new_obj(dev, number, YAFFS_OBJECT_TYPE_DIRECTORY); 1990 1991 if (!obj) 1992 return NULL; 1993 1994 obj->fake = 1; /* it is fake so it might not use NAND */ 1995 obj->rename_allowed = 0; 1996 obj->unlink_allowed = 0; 1997 obj->deleted = 0; 1998 obj->unlinked = 0; 1999 obj->yst_mode = mode; 2000 obj->my_dev = dev; 2001 obj->hdr_chunk = 0; /* Not a valid chunk. */ 2002 return obj; 2003 2004 } 2005 2006 2007 static void yaffs_init_tnodes_and_objs(struct yaffs_dev *dev) 2008 { 2009 int i; 2010 2011 dev->n_obj = 0; 2012 dev->n_tnodes = 0; 2013 yaffs_init_raw_tnodes_and_objs(dev); 2014 2015 for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) { 2016 INIT_LIST_HEAD(&dev->obj_bucket[i].list); 2017 dev->obj_bucket[i].count = 0; 2018 } 2019 } 2020 2021 struct yaffs_obj *yaffs_find_or_create_by_number(struct yaffs_dev *dev, 2022 int number, 2023 enum yaffs_obj_type type) 2024 { 2025 struct yaffs_obj *the_obj = NULL; 2026 2027 if (number > 0) 2028 the_obj = yaffs_find_by_number(dev, number); 2029 2030 if (!the_obj) 2031 the_obj = yaffs_new_obj(dev, number, type); 2032 2033 return the_obj; 2034 2035 } 2036 2037 YCHAR *yaffs_clone_str(const YCHAR *str) 2038 { 2039 YCHAR *new_str = NULL; 2040 int len; 2041 2042 if (!str) 2043 str = _Y(""); 2044 2045 len = yaffs_strnlen(str, YAFFS_MAX_ALIAS_LENGTH); 2046 new_str = kmalloc((len + 1) * sizeof(YCHAR), GFP_NOFS); 2047 if (new_str) { 2048 yaffs_strncpy(new_str, str, len); 2049 new_str[len] = 0; 2050 } 2051 return new_str; 2052 2053 } 2054 /* 2055 *yaffs_update_parent() handles fixing a directories mtime and ctime when a new 2056 * link (ie. name) is created or deleted in the directory. 2057 * 2058 * ie. 2059 * create dir/a : update dir's mtime/ctime 2060 * rm dir/a: update dir's mtime/ctime 2061 * modify dir/a: don't update dir's mtimme/ctime 2062 * 2063 * This can be handled immediately or defered. Defering helps reduce the number 2064 * of updates when many files in a directory are changed within a brief period. 2065 * 2066 * If the directory updating is defered then yaffs_update_dirty_dirs must be 2067 * called periodically. 2068 */ 2069 2070 static void yaffs_update_parent(struct yaffs_obj *obj) 2071 { 2072 struct yaffs_dev *dev; 2073 2074 if (!obj) 2075 return; 2076 dev = obj->my_dev; 2077 obj->dirty = 1; 2078 yaffs_load_current_time(obj, 0, 1); 2079 if (dev->param.defered_dir_update) { 2080 struct list_head *link = &obj->variant.dir_variant.dirty; 2081 2082 if (list_empty(link)) { 2083 list_add(link, &dev->dirty_dirs); 2084 yaffs_trace(YAFFS_TRACE_BACKGROUND, 2085 "Added object %d to dirty directories", 2086 obj->obj_id); 2087 } 2088 2089 } else { 2090 yaffs_update_oh(obj, NULL, 0, 0, 0, NULL); 2091 } 2092 } 2093 2094 void yaffs_update_dirty_dirs(struct yaffs_dev *dev) 2095 { 2096 struct list_head *link; 2097 struct yaffs_obj *obj; 2098 struct yaffs_dir_var *d_s; 2099 union yaffs_obj_var *o_v; 2100 2101 yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update dirty directories"); 2102 2103 while (!list_empty(&dev->dirty_dirs)) { 2104 link = dev->dirty_dirs.next; 2105 list_del_init(link); 2106 2107 d_s = list_entry(link, struct yaffs_dir_var, dirty); 2108 o_v = list_entry(d_s, union yaffs_obj_var, dir_variant); 2109 obj = list_entry(o_v, struct yaffs_obj, variant); 2110 2111 yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update directory %d", 2112 obj->obj_id); 2113 2114 if (obj->dirty) 2115 yaffs_update_oh(obj, NULL, 0, 0, 0, NULL); 2116 } 2117 } 2118 2119 /* 2120 * Mknod (create) a new object. 2121 * equiv_obj only has meaning for a hard link; 2122 * alias_str only has meaning for a symlink. 2123 * rdev only has meaning for devices (a subset of special objects) 2124 */ 2125 2126 static struct yaffs_obj *yaffs_create_obj(enum yaffs_obj_type type, 2127 struct yaffs_obj *parent, 2128 const YCHAR *name, 2129 u32 mode, 2130 u32 uid, 2131 u32 gid, 2132 struct yaffs_obj *equiv_obj, 2133 const YCHAR *alias_str, u32 rdev) 2134 { 2135 struct yaffs_obj *in; 2136 YCHAR *str = NULL; 2137 struct yaffs_dev *dev = parent->my_dev; 2138 2139 /* Check if the entry exists. 2140 * If it does then fail the call since we don't want a dup. */ 2141 if (yaffs_find_by_name(parent, name)) 2142 return NULL; 2143 2144 if (type == YAFFS_OBJECT_TYPE_SYMLINK) { 2145 str = yaffs_clone_str(alias_str); 2146 if (!str) 2147 return NULL; 2148 } 2149 2150 in = yaffs_new_obj(dev, -1, type); 2151 2152 if (!in) { 2153 kfree(str); 2154 return NULL; 2155 } 2156 2157 in->hdr_chunk = 0; 2158 in->valid = 1; 2159 in->variant_type = type; 2160 2161 in->yst_mode = mode; 2162 2163 yaffs_attribs_init(in, gid, uid, rdev); 2164 2165 in->n_data_chunks = 0; 2166 2167 yaffs_set_obj_name(in, name); 2168 in->dirty = 1; 2169 2170 yaffs_add_obj_to_dir(parent, in); 2171 2172 in->my_dev = parent->my_dev; 2173 2174 switch (type) { 2175 case YAFFS_OBJECT_TYPE_SYMLINK: 2176 in->variant.symlink_variant.alias = str; 2177 break; 2178 case YAFFS_OBJECT_TYPE_HARDLINK: 2179 in->variant.hardlink_variant.equiv_obj = equiv_obj; 2180 in->variant.hardlink_variant.equiv_id = equiv_obj->obj_id; 2181 list_add(&in->hard_links, &equiv_obj->hard_links); 2182 break; 2183 case YAFFS_OBJECT_TYPE_FILE: 2184 case YAFFS_OBJECT_TYPE_DIRECTORY: 2185 case YAFFS_OBJECT_TYPE_SPECIAL: 2186 case YAFFS_OBJECT_TYPE_UNKNOWN: 2187 /* do nothing */ 2188 break; 2189 } 2190 2191 if (yaffs_update_oh(in, name, 0, 0, 0, NULL) < 0) { 2192 /* Could not create the object header, fail */ 2193 yaffs_del_obj(in); 2194 in = NULL; 2195 } 2196 2197 if (in) 2198 yaffs_update_parent(parent); 2199 2200 return in; 2201 } 2202 2203 struct yaffs_obj *yaffs_create_file(struct yaffs_obj *parent, 2204 const YCHAR *name, u32 mode, u32 uid, 2205 u32 gid) 2206 { 2207 return yaffs_create_obj(YAFFS_OBJECT_TYPE_FILE, parent, name, mode, 2208 uid, gid, NULL, NULL, 0); 2209 } 2210 2211 struct yaffs_obj *yaffs_create_dir(struct yaffs_obj *parent, const YCHAR *name, 2212 u32 mode, u32 uid, u32 gid) 2213 { 2214 return yaffs_create_obj(YAFFS_OBJECT_TYPE_DIRECTORY, parent, name, 2215 mode, uid, gid, NULL, NULL, 0); 2216 } 2217 2218 struct yaffs_obj *yaffs_create_special(struct yaffs_obj *parent, 2219 const YCHAR *name, u32 mode, u32 uid, 2220 u32 gid, u32 rdev) 2221 { 2222 return yaffs_create_obj(YAFFS_OBJECT_TYPE_SPECIAL, parent, name, mode, 2223 uid, gid, NULL, NULL, rdev); 2224 } 2225 2226 struct yaffs_obj *yaffs_create_symlink(struct yaffs_obj *parent, 2227 const YCHAR *name, u32 mode, u32 uid, 2228 u32 gid, const YCHAR *alias) 2229 { 2230 return yaffs_create_obj(YAFFS_OBJECT_TYPE_SYMLINK, parent, name, mode, 2231 uid, gid, NULL, alias, 0); 2232 } 2233 2234 /* yaffs_link_obj returns the object id of the equivalent object.*/ 2235 struct yaffs_obj *yaffs_link_obj(struct yaffs_obj *parent, const YCHAR * name, 2236 struct yaffs_obj *equiv_obj) 2237 { 2238 /* Get the real object in case we were fed a hard link obj */ 2239 equiv_obj = yaffs_get_equivalent_obj(equiv_obj); 2240 2241 if (yaffs_create_obj(YAFFS_OBJECT_TYPE_HARDLINK, 2242 parent, name, 0, 0, 0, 2243 equiv_obj, NULL, 0)) 2244 return equiv_obj; 2245 2246 return NULL; 2247 2248 } 2249 2250 2251 2252 /*---------------------- Block Management and Page Allocation -------------*/ 2253 2254 static void yaffs_deinit_blocks(struct yaffs_dev *dev) 2255 { 2256 if (dev->block_info_alt && dev->block_info) 2257 vfree(dev->block_info); 2258 else 2259 kfree(dev->block_info); 2260 2261 dev->block_info_alt = 0; 2262 2263 dev->block_info = NULL; 2264 2265 if (dev->chunk_bits_alt && dev->chunk_bits) 2266 vfree(dev->chunk_bits); 2267 else 2268 kfree(dev->chunk_bits); 2269 dev->chunk_bits_alt = 0; 2270 dev->chunk_bits = NULL; 2271 } 2272 2273 static int yaffs_init_blocks(struct yaffs_dev *dev) 2274 { 2275 int n_blocks = dev->internal_end_block - dev->internal_start_block + 1; 2276 2277 dev->block_info = NULL; 2278 dev->chunk_bits = NULL; 2279 dev->alloc_block = -1; /* force it to get a new one */ 2280 2281 /* If the first allocation strategy fails, thry the alternate one */ 2282 dev->block_info = 2283 kmalloc(n_blocks * sizeof(struct yaffs_block_info), GFP_NOFS); 2284 if (!dev->block_info) { 2285 dev->block_info = 2286 vmalloc(n_blocks * sizeof(struct yaffs_block_info)); 2287 dev->block_info_alt = 1; 2288 } else { 2289 dev->block_info_alt = 0; 2290 } 2291 2292 if (!dev->block_info) 2293 goto alloc_error; 2294 2295 /* Set up dynamic blockinfo stuff. Round up bytes. */ 2296 dev->chunk_bit_stride = (dev->param.chunks_per_block + 7) / 8; 2297 dev->chunk_bits = 2298 kmalloc(dev->chunk_bit_stride * n_blocks, GFP_NOFS); 2299 if (!dev->chunk_bits) { 2300 dev->chunk_bits = 2301 vmalloc(dev->chunk_bit_stride * n_blocks); 2302 dev->chunk_bits_alt = 1; 2303 } else { 2304 dev->chunk_bits_alt = 0; 2305 } 2306 if (!dev->chunk_bits) 2307 goto alloc_error; 2308 2309 2310 memset(dev->block_info, 0, n_blocks * sizeof(struct yaffs_block_info)); 2311 memset(dev->chunk_bits, 0, dev->chunk_bit_stride * n_blocks); 2312 return YAFFS_OK; 2313 2314 alloc_error: 2315 yaffs_deinit_blocks(dev); 2316 return YAFFS_FAIL; 2317 } 2318 2319 2320 void yaffs_block_became_dirty(struct yaffs_dev *dev, int block_no) 2321 { 2322 struct yaffs_block_info *bi = yaffs_get_block_info(dev, block_no); 2323 int erased_ok = 0; 2324 int i; 2325 2326 /* If the block is still healthy erase it and mark as clean. 2327 * If the block has had a data failure, then retire it. 2328 */ 2329 2330 yaffs_trace(YAFFS_TRACE_GC | YAFFS_TRACE_ERASE, 2331 "yaffs_block_became_dirty block %d state %d %s", 2332 block_no, bi->block_state, 2333 (bi->needs_retiring) ? "needs retiring" : ""); 2334 2335 yaffs2_clear_oldest_dirty_seq(dev, bi); 2336 2337 bi->block_state = YAFFS_BLOCK_STATE_DIRTY; 2338 2339 /* If this is the block being garbage collected then stop gc'ing */ 2340 if (block_no == dev->gc_block) 2341 dev->gc_block = 0; 2342 2343 /* If this block is currently the best candidate for gc 2344 * then drop as a candidate */ 2345 if (block_no == dev->gc_dirtiest) { 2346 dev->gc_dirtiest = 0; 2347 dev->gc_pages_in_use = 0; 2348 } 2349 2350 if (!bi->needs_retiring) { 2351 yaffs2_checkpt_invalidate(dev); 2352 erased_ok = yaffs_erase_block(dev, block_no); 2353 if (!erased_ok) { 2354 dev->n_erase_failures++; 2355 yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS, 2356 "**>> Erasure failed %d", block_no); 2357 } 2358 } 2359 2360 /* Verify erasure if needed */ 2361 if (erased_ok && 2362 ((yaffs_trace_mask & YAFFS_TRACE_ERASE) || 2363 !yaffs_skip_verification(dev))) { 2364 for (i = 0; i < dev->param.chunks_per_block; i++) { 2365 if (!yaffs_check_chunk_erased(dev, 2366 block_no * dev->param.chunks_per_block + i)) { 2367 yaffs_trace(YAFFS_TRACE_ERROR, 2368 ">>Block %d erasure supposedly OK, but chunk %d not erased", 2369 block_no, i); 2370 } 2371 } 2372 } 2373 2374 if (!erased_ok) { 2375 /* We lost a block of free space */ 2376 dev->n_free_chunks -= dev->param.chunks_per_block; 2377 yaffs_retire_block(dev, block_no); 2378 yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS, 2379 "**>> Block %d retired", block_no); 2380 return; 2381 } 2382 2383 /* Clean it up... */ 2384 bi->block_state = YAFFS_BLOCK_STATE_EMPTY; 2385 bi->seq_number = 0; 2386 dev->n_erased_blocks++; 2387 bi->pages_in_use = 0; 2388 bi->soft_del_pages = 0; 2389 bi->has_shrink_hdr = 0; 2390 bi->skip_erased_check = 1; /* Clean, so no need to check */ 2391 bi->gc_prioritise = 0; 2392 bi->has_summary = 0; 2393 2394 yaffs_clear_chunk_bits(dev, block_no); 2395 2396 yaffs_trace(YAFFS_TRACE_ERASE, "Erased block %d", block_no); 2397 } 2398 2399 static inline int yaffs_gc_process_chunk(struct yaffs_dev *dev, 2400 struct yaffs_block_info *bi, 2401 int old_chunk, u8 *buffer) 2402 { 2403 int new_chunk; 2404 int mark_flash = 1; 2405 struct yaffs_ext_tags tags; 2406 struct yaffs_obj *object; 2407 int matching_chunk; 2408 int ret_val = YAFFS_OK; 2409 2410 memset(&tags, 0, sizeof(tags)); 2411 yaffs_rd_chunk_tags_nand(dev, old_chunk, 2412 buffer, &tags); 2413 object = yaffs_find_by_number(dev, tags.obj_id); 2414 2415 yaffs_trace(YAFFS_TRACE_GC_DETAIL, 2416 "Collecting chunk in block %d, %d %d %d ", 2417 dev->gc_chunk, tags.obj_id, 2418 tags.chunk_id, tags.n_bytes); 2419 2420 if (object && !yaffs_skip_verification(dev)) { 2421 if (tags.chunk_id == 0) 2422 matching_chunk = 2423 object->hdr_chunk; 2424 else if (object->soft_del) 2425 /* Defeat the test */ 2426 matching_chunk = old_chunk; 2427 else 2428 matching_chunk = 2429 yaffs_find_chunk_in_file 2430 (object, tags.chunk_id, 2431 NULL); 2432 2433 if (old_chunk != matching_chunk) 2434 yaffs_trace(YAFFS_TRACE_ERROR, 2435 "gc: page in gc mismatch: %d %d %d %d", 2436 old_chunk, 2437 matching_chunk, 2438 tags.obj_id, 2439 tags.chunk_id); 2440 } 2441 2442 if (!object) { 2443 yaffs_trace(YAFFS_TRACE_ERROR, 2444 "page %d in gc has no object: %d %d %d ", 2445 old_chunk, 2446 tags.obj_id, tags.chunk_id, 2447 tags.n_bytes); 2448 } 2449 2450 if (object && 2451 object->deleted && 2452 object->soft_del && tags.chunk_id != 0) { 2453 /* Data chunk in a soft deleted file, 2454 * throw it away. 2455 * It's a soft deleted data chunk, 2456 * No need to copy this, just forget 2457 * about it and fix up the object. 2458 */ 2459 2460 /* Free chunks already includes 2461 * softdeleted chunks, how ever this 2462 * chunk is going to soon be really 2463 * deleted which will increment free 2464 * chunks. We have to decrement free 2465 * chunks so this works out properly. 2466 */ 2467 dev->n_free_chunks--; 2468 bi->soft_del_pages--; 2469 2470 object->n_data_chunks--; 2471 if (object->n_data_chunks <= 0) { 2472 /* remeber to clean up obj */ 2473 dev->gc_cleanup_list[dev->n_clean_ups] = tags.obj_id; 2474 dev->n_clean_ups++; 2475 } 2476 mark_flash = 0; 2477 } else if (object) { 2478 /* It's either a data chunk in a live 2479 * file or an ObjectHeader, so we're 2480 * interested in it. 2481 * NB Need to keep the ObjectHeaders of 2482 * deleted files until the whole file 2483 * has been deleted off 2484 */ 2485 tags.serial_number++; 2486 dev->n_gc_copies++; 2487 2488 if (tags.chunk_id == 0) { 2489 /* It is an object Id, 2490 * We need to nuke the 2491 * shrinkheader flags since its 2492 * work is done. 2493 * Also need to clean up 2494 * shadowing. 2495 */ 2496 struct yaffs_obj_hdr *oh; 2497 oh = (struct yaffs_obj_hdr *) buffer; 2498 2499 oh->is_shrink = 0; 2500 tags.extra_is_shrink = 0; 2501 oh->shadows_obj = 0; 2502 oh->inband_shadowed_obj_id = 0; 2503 tags.extra_shadows = 0; 2504 2505 /* Update file size */ 2506 if (object->variant_type == YAFFS_OBJECT_TYPE_FILE) { 2507 yaffs_oh_size_load(oh, 2508 object->variant.file_variant.file_size); 2509 tags.extra_file_size = 2510 object->variant.file_variant.file_size; 2511 } 2512 2513 yaffs_verify_oh(object, oh, &tags, 1); 2514 new_chunk = 2515 yaffs_write_new_chunk(dev, (u8 *) oh, &tags, 1); 2516 } else { 2517 new_chunk = 2518 yaffs_write_new_chunk(dev, buffer, &tags, 1); 2519 } 2520 2521 if (new_chunk < 0) { 2522 ret_val = YAFFS_FAIL; 2523 } else { 2524 2525 /* Now fix up the Tnodes etc. */ 2526 2527 if (tags.chunk_id == 0) { 2528 /* It's a header */ 2529 object->hdr_chunk = new_chunk; 2530 object->serial = tags.serial_number; 2531 } else { 2532 /* It's a data chunk */ 2533 yaffs_put_chunk_in_file(object, tags.chunk_id, 2534 new_chunk, 0); 2535 } 2536 } 2537 } 2538 if (ret_val == YAFFS_OK) 2539 yaffs_chunk_del(dev, old_chunk, mark_flash, __LINE__); 2540 return ret_val; 2541 } 2542 2543 static int yaffs_gc_block(struct yaffs_dev *dev, int block, int whole_block) 2544 { 2545 int old_chunk; 2546 int ret_val = YAFFS_OK; 2547 int i; 2548 int is_checkpt_block; 2549 int max_copies; 2550 int chunks_before = yaffs_get_erased_chunks(dev); 2551 int chunks_after; 2552 struct yaffs_block_info *bi = yaffs_get_block_info(dev, block); 2553 2554 is_checkpt_block = (bi->block_state == YAFFS_BLOCK_STATE_CHECKPOINT); 2555 2556 yaffs_trace(YAFFS_TRACE_TRACING, 2557 "Collecting block %d, in use %d, shrink %d, whole_block %d", 2558 block, bi->pages_in_use, bi->has_shrink_hdr, 2559 whole_block); 2560 2561 /*yaffs_verify_free_chunks(dev); */ 2562 2563 if (bi->block_state == YAFFS_BLOCK_STATE_FULL) 2564 bi->block_state = YAFFS_BLOCK_STATE_COLLECTING; 2565 2566 bi->has_shrink_hdr = 0; /* clear the flag so that the block can erase */ 2567 2568 dev->gc_disable = 1; 2569 2570 yaffs_summary_gc(dev, block); 2571 2572 if (is_checkpt_block || !yaffs_still_some_chunks(dev, block)) { 2573 yaffs_trace(YAFFS_TRACE_TRACING, 2574 "Collecting block %d that has no chunks in use", 2575 block); 2576 yaffs_block_became_dirty(dev, block); 2577 } else { 2578 2579 u8 *buffer = yaffs_get_temp_buffer(dev); 2580 2581 yaffs_verify_blk(dev, bi, block); 2582 2583 max_copies = (whole_block) ? dev->param.chunks_per_block : 5; 2584 old_chunk = block * dev->param.chunks_per_block + dev->gc_chunk; 2585 2586 for (/* init already done */ ; 2587 ret_val == YAFFS_OK && 2588 dev->gc_chunk < dev->param.chunks_per_block && 2589 (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) && 2590 max_copies > 0; 2591 dev->gc_chunk++, old_chunk++) { 2592 if (yaffs_check_chunk_bit(dev, block, dev->gc_chunk)) { 2593 /* Page is in use and might need to be copied */ 2594 max_copies--; 2595 ret_val = yaffs_gc_process_chunk(dev, bi, 2596 old_chunk, buffer); 2597 } 2598 } 2599 yaffs_release_temp_buffer(dev, buffer); 2600 } 2601 2602 yaffs_verify_collected_blk(dev, bi, block); 2603 2604 if (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) { 2605 /* 2606 * The gc did not complete. Set block state back to FULL 2607 * because checkpointing does not restore gc. 2608 */ 2609 bi->block_state = YAFFS_BLOCK_STATE_FULL; 2610 } else { 2611 /* The gc completed. */ 2612 /* Do any required cleanups */ 2613 for (i = 0; i < dev->n_clean_ups; i++) { 2614 /* Time to delete the file too */ 2615 struct yaffs_obj *object = 2616 yaffs_find_by_number(dev, dev->gc_cleanup_list[i]); 2617 if (object) { 2618 yaffs_free_tnode(dev, 2619 object->variant.file_variant.top); 2620 object->variant.file_variant.top = NULL; 2621 yaffs_trace(YAFFS_TRACE_GC, 2622 "yaffs: About to finally delete object %d", 2623 object->obj_id); 2624 yaffs_generic_obj_del(object); 2625 object->my_dev->n_deleted_files--; 2626 } 2627 2628 } 2629 chunks_after = yaffs_get_erased_chunks(dev); 2630 if (chunks_before >= chunks_after) 2631 yaffs_trace(YAFFS_TRACE_GC, 2632 "gc did not increase free chunks before %d after %d", 2633 chunks_before, chunks_after); 2634 dev->gc_block = 0; 2635 dev->gc_chunk = 0; 2636 dev->n_clean_ups = 0; 2637 } 2638 2639 dev->gc_disable = 0; 2640 2641 return ret_val; 2642 } 2643 2644 /* 2645 * find_gc_block() selects the dirtiest block (or close enough) 2646 * for garbage collection. 2647 */ 2648 2649 static unsigned yaffs_find_gc_block(struct yaffs_dev *dev, 2650 int aggressive, int background) 2651 { 2652 int i; 2653 int iterations; 2654 unsigned selected = 0; 2655 int prioritised = 0; 2656 int prioritised_exist = 0; 2657 struct yaffs_block_info *bi; 2658 int threshold; 2659 2660 /* First let's see if we need to grab a prioritised block */ 2661 if (dev->has_pending_prioritised_gc && !aggressive) { 2662 dev->gc_dirtiest = 0; 2663 bi = dev->block_info; 2664 for (i = dev->internal_start_block; 2665 i <= dev->internal_end_block && !selected; i++) { 2666 2667 if (bi->gc_prioritise) { 2668 prioritised_exist = 1; 2669 if (bi->block_state == YAFFS_BLOCK_STATE_FULL && 2670 yaffs_block_ok_for_gc(dev, bi)) { 2671 selected = i; 2672 prioritised = 1; 2673 } 2674 } 2675 bi++; 2676 } 2677 2678 /* 2679 * If there is a prioritised block and none was selected then 2680 * this happened because there is at least one old dirty block 2681 * gumming up the works. Let's gc the oldest dirty block. 2682 */ 2683 2684 if (prioritised_exist && 2685 !selected && dev->oldest_dirty_block > 0) 2686 selected = dev->oldest_dirty_block; 2687 2688 if (!prioritised_exist) /* None found, so we can clear this */ 2689 dev->has_pending_prioritised_gc = 0; 2690 } 2691 2692 /* If we're doing aggressive GC then we are happy to take a less-dirty 2693 * block, and search harder. 2694 * else (leasurely gc), then we only bother to do this if the 2695 * block has only a few pages in use. 2696 */ 2697 2698 if (!selected) { 2699 int pages_used; 2700 int n_blocks = 2701 dev->internal_end_block - dev->internal_start_block + 1; 2702 if (aggressive) { 2703 threshold = dev->param.chunks_per_block; 2704 iterations = n_blocks; 2705 } else { 2706 int max_threshold; 2707 2708 if (background) 2709 max_threshold = dev->param.chunks_per_block / 2; 2710 else 2711 max_threshold = dev->param.chunks_per_block / 8; 2712 2713 if (max_threshold < YAFFS_GC_PASSIVE_THRESHOLD) 2714 max_threshold = YAFFS_GC_PASSIVE_THRESHOLD; 2715 2716 threshold = background ? (dev->gc_not_done + 2) * 2 : 0; 2717 if (threshold < YAFFS_GC_PASSIVE_THRESHOLD) 2718 threshold = YAFFS_GC_PASSIVE_THRESHOLD; 2719 if (threshold > max_threshold) 2720 threshold = max_threshold; 2721 2722 iterations = n_blocks / 16 + 1; 2723 if (iterations > 100) 2724 iterations = 100; 2725 } 2726 2727 for (i = 0; 2728 i < iterations && 2729 (dev->gc_dirtiest < 1 || 2730 dev->gc_pages_in_use > YAFFS_GC_GOOD_ENOUGH); 2731 i++) { 2732 dev->gc_block_finder++; 2733 if (dev->gc_block_finder < dev->internal_start_block || 2734 dev->gc_block_finder > dev->internal_end_block) 2735 dev->gc_block_finder = 2736 dev->internal_start_block; 2737 2738 bi = yaffs_get_block_info(dev, dev->gc_block_finder); 2739 2740 pages_used = bi->pages_in_use - bi->soft_del_pages; 2741 2742 if (bi->block_state == YAFFS_BLOCK_STATE_FULL && 2743 pages_used < dev->param.chunks_per_block && 2744 (dev->gc_dirtiest < 1 || 2745 pages_used < dev->gc_pages_in_use) && 2746 yaffs_block_ok_for_gc(dev, bi)) { 2747 dev->gc_dirtiest = dev->gc_block_finder; 2748 dev->gc_pages_in_use = pages_used; 2749 } 2750 } 2751 2752 if (dev->gc_dirtiest > 0 && dev->gc_pages_in_use <= threshold) 2753 selected = dev->gc_dirtiest; 2754 } 2755 2756 /* 2757 * If nothing has been selected for a while, try the oldest dirty 2758 * because that's gumming up the works. 2759 */ 2760 2761 if (!selected && dev->param.is_yaffs2 && 2762 dev->gc_not_done >= (background ? 10 : 20)) { 2763 yaffs2_find_oldest_dirty_seq(dev); 2764 if (dev->oldest_dirty_block > 0) { 2765 selected = dev->oldest_dirty_block; 2766 dev->gc_dirtiest = selected; 2767 dev->oldest_dirty_gc_count++; 2768 bi = yaffs_get_block_info(dev, selected); 2769 dev->gc_pages_in_use = 2770 bi->pages_in_use - bi->soft_del_pages; 2771 } else { 2772 dev->gc_not_done = 0; 2773 } 2774 } 2775 2776 if (selected) { 2777 yaffs_trace(YAFFS_TRACE_GC, 2778 "GC Selected block %d with %d free, prioritised:%d", 2779 selected, 2780 dev->param.chunks_per_block - dev->gc_pages_in_use, 2781 prioritised); 2782 2783 dev->n_gc_blocks++; 2784 if (background) 2785 dev->bg_gcs++; 2786 2787 dev->gc_dirtiest = 0; 2788 dev->gc_pages_in_use = 0; 2789 dev->gc_not_done = 0; 2790 if (dev->refresh_skip > 0) 2791 dev->refresh_skip--; 2792 } else { 2793 dev->gc_not_done++; 2794 yaffs_trace(YAFFS_TRACE_GC, 2795 "GC none: finder %d skip %d threshold %d dirtiest %d using %d oldest %d%s", 2796 dev->gc_block_finder, dev->gc_not_done, threshold, 2797 dev->gc_dirtiest, dev->gc_pages_in_use, 2798 dev->oldest_dirty_block, background ? " bg" : ""); 2799 } 2800 2801 return selected; 2802 } 2803 2804 /* New garbage collector 2805 * If we're very low on erased blocks then we do aggressive garbage collection 2806 * otherwise we do "leasurely" garbage collection. 2807 * Aggressive gc looks further (whole array) and will accept less dirty blocks. 2808 * Passive gc only inspects smaller areas and only accepts more dirty blocks. 2809 * 2810 * The idea is to help clear out space in a more spread-out manner. 2811 * Dunno if it really does anything useful. 2812 */ 2813 static int yaffs_check_gc(struct yaffs_dev *dev, int background) 2814 { 2815 int aggressive = 0; 2816 int gc_ok = YAFFS_OK; 2817 int max_tries = 0; 2818 int min_erased; 2819 int erased_chunks; 2820 int checkpt_block_adjust; 2821 2822 if (dev->param.gc_control && (dev->param.gc_control(dev) & 1) == 0) 2823 return YAFFS_OK; 2824 2825 if (dev->gc_disable) 2826 /* Bail out so we don't get recursive gc */ 2827 return YAFFS_OK; 2828 2829 /* This loop should pass the first time. 2830 * Only loops here if the collection does not increase space. 2831 */ 2832 2833 do { 2834 max_tries++; 2835 2836 checkpt_block_adjust = yaffs_calc_checkpt_blocks_required(dev); 2837 2838 min_erased = 2839 dev->param.n_reserved_blocks + checkpt_block_adjust + 1; 2840 erased_chunks = 2841 dev->n_erased_blocks * dev->param.chunks_per_block; 2842 2843 /* If we need a block soon then do aggressive gc. */ 2844 if (dev->n_erased_blocks < min_erased) 2845 aggressive = 1; 2846 else { 2847 if (!background 2848 && erased_chunks > (dev->n_free_chunks / 4)) 2849 break; 2850 2851 if (dev->gc_skip > 20) 2852 dev->gc_skip = 20; 2853 if (erased_chunks < dev->n_free_chunks / 2 || 2854 dev->gc_skip < 1 || background) 2855 aggressive = 0; 2856 else { 2857 dev->gc_skip--; 2858 break; 2859 } 2860 } 2861 2862 dev->gc_skip = 5; 2863 2864 /* If we don't already have a block being gc'd then see if we 2865 * should start another */ 2866 2867 if (dev->gc_block < 1 && !aggressive) { 2868 dev->gc_block = yaffs2_find_refresh_block(dev); 2869 dev->gc_chunk = 0; 2870 dev->n_clean_ups = 0; 2871 } 2872 if (dev->gc_block < 1) { 2873 dev->gc_block = 2874 yaffs_find_gc_block(dev, aggressive, background); 2875 dev->gc_chunk = 0; 2876 dev->n_clean_ups = 0; 2877 } 2878 2879 if (dev->gc_block > 0) { 2880 dev->all_gcs++; 2881 if (!aggressive) 2882 dev->passive_gc_count++; 2883 2884 yaffs_trace(YAFFS_TRACE_GC, 2885 "yaffs: GC n_erased_blocks %d aggressive %d", 2886 dev->n_erased_blocks, aggressive); 2887 2888 gc_ok = yaffs_gc_block(dev, dev->gc_block, aggressive); 2889 } 2890 2891 if (dev->n_erased_blocks < (dev->param.n_reserved_blocks) && 2892 dev->gc_block > 0) { 2893 yaffs_trace(YAFFS_TRACE_GC, 2894 "yaffs: GC !!!no reclaim!!! n_erased_blocks %d after try %d block %d", 2895 dev->n_erased_blocks, max_tries, 2896 dev->gc_block); 2897 } 2898 } while ((dev->n_erased_blocks < dev->param.n_reserved_blocks) && 2899 (dev->gc_block > 0) && (max_tries < 2)); 2900 2901 return aggressive ? gc_ok : YAFFS_OK; 2902 } 2903 2904 /* 2905 * yaffs_bg_gc() 2906 * Garbage collects. Intended to be called from a background thread. 2907 * Returns non-zero if at least half the free chunks are erased. 2908 */ 2909 int yaffs_bg_gc(struct yaffs_dev *dev, unsigned urgency) 2910 { 2911 int erased_chunks = dev->n_erased_blocks * dev->param.chunks_per_block; 2912 2913 yaffs_trace(YAFFS_TRACE_BACKGROUND, "Background gc %u", urgency); 2914 2915 yaffs_check_gc(dev, 1); 2916 return erased_chunks > dev->n_free_chunks / 2; 2917 } 2918 2919 /*-------------------- Data file manipulation -----------------*/ 2920 2921 static int yaffs_rd_data_obj(struct yaffs_obj *in, int inode_chunk, u8 * buffer) 2922 { 2923 int nand_chunk = yaffs_find_chunk_in_file(in, inode_chunk, NULL); 2924 2925 if (nand_chunk >= 0) 2926 return yaffs_rd_chunk_tags_nand(in->my_dev, nand_chunk, 2927 buffer, NULL); 2928 else { 2929 yaffs_trace(YAFFS_TRACE_NANDACCESS, 2930 "Chunk %d not found zero instead", 2931 nand_chunk); 2932 /* get sane (zero) data if you read a hole */ 2933 memset(buffer, 0, in->my_dev->data_bytes_per_chunk); 2934 return 0; 2935 } 2936 2937 } 2938 2939 void yaffs_chunk_del(struct yaffs_dev *dev, int chunk_id, int mark_flash, 2940 int lyn) 2941 { 2942 int block; 2943 int page; 2944 struct yaffs_ext_tags tags; 2945 struct yaffs_block_info *bi; 2946 2947 if (chunk_id <= 0) 2948 return; 2949 2950 dev->n_deletions++; 2951 block = chunk_id / dev->param.chunks_per_block; 2952 page = chunk_id % dev->param.chunks_per_block; 2953 2954 if (!yaffs_check_chunk_bit(dev, block, page)) 2955 yaffs_trace(YAFFS_TRACE_VERIFY, 2956 "Deleting invalid chunk %d", chunk_id); 2957 2958 bi = yaffs_get_block_info(dev, block); 2959 2960 yaffs2_update_oldest_dirty_seq(dev, block, bi); 2961 2962 yaffs_trace(YAFFS_TRACE_DELETION, 2963 "line %d delete of chunk %d", 2964 lyn, chunk_id); 2965 2966 if (!dev->param.is_yaffs2 && mark_flash && 2967 bi->block_state != YAFFS_BLOCK_STATE_COLLECTING) { 2968 2969 memset(&tags, 0, sizeof(tags)); 2970 tags.is_deleted = 1; 2971 yaffs_wr_chunk_tags_nand(dev, chunk_id, NULL, &tags); 2972 yaffs_handle_chunk_update(dev, chunk_id, &tags); 2973 } else { 2974 dev->n_unmarked_deletions++; 2975 } 2976 2977 /* Pull out of the management area. 2978 * If the whole block became dirty, this will kick off an erasure. 2979 */ 2980 if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING || 2981 bi->block_state == YAFFS_BLOCK_STATE_FULL || 2982 bi->block_state == YAFFS_BLOCK_STATE_NEEDS_SCAN || 2983 bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) { 2984 dev->n_free_chunks++; 2985 yaffs_clear_chunk_bit(dev, block, page); 2986 bi->pages_in_use--; 2987 2988 if (bi->pages_in_use == 0 && 2989 !bi->has_shrink_hdr && 2990 bi->block_state != YAFFS_BLOCK_STATE_ALLOCATING && 2991 bi->block_state != YAFFS_BLOCK_STATE_NEEDS_SCAN) { 2992 yaffs_block_became_dirty(dev, block); 2993 } 2994 } 2995 } 2996 2997 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk, 2998 const u8 *buffer, int n_bytes, int use_reserve) 2999 { 3000 /* Find old chunk Need to do this to get serial number 3001 * Write new one and patch into tree. 3002 * Invalidate old tags. 3003 */ 3004 3005 int prev_chunk_id; 3006 struct yaffs_ext_tags prev_tags; 3007 int new_chunk_id; 3008 struct yaffs_ext_tags new_tags; 3009 struct yaffs_dev *dev = in->my_dev; 3010 3011 yaffs_check_gc(dev, 0); 3012 3013 /* Get the previous chunk at this location in the file if it exists. 3014 * If it does not exist then put a zero into the tree. This creates 3015 * the tnode now, rather than later when it is harder to clean up. 3016 */ 3017 prev_chunk_id = yaffs_find_chunk_in_file(in, inode_chunk, &prev_tags); 3018 if (prev_chunk_id < 1 && 3019 !yaffs_put_chunk_in_file(in, inode_chunk, 0, 0)) 3020 return 0; 3021 3022 /* Set up new tags */ 3023 memset(&new_tags, 0, sizeof(new_tags)); 3024 3025 new_tags.chunk_id = inode_chunk; 3026 new_tags.obj_id = in->obj_id; 3027 new_tags.serial_number = 3028 (prev_chunk_id > 0) ? prev_tags.serial_number + 1 : 1; 3029 new_tags.n_bytes = n_bytes; 3030 3031 if (n_bytes < 1 || n_bytes > dev->param.total_bytes_per_chunk) { 3032 yaffs_trace(YAFFS_TRACE_ERROR, 3033 "Writing %d bytes to chunk!!!!!!!!!", 3034 n_bytes); 3035 BUG(); 3036 } 3037 3038 new_chunk_id = 3039 yaffs_write_new_chunk(dev, buffer, &new_tags, use_reserve); 3040 3041 if (new_chunk_id > 0) { 3042 yaffs_put_chunk_in_file(in, inode_chunk, new_chunk_id, 0); 3043 3044 if (prev_chunk_id > 0) 3045 yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__); 3046 3047 yaffs_verify_file_sane(in); 3048 } 3049 return new_chunk_id; 3050 3051 } 3052 3053 3054 3055 static int yaffs_do_xattrib_mod(struct yaffs_obj *obj, int set, 3056 const YCHAR *name, const void *value, int size, 3057 int flags) 3058 { 3059 struct yaffs_xattr_mod xmod; 3060 int result; 3061 3062 xmod.set = set; 3063 xmod.name = name; 3064 xmod.data = value; 3065 xmod.size = size; 3066 xmod.flags = flags; 3067 xmod.result = -ENOSPC; 3068 3069 result = yaffs_update_oh(obj, NULL, 0, 0, 0, &xmod); 3070 3071 if (result > 0) 3072 return xmod.result; 3073 else 3074 return -ENOSPC; 3075 } 3076 3077 static int yaffs_apply_xattrib_mod(struct yaffs_obj *obj, char *buffer, 3078 struct yaffs_xattr_mod *xmod) 3079 { 3080 int retval = 0; 3081 int x_offs = sizeof(struct yaffs_obj_hdr); 3082 struct yaffs_dev *dev = obj->my_dev; 3083 int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr); 3084 char *x_buffer = buffer + x_offs; 3085 3086 if (xmod->set) 3087 retval = 3088 nval_set(x_buffer, x_size, xmod->name, xmod->data, 3089 xmod->size, xmod->flags); 3090 else 3091 retval = nval_del(x_buffer, x_size, xmod->name); 3092 3093 obj->has_xattr = nval_hasvalues(x_buffer, x_size); 3094 obj->xattr_known = 1; 3095 xmod->result = retval; 3096 3097 return retval; 3098 } 3099 3100 static int yaffs_do_xattrib_fetch(struct yaffs_obj *obj, const YCHAR *name, 3101 void *value, int size) 3102 { 3103 char *buffer = NULL; 3104 int result; 3105 struct yaffs_ext_tags tags; 3106 struct yaffs_dev *dev = obj->my_dev; 3107 int x_offs = sizeof(struct yaffs_obj_hdr); 3108 int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr); 3109 char *x_buffer; 3110 int retval = 0; 3111 3112 if (obj->hdr_chunk < 1) 3113 return -ENODATA; 3114 3115 /* If we know that the object has no xattribs then don't do all the 3116 * reading and parsing. 3117 */ 3118 if (obj->xattr_known && !obj->has_xattr) { 3119 if (name) 3120 return -ENODATA; 3121 else 3122 return 0; 3123 } 3124 3125 buffer = (char *)yaffs_get_temp_buffer(dev); 3126 if (!buffer) 3127 return -ENOMEM; 3128 3129 result = 3130 yaffs_rd_chunk_tags_nand(dev, obj->hdr_chunk, (u8 *) buffer, &tags); 3131 3132 if (result != YAFFS_OK) 3133 retval = -ENOENT; 3134 else { 3135 x_buffer = buffer + x_offs; 3136 3137 if (!obj->xattr_known) { 3138 obj->has_xattr = nval_hasvalues(x_buffer, x_size); 3139 obj->xattr_known = 1; 3140 } 3141 3142 if (name) 3143 retval = nval_get(x_buffer, x_size, name, value, size); 3144 else 3145 retval = nval_list(x_buffer, x_size, value, size); 3146 } 3147 yaffs_release_temp_buffer(dev, (u8 *) buffer); 3148 return retval; 3149 } 3150 3151 int yaffs_set_xattrib(struct yaffs_obj *obj, const YCHAR * name, 3152 const void *value, int size, int flags) 3153 { 3154 return yaffs_do_xattrib_mod(obj, 1, name, value, size, flags); 3155 } 3156 3157 int yaffs_remove_xattrib(struct yaffs_obj *obj, const YCHAR * name) 3158 { 3159 return yaffs_do_xattrib_mod(obj, 0, name, NULL, 0, 0); 3160 } 3161 3162 int yaffs_get_xattrib(struct yaffs_obj *obj, const YCHAR * name, void *value, 3163 int size) 3164 { 3165 return yaffs_do_xattrib_fetch(obj, name, value, size); 3166 } 3167 3168 int yaffs_list_xattrib(struct yaffs_obj *obj, char *buffer, int size) 3169 { 3170 return yaffs_do_xattrib_fetch(obj, NULL, buffer, size); 3171 } 3172 3173 static void yaffs_check_obj_details_loaded(struct yaffs_obj *in) 3174 { 3175 u8 *buf; 3176 struct yaffs_obj_hdr *oh; 3177 struct yaffs_dev *dev; 3178 struct yaffs_ext_tags tags; 3179 int result; 3180 int alloc_failed = 0; 3181 3182 if (!in || !in->lazy_loaded || in->hdr_chunk < 1) 3183 return; 3184 3185 dev = in->my_dev; 3186 in->lazy_loaded = 0; 3187 buf = yaffs_get_temp_buffer(dev); 3188 3189 result = yaffs_rd_chunk_tags_nand(dev, in->hdr_chunk, buf, &tags); 3190 oh = (struct yaffs_obj_hdr *)buf; 3191 3192 in->yst_mode = oh->yst_mode; 3193 yaffs_load_attribs(in, oh); 3194 yaffs_set_obj_name_from_oh(in, oh); 3195 3196 if (in->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) { 3197 in->variant.symlink_variant.alias = 3198 yaffs_clone_str(oh->alias); 3199 if (!in->variant.symlink_variant.alias) 3200 alloc_failed = 1; /* Not returned */ 3201 } 3202 yaffs_release_temp_buffer(dev, buf); 3203 } 3204 3205 static void yaffs_load_name_from_oh(struct yaffs_dev *dev, YCHAR *name, 3206 const YCHAR *oh_name, int buff_size) 3207 { 3208 #ifdef CONFIG_YAFFS_AUTO_UNICODE 3209 if (dev->param.auto_unicode) { 3210 if (*oh_name) { 3211 /* It is an ASCII name, do an ASCII to 3212 * unicode conversion */ 3213 const char *ascii_oh_name = (const char *)oh_name; 3214 int n = buff_size - 1; 3215 while (n > 0 && *ascii_oh_name) { 3216 *name = *ascii_oh_name; 3217 name++; 3218 ascii_oh_name++; 3219 n--; 3220 } 3221 } else { 3222 yaffs_strncpy(name, oh_name + 1, buff_size - 1); 3223 } 3224 } else { 3225 #else 3226 dev = dev; 3227 { 3228 #endif 3229 yaffs_strncpy(name, oh_name, buff_size - 1); 3230 } 3231 } 3232 3233 static void yaffs_load_oh_from_name(struct yaffs_dev *dev, YCHAR *oh_name, 3234 const YCHAR *name) 3235 { 3236 #ifdef CONFIG_YAFFS_AUTO_UNICODE 3237 3238 int is_ascii; 3239 YCHAR *w; 3240 3241 if (dev->param.auto_unicode) { 3242 3243 is_ascii = 1; 3244 w = name; 3245 3246 /* Figure out if the name will fit in ascii character set */ 3247 while (is_ascii && *w) { 3248 if ((*w) & 0xff00) 3249 is_ascii = 0; 3250 w++; 3251 } 3252 3253 if (is_ascii) { 3254 /* It is an ASCII name, so convert unicode to ascii */ 3255 char *ascii_oh_name = (char *)oh_name; 3256 int n = YAFFS_MAX_NAME_LENGTH - 1; 3257 while (n > 0 && *name) { 3258 *ascii_oh_name = *name; 3259 name++; 3260 ascii_oh_name++; 3261 n--; 3262 } 3263 } else { 3264 /* Unicode name, so save starting at the second YCHAR */ 3265 *oh_name = 0; 3266 yaffs_strncpy(oh_name + 1, name, YAFFS_MAX_NAME_LENGTH - 2); 3267 } 3268 } else { 3269 #else 3270 dev = dev; 3271 { 3272 #endif 3273 yaffs_strncpy(oh_name, name, YAFFS_MAX_NAME_LENGTH - 1); 3274 } 3275 } 3276 3277 /* UpdateObjectHeader updates the header on NAND for an object. 3278 * If name is not NULL, then that new name is used. 3279 */ 3280 int yaffs_update_oh(struct yaffs_obj *in, const YCHAR *name, int force, 3281 int is_shrink, int shadows, struct yaffs_xattr_mod *xmod) 3282 { 3283 3284 struct yaffs_block_info *bi; 3285 struct yaffs_dev *dev = in->my_dev; 3286 int prev_chunk_id; 3287 int ret_val = 0; 3288 int result = 0; 3289 int new_chunk_id; 3290 struct yaffs_ext_tags new_tags; 3291 struct yaffs_ext_tags old_tags; 3292 const YCHAR *alias = NULL; 3293 u8 *buffer = NULL; 3294 YCHAR old_name[YAFFS_MAX_NAME_LENGTH + 1]; 3295 struct yaffs_obj_hdr *oh = NULL; 3296 loff_t file_size = 0; 3297 3298 yaffs_strcpy(old_name, _Y("silly old name")); 3299 3300 if (in->fake && in != dev->root_dir && !force && !xmod) 3301 return ret_val; 3302 3303 yaffs_check_gc(dev, 0); 3304 yaffs_check_obj_details_loaded(in); 3305 3306 buffer = yaffs_get_temp_buffer(in->my_dev); 3307 oh = (struct yaffs_obj_hdr *)buffer; 3308 3309 prev_chunk_id = in->hdr_chunk; 3310 3311 if (prev_chunk_id > 0) { 3312 result = yaffs_rd_chunk_tags_nand(dev, prev_chunk_id, 3313 buffer, &old_tags); 3314 3315 yaffs_verify_oh(in, oh, &old_tags, 0); 3316 memcpy(old_name, oh->name, sizeof(oh->name)); 3317 memset(buffer, 0xff, sizeof(struct yaffs_obj_hdr)); 3318 } else { 3319 memset(buffer, 0xff, dev->data_bytes_per_chunk); 3320 } 3321 3322 oh->type = in->variant_type; 3323 oh->yst_mode = in->yst_mode; 3324 oh->shadows_obj = oh->inband_shadowed_obj_id = shadows; 3325 3326 yaffs_load_attribs_oh(oh, in); 3327 3328 if (in->parent) 3329 oh->parent_obj_id = in->parent->obj_id; 3330 else 3331 oh->parent_obj_id = 0; 3332 3333 if (name && *name) { 3334 memset(oh->name, 0, sizeof(oh->name)); 3335 yaffs_load_oh_from_name(dev, oh->name, name); 3336 } else if (prev_chunk_id > 0) { 3337 memcpy(oh->name, old_name, sizeof(oh->name)); 3338 } else { 3339 memset(oh->name, 0, sizeof(oh->name)); 3340 } 3341 3342 oh->is_shrink = is_shrink; 3343 3344 switch (in->variant_type) { 3345 case YAFFS_OBJECT_TYPE_UNKNOWN: 3346 /* Should not happen */ 3347 break; 3348 case YAFFS_OBJECT_TYPE_FILE: 3349 if (oh->parent_obj_id != YAFFS_OBJECTID_DELETED && 3350 oh->parent_obj_id != YAFFS_OBJECTID_UNLINKED) 3351 file_size = in->variant.file_variant.file_size; 3352 yaffs_oh_size_load(oh, file_size); 3353 break; 3354 case YAFFS_OBJECT_TYPE_HARDLINK: 3355 oh->equiv_id = in->variant.hardlink_variant.equiv_id; 3356 break; 3357 case YAFFS_OBJECT_TYPE_SPECIAL: 3358 /* Do nothing */ 3359 break; 3360 case YAFFS_OBJECT_TYPE_DIRECTORY: 3361 /* Do nothing */ 3362 break; 3363 case YAFFS_OBJECT_TYPE_SYMLINK: 3364 alias = in->variant.symlink_variant.alias; 3365 if (!alias) 3366 alias = _Y("no alias"); 3367 yaffs_strncpy(oh->alias, alias, YAFFS_MAX_ALIAS_LENGTH); 3368 oh->alias[YAFFS_MAX_ALIAS_LENGTH] = 0; 3369 break; 3370 } 3371 3372 /* process any xattrib modifications */ 3373 if (xmod) 3374 yaffs_apply_xattrib_mod(in, (char *)buffer, xmod); 3375 3376 /* Tags */ 3377 memset(&new_tags, 0, sizeof(new_tags)); 3378 in->serial++; 3379 new_tags.chunk_id = 0; 3380 new_tags.obj_id = in->obj_id; 3381 new_tags.serial_number = in->serial; 3382 3383 /* Add extra info for file header */ 3384 new_tags.extra_available = 1; 3385 new_tags.extra_parent_id = oh->parent_obj_id; 3386 new_tags.extra_file_size = file_size; 3387 new_tags.extra_is_shrink = oh->is_shrink; 3388 new_tags.extra_equiv_id = oh->equiv_id; 3389 new_tags.extra_shadows = (oh->shadows_obj > 0) ? 1 : 0; 3390 new_tags.extra_obj_type = in->variant_type; 3391 yaffs_verify_oh(in, oh, &new_tags, 1); 3392 3393 /* Create new chunk in NAND */ 3394 new_chunk_id = 3395 yaffs_write_new_chunk(dev, buffer, &new_tags, 3396 (prev_chunk_id > 0) ? 1 : 0); 3397 3398 if (buffer) 3399 yaffs_release_temp_buffer(dev, buffer); 3400 3401 if (new_chunk_id < 0) 3402 return new_chunk_id; 3403 3404 in->hdr_chunk = new_chunk_id; 3405 3406 if (prev_chunk_id > 0) 3407 yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__); 3408 3409 if (!yaffs_obj_cache_dirty(in)) 3410 in->dirty = 0; 3411 3412 /* If this was a shrink, then mark the block 3413 * that the chunk lives on */ 3414 if (is_shrink) { 3415 bi = yaffs_get_block_info(in->my_dev, 3416 new_chunk_id / 3417 in->my_dev->param.chunks_per_block); 3418 bi->has_shrink_hdr = 1; 3419 } 3420 3421 3422 return new_chunk_id; 3423 } 3424 3425 /*--------------------- File read/write ------------------------ 3426 * Read and write have very similar structures. 3427 * In general the read/write has three parts to it 3428 * An incomplete chunk to start with (if the read/write is not chunk-aligned) 3429 * Some complete chunks 3430 * An incomplete chunk to end off with 3431 * 3432 * Curve-balls: the first chunk might also be the last chunk. 3433 */ 3434 3435 int yaffs_file_rd(struct yaffs_obj *in, u8 * buffer, loff_t offset, int n_bytes) 3436 { 3437 int chunk; 3438 u32 start; 3439 int n_copy; 3440 int n = n_bytes; 3441 int n_done = 0; 3442 struct yaffs_cache *cache; 3443 struct yaffs_dev *dev; 3444 3445 dev = in->my_dev; 3446 3447 while (n > 0) { 3448 yaffs_addr_to_chunk(dev, offset, &chunk, &start); 3449 chunk++; 3450 3451 /* OK now check for the curveball where the start and end are in 3452 * the same chunk. 3453 */ 3454 if ((start + n) < dev->data_bytes_per_chunk) 3455 n_copy = n; 3456 else 3457 n_copy = dev->data_bytes_per_chunk - start; 3458 3459 cache = yaffs_find_chunk_cache(in, chunk); 3460 3461 /* If the chunk is already in the cache or it is less than 3462 * a whole chunk or we're using inband tags then use the cache 3463 * (if there is caching) else bypass the cache. 3464 */ 3465 if (cache || n_copy != dev->data_bytes_per_chunk || 3466 dev->param.inband_tags) { 3467 if (dev->param.n_caches > 0) { 3468 3469 /* If we can't find the data in the cache, 3470 * then load it up. */ 3471 3472 if (!cache) { 3473 cache = 3474 yaffs_grab_chunk_cache(in->my_dev); 3475 cache->object = in; 3476 cache->chunk_id = chunk; 3477 cache->dirty = 0; 3478 cache->locked = 0; 3479 yaffs_rd_data_obj(in, chunk, 3480 cache->data); 3481 cache->n_bytes = 0; 3482 } 3483 3484 yaffs_use_cache(dev, cache, 0); 3485 3486 cache->locked = 1; 3487 3488 memcpy(buffer, &cache->data[start], n_copy); 3489 3490 cache->locked = 0; 3491 } else { 3492 /* Read into the local buffer then copy.. */ 3493 3494 u8 *local_buffer = 3495 yaffs_get_temp_buffer(dev); 3496 yaffs_rd_data_obj(in, chunk, local_buffer); 3497 3498 memcpy(buffer, &local_buffer[start], n_copy); 3499 3500 yaffs_release_temp_buffer(dev, local_buffer); 3501 } 3502 } else { 3503 /* A full chunk. Read directly into the buffer. */ 3504 yaffs_rd_data_obj(in, chunk, buffer); 3505 } 3506 n -= n_copy; 3507 offset += n_copy; 3508 buffer += n_copy; 3509 n_done += n_copy; 3510 } 3511 return n_done; 3512 } 3513 3514 int yaffs_do_file_wr(struct yaffs_obj *in, const u8 *buffer, loff_t offset, 3515 int n_bytes, int write_through) 3516 { 3517 3518 int chunk; 3519 u32 start; 3520 int n_copy; 3521 int n = n_bytes; 3522 int n_done = 0; 3523 int n_writeback; 3524 loff_t start_write = offset; 3525 int chunk_written = 0; 3526 u32 n_bytes_read; 3527 loff_t chunk_start; 3528 struct yaffs_dev *dev; 3529 3530 dev = in->my_dev; 3531 3532 while (n > 0 && chunk_written >= 0) { 3533 yaffs_addr_to_chunk(dev, offset, &chunk, &start); 3534 3535 if (((loff_t)chunk) * 3536 dev->data_bytes_per_chunk + start != offset || 3537 start >= dev->data_bytes_per_chunk) { 3538 yaffs_trace(YAFFS_TRACE_ERROR, 3539 "AddrToChunk of offset %lld gives chunk %d start %d", 3540 offset, chunk, start); 3541 } 3542 chunk++; /* File pos to chunk in file offset */ 3543 3544 /* OK now check for the curveball where the start and end are in 3545 * the same chunk. 3546 */ 3547 3548 if ((start + n) < dev->data_bytes_per_chunk) { 3549 n_copy = n; 3550 3551 /* Now calculate how many bytes to write back.... 3552 * If we're overwriting and not writing to then end of 3553 * file then we need to write back as much as was there 3554 * before. 3555 */ 3556 3557 chunk_start = (((loff_t)(chunk - 1)) * 3558 dev->data_bytes_per_chunk); 3559 3560 if (chunk_start > in->variant.file_variant.file_size) 3561 n_bytes_read = 0; /* Past end of file */ 3562 else 3563 n_bytes_read = 3564 in->variant.file_variant.file_size - 3565 chunk_start; 3566 3567 if (n_bytes_read > dev->data_bytes_per_chunk) 3568 n_bytes_read = dev->data_bytes_per_chunk; 3569 3570 n_writeback = 3571 (n_bytes_read > 3572 (start + n)) ? n_bytes_read : (start + n); 3573 3574 if (n_writeback < 0 || 3575 n_writeback > dev->data_bytes_per_chunk) 3576 BUG(); 3577 3578 } else { 3579 n_copy = dev->data_bytes_per_chunk - start; 3580 n_writeback = dev->data_bytes_per_chunk; 3581 } 3582 3583 if (n_copy != dev->data_bytes_per_chunk || 3584 dev->param.inband_tags) { 3585 /* An incomplete start or end chunk (or maybe both 3586 * start and end chunk), or we're using inband tags, 3587 * so we want to use the cache buffers. 3588 */ 3589 if (dev->param.n_caches > 0) { 3590 struct yaffs_cache *cache; 3591 3592 /* If we can't find the data in the cache, then 3593 * load the cache */ 3594 cache = yaffs_find_chunk_cache(in, chunk); 3595 3596 if (!cache && 3597 yaffs_check_alloc_available(dev, 1)) { 3598 cache = yaffs_grab_chunk_cache(dev); 3599 cache->object = in; 3600 cache->chunk_id = chunk; 3601 cache->dirty = 0; 3602 cache->locked = 0; 3603 yaffs_rd_data_obj(in, chunk, 3604 cache->data); 3605 } else if (cache && 3606 !cache->dirty && 3607 !yaffs_check_alloc_available(dev, 3608 1)) { 3609 /* Drop the cache if it was a read cache 3610 * item and no space check has been made 3611 * for it. 3612 */ 3613 cache = NULL; 3614 } 3615 3616 if (cache) { 3617 yaffs_use_cache(dev, cache, 1); 3618 cache->locked = 1; 3619 3620 memcpy(&cache->data[start], buffer, 3621 n_copy); 3622 3623 cache->locked = 0; 3624 cache->n_bytes = n_writeback; 3625 3626 if (write_through) { 3627 chunk_written = 3628 yaffs_wr_data_obj 3629 (cache->object, 3630 cache->chunk_id, 3631 cache->data, 3632 cache->n_bytes, 1); 3633 cache->dirty = 0; 3634 } 3635 } else { 3636 chunk_written = -1; /* fail write */ 3637 } 3638 } else { 3639 /* An incomplete start or end chunk (or maybe 3640 * both start and end chunk). Read into the 3641 * local buffer then copy over and write back. 3642 */ 3643 3644 u8 *local_buffer = yaffs_get_temp_buffer(dev); 3645 3646 yaffs_rd_data_obj(in, chunk, local_buffer); 3647 memcpy(&local_buffer[start], buffer, n_copy); 3648 3649 chunk_written = 3650 yaffs_wr_data_obj(in, chunk, 3651 local_buffer, 3652 n_writeback, 0); 3653 3654 yaffs_release_temp_buffer(dev, local_buffer); 3655 } 3656 } else { 3657 /* A full chunk. Write directly from the buffer. */ 3658 3659 chunk_written = 3660 yaffs_wr_data_obj(in, chunk, buffer, 3661 dev->data_bytes_per_chunk, 0); 3662 3663 /* Since we've overwritten the cached data, 3664 * we better invalidate it. */ 3665 yaffs_invalidate_chunk_cache(in, chunk); 3666 } 3667 3668 if (chunk_written >= 0) { 3669 n -= n_copy; 3670 offset += n_copy; 3671 buffer += n_copy; 3672 n_done += n_copy; 3673 } 3674 } 3675 3676 /* Update file object */ 3677 3678 if ((start_write + n_done) > in->variant.file_variant.file_size) 3679 in->variant.file_variant.file_size = (start_write + n_done); 3680 3681 in->dirty = 1; 3682 return n_done; 3683 } 3684 3685 int yaffs_wr_file(struct yaffs_obj *in, const u8 *buffer, loff_t offset, 3686 int n_bytes, int write_through) 3687 { 3688 yaffs2_handle_hole(in, offset); 3689 return yaffs_do_file_wr(in, buffer, offset, n_bytes, write_through); 3690 } 3691 3692 /* ---------------------- File resizing stuff ------------------ */ 3693 3694 static void yaffs_prune_chunks(struct yaffs_obj *in, loff_t new_size) 3695 { 3696 3697 struct yaffs_dev *dev = in->my_dev; 3698 loff_t old_size = in->variant.file_variant.file_size; 3699 int i; 3700 int chunk_id; 3701 u32 dummy; 3702 int last_del; 3703 int start_del; 3704 3705 if (old_size > 0) 3706 yaffs_addr_to_chunk(dev, old_size - 1, &last_del, &dummy); 3707 else 3708 last_del = 0; 3709 3710 yaffs_addr_to_chunk(dev, new_size + dev->data_bytes_per_chunk - 1, 3711 &start_del, &dummy); 3712 last_del++; 3713 start_del++; 3714 3715 /* Delete backwards so that we don't end up with holes if 3716 * power is lost part-way through the operation. 3717 */ 3718 for (i = last_del; i >= start_del; i--) { 3719 /* NB this could be optimised somewhat, 3720 * eg. could retrieve the tags and write them without 3721 * using yaffs_chunk_del 3722 */ 3723 3724 chunk_id = yaffs_find_del_file_chunk(in, i, NULL); 3725 3726 if (chunk_id < 1) 3727 continue; 3728 3729 if (chunk_id < 3730 (dev->internal_start_block * dev->param.chunks_per_block) || 3731 chunk_id >= 3732 ((dev->internal_end_block + 1) * 3733 dev->param.chunks_per_block)) { 3734 yaffs_trace(YAFFS_TRACE_ALWAYS, 3735 "Found daft chunk_id %d for %d", 3736 chunk_id, i); 3737 } else { 3738 in->n_data_chunks--; 3739 yaffs_chunk_del(dev, chunk_id, 1, __LINE__); 3740 } 3741 } 3742 } 3743 3744 void yaffs_resize_file_down(struct yaffs_obj *obj, loff_t new_size) 3745 { 3746 int new_full; 3747 u32 new_partial; 3748 struct yaffs_dev *dev = obj->my_dev; 3749 3750 yaffs_addr_to_chunk(dev, new_size, &new_full, &new_partial); 3751 3752 yaffs_prune_chunks(obj, new_size); 3753 3754 if (new_partial != 0) { 3755 int last_chunk = 1 + new_full; 3756 u8 *local_buffer = yaffs_get_temp_buffer(dev); 3757 3758 /* Rewrite the last chunk with its new size and zero pad */ 3759 yaffs_rd_data_obj(obj, last_chunk, local_buffer); 3760 memset(local_buffer + new_partial, 0, 3761 dev->data_bytes_per_chunk - new_partial); 3762 3763 yaffs_wr_data_obj(obj, last_chunk, local_buffer, 3764 new_partial, 1); 3765 3766 yaffs_release_temp_buffer(dev, local_buffer); 3767 } 3768 3769 obj->variant.file_variant.file_size = new_size; 3770 3771 yaffs_prune_tree(dev, &obj->variant.file_variant); 3772 } 3773 3774 int yaffs_resize_file(struct yaffs_obj *in, loff_t new_size) 3775 { 3776 struct yaffs_dev *dev = in->my_dev; 3777 loff_t old_size = in->variant.file_variant.file_size; 3778 3779 yaffs_flush_file_cache(in); 3780 yaffs_invalidate_whole_cache(in); 3781 3782 yaffs_check_gc(dev, 0); 3783 3784 if (in->variant_type != YAFFS_OBJECT_TYPE_FILE) 3785 return YAFFS_FAIL; 3786 3787 if (new_size == old_size) 3788 return YAFFS_OK; 3789 3790 if (new_size > old_size) { 3791 yaffs2_handle_hole(in, new_size); 3792 in->variant.file_variant.file_size = new_size; 3793 } else { 3794 /* new_size < old_size */ 3795 yaffs_resize_file_down(in, new_size); 3796 } 3797 3798 /* Write a new object header to reflect the resize. 3799 * show we've shrunk the file, if need be 3800 * Do this only if the file is not in the deleted directories 3801 * and is not shadowed. 3802 */ 3803 if (in->parent && 3804 !in->is_shadowed && 3805 in->parent->obj_id != YAFFS_OBJECTID_UNLINKED && 3806 in->parent->obj_id != YAFFS_OBJECTID_DELETED) 3807 yaffs_update_oh(in, NULL, 0, 0, 0, NULL); 3808 3809 return YAFFS_OK; 3810 } 3811 3812 int yaffs_flush_file(struct yaffs_obj *in, int update_time, int data_sync) 3813 { 3814 if (!in->dirty) 3815 return YAFFS_OK; 3816 3817 yaffs_flush_file_cache(in); 3818 3819 if (data_sync) 3820 return YAFFS_OK; 3821 3822 if (update_time) 3823 yaffs_load_current_time(in, 0, 0); 3824 3825 return (yaffs_update_oh(in, NULL, 0, 0, 0, NULL) >= 0) ? 3826 YAFFS_OK : YAFFS_FAIL; 3827 } 3828 3829 3830 /* yaffs_del_file deletes the whole file data 3831 * and the inode associated with the file. 3832 * It does not delete the links associated with the file. 3833 */ 3834 static int yaffs_unlink_file_if_needed(struct yaffs_obj *in) 3835 { 3836 int ret_val; 3837 int del_now = 0; 3838 struct yaffs_dev *dev = in->my_dev; 3839 3840 if (!in->my_inode) 3841 del_now = 1; 3842 3843 if (del_now) { 3844 ret_val = 3845 yaffs_change_obj_name(in, in->my_dev->del_dir, 3846 _Y("deleted"), 0, 0); 3847 yaffs_trace(YAFFS_TRACE_TRACING, 3848 "yaffs: immediate deletion of file %d", 3849 in->obj_id); 3850 in->deleted = 1; 3851 in->my_dev->n_deleted_files++; 3852 if (dev->param.disable_soft_del || dev->param.is_yaffs2) 3853 yaffs_resize_file(in, 0); 3854 yaffs_soft_del_file(in); 3855 } else { 3856 ret_val = 3857 yaffs_change_obj_name(in, in->my_dev->unlinked_dir, 3858 _Y("unlinked"), 0, 0); 3859 } 3860 return ret_val; 3861 } 3862 3863 int yaffs_del_file(struct yaffs_obj *in) 3864 { 3865 int ret_val = YAFFS_OK; 3866 int deleted; /* Need to cache value on stack if in is freed */ 3867 struct yaffs_dev *dev = in->my_dev; 3868 3869 if (dev->param.disable_soft_del || dev->param.is_yaffs2) 3870 yaffs_resize_file(in, 0); 3871 3872 if (in->n_data_chunks > 0) { 3873 /* Use soft deletion if there is data in the file. 3874 * That won't be the case if it has been resized to zero. 3875 */ 3876 if (!in->unlinked) 3877 ret_val = yaffs_unlink_file_if_needed(in); 3878 3879 deleted = in->deleted; 3880 3881 if (ret_val == YAFFS_OK && in->unlinked && !in->deleted) { 3882 in->deleted = 1; 3883 deleted = 1; 3884 in->my_dev->n_deleted_files++; 3885 yaffs_soft_del_file(in); 3886 } 3887 return deleted ? YAFFS_OK : YAFFS_FAIL; 3888 } else { 3889 /* The file has no data chunks so we toss it immediately */ 3890 yaffs_free_tnode(in->my_dev, in->variant.file_variant.top); 3891 in->variant.file_variant.top = NULL; 3892 yaffs_generic_obj_del(in); 3893 3894 return YAFFS_OK; 3895 } 3896 } 3897 3898 int yaffs_is_non_empty_dir(struct yaffs_obj *obj) 3899 { 3900 return (obj && 3901 obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY) && 3902 !(list_empty(&obj->variant.dir_variant.children)); 3903 } 3904 3905 static int yaffs_del_dir(struct yaffs_obj *obj) 3906 { 3907 /* First check that the directory is empty. */ 3908 if (yaffs_is_non_empty_dir(obj)) 3909 return YAFFS_FAIL; 3910 3911 return yaffs_generic_obj_del(obj); 3912 } 3913 3914 static int yaffs_del_symlink(struct yaffs_obj *in) 3915 { 3916 kfree(in->variant.symlink_variant.alias); 3917 in->variant.symlink_variant.alias = NULL; 3918 3919 return yaffs_generic_obj_del(in); 3920 } 3921 3922 static int yaffs_del_link(struct yaffs_obj *in) 3923 { 3924 /* remove this hardlink from the list associated with the equivalent 3925 * object 3926 */ 3927 list_del_init(&in->hard_links); 3928 return yaffs_generic_obj_del(in); 3929 } 3930 3931 int yaffs_del_obj(struct yaffs_obj *obj) 3932 { 3933 int ret_val = -1; 3934 3935 switch (obj->variant_type) { 3936 case YAFFS_OBJECT_TYPE_FILE: 3937 ret_val = yaffs_del_file(obj); 3938 break; 3939 case YAFFS_OBJECT_TYPE_DIRECTORY: 3940 if (!list_empty(&obj->variant.dir_variant.dirty)) { 3941 yaffs_trace(YAFFS_TRACE_BACKGROUND, 3942 "Remove object %d from dirty directories", 3943 obj->obj_id); 3944 list_del_init(&obj->variant.dir_variant.dirty); 3945 } 3946 return yaffs_del_dir(obj); 3947 break; 3948 case YAFFS_OBJECT_TYPE_SYMLINK: 3949 ret_val = yaffs_del_symlink(obj); 3950 break; 3951 case YAFFS_OBJECT_TYPE_HARDLINK: 3952 ret_val = yaffs_del_link(obj); 3953 break; 3954 case YAFFS_OBJECT_TYPE_SPECIAL: 3955 ret_val = yaffs_generic_obj_del(obj); 3956 break; 3957 case YAFFS_OBJECT_TYPE_UNKNOWN: 3958 ret_val = 0; 3959 break; /* should not happen. */ 3960 } 3961 return ret_val; 3962 } 3963 3964 static int yaffs_unlink_worker(struct yaffs_obj *obj) 3965 { 3966 int del_now = 0; 3967 3968 if (!obj) 3969 return YAFFS_FAIL; 3970 3971 if (!obj->my_inode) 3972 del_now = 1; 3973 3974 yaffs_update_parent(obj->parent); 3975 3976 if (obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) { 3977 return yaffs_del_link(obj); 3978 } else if (!list_empty(&obj->hard_links)) { 3979 /* Curve ball: We're unlinking an object that has a hardlink. 3980 * 3981 * This problem arises because we are not strictly following 3982 * The Linux link/inode model. 3983 * 3984 * We can't really delete the object. 3985 * Instead, we do the following: 3986 * - Select a hardlink. 3987 * - Unhook it from the hard links 3988 * - Move it from its parent directory so that the rename works. 3989 * - Rename the object to the hardlink's name. 3990 * - Delete the hardlink 3991 */ 3992 3993 struct yaffs_obj *hl; 3994 struct yaffs_obj *parent; 3995 int ret_val; 3996 YCHAR name[YAFFS_MAX_NAME_LENGTH + 1]; 3997 3998 hl = list_entry(obj->hard_links.next, struct yaffs_obj, 3999 hard_links); 4000 4001 yaffs_get_obj_name(hl, name, YAFFS_MAX_NAME_LENGTH + 1); 4002 parent = hl->parent; 4003 4004 list_del_init(&hl->hard_links); 4005 4006 yaffs_add_obj_to_dir(obj->my_dev->unlinked_dir, hl); 4007 4008 ret_val = yaffs_change_obj_name(obj, parent, name, 0, 0); 4009 4010 if (ret_val == YAFFS_OK) 4011 ret_val = yaffs_generic_obj_del(hl); 4012 4013 return ret_val; 4014 4015 } else if (del_now) { 4016 switch (obj->variant_type) { 4017 case YAFFS_OBJECT_TYPE_FILE: 4018 return yaffs_del_file(obj); 4019 break; 4020 case YAFFS_OBJECT_TYPE_DIRECTORY: 4021 list_del_init(&obj->variant.dir_variant.dirty); 4022 return yaffs_del_dir(obj); 4023 break; 4024 case YAFFS_OBJECT_TYPE_SYMLINK: 4025 return yaffs_del_symlink(obj); 4026 break; 4027 case YAFFS_OBJECT_TYPE_SPECIAL: 4028 return yaffs_generic_obj_del(obj); 4029 break; 4030 case YAFFS_OBJECT_TYPE_HARDLINK: 4031 case YAFFS_OBJECT_TYPE_UNKNOWN: 4032 default: 4033 return YAFFS_FAIL; 4034 } 4035 } else if (yaffs_is_non_empty_dir(obj)) { 4036 return YAFFS_FAIL; 4037 } else { 4038 return yaffs_change_obj_name(obj, obj->my_dev->unlinked_dir, 4039 _Y("unlinked"), 0, 0); 4040 } 4041 } 4042 4043 static int yaffs_unlink_obj(struct yaffs_obj *obj) 4044 { 4045 if (obj && obj->unlink_allowed) 4046 return yaffs_unlink_worker(obj); 4047 4048 return YAFFS_FAIL; 4049 } 4050 4051 int yaffs_unlinker(struct yaffs_obj *dir, const YCHAR *name) 4052 { 4053 struct yaffs_obj *obj; 4054 4055 obj = yaffs_find_by_name(dir, name); 4056 return yaffs_unlink_obj(obj); 4057 } 4058 4059 /* Note: 4060 * If old_name is NULL then we take old_dir as the object to be renamed. 4061 */ 4062 int yaffs_rename_obj(struct yaffs_obj *old_dir, const YCHAR *old_name, 4063 struct yaffs_obj *new_dir, const YCHAR *new_name) 4064 { 4065 struct yaffs_obj *obj = NULL; 4066 struct yaffs_obj *existing_target = NULL; 4067 int force = 0; 4068 int result; 4069 struct yaffs_dev *dev; 4070 4071 if (!old_dir || old_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { 4072 BUG(); 4073 return YAFFS_FAIL; 4074 } 4075 if (!new_dir || new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { 4076 BUG(); 4077 return YAFFS_FAIL; 4078 } 4079 4080 dev = old_dir->my_dev; 4081 4082 #ifdef CONFIG_YAFFS_CASE_INSENSITIVE 4083 /* Special case for case insemsitive systems. 4084 * While look-up is case insensitive, the name isn't. 4085 * Therefore we might want to change x.txt to X.txt 4086 */ 4087 if (old_dir == new_dir && 4088 old_name && new_name && 4089 yaffs_strcmp(old_name, new_name) == 0) 4090 force = 1; 4091 #endif 4092 4093 if (yaffs_strnlen(new_name, YAFFS_MAX_NAME_LENGTH + 1) > 4094 YAFFS_MAX_NAME_LENGTH) 4095 /* ENAMETOOLONG */ 4096 return YAFFS_FAIL; 4097 4098 if (old_name) 4099 obj = yaffs_find_by_name(old_dir, old_name); 4100 else{ 4101 obj = old_dir; 4102 old_dir = obj->parent; 4103 } 4104 4105 if (obj && obj->rename_allowed) { 4106 /* Now handle an existing target, if there is one */ 4107 existing_target = yaffs_find_by_name(new_dir, new_name); 4108 if (yaffs_is_non_empty_dir(existing_target)) { 4109 return YAFFS_FAIL; /* ENOTEMPTY */ 4110 } else if (existing_target && existing_target != obj) { 4111 /* Nuke the target first, using shadowing, 4112 * but only if it isn't the same object. 4113 * 4114 * Note we must disable gc here otherwise it can mess 4115 * up the shadowing. 4116 * 4117 */ 4118 dev->gc_disable = 1; 4119 yaffs_change_obj_name(obj, new_dir, new_name, force, 4120 existing_target->obj_id); 4121 existing_target->is_shadowed = 1; 4122 yaffs_unlink_obj(existing_target); 4123 dev->gc_disable = 0; 4124 } 4125 4126 result = yaffs_change_obj_name(obj, new_dir, new_name, 1, 0); 4127 4128 yaffs_update_parent(old_dir); 4129 if (new_dir != old_dir) 4130 yaffs_update_parent(new_dir); 4131 4132 return result; 4133 } 4134 return YAFFS_FAIL; 4135 } 4136 4137 /*----------------------- Initialisation Scanning ---------------------- */ 4138 4139 void yaffs_handle_shadowed_obj(struct yaffs_dev *dev, int obj_id, 4140 int backward_scanning) 4141 { 4142 struct yaffs_obj *obj; 4143 4144 if (backward_scanning) { 4145 /* Handle YAFFS2 case (backward scanning) 4146 * If the shadowed object exists then ignore. 4147 */ 4148 obj = yaffs_find_by_number(dev, obj_id); 4149 if (obj) 4150 return; 4151 } 4152 4153 /* Let's create it (if it does not exist) assuming it is a file so that 4154 * it can do shrinking etc. 4155 * We put it in unlinked dir to be cleaned up after the scanning 4156 */ 4157 obj = 4158 yaffs_find_or_create_by_number(dev, obj_id, YAFFS_OBJECT_TYPE_FILE); 4159 if (!obj) 4160 return; 4161 obj->is_shadowed = 1; 4162 yaffs_add_obj_to_dir(dev->unlinked_dir, obj); 4163 obj->variant.file_variant.shrink_size = 0; 4164 obj->valid = 1; /* So that we don't read any other info. */ 4165 } 4166 4167 void yaffs_link_fixup(struct yaffs_dev *dev, struct list_head *hard_list) 4168 { 4169 struct list_head *lh; 4170 struct list_head *save; 4171 struct yaffs_obj *hl; 4172 struct yaffs_obj *in; 4173 4174 list_for_each_safe(lh, save, hard_list) { 4175 hl = list_entry(lh, struct yaffs_obj, hard_links); 4176 in = yaffs_find_by_number(dev, 4177 hl->variant.hardlink_variant.equiv_id); 4178 4179 if (in) { 4180 /* Add the hardlink pointers */ 4181 hl->variant.hardlink_variant.equiv_obj = in; 4182 list_add(&hl->hard_links, &in->hard_links); 4183 } else { 4184 /* Todo Need to report/handle this better. 4185 * Got a problem... hardlink to a non-existant object 4186 */ 4187 hl->variant.hardlink_variant.equiv_obj = NULL; 4188 INIT_LIST_HEAD(&hl->hard_links); 4189 } 4190 } 4191 } 4192 4193 static void yaffs_strip_deleted_objs(struct yaffs_dev *dev) 4194 { 4195 /* 4196 * Sort out state of unlinked and deleted objects after scanning. 4197 */ 4198 struct list_head *i; 4199 struct list_head *n; 4200 struct yaffs_obj *l; 4201 4202 if (dev->read_only) 4203 return; 4204 4205 /* Soft delete all the unlinked files */ 4206 list_for_each_safe(i, n, 4207 &dev->unlinked_dir->variant.dir_variant.children) { 4208 l = list_entry(i, struct yaffs_obj, siblings); 4209 yaffs_del_obj(l); 4210 } 4211 4212 list_for_each_safe(i, n, &dev->del_dir->variant.dir_variant.children) { 4213 l = list_entry(i, struct yaffs_obj, siblings); 4214 yaffs_del_obj(l); 4215 } 4216 } 4217 4218 /* 4219 * This code iterates through all the objects making sure that they are rooted. 4220 * Any unrooted objects are re-rooted in lost+found. 4221 * An object needs to be in one of: 4222 * - Directly under deleted, unlinked 4223 * - Directly or indirectly under root. 4224 * 4225 * Note: 4226 * This code assumes that we don't ever change the current relationships 4227 * between directories: 4228 * root_dir->parent == unlinked_dir->parent == del_dir->parent == NULL 4229 * lost-n-found->parent == root_dir 4230 * 4231 * This fixes the problem where directories might have inadvertently been 4232 * deleted leaving the object "hanging" without being rooted in the 4233 * directory tree. 4234 */ 4235 4236 static int yaffs_has_null_parent(struct yaffs_dev *dev, struct yaffs_obj *obj) 4237 { 4238 return (obj == dev->del_dir || 4239 obj == dev->unlinked_dir || obj == dev->root_dir); 4240 } 4241 4242 static void yaffs_fix_hanging_objs(struct yaffs_dev *dev) 4243 { 4244 struct yaffs_obj *obj; 4245 struct yaffs_obj *parent; 4246 int i; 4247 struct list_head *lh; 4248 struct list_head *n; 4249 int depth_limit; 4250 int hanging; 4251 4252 if (dev->read_only) 4253 return; 4254 4255 /* Iterate through the objects in each hash entry, 4256 * looking at each object. 4257 * Make sure it is rooted. 4258 */ 4259 4260 for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) { 4261 list_for_each_safe(lh, n, &dev->obj_bucket[i].list) { 4262 obj = list_entry(lh, struct yaffs_obj, hash_link); 4263 parent = obj->parent; 4264 4265 if (yaffs_has_null_parent(dev, obj)) { 4266 /* These directories are not hanging */ 4267 hanging = 0; 4268 } else if (!parent || 4269 parent->variant_type != 4270 YAFFS_OBJECT_TYPE_DIRECTORY) { 4271 hanging = 1; 4272 } else if (yaffs_has_null_parent(dev, parent)) { 4273 hanging = 0; 4274 } else { 4275 /* 4276 * Need to follow the parent chain to 4277 * see if it is hanging. 4278 */ 4279 hanging = 0; 4280 depth_limit = 100; 4281 4282 while (parent != dev->root_dir && 4283 parent->parent && 4284 parent->parent->variant_type == 4285 YAFFS_OBJECT_TYPE_DIRECTORY && 4286 depth_limit > 0) { 4287 parent = parent->parent; 4288 depth_limit--; 4289 } 4290 if (parent != dev->root_dir) 4291 hanging = 1; 4292 } 4293 if (hanging) { 4294 yaffs_trace(YAFFS_TRACE_SCAN, 4295 "Hanging object %d moved to lost and found", 4296 obj->obj_id); 4297 yaffs_add_obj_to_dir(dev->lost_n_found, obj); 4298 } 4299 } 4300 } 4301 } 4302 4303 /* 4304 * Delete directory contents for cleaning up lost and found. 4305 */ 4306 static void yaffs_del_dir_contents(struct yaffs_obj *dir) 4307 { 4308 struct yaffs_obj *obj; 4309 struct list_head *lh; 4310 struct list_head *n; 4311 4312 if (dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) 4313 BUG(); 4314 4315 list_for_each_safe(lh, n, &dir->variant.dir_variant.children) { 4316 obj = list_entry(lh, struct yaffs_obj, siblings); 4317 if (obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY) 4318 yaffs_del_dir_contents(obj); 4319 yaffs_trace(YAFFS_TRACE_SCAN, 4320 "Deleting lost_found object %d", 4321 obj->obj_id); 4322 yaffs_unlink_obj(obj); 4323 } 4324 } 4325 4326 static void yaffs_empty_l_n_f(struct yaffs_dev *dev) 4327 { 4328 yaffs_del_dir_contents(dev->lost_n_found); 4329 } 4330 4331 4332 struct yaffs_obj *yaffs_find_by_name(struct yaffs_obj *directory, 4333 const YCHAR *name) 4334 { 4335 int sum; 4336 struct list_head *i; 4337 YCHAR buffer[YAFFS_MAX_NAME_LENGTH + 1]; 4338 struct yaffs_obj *l; 4339 4340 if (!name) 4341 return NULL; 4342 4343 if (!directory) { 4344 yaffs_trace(YAFFS_TRACE_ALWAYS, 4345 "tragedy: yaffs_find_by_name: null pointer directory" 4346 ); 4347 BUG(); 4348 return NULL; 4349 } 4350 if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { 4351 yaffs_trace(YAFFS_TRACE_ALWAYS, 4352 "tragedy: yaffs_find_by_name: non-directory" 4353 ); 4354 BUG(); 4355 } 4356 4357 sum = yaffs_calc_name_sum(name); 4358 4359 list_for_each(i, &directory->variant.dir_variant.children) { 4360 l = list_entry(i, struct yaffs_obj, siblings); 4361 4362 if (l->parent != directory) 4363 BUG(); 4364 4365 yaffs_check_obj_details_loaded(l); 4366 4367 /* Special case for lost-n-found */ 4368 if (l->obj_id == YAFFS_OBJECTID_LOSTNFOUND) { 4369 if (!yaffs_strcmp(name, YAFFS_LOSTNFOUND_NAME)) 4370 return l; 4371 } else if (l->sum == sum || l->hdr_chunk <= 0) { 4372 /* LostnFound chunk called Objxxx 4373 * Do a real check 4374 */ 4375 yaffs_get_obj_name(l, buffer, 4376 YAFFS_MAX_NAME_LENGTH + 1); 4377 if (!yaffs_strncmp(name, buffer, YAFFS_MAX_NAME_LENGTH)) 4378 return l; 4379 } 4380 } 4381 return NULL; 4382 } 4383 4384 /* GetEquivalentObject dereferences any hard links to get to the 4385 * actual object. 4386 */ 4387 4388 struct yaffs_obj *yaffs_get_equivalent_obj(struct yaffs_obj *obj) 4389 { 4390 if (obj && obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) { 4391 obj = obj->variant.hardlink_variant.equiv_obj; 4392 yaffs_check_obj_details_loaded(obj); 4393 } 4394 return obj; 4395 } 4396 4397 /* 4398 * A note or two on object names. 4399 * * If the object name is missing, we then make one up in the form objnnn 4400 * 4401 * * ASCII names are stored in the object header's name field from byte zero 4402 * * Unicode names are historically stored starting from byte zero. 4403 * 4404 * Then there are automatic Unicode names... 4405 * The purpose of these is to save names in a way that can be read as 4406 * ASCII or Unicode names as appropriate, thus allowing a Unicode and ASCII 4407 * system to share files. 4408 * 4409 * These automatic unicode are stored slightly differently... 4410 * - If the name can fit in the ASCII character space then they are saved as 4411 * ascii names as per above. 4412 * - If the name needs Unicode then the name is saved in Unicode 4413 * starting at oh->name[1]. 4414 4415 */ 4416 static void yaffs_fix_null_name(struct yaffs_obj *obj, YCHAR *name, 4417 int buffer_size) 4418 { 4419 /* Create an object name if we could not find one. */ 4420 if (yaffs_strnlen(name, YAFFS_MAX_NAME_LENGTH) == 0) { 4421 YCHAR local_name[20]; 4422 YCHAR num_string[20]; 4423 YCHAR *x = &num_string[19]; 4424 unsigned v = obj->obj_id; 4425 num_string[19] = 0; 4426 while (v > 0) { 4427 x--; 4428 *x = '0' + (v % 10); 4429 v /= 10; 4430 } 4431 /* make up a name */ 4432 yaffs_strcpy(local_name, YAFFS_LOSTNFOUND_PREFIX); 4433 yaffs_strcat(local_name, x); 4434 yaffs_strncpy(name, local_name, buffer_size - 1); 4435 } 4436 } 4437 4438 int yaffs_get_obj_name(struct yaffs_obj *obj, YCHAR *name, int buffer_size) 4439 { 4440 memset(name, 0, buffer_size * sizeof(YCHAR)); 4441 yaffs_check_obj_details_loaded(obj); 4442 if (obj->obj_id == YAFFS_OBJECTID_LOSTNFOUND) { 4443 yaffs_strncpy(name, YAFFS_LOSTNFOUND_NAME, buffer_size - 1); 4444 } else if (obj->short_name[0]) { 4445 yaffs_strcpy(name, obj->short_name); 4446 } else if (obj->hdr_chunk > 0) { 4447 int result; 4448 u8 *buffer = yaffs_get_temp_buffer(obj->my_dev); 4449 4450 struct yaffs_obj_hdr *oh = (struct yaffs_obj_hdr *)buffer; 4451 4452 memset(buffer, 0, obj->my_dev->data_bytes_per_chunk); 4453 4454 if (obj->hdr_chunk > 0) { 4455 result = yaffs_rd_chunk_tags_nand(obj->my_dev, 4456 obj->hdr_chunk, 4457 buffer, NULL); 4458 } 4459 yaffs_load_name_from_oh(obj->my_dev, name, oh->name, 4460 buffer_size); 4461 4462 yaffs_release_temp_buffer(obj->my_dev, buffer); 4463 } 4464 4465 yaffs_fix_null_name(obj, name, buffer_size); 4466 4467 return yaffs_strnlen(name, YAFFS_MAX_NAME_LENGTH); 4468 } 4469 4470 loff_t yaffs_get_obj_length(struct yaffs_obj *obj) 4471 { 4472 /* Dereference any hard linking */ 4473 obj = yaffs_get_equivalent_obj(obj); 4474 4475 if (obj->variant_type == YAFFS_OBJECT_TYPE_FILE) 4476 return obj->variant.file_variant.file_size; 4477 if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) { 4478 if (!obj->variant.symlink_variant.alias) 4479 return 0; 4480 return yaffs_strnlen(obj->variant.symlink_variant.alias, 4481 YAFFS_MAX_ALIAS_LENGTH); 4482 } else { 4483 /* Only a directory should drop through to here */ 4484 return obj->my_dev->data_bytes_per_chunk; 4485 } 4486 } 4487 4488 int yaffs_get_obj_link_count(struct yaffs_obj *obj) 4489 { 4490 int count = 0; 4491 struct list_head *i; 4492 4493 if (!obj->unlinked) 4494 count++; /* the object itself */ 4495 4496 list_for_each(i, &obj->hard_links) 4497 count++; /* add the hard links; */ 4498 4499 return count; 4500 } 4501 4502 int yaffs_get_obj_inode(struct yaffs_obj *obj) 4503 { 4504 obj = yaffs_get_equivalent_obj(obj); 4505 4506 return obj->obj_id; 4507 } 4508 4509 unsigned yaffs_get_obj_type(struct yaffs_obj *obj) 4510 { 4511 obj = yaffs_get_equivalent_obj(obj); 4512 4513 switch (obj->variant_type) { 4514 case YAFFS_OBJECT_TYPE_FILE: 4515 return DT_REG; 4516 break; 4517 case YAFFS_OBJECT_TYPE_DIRECTORY: 4518 return DT_DIR; 4519 break; 4520 case YAFFS_OBJECT_TYPE_SYMLINK: 4521 return DT_LNK; 4522 break; 4523 case YAFFS_OBJECT_TYPE_HARDLINK: 4524 return DT_REG; 4525 break; 4526 case YAFFS_OBJECT_TYPE_SPECIAL: 4527 if (S_ISFIFO(obj->yst_mode)) 4528 return DT_FIFO; 4529 if (S_ISCHR(obj->yst_mode)) 4530 return DT_CHR; 4531 if (S_ISBLK(obj->yst_mode)) 4532 return DT_BLK; 4533 if (S_ISSOCK(obj->yst_mode)) 4534 return DT_SOCK; 4535 return DT_REG; 4536 break; 4537 default: 4538 return DT_REG; 4539 break; 4540 } 4541 } 4542 4543 YCHAR *yaffs_get_symlink_alias(struct yaffs_obj *obj) 4544 { 4545 obj = yaffs_get_equivalent_obj(obj); 4546 if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) 4547 return yaffs_clone_str(obj->variant.symlink_variant.alias); 4548 else 4549 return yaffs_clone_str(_Y("")); 4550 } 4551 4552 /*--------------------------- Initialisation code -------------------------- */ 4553 4554 static int yaffs_check_dev_fns(const struct yaffs_dev *dev) 4555 { 4556 /* Common functions, gotta have */ 4557 if (!dev->param.erase_fn || !dev->param.initialise_flash_fn) 4558 return 0; 4559 4560 /* Can use the "with tags" style interface for yaffs1 or yaffs2 */ 4561 if (dev->param.write_chunk_tags_fn && 4562 dev->param.read_chunk_tags_fn && 4563 !dev->param.write_chunk_fn && 4564 !dev->param.read_chunk_fn && 4565 dev->param.bad_block_fn && dev->param.query_block_fn) 4566 return 1; 4567 4568 /* Can use the "spare" style interface for yaffs1 */ 4569 if (!dev->param.is_yaffs2 && 4570 !dev->param.write_chunk_tags_fn && 4571 !dev->param.read_chunk_tags_fn && 4572 dev->param.write_chunk_fn && 4573 dev->param.read_chunk_fn && 4574 !dev->param.bad_block_fn && !dev->param.query_block_fn) 4575 return 1; 4576 4577 return 0; /* bad */ 4578 } 4579 4580 static int yaffs_create_initial_dir(struct yaffs_dev *dev) 4581 { 4582 /* Initialise the unlinked, deleted, root and lost+found directories */ 4583 dev->lost_n_found = dev->root_dir = NULL; 4584 dev->unlinked_dir = dev->del_dir = NULL; 4585 dev->unlinked_dir = 4586 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_UNLINKED, S_IFDIR); 4587 dev->del_dir = 4588 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_DELETED, S_IFDIR); 4589 dev->root_dir = 4590 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_ROOT, 4591 YAFFS_ROOT_MODE | S_IFDIR); 4592 dev->lost_n_found = 4593 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_LOSTNFOUND, 4594 YAFFS_LOSTNFOUND_MODE | S_IFDIR); 4595 4596 if (dev->lost_n_found && dev->root_dir && dev->unlinked_dir 4597 && dev->del_dir) { 4598 yaffs_add_obj_to_dir(dev->root_dir, dev->lost_n_found); 4599 return YAFFS_OK; 4600 } 4601 return YAFFS_FAIL; 4602 } 4603 4604 int yaffs_guts_initialise(struct yaffs_dev *dev) 4605 { 4606 int init_failed = 0; 4607 unsigned x; 4608 int bits; 4609 4610 yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: yaffs_guts_initialise()"); 4611 4612 /* Check stuff that must be set */ 4613 4614 if (!dev) { 4615 yaffs_trace(YAFFS_TRACE_ALWAYS, 4616 "yaffs: Need a device" 4617 ); 4618 return YAFFS_FAIL; 4619 } 4620 4621 if (dev->is_mounted) { 4622 yaffs_trace(YAFFS_TRACE_ALWAYS, "device already mounted"); 4623 return YAFFS_FAIL; 4624 } 4625 4626 dev->internal_start_block = dev->param.start_block; 4627 dev->internal_end_block = dev->param.end_block; 4628 dev->block_offset = 0; 4629 dev->chunk_offset = 0; 4630 dev->n_free_chunks = 0; 4631 4632 dev->gc_block = 0; 4633 4634 if (dev->param.start_block == 0) { 4635 dev->internal_start_block = dev->param.start_block + 1; 4636 dev->internal_end_block = dev->param.end_block + 1; 4637 dev->block_offset = 1; 4638 dev->chunk_offset = dev->param.chunks_per_block; 4639 } 4640 4641 /* Check geometry parameters. */ 4642 4643 if ((!dev->param.inband_tags && dev->param.is_yaffs2 && 4644 dev->param.total_bytes_per_chunk < 1024) || 4645 (!dev->param.is_yaffs2 && 4646 dev->param.total_bytes_per_chunk < 512) || 4647 (dev->param.inband_tags && !dev->param.is_yaffs2) || 4648 dev->param.chunks_per_block < 2 || 4649 dev->param.n_reserved_blocks < 2 || 4650 dev->internal_start_block <= 0 || 4651 dev->internal_end_block <= 0 || 4652 dev->internal_end_block <= 4653 (dev->internal_start_block + dev->param.n_reserved_blocks + 2) 4654 ) { 4655 /* otherwise it is too small */ 4656 yaffs_trace(YAFFS_TRACE_ALWAYS, 4657 "NAND geometry problems: chunk size %d, type is yaffs%s, inband_tags %d ", 4658 dev->param.total_bytes_per_chunk, 4659 dev->param.is_yaffs2 ? "2" : "", 4660 dev->param.inband_tags); 4661 return YAFFS_FAIL; 4662 } 4663 4664 if (yaffs_init_nand(dev) != YAFFS_OK) { 4665 yaffs_trace(YAFFS_TRACE_ALWAYS, "InitialiseNAND failed"); 4666 return YAFFS_FAIL; 4667 } 4668 4669 /* Sort out space for inband tags, if required */ 4670 if (dev->param.inband_tags) 4671 dev->data_bytes_per_chunk = 4672 dev->param.total_bytes_per_chunk - 4673 sizeof(struct yaffs_packed_tags2_tags_only); 4674 else 4675 dev->data_bytes_per_chunk = dev->param.total_bytes_per_chunk; 4676 4677 /* Got the right mix of functions? */ 4678 if (!yaffs_check_dev_fns(dev)) { 4679 /* Function missing */ 4680 yaffs_trace(YAFFS_TRACE_ALWAYS, 4681 "device function(s) missing or wrong"); 4682 4683 return YAFFS_FAIL; 4684 } 4685 4686 /* Finished with most checks. Further checks happen later on too. */ 4687 4688 dev->is_mounted = 1; 4689 4690 /* OK now calculate a few things for the device */ 4691 4692 /* 4693 * Calculate all the chunk size manipulation numbers: 4694 */ 4695 x = dev->data_bytes_per_chunk; 4696 /* We always use dev->chunk_shift and dev->chunk_div */ 4697 dev->chunk_shift = calc_shifts(x); 4698 x >>= dev->chunk_shift; 4699 dev->chunk_div = x; 4700 /* We only use chunk mask if chunk_div is 1 */ 4701 dev->chunk_mask = (1 << dev->chunk_shift) - 1; 4702 4703 /* 4704 * Calculate chunk_grp_bits. 4705 * We need to find the next power of 2 > than internal_end_block 4706 */ 4707 4708 x = dev->param.chunks_per_block * (dev->internal_end_block + 1); 4709 4710 bits = calc_shifts_ceiling(x); 4711 4712 /* Set up tnode width if wide tnodes are enabled. */ 4713 if (!dev->param.wide_tnodes_disabled) { 4714 /* bits must be even so that we end up with 32-bit words */ 4715 if (bits & 1) 4716 bits++; 4717 if (bits < 16) 4718 dev->tnode_width = 16; 4719 else 4720 dev->tnode_width = bits; 4721 } else { 4722 dev->tnode_width = 16; 4723 } 4724 4725 dev->tnode_mask = (1 << dev->tnode_width) - 1; 4726 4727 /* Level0 Tnodes are 16 bits or wider (if wide tnodes are enabled), 4728 * so if the bitwidth of the 4729 * chunk range we're using is greater than 16 we need 4730 * to figure out chunk shift and chunk_grp_size 4731 */ 4732 4733 if (bits <= dev->tnode_width) 4734 dev->chunk_grp_bits = 0; 4735 else 4736 dev->chunk_grp_bits = bits - dev->tnode_width; 4737 4738 dev->tnode_size = (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8; 4739 if (dev->tnode_size < sizeof(struct yaffs_tnode)) 4740 dev->tnode_size = sizeof(struct yaffs_tnode); 4741 4742 dev->chunk_grp_size = 1 << dev->chunk_grp_bits; 4743 4744 if (dev->param.chunks_per_block < dev->chunk_grp_size) { 4745 /* We have a problem because the soft delete won't work if 4746 * the chunk group size > chunks per block. 4747 * This can be remedied by using larger "virtual blocks". 4748 */ 4749 yaffs_trace(YAFFS_TRACE_ALWAYS, "chunk group too large"); 4750 4751 return YAFFS_FAIL; 4752 } 4753 4754 /* Finished verifying the device, continue with initialisation */ 4755 4756 /* More device initialisation */ 4757 dev->all_gcs = 0; 4758 dev->passive_gc_count = 0; 4759 dev->oldest_dirty_gc_count = 0; 4760 dev->bg_gcs = 0; 4761 dev->gc_block_finder = 0; 4762 dev->buffered_block = -1; 4763 dev->doing_buffered_block_rewrite = 0; 4764 dev->n_deleted_files = 0; 4765 dev->n_bg_deletions = 0; 4766 dev->n_unlinked_files = 0; 4767 dev->n_ecc_fixed = 0; 4768 dev->n_ecc_unfixed = 0; 4769 dev->n_tags_ecc_fixed = 0; 4770 dev->n_tags_ecc_unfixed = 0; 4771 dev->n_erase_failures = 0; 4772 dev->n_erased_blocks = 0; 4773 dev->gc_disable = 0; 4774 dev->has_pending_prioritised_gc = 1; 4775 /* Assume the worst for now, will get fixed on first GC */ 4776 INIT_LIST_HEAD(&dev->dirty_dirs); 4777 dev->oldest_dirty_seq = 0; 4778 dev->oldest_dirty_block = 0; 4779 4780 /* Initialise temporary buffers and caches. */ 4781 if (!yaffs_init_tmp_buffers(dev)) 4782 init_failed = 1; 4783 4784 dev->cache = NULL; 4785 dev->gc_cleanup_list = NULL; 4786 4787 if (!init_failed && dev->param.n_caches > 0) { 4788 int i; 4789 void *buf; 4790 int cache_bytes = 4791 dev->param.n_caches * sizeof(struct yaffs_cache); 4792 4793 if (dev->param.n_caches > YAFFS_MAX_SHORT_OP_CACHES) 4794 dev->param.n_caches = YAFFS_MAX_SHORT_OP_CACHES; 4795 4796 dev->cache = kmalloc(cache_bytes, GFP_NOFS); 4797 4798 buf = (u8 *) dev->cache; 4799 4800 if (dev->cache) 4801 memset(dev->cache, 0, cache_bytes); 4802 4803 for (i = 0; i < dev->param.n_caches && buf; i++) { 4804 dev->cache[i].object = NULL; 4805 dev->cache[i].last_use = 0; 4806 dev->cache[i].dirty = 0; 4807 dev->cache[i].data = buf = 4808 kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS); 4809 } 4810 if (!buf) 4811 init_failed = 1; 4812 4813 dev->cache_last_use = 0; 4814 } 4815 4816 dev->cache_hits = 0; 4817 4818 if (!init_failed) { 4819 dev->gc_cleanup_list = 4820 kmalloc(dev->param.chunks_per_block * sizeof(u32), 4821 GFP_NOFS); 4822 if (!dev->gc_cleanup_list) 4823 init_failed = 1; 4824 } 4825 4826 if (dev->param.is_yaffs2) 4827 dev->param.use_header_file_size = 1; 4828 4829 if (!init_failed && !yaffs_init_blocks(dev)) 4830 init_failed = 1; 4831 4832 yaffs_init_tnodes_and_objs(dev); 4833 4834 if (!init_failed && !yaffs_create_initial_dir(dev)) 4835 init_failed = 1; 4836 4837 if (!init_failed && dev->param.is_yaffs2 && 4838 !dev->param.disable_summary && 4839 !yaffs_summary_init(dev)) 4840 init_failed = 1; 4841 4842 if (!init_failed) { 4843 /* Now scan the flash. */ 4844 if (dev->param.is_yaffs2) { 4845 if (yaffs2_checkpt_restore(dev)) { 4846 yaffs_check_obj_details_loaded(dev->root_dir); 4847 yaffs_trace(YAFFS_TRACE_CHECKPOINT | 4848 YAFFS_TRACE_MOUNT, 4849 "yaffs: restored from checkpoint" 4850 ); 4851 } else { 4852 4853 /* Clean up the mess caused by an aborted 4854 * checkpoint load then scan backwards. 4855 */ 4856 yaffs_deinit_blocks(dev); 4857 4858 yaffs_deinit_tnodes_and_objs(dev); 4859 4860 dev->n_erased_blocks = 0; 4861 dev->n_free_chunks = 0; 4862 dev->alloc_block = -1; 4863 dev->alloc_page = -1; 4864 dev->n_deleted_files = 0; 4865 dev->n_unlinked_files = 0; 4866 dev->n_bg_deletions = 0; 4867 4868 if (!init_failed && !yaffs_init_blocks(dev)) 4869 init_failed = 1; 4870 4871 yaffs_init_tnodes_and_objs(dev); 4872 4873 if (!init_failed 4874 && !yaffs_create_initial_dir(dev)) 4875 init_failed = 1; 4876 4877 if (!init_failed && !yaffs2_scan_backwards(dev)) 4878 init_failed = 1; 4879 } 4880 } else if (!yaffs1_scan(dev)) { 4881 init_failed = 1; 4882 } 4883 4884 yaffs_strip_deleted_objs(dev); 4885 yaffs_fix_hanging_objs(dev); 4886 if (dev->param.empty_lost_n_found) 4887 yaffs_empty_l_n_f(dev); 4888 } 4889 4890 if (init_failed) { 4891 /* Clean up the mess */ 4892 yaffs_trace(YAFFS_TRACE_TRACING, 4893 "yaffs: yaffs_guts_initialise() aborted."); 4894 4895 yaffs_deinitialise(dev); 4896 return YAFFS_FAIL; 4897 } 4898 4899 /* Zero out stats */ 4900 dev->n_page_reads = 0; 4901 dev->n_page_writes = 0; 4902 dev->n_erasures = 0; 4903 dev->n_gc_copies = 0; 4904 dev->n_retried_writes = 0; 4905 4906 dev->n_retired_blocks = 0; 4907 4908 yaffs_verify_free_chunks(dev); 4909 yaffs_verify_blocks(dev); 4910 4911 /* Clean up any aborted checkpoint data */ 4912 if (!dev->is_checkpointed && dev->blocks_in_checkpt > 0) 4913 yaffs2_checkpt_invalidate(dev); 4914 4915 yaffs_trace(YAFFS_TRACE_TRACING, 4916 "yaffs: yaffs_guts_initialise() done."); 4917 return YAFFS_OK; 4918 } 4919 4920 void yaffs_deinitialise(struct yaffs_dev *dev) 4921 { 4922 if (dev->is_mounted) { 4923 int i; 4924 4925 yaffs_deinit_blocks(dev); 4926 yaffs_deinit_tnodes_and_objs(dev); 4927 yaffs_summary_deinit(dev); 4928 4929 if (dev->param.n_caches > 0 && dev->cache) { 4930 4931 for (i = 0; i < dev->param.n_caches; i++) { 4932 kfree(dev->cache[i].data); 4933 dev->cache[i].data = NULL; 4934 } 4935 4936 kfree(dev->cache); 4937 dev->cache = NULL; 4938 } 4939 4940 kfree(dev->gc_cleanup_list); 4941 4942 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) 4943 kfree(dev->temp_buffer[i].buffer); 4944 4945 dev->is_mounted = 0; 4946 4947 if (dev->param.deinitialise_flash_fn) 4948 dev->param.deinitialise_flash_fn(dev); 4949 } 4950 } 4951 4952 int yaffs_count_free_chunks(struct yaffs_dev *dev) 4953 { 4954 int n_free = 0; 4955 int b; 4956 struct yaffs_block_info *blk; 4957 4958 blk = dev->block_info; 4959 for (b = dev->internal_start_block; b <= dev->internal_end_block; b++) { 4960 switch (blk->block_state) { 4961 case YAFFS_BLOCK_STATE_EMPTY: 4962 case YAFFS_BLOCK_STATE_ALLOCATING: 4963 case YAFFS_BLOCK_STATE_COLLECTING: 4964 case YAFFS_BLOCK_STATE_FULL: 4965 n_free += 4966 (dev->param.chunks_per_block - blk->pages_in_use + 4967 blk->soft_del_pages); 4968 break; 4969 default: 4970 break; 4971 } 4972 blk++; 4973 } 4974 return n_free; 4975 } 4976 4977 int yaffs_get_n_free_chunks(struct yaffs_dev *dev) 4978 { 4979 /* This is what we report to the outside world */ 4980 int n_free; 4981 int n_dirty_caches; 4982 int blocks_for_checkpt; 4983 int i; 4984 4985 n_free = dev->n_free_chunks; 4986 n_free += dev->n_deleted_files; 4987 4988 /* Now count and subtract the number of dirty chunks in the cache. */ 4989 4990 for (n_dirty_caches = 0, i = 0; i < dev->param.n_caches; i++) { 4991 if (dev->cache[i].dirty) 4992 n_dirty_caches++; 4993 } 4994 4995 n_free -= n_dirty_caches; 4996 4997 n_free -= 4998 ((dev->param.n_reserved_blocks + 1) * dev->param.chunks_per_block); 4999 5000 /* Now figure checkpoint space and report that... */ 5001 blocks_for_checkpt = yaffs_calc_checkpt_blocks_required(dev); 5002 5003 n_free -= (blocks_for_checkpt * dev->param.chunks_per_block); 5004 5005 if (n_free < 0) 5006 n_free = 0; 5007 5008 return n_free; 5009 } 5010 5011 /*\ 5012 * Marshalling functions to get loff_t file sizes into aand out of 5013 * object headers. 5014 */ 5015 void yaffs_oh_size_load(struct yaffs_obj_hdr *oh, loff_t fsize) 5016 { 5017 oh->file_size_low = (fsize & 0xFFFFFFFF); 5018 oh->file_size_high = ((fsize >> 32) & 0xFFFFFFFF); 5019 } 5020 5021 loff_t yaffs_oh_to_size(struct yaffs_obj_hdr *oh) 5022 { 5023 loff_t retval; 5024 5025 if (~(oh->file_size_high)) 5026 retval = (((loff_t) oh->file_size_high) << 32) | 5027 (((loff_t) oh->file_size_low) & 0xFFFFFFFF); 5028 else 5029 retval = (loff_t) oh->file_size_low; 5030 5031 return retval; 5032 } 5033