xref: /openbmc/u-boot/fs/yaffs2/yaffs_guts.c (revision 34a31bf5)
1 /*
2  * YAFFS: Yet Another Flash File System. A NAND-flash specific file system.
3  *
4  * Copyright (C) 2002-2011 Aleph One Ltd.
5  *   for Toby Churchill Ltd and Brightstar Engineering
6  *
7  * Created by Charles Manning <charles@aleph1.co.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include "yportenv.h"
15 #include "yaffs_trace.h"
16 
17 #include "yaffs_guts.h"
18 #include "yaffs_getblockinfo.h"
19 #include "yaffs_tagscompat.h"
20 #include "yaffs_nand.h"
21 #include "yaffs_yaffs1.h"
22 #include "yaffs_yaffs2.h"
23 #include "yaffs_bitmap.h"
24 #include "yaffs_verify.h"
25 #include "yaffs_nand.h"
26 #include "yaffs_packedtags2.h"
27 #include "yaffs_nameval.h"
28 #include "yaffs_allocator.h"
29 #include "yaffs_attribs.h"
30 #include "yaffs_summary.h"
31 
32 /* Note YAFFS_GC_GOOD_ENOUGH must be <= YAFFS_GC_PASSIVE_THRESHOLD */
33 #define YAFFS_GC_GOOD_ENOUGH 2
34 #define YAFFS_GC_PASSIVE_THRESHOLD 4
35 
36 #include "yaffs_ecc.h"
37 
38 /* Forward declarations */
39 
40 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk,
41 			     const u8 *buffer, int n_bytes, int use_reserve);
42 
43 
44 
45 /* Function to calculate chunk and offset */
46 
47 void yaffs_addr_to_chunk(struct yaffs_dev *dev, loff_t addr,
48 				int *chunk_out, u32 *offset_out)
49 {
50 	int chunk;
51 	u32 offset;
52 
53 	chunk = (u32) (addr >> dev->chunk_shift);
54 
55 	if (dev->chunk_div == 1) {
56 		/* easy power of 2 case */
57 		offset = (u32) (addr & dev->chunk_mask);
58 	} else {
59 		/* Non power-of-2 case */
60 
61 		loff_t chunk_base;
62 
63 		chunk /= dev->chunk_div;
64 
65 		chunk_base = ((loff_t) chunk) * dev->data_bytes_per_chunk;
66 		offset = (u32) (addr - chunk_base);
67 	}
68 
69 	*chunk_out = chunk;
70 	*offset_out = offset;
71 }
72 
73 /* Function to return the number of shifts for a power of 2 greater than or
74  * equal to the given number
75  * Note we don't try to cater for all possible numbers and this does not have to
76  * be hellishly efficient.
77  */
78 
79 static inline u32 calc_shifts_ceiling(u32 x)
80 {
81 	int extra_bits;
82 	int shifts;
83 
84 	shifts = extra_bits = 0;
85 
86 	while (x > 1) {
87 		if (x & 1)
88 			extra_bits++;
89 		x >>= 1;
90 		shifts++;
91 	}
92 
93 	if (extra_bits)
94 		shifts++;
95 
96 	return shifts;
97 }
98 
99 /* Function to return the number of shifts to get a 1 in bit 0
100  */
101 
102 static inline u32 calc_shifts(u32 x)
103 {
104 	u32 shifts;
105 
106 	shifts = 0;
107 
108 	if (!x)
109 		return 0;
110 
111 	while (!(x & 1)) {
112 		x >>= 1;
113 		shifts++;
114 	}
115 
116 	return shifts;
117 }
118 
119 /*
120  * Temporary buffer manipulations.
121  */
122 
123 static int yaffs_init_tmp_buffers(struct yaffs_dev *dev)
124 {
125 	int i;
126 	u8 *buf = (u8 *) 1;
127 
128 	memset(dev->temp_buffer, 0, sizeof(dev->temp_buffer));
129 
130 	for (i = 0; buf && i < YAFFS_N_TEMP_BUFFERS; i++) {
131 		dev->temp_buffer[i].in_use = 0;
132 		buf = kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS);
133 		dev->temp_buffer[i].buffer = buf;
134 	}
135 
136 	return buf ? YAFFS_OK : YAFFS_FAIL;
137 }
138 
139 u8 *yaffs_get_temp_buffer(struct yaffs_dev * dev)
140 {
141 	int i;
142 
143 	dev->temp_in_use++;
144 	if (dev->temp_in_use > dev->max_temp)
145 		dev->max_temp = dev->temp_in_use;
146 
147 	for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
148 		if (dev->temp_buffer[i].in_use == 0) {
149 			dev->temp_buffer[i].in_use = 1;
150 			return dev->temp_buffer[i].buffer;
151 		}
152 	}
153 
154 	yaffs_trace(YAFFS_TRACE_BUFFERS, "Out of temp buffers");
155 	/*
156 	 * If we got here then we have to allocate an unmanaged one
157 	 * This is not good.
158 	 */
159 
160 	dev->unmanaged_buffer_allocs++;
161 	return kmalloc(dev->data_bytes_per_chunk, GFP_NOFS);
162 
163 }
164 
165 void yaffs_release_temp_buffer(struct yaffs_dev *dev, u8 *buffer)
166 {
167 	int i;
168 
169 	dev->temp_in_use--;
170 
171 	for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
172 		if (dev->temp_buffer[i].buffer == buffer) {
173 			dev->temp_buffer[i].in_use = 0;
174 			return;
175 		}
176 	}
177 
178 	if (buffer) {
179 		/* assume it is an unmanaged one. */
180 		yaffs_trace(YAFFS_TRACE_BUFFERS,
181 			"Releasing unmanaged temp buffer");
182 		kfree(buffer);
183 		dev->unmanaged_buffer_deallocs++;
184 	}
185 
186 }
187 
188 /*
189  * Determine if we have a managed buffer.
190  */
191 int yaffs_is_managed_tmp_buffer(struct yaffs_dev *dev, const u8 *buffer)
192 {
193 	int i;
194 
195 	for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
196 		if (dev->temp_buffer[i].buffer == buffer)
197 			return 1;
198 	}
199 
200 	for (i = 0; i < dev->param.n_caches; i++) {
201 		if (dev->cache[i].data == buffer)
202 			return 1;
203 	}
204 
205 	if (buffer == dev->checkpt_buffer)
206 		return 1;
207 
208 	yaffs_trace(YAFFS_TRACE_ALWAYS,
209 	  "yaffs: unmaged buffer detected.");
210 	return 0;
211 }
212 
213 /*
214  * Functions for robustisizing TODO
215  *
216  */
217 
218 static void yaffs_handle_chunk_wr_ok(struct yaffs_dev *dev, int nand_chunk,
219 				     const u8 *data,
220 				     const struct yaffs_ext_tags *tags)
221 {
222 	dev = dev;
223 	nand_chunk = nand_chunk;
224 	data = data;
225 	tags = tags;
226 }
227 
228 static void yaffs_handle_chunk_update(struct yaffs_dev *dev, int nand_chunk,
229 				      const struct yaffs_ext_tags *tags)
230 {
231 	dev = dev;
232 	nand_chunk = nand_chunk;
233 	tags = tags;
234 }
235 
236 void yaffs_handle_chunk_error(struct yaffs_dev *dev,
237 			      struct yaffs_block_info *bi)
238 {
239 	if (!bi->gc_prioritise) {
240 		bi->gc_prioritise = 1;
241 		dev->has_pending_prioritised_gc = 1;
242 		bi->chunk_error_strikes++;
243 
244 		if (bi->chunk_error_strikes > 3) {
245 			bi->needs_retiring = 1;	/* Too many stikes, so retire */
246 			yaffs_trace(YAFFS_TRACE_ALWAYS,
247 				"yaffs: Block struck out");
248 
249 		}
250 	}
251 }
252 
253 static void yaffs_handle_chunk_wr_error(struct yaffs_dev *dev, int nand_chunk,
254 					int erased_ok)
255 {
256 	int flash_block = nand_chunk / dev->param.chunks_per_block;
257 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block);
258 
259 	yaffs_handle_chunk_error(dev, bi);
260 
261 	if (erased_ok) {
262 		/* Was an actual write failure,
263 		 * so mark the block for retirement.*/
264 		bi->needs_retiring = 1;
265 		yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
266 		  "**>> Block %d needs retiring", flash_block);
267 	}
268 
269 	/* Delete the chunk */
270 	yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
271 	yaffs_skip_rest_of_block(dev);
272 }
273 
274 /*
275  * Verification code
276  */
277 
278 /*
279  *  Simple hash function. Needs to have a reasonable spread
280  */
281 
282 static inline int yaffs_hash_fn(int n)
283 {
284 	if (n < 0)
285 		n = -n;
286 	return n % YAFFS_NOBJECT_BUCKETS;
287 }
288 
289 /*
290  * Access functions to useful fake objects.
291  * Note that root might have a presence in NAND if permissions are set.
292  */
293 
294 struct yaffs_obj *yaffs_root(struct yaffs_dev *dev)
295 {
296 	return dev->root_dir;
297 }
298 
299 struct yaffs_obj *yaffs_lost_n_found(struct yaffs_dev *dev)
300 {
301 	return dev->lost_n_found;
302 }
303 
304 /*
305  *  Erased NAND checking functions
306  */
307 
308 int yaffs_check_ff(u8 *buffer, int n_bytes)
309 {
310 	/* Horrible, slow implementation */
311 	while (n_bytes--) {
312 		if (*buffer != 0xff)
313 			return 0;
314 		buffer++;
315 	}
316 	return 1;
317 }
318 
319 static int yaffs_check_chunk_erased(struct yaffs_dev *dev, int nand_chunk)
320 {
321 	int retval = YAFFS_OK;
322 	u8 *data = yaffs_get_temp_buffer(dev);
323 	struct yaffs_ext_tags tags;
324 	int result;
325 
326 	result = yaffs_rd_chunk_tags_nand(dev, nand_chunk, data, &tags);
327 
328 	if (tags.ecc_result > YAFFS_ECC_RESULT_NO_ERROR)
329 		retval = YAFFS_FAIL;
330 
331 	if (!yaffs_check_ff(data, dev->data_bytes_per_chunk) ||
332 		tags.chunk_used) {
333 		yaffs_trace(YAFFS_TRACE_NANDACCESS,
334 			"Chunk %d not erased", nand_chunk);
335 		retval = YAFFS_FAIL;
336 	}
337 
338 	yaffs_release_temp_buffer(dev, data);
339 
340 	return retval;
341 
342 }
343 
344 static int yaffs_verify_chunk_written(struct yaffs_dev *dev,
345 				      int nand_chunk,
346 				      const u8 *data,
347 				      struct yaffs_ext_tags *tags)
348 {
349 	int retval = YAFFS_OK;
350 	struct yaffs_ext_tags temp_tags;
351 	u8 *buffer = yaffs_get_temp_buffer(dev);
352 	int result;
353 
354 	result = yaffs_rd_chunk_tags_nand(dev, nand_chunk, buffer, &temp_tags);
355 	if (memcmp(buffer, data, dev->data_bytes_per_chunk) ||
356 	    temp_tags.obj_id != tags->obj_id ||
357 	    temp_tags.chunk_id != tags->chunk_id ||
358 	    temp_tags.n_bytes != tags->n_bytes)
359 		retval = YAFFS_FAIL;
360 
361 	yaffs_release_temp_buffer(dev, buffer);
362 
363 	return retval;
364 }
365 
366 
367 int yaffs_check_alloc_available(struct yaffs_dev *dev, int n_chunks)
368 {
369 	int reserved_chunks;
370 	int reserved_blocks = dev->param.n_reserved_blocks;
371 	int checkpt_blocks;
372 
373 	checkpt_blocks = yaffs_calc_checkpt_blocks_required(dev);
374 
375 	reserved_chunks =
376 	    (reserved_blocks + checkpt_blocks) * dev->param.chunks_per_block;
377 
378 	return (dev->n_free_chunks > (reserved_chunks + n_chunks));
379 }
380 
381 static int yaffs_find_alloc_block(struct yaffs_dev *dev)
382 {
383 	int i;
384 	struct yaffs_block_info *bi;
385 
386 	if (dev->n_erased_blocks < 1) {
387 		/* Hoosterman we've got a problem.
388 		 * Can't get space to gc
389 		 */
390 		yaffs_trace(YAFFS_TRACE_ERROR,
391 		  "yaffs tragedy: no more erased blocks");
392 
393 		return -1;
394 	}
395 
396 	/* Find an empty block. */
397 
398 	for (i = dev->internal_start_block; i <= dev->internal_end_block; i++) {
399 		dev->alloc_block_finder++;
400 		if (dev->alloc_block_finder < dev->internal_start_block
401 		    || dev->alloc_block_finder > dev->internal_end_block) {
402 			dev->alloc_block_finder = dev->internal_start_block;
403 		}
404 
405 		bi = yaffs_get_block_info(dev, dev->alloc_block_finder);
406 
407 		if (bi->block_state == YAFFS_BLOCK_STATE_EMPTY) {
408 			bi->block_state = YAFFS_BLOCK_STATE_ALLOCATING;
409 			dev->seq_number++;
410 			bi->seq_number = dev->seq_number;
411 			dev->n_erased_blocks--;
412 			yaffs_trace(YAFFS_TRACE_ALLOCATE,
413 			  "Allocated block %d, seq  %d, %d left" ,
414 			   dev->alloc_block_finder, dev->seq_number,
415 			   dev->n_erased_blocks);
416 			return dev->alloc_block_finder;
417 		}
418 	}
419 
420 	yaffs_trace(YAFFS_TRACE_ALWAYS,
421 		"yaffs tragedy: no more erased blocks, but there should have been %d",
422 		dev->n_erased_blocks);
423 
424 	return -1;
425 }
426 
427 static int yaffs_alloc_chunk(struct yaffs_dev *dev, int use_reserver,
428 			     struct yaffs_block_info **block_ptr)
429 {
430 	int ret_val;
431 	struct yaffs_block_info *bi;
432 
433 	if (dev->alloc_block < 0) {
434 		/* Get next block to allocate off */
435 		dev->alloc_block = yaffs_find_alloc_block(dev);
436 		dev->alloc_page = 0;
437 	}
438 
439 	if (!use_reserver && !yaffs_check_alloc_available(dev, 1)) {
440 		/* No space unless we're allowed to use the reserve. */
441 		return -1;
442 	}
443 
444 	if (dev->n_erased_blocks < dev->param.n_reserved_blocks
445 	    && dev->alloc_page == 0)
446 		yaffs_trace(YAFFS_TRACE_ALLOCATE, "Allocating reserve");
447 
448 	/* Next page please.... */
449 	if (dev->alloc_block >= 0) {
450 		bi = yaffs_get_block_info(dev, dev->alloc_block);
451 
452 		ret_val = (dev->alloc_block * dev->param.chunks_per_block) +
453 		    dev->alloc_page;
454 		bi->pages_in_use++;
455 		yaffs_set_chunk_bit(dev, dev->alloc_block, dev->alloc_page);
456 
457 		dev->alloc_page++;
458 
459 		dev->n_free_chunks--;
460 
461 		/* If the block is full set the state to full */
462 		if (dev->alloc_page >= dev->param.chunks_per_block) {
463 			bi->block_state = YAFFS_BLOCK_STATE_FULL;
464 			dev->alloc_block = -1;
465 		}
466 
467 		if (block_ptr)
468 			*block_ptr = bi;
469 
470 		return ret_val;
471 	}
472 
473 	yaffs_trace(YAFFS_TRACE_ERROR,
474 		"!!!!!!!!! Allocator out !!!!!!!!!!!!!!!!!");
475 
476 	return -1;
477 }
478 
479 static int yaffs_get_erased_chunks(struct yaffs_dev *dev)
480 {
481 	int n;
482 
483 	n = dev->n_erased_blocks * dev->param.chunks_per_block;
484 
485 	if (dev->alloc_block > 0)
486 		n += (dev->param.chunks_per_block - dev->alloc_page);
487 
488 	return n;
489 
490 }
491 
492 /*
493  * yaffs_skip_rest_of_block() skips over the rest of the allocation block
494  * if we don't want to write to it.
495  */
496 void yaffs_skip_rest_of_block(struct yaffs_dev *dev)
497 {
498 	struct yaffs_block_info *bi;
499 
500 	if (dev->alloc_block > 0) {
501 		bi = yaffs_get_block_info(dev, dev->alloc_block);
502 		if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING) {
503 			bi->block_state = YAFFS_BLOCK_STATE_FULL;
504 			dev->alloc_block = -1;
505 		}
506 	}
507 }
508 
509 static int yaffs_write_new_chunk(struct yaffs_dev *dev,
510 				 const u8 *data,
511 				 struct yaffs_ext_tags *tags, int use_reserver)
512 {
513 	int attempts = 0;
514 	int write_ok = 0;
515 	int chunk;
516 
517 	yaffs2_checkpt_invalidate(dev);
518 
519 	do {
520 		struct yaffs_block_info *bi = 0;
521 		int erased_ok = 0;
522 
523 		chunk = yaffs_alloc_chunk(dev, use_reserver, &bi);
524 		if (chunk < 0) {
525 			/* no space */
526 			break;
527 		}
528 
529 		/* First check this chunk is erased, if it needs
530 		 * checking.  The checking policy (unless forced
531 		 * always on) is as follows:
532 		 *
533 		 * Check the first page we try to write in a block.
534 		 * If the check passes then we don't need to check any
535 		 * more.        If the check fails, we check again...
536 		 * If the block has been erased, we don't need to check.
537 		 *
538 		 * However, if the block has been prioritised for gc,
539 		 * then we think there might be something odd about
540 		 * this block and stop using it.
541 		 *
542 		 * Rationale: We should only ever see chunks that have
543 		 * not been erased if there was a partially written
544 		 * chunk due to power loss.  This checking policy should
545 		 * catch that case with very few checks and thus save a
546 		 * lot of checks that are most likely not needed.
547 		 *
548 		 * Mods to the above
549 		 * If an erase check fails or the write fails we skip the
550 		 * rest of the block.
551 		 */
552 
553 		/* let's give it a try */
554 		attempts++;
555 
556 		if (dev->param.always_check_erased)
557 			bi->skip_erased_check = 0;
558 
559 		if (!bi->skip_erased_check) {
560 			erased_ok = yaffs_check_chunk_erased(dev, chunk);
561 			if (erased_ok != YAFFS_OK) {
562 				yaffs_trace(YAFFS_TRACE_ERROR,
563 				  "**>> yaffs chunk %d was not erased",
564 				  chunk);
565 
566 				/* If not erased, delete this one,
567 				 * skip rest of block and
568 				 * try another chunk */
569 				yaffs_chunk_del(dev, chunk, 1, __LINE__);
570 				yaffs_skip_rest_of_block(dev);
571 				continue;
572 			}
573 		}
574 
575 		write_ok = yaffs_wr_chunk_tags_nand(dev, chunk, data, tags);
576 
577 		if (!bi->skip_erased_check)
578 			write_ok =
579 			    yaffs_verify_chunk_written(dev, chunk, data, tags);
580 
581 		if (write_ok != YAFFS_OK) {
582 			/* Clean up aborted write, skip to next block and
583 			 * try another chunk */
584 			yaffs_handle_chunk_wr_error(dev, chunk, erased_ok);
585 			continue;
586 		}
587 
588 		bi->skip_erased_check = 1;
589 
590 		/* Copy the data into the robustification buffer */
591 		yaffs_handle_chunk_wr_ok(dev, chunk, data, tags);
592 
593 	} while (write_ok != YAFFS_OK &&
594 		 (yaffs_wr_attempts <= 0 || attempts <= yaffs_wr_attempts));
595 
596 	if (!write_ok)
597 		chunk = -1;
598 
599 	if (attempts > 1) {
600 		yaffs_trace(YAFFS_TRACE_ERROR,
601 			"**>> yaffs write required %d attempts",
602 			attempts);
603 		dev->n_retried_writes += (attempts - 1);
604 	}
605 
606 	return chunk;
607 }
608 
609 /*
610  * Block retiring for handling a broken block.
611  */
612 
613 static void yaffs_retire_block(struct yaffs_dev *dev, int flash_block)
614 {
615 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block);
616 
617 	yaffs2_checkpt_invalidate(dev);
618 
619 	yaffs2_clear_oldest_dirty_seq(dev, bi);
620 
621 	if (yaffs_mark_bad(dev, flash_block) != YAFFS_OK) {
622 		if (yaffs_erase_block(dev, flash_block) != YAFFS_OK) {
623 			yaffs_trace(YAFFS_TRACE_ALWAYS,
624 				"yaffs: Failed to mark bad and erase block %d",
625 				flash_block);
626 		} else {
627 			struct yaffs_ext_tags tags;
628 			int chunk_id =
629 			    flash_block * dev->param.chunks_per_block;
630 
631 			u8 *buffer = yaffs_get_temp_buffer(dev);
632 
633 			memset(buffer, 0xff, dev->data_bytes_per_chunk);
634 			memset(&tags, 0, sizeof(tags));
635 			tags.seq_number = YAFFS_SEQUENCE_BAD_BLOCK;
636 			if (dev->param.write_chunk_tags_fn(dev, chunk_id -
637 							   dev->chunk_offset,
638 							   buffer,
639 							   &tags) != YAFFS_OK)
640 				yaffs_trace(YAFFS_TRACE_ALWAYS,
641 					"yaffs: Failed to write bad block marker to block %d",
642 					flash_block);
643 
644 			yaffs_release_temp_buffer(dev, buffer);
645 		}
646 	}
647 
648 	bi->block_state = YAFFS_BLOCK_STATE_DEAD;
649 	bi->gc_prioritise = 0;
650 	bi->needs_retiring = 0;
651 
652 	dev->n_retired_blocks++;
653 }
654 
655 /*---------------- Name handling functions ------------*/
656 
657 static u16 yaffs_calc_name_sum(const YCHAR *name)
658 {
659 	u16 sum = 0;
660 	u16 i = 1;
661 
662 	if (!name)
663 		return 0;
664 
665 	while ((*name) && i < (YAFFS_MAX_NAME_LENGTH / 2)) {
666 
667 		/* 0x1f mask is case insensitive */
668 		sum += ((*name) & 0x1f) * i;
669 		i++;
670 		name++;
671 	}
672 	return sum;
673 }
674 
675 void yaffs_set_obj_name(struct yaffs_obj *obj, const YCHAR * name)
676 {
677 	memset(obj->short_name, 0, sizeof(obj->short_name));
678 	if (name &&
679 		yaffs_strnlen(name, YAFFS_SHORT_NAME_LENGTH + 1) <=
680 		YAFFS_SHORT_NAME_LENGTH)
681 		yaffs_strcpy(obj->short_name, name);
682 	else
683 		obj->short_name[0] = _Y('\0');
684 	obj->sum = yaffs_calc_name_sum(name);
685 }
686 
687 void yaffs_set_obj_name_from_oh(struct yaffs_obj *obj,
688 				const struct yaffs_obj_hdr *oh)
689 {
690 #ifdef CONFIG_YAFFS_AUTO_UNICODE
691 	YCHAR tmp_name[YAFFS_MAX_NAME_LENGTH + 1];
692 	memset(tmp_name, 0, sizeof(tmp_name));
693 	yaffs_load_name_from_oh(obj->my_dev, tmp_name, oh->name,
694 				YAFFS_MAX_NAME_LENGTH + 1);
695 	yaffs_set_obj_name(obj, tmp_name);
696 #else
697 	yaffs_set_obj_name(obj, oh->name);
698 #endif
699 }
700 
701 loff_t yaffs_max_file_size(struct yaffs_dev *dev)
702 {
703 	return ((loff_t) YAFFS_MAX_CHUNK_ID) * dev->data_bytes_per_chunk;
704 }
705 
706 /*-------------------- TNODES -------------------
707 
708  * List of spare tnodes
709  * The list is hooked together using the first pointer
710  * in the tnode.
711  */
712 
713 struct yaffs_tnode *yaffs_get_tnode(struct yaffs_dev *dev)
714 {
715 	struct yaffs_tnode *tn = yaffs_alloc_raw_tnode(dev);
716 
717 	if (tn) {
718 		memset(tn, 0, dev->tnode_size);
719 		dev->n_tnodes++;
720 	}
721 
722 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
723 
724 	return tn;
725 }
726 
727 /* FreeTnode frees up a tnode and puts it back on the free list */
728 static void yaffs_free_tnode(struct yaffs_dev *dev, struct yaffs_tnode *tn)
729 {
730 	yaffs_free_raw_tnode(dev, tn);
731 	dev->n_tnodes--;
732 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
733 }
734 
735 static void yaffs_deinit_tnodes_and_objs(struct yaffs_dev *dev)
736 {
737 	yaffs_deinit_raw_tnodes_and_objs(dev);
738 	dev->n_obj = 0;
739 	dev->n_tnodes = 0;
740 }
741 
742 void yaffs_load_tnode_0(struct yaffs_dev *dev, struct yaffs_tnode *tn,
743 			unsigned pos, unsigned val)
744 {
745 	u32 *map = (u32 *) tn;
746 	u32 bit_in_map;
747 	u32 bit_in_word;
748 	u32 word_in_map;
749 	u32 mask;
750 
751 	pos &= YAFFS_TNODES_LEVEL0_MASK;
752 	val >>= dev->chunk_grp_bits;
753 
754 	bit_in_map = pos * dev->tnode_width;
755 	word_in_map = bit_in_map / 32;
756 	bit_in_word = bit_in_map & (32 - 1);
757 
758 	mask = dev->tnode_mask << bit_in_word;
759 
760 	map[word_in_map] &= ~mask;
761 	map[word_in_map] |= (mask & (val << bit_in_word));
762 
763 	if (dev->tnode_width > (32 - bit_in_word)) {
764 		bit_in_word = (32 - bit_in_word);
765 		word_in_map++;
766 		mask =
767 		    dev->tnode_mask >> bit_in_word;
768 		map[word_in_map] &= ~mask;
769 		map[word_in_map] |= (mask & (val >> bit_in_word));
770 	}
771 }
772 
773 u32 yaffs_get_group_base(struct yaffs_dev *dev, struct yaffs_tnode *tn,
774 			 unsigned pos)
775 {
776 	u32 *map = (u32 *) tn;
777 	u32 bit_in_map;
778 	u32 bit_in_word;
779 	u32 word_in_map;
780 	u32 val;
781 
782 	pos &= YAFFS_TNODES_LEVEL0_MASK;
783 
784 	bit_in_map = pos * dev->tnode_width;
785 	word_in_map = bit_in_map / 32;
786 	bit_in_word = bit_in_map & (32 - 1);
787 
788 	val = map[word_in_map] >> bit_in_word;
789 
790 	if (dev->tnode_width > (32 - bit_in_word)) {
791 		bit_in_word = (32 - bit_in_word);
792 		word_in_map++;
793 		val |= (map[word_in_map] << bit_in_word);
794 	}
795 
796 	val &= dev->tnode_mask;
797 	val <<= dev->chunk_grp_bits;
798 
799 	return val;
800 }
801 
802 /* ------------------- End of individual tnode manipulation -----------------*/
803 
804 /* ---------Functions to manipulate the look-up tree (made up of tnodes) ------
805  * The look up tree is represented by the top tnode and the number of top_level
806  * in the tree. 0 means only the level 0 tnode is in the tree.
807  */
808 
809 /* FindLevel0Tnode finds the level 0 tnode, if one exists. */
810 struct yaffs_tnode *yaffs_find_tnode_0(struct yaffs_dev *dev,
811 				       struct yaffs_file_var *file_struct,
812 				       u32 chunk_id)
813 {
814 	struct yaffs_tnode *tn = file_struct->top;
815 	u32 i;
816 	int required_depth;
817 	int level = file_struct->top_level;
818 
819 	dev = dev;
820 
821 	/* Check sane level and chunk Id */
822 	if (level < 0 || level > YAFFS_TNODES_MAX_LEVEL)
823 		return NULL;
824 
825 	if (chunk_id > YAFFS_MAX_CHUNK_ID)
826 		return NULL;
827 
828 	/* First check we're tall enough (ie enough top_level) */
829 
830 	i = chunk_id >> YAFFS_TNODES_LEVEL0_BITS;
831 	required_depth = 0;
832 	while (i) {
833 		i >>= YAFFS_TNODES_INTERNAL_BITS;
834 		required_depth++;
835 	}
836 
837 	if (required_depth > file_struct->top_level)
838 		return NULL;	/* Not tall enough, so we can't find it */
839 
840 	/* Traverse down to level 0 */
841 	while (level > 0 && tn) {
842 		tn = tn->internal[(chunk_id >>
843 				   (YAFFS_TNODES_LEVEL0_BITS +
844 				    (level - 1) *
845 				    YAFFS_TNODES_INTERNAL_BITS)) &
846 				  YAFFS_TNODES_INTERNAL_MASK];
847 		level--;
848 	}
849 
850 	return tn;
851 }
852 
853 /* add_find_tnode_0 finds the level 0 tnode if it exists,
854  * otherwise first expands the tree.
855  * This happens in two steps:
856  *  1. If the tree isn't tall enough, then make it taller.
857  *  2. Scan down the tree towards the level 0 tnode adding tnodes if required.
858  *
859  * Used when modifying the tree.
860  *
861  *  If the tn argument is NULL, then a fresh tnode will be added otherwise the
862  *  specified tn will be plugged into the ttree.
863  */
864 
865 struct yaffs_tnode *yaffs_add_find_tnode_0(struct yaffs_dev *dev,
866 					   struct yaffs_file_var *file_struct,
867 					   u32 chunk_id,
868 					   struct yaffs_tnode *passed_tn)
869 {
870 	int required_depth;
871 	int i;
872 	int l;
873 	struct yaffs_tnode *tn;
874 	u32 x;
875 
876 	/* Check sane level and page Id */
877 	if (file_struct->top_level < 0 ||
878 	    file_struct->top_level > YAFFS_TNODES_MAX_LEVEL)
879 		return NULL;
880 
881 	if (chunk_id > YAFFS_MAX_CHUNK_ID)
882 		return NULL;
883 
884 	/* First check we're tall enough (ie enough top_level) */
885 
886 	x = chunk_id >> YAFFS_TNODES_LEVEL0_BITS;
887 	required_depth = 0;
888 	while (x) {
889 		x >>= YAFFS_TNODES_INTERNAL_BITS;
890 		required_depth++;
891 	}
892 
893 	if (required_depth > file_struct->top_level) {
894 		/* Not tall enough, gotta make the tree taller */
895 		for (i = file_struct->top_level; i < required_depth; i++) {
896 
897 			tn = yaffs_get_tnode(dev);
898 
899 			if (tn) {
900 				tn->internal[0] = file_struct->top;
901 				file_struct->top = tn;
902 				file_struct->top_level++;
903 			} else {
904 				yaffs_trace(YAFFS_TRACE_ERROR,
905 					"yaffs: no more tnodes");
906 				return NULL;
907 			}
908 		}
909 	}
910 
911 	/* Traverse down to level 0, adding anything we need */
912 
913 	l = file_struct->top_level;
914 	tn = file_struct->top;
915 
916 	if (l > 0) {
917 		while (l > 0 && tn) {
918 			x = (chunk_id >>
919 			     (YAFFS_TNODES_LEVEL0_BITS +
920 			      (l - 1) * YAFFS_TNODES_INTERNAL_BITS)) &
921 			    YAFFS_TNODES_INTERNAL_MASK;
922 
923 			if ((l > 1) && !tn->internal[x]) {
924 				/* Add missing non-level-zero tnode */
925 				tn->internal[x] = yaffs_get_tnode(dev);
926 				if (!tn->internal[x])
927 					return NULL;
928 			} else if (l == 1) {
929 				/* Looking from level 1 at level 0 */
930 				if (passed_tn) {
931 					/* If we already have one, release it */
932 					if (tn->internal[x])
933 						yaffs_free_tnode(dev,
934 							tn->internal[x]);
935 					tn->internal[x] = passed_tn;
936 
937 				} else if (!tn->internal[x]) {
938 					/* Don't have one, none passed in */
939 					tn->internal[x] = yaffs_get_tnode(dev);
940 					if (!tn->internal[x])
941 						return NULL;
942 				}
943 			}
944 
945 			tn = tn->internal[x];
946 			l--;
947 		}
948 	} else {
949 		/* top is level 0 */
950 		if (passed_tn) {
951 			memcpy(tn, passed_tn,
952 			       (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8);
953 			yaffs_free_tnode(dev, passed_tn);
954 		}
955 	}
956 
957 	return tn;
958 }
959 
960 static int yaffs_tags_match(const struct yaffs_ext_tags *tags, int obj_id,
961 			    int chunk_obj)
962 {
963 	return (tags->chunk_id == chunk_obj &&
964 		tags->obj_id == obj_id &&
965 		!tags->is_deleted) ? 1 : 0;
966 
967 }
968 
969 static int yaffs_find_chunk_in_group(struct yaffs_dev *dev, int the_chunk,
970 					struct yaffs_ext_tags *tags, int obj_id,
971 					int inode_chunk)
972 {
973 	int j;
974 
975 	for (j = 0; the_chunk && j < dev->chunk_grp_size; j++) {
976 		if (yaffs_check_chunk_bit
977 		    (dev, the_chunk / dev->param.chunks_per_block,
978 		     the_chunk % dev->param.chunks_per_block)) {
979 
980 			if (dev->chunk_grp_size == 1)
981 				return the_chunk;
982 			else {
983 				yaffs_rd_chunk_tags_nand(dev, the_chunk, NULL,
984 							 tags);
985 				if (yaffs_tags_match(tags,
986 							obj_id, inode_chunk)) {
987 					/* found it; */
988 					return the_chunk;
989 				}
990 			}
991 		}
992 		the_chunk++;
993 	}
994 	return -1;
995 }
996 
997 static int yaffs_find_chunk_in_file(struct yaffs_obj *in, int inode_chunk,
998 				    struct yaffs_ext_tags *tags)
999 {
1000 	/*Get the Tnode, then get the level 0 offset chunk offset */
1001 	struct yaffs_tnode *tn;
1002 	int the_chunk = -1;
1003 	struct yaffs_ext_tags local_tags;
1004 	int ret_val = -1;
1005 	struct yaffs_dev *dev = in->my_dev;
1006 
1007 	if (!tags) {
1008 		/* Passed a NULL, so use our own tags space */
1009 		tags = &local_tags;
1010 	}
1011 
1012 	tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk);
1013 
1014 	if (!tn)
1015 		return ret_val;
1016 
1017 	the_chunk = yaffs_get_group_base(dev, tn, inode_chunk);
1018 
1019 	ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id,
1020 					      inode_chunk);
1021 	return ret_val;
1022 }
1023 
1024 static int yaffs_find_del_file_chunk(struct yaffs_obj *in, int inode_chunk,
1025 				     struct yaffs_ext_tags *tags)
1026 {
1027 	/* Get the Tnode, then get the level 0 offset chunk offset */
1028 	struct yaffs_tnode *tn;
1029 	int the_chunk = -1;
1030 	struct yaffs_ext_tags local_tags;
1031 	struct yaffs_dev *dev = in->my_dev;
1032 	int ret_val = -1;
1033 
1034 	if (!tags) {
1035 		/* Passed a NULL, so use our own tags space */
1036 		tags = &local_tags;
1037 	}
1038 
1039 	tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk);
1040 
1041 	if (!tn)
1042 		return ret_val;
1043 
1044 	the_chunk = yaffs_get_group_base(dev, tn, inode_chunk);
1045 
1046 	ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id,
1047 					      inode_chunk);
1048 
1049 	/* Delete the entry in the filestructure (if found) */
1050 	if (ret_val != -1)
1051 		yaffs_load_tnode_0(dev, tn, inode_chunk, 0);
1052 
1053 	return ret_val;
1054 }
1055 
1056 int yaffs_put_chunk_in_file(struct yaffs_obj *in, int inode_chunk,
1057 			    int nand_chunk, int in_scan)
1058 {
1059 	/* NB in_scan is zero unless scanning.
1060 	 * For forward scanning, in_scan is > 0;
1061 	 * for backward scanning in_scan is < 0
1062 	 *
1063 	 * nand_chunk = 0 is a dummy insert to make sure the tnodes are there.
1064 	 */
1065 
1066 	struct yaffs_tnode *tn;
1067 	struct yaffs_dev *dev = in->my_dev;
1068 	int existing_cunk;
1069 	struct yaffs_ext_tags existing_tags;
1070 	struct yaffs_ext_tags new_tags;
1071 	unsigned existing_serial, new_serial;
1072 
1073 	if (in->variant_type != YAFFS_OBJECT_TYPE_FILE) {
1074 		/* Just ignore an attempt at putting a chunk into a non-file
1075 		 * during scanning.
1076 		 * If it is not during Scanning then something went wrong!
1077 		 */
1078 		if (!in_scan) {
1079 			yaffs_trace(YAFFS_TRACE_ERROR,
1080 				"yaffs tragedy:attempt to put data chunk into a non-file"
1081 				);
1082 			BUG();
1083 		}
1084 
1085 		yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
1086 		return YAFFS_OK;
1087 	}
1088 
1089 	tn = yaffs_add_find_tnode_0(dev,
1090 				    &in->variant.file_variant,
1091 				    inode_chunk, NULL);
1092 	if (!tn)
1093 		return YAFFS_FAIL;
1094 
1095 	if (!nand_chunk)
1096 		/* Dummy insert, bail now */
1097 		return YAFFS_OK;
1098 
1099 	existing_cunk = yaffs_get_group_base(dev, tn, inode_chunk);
1100 
1101 	if (in_scan != 0) {
1102 		/* If we're scanning then we need to test for duplicates
1103 		 * NB This does not need to be efficient since it should only
1104 		 * happen when the power fails during a write, then only one
1105 		 * chunk should ever be affected.
1106 		 *
1107 		 * Correction for YAFFS2: This could happen quite a lot and we
1108 		 * need to think about efficiency! TODO
1109 		 * Update: For backward scanning we don't need to re-read tags
1110 		 * so this is quite cheap.
1111 		 */
1112 
1113 		if (existing_cunk > 0) {
1114 			/* NB Right now existing chunk will not be real
1115 			 * chunk_id if the chunk group size > 1
1116 			 * thus we have to do a FindChunkInFile to get the
1117 			 * real chunk id.
1118 			 *
1119 			 * We have a duplicate now we need to decide which
1120 			 * one to use:
1121 			 *
1122 			 * Backwards scanning YAFFS2: The old one is what
1123 			 * we use, dump the new one.
1124 			 * YAFFS1: Get both sets of tags and compare serial
1125 			 * numbers.
1126 			 */
1127 
1128 			if (in_scan > 0) {
1129 				/* Only do this for forward scanning */
1130 				yaffs_rd_chunk_tags_nand(dev,
1131 							 nand_chunk,
1132 							 NULL, &new_tags);
1133 
1134 				/* Do a proper find */
1135 				existing_cunk =
1136 				    yaffs_find_chunk_in_file(in, inode_chunk,
1137 							     &existing_tags);
1138 			}
1139 
1140 			if (existing_cunk <= 0) {
1141 				/*Hoosterman - how did this happen? */
1142 
1143 				yaffs_trace(YAFFS_TRACE_ERROR,
1144 					"yaffs tragedy: existing chunk < 0 in scan"
1145 					);
1146 
1147 			}
1148 
1149 			/* NB The deleted flags should be false, otherwise
1150 			 * the chunks will not be loaded during a scan
1151 			 */
1152 
1153 			if (in_scan > 0) {
1154 				new_serial = new_tags.serial_number;
1155 				existing_serial = existing_tags.serial_number;
1156 			}
1157 
1158 			if ((in_scan > 0) &&
1159 			    (existing_cunk <= 0 ||
1160 			     ((existing_serial + 1) & 3) == new_serial)) {
1161 				/* Forward scanning.
1162 				 * Use new
1163 				 * Delete the old one and drop through to
1164 				 * update the tnode
1165 				 */
1166 				yaffs_chunk_del(dev, existing_cunk, 1,
1167 						__LINE__);
1168 			} else {
1169 				/* Backward scanning or we want to use the
1170 				 * existing one
1171 				 * Delete the new one and return early so that
1172 				 * the tnode isn't changed
1173 				 */
1174 				yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
1175 				return YAFFS_OK;
1176 			}
1177 		}
1178 
1179 	}
1180 
1181 	if (existing_cunk == 0)
1182 		in->n_data_chunks++;
1183 
1184 	yaffs_load_tnode_0(dev, tn, inode_chunk, nand_chunk);
1185 
1186 	return YAFFS_OK;
1187 }
1188 
1189 static void yaffs_soft_del_chunk(struct yaffs_dev *dev, int chunk)
1190 {
1191 	struct yaffs_block_info *the_block;
1192 	unsigned block_no;
1193 
1194 	yaffs_trace(YAFFS_TRACE_DELETION, "soft delete chunk %d", chunk);
1195 
1196 	block_no = chunk / dev->param.chunks_per_block;
1197 	the_block = yaffs_get_block_info(dev, block_no);
1198 	if (the_block) {
1199 		the_block->soft_del_pages++;
1200 		dev->n_free_chunks++;
1201 		yaffs2_update_oldest_dirty_seq(dev, block_no, the_block);
1202 	}
1203 }
1204 
1205 /* SoftDeleteWorker scans backwards through the tnode tree and soft deletes all
1206  * the chunks in the file.
1207  * All soft deleting does is increment the block's softdelete count and pulls
1208  * the chunk out of the tnode.
1209  * Thus, essentially this is the same as DeleteWorker except that the chunks
1210  * are soft deleted.
1211  */
1212 
1213 static int yaffs_soft_del_worker(struct yaffs_obj *in, struct yaffs_tnode *tn,
1214 				 u32 level, int chunk_offset)
1215 {
1216 	int i;
1217 	int the_chunk;
1218 	int all_done = 1;
1219 	struct yaffs_dev *dev = in->my_dev;
1220 
1221 	if (!tn)
1222 		return 1;
1223 
1224 	if (level > 0) {
1225 		for (i = YAFFS_NTNODES_INTERNAL - 1;
1226 			all_done && i >= 0;
1227 			i--) {
1228 			if (tn->internal[i]) {
1229 				all_done =
1230 				    yaffs_soft_del_worker(in,
1231 					tn->internal[i],
1232 					level - 1,
1233 					(chunk_offset <<
1234 					YAFFS_TNODES_INTERNAL_BITS)
1235 					+ i);
1236 				if (all_done) {
1237 					yaffs_free_tnode(dev,
1238 						tn->internal[i]);
1239 					tn->internal[i] = NULL;
1240 				} else {
1241 					/* Can this happen? */
1242 				}
1243 			}
1244 		}
1245 		return (all_done) ? 1 : 0;
1246 	}
1247 
1248 	/* level 0 */
1249 	 for (i = YAFFS_NTNODES_LEVEL0 - 1; i >= 0; i--) {
1250 		the_chunk = yaffs_get_group_base(dev, tn, i);
1251 		if (the_chunk) {
1252 			yaffs_soft_del_chunk(dev, the_chunk);
1253 			yaffs_load_tnode_0(dev, tn, i, 0);
1254 		}
1255 	}
1256 	return 1;
1257 }
1258 
1259 static void yaffs_remove_obj_from_dir(struct yaffs_obj *obj)
1260 {
1261 	struct yaffs_dev *dev = obj->my_dev;
1262 	struct yaffs_obj *parent;
1263 
1264 	yaffs_verify_obj_in_dir(obj);
1265 	parent = obj->parent;
1266 
1267 	yaffs_verify_dir(parent);
1268 
1269 	if (dev && dev->param.remove_obj_fn)
1270 		dev->param.remove_obj_fn(obj);
1271 
1272 	list_del_init(&obj->siblings);
1273 	obj->parent = NULL;
1274 
1275 	yaffs_verify_dir(parent);
1276 }
1277 
1278 void yaffs_add_obj_to_dir(struct yaffs_obj *directory, struct yaffs_obj *obj)
1279 {
1280 	if (!directory) {
1281 		yaffs_trace(YAFFS_TRACE_ALWAYS,
1282 			"tragedy: Trying to add an object to a null pointer directory"
1283 			);
1284 		BUG();
1285 		return;
1286 	}
1287 	if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
1288 		yaffs_trace(YAFFS_TRACE_ALWAYS,
1289 			"tragedy: Trying to add an object to a non-directory"
1290 			);
1291 		BUG();
1292 	}
1293 
1294 	if (obj->siblings.prev == NULL) {
1295 		/* Not initialised */
1296 		BUG();
1297 	}
1298 
1299 	yaffs_verify_dir(directory);
1300 
1301 	yaffs_remove_obj_from_dir(obj);
1302 
1303 	/* Now add it */
1304 	list_add(&obj->siblings, &directory->variant.dir_variant.children);
1305 	obj->parent = directory;
1306 
1307 	if (directory == obj->my_dev->unlinked_dir
1308 	    || directory == obj->my_dev->del_dir) {
1309 		obj->unlinked = 1;
1310 		obj->my_dev->n_unlinked_files++;
1311 		obj->rename_allowed = 0;
1312 	}
1313 
1314 	yaffs_verify_dir(directory);
1315 	yaffs_verify_obj_in_dir(obj);
1316 }
1317 
1318 static int yaffs_change_obj_name(struct yaffs_obj *obj,
1319 				 struct yaffs_obj *new_dir,
1320 				 const YCHAR *new_name, int force, int shadows)
1321 {
1322 	int unlink_op;
1323 	int del_op;
1324 	struct yaffs_obj *existing_target;
1325 
1326 	if (new_dir == NULL)
1327 		new_dir = obj->parent;	/* use the old directory */
1328 
1329 	if (new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
1330 		yaffs_trace(YAFFS_TRACE_ALWAYS,
1331 			"tragedy: yaffs_change_obj_name: new_dir is not a directory"
1332 			);
1333 		BUG();
1334 	}
1335 
1336 	unlink_op = (new_dir == obj->my_dev->unlinked_dir);
1337 	del_op = (new_dir == obj->my_dev->del_dir);
1338 
1339 	existing_target = yaffs_find_by_name(new_dir, new_name);
1340 
1341 	/* If the object is a file going into the unlinked directory,
1342 	 *   then it is OK to just stuff it in since duplicate names are OK.
1343 	 *   else only proceed if the new name does not exist and we're putting
1344 	 *   it into a directory.
1345 	 */
1346 	if (!(unlink_op || del_op || force ||
1347 	      shadows > 0 || !existing_target) ||
1348 	      new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY)
1349 		return YAFFS_FAIL;
1350 
1351 	yaffs_set_obj_name(obj, new_name);
1352 	obj->dirty = 1;
1353 	yaffs_add_obj_to_dir(new_dir, obj);
1354 
1355 	if (unlink_op)
1356 		obj->unlinked = 1;
1357 
1358 	/* If it is a deletion then we mark it as a shrink for gc  */
1359 	if (yaffs_update_oh(obj, new_name, 0, del_op, shadows, NULL) >= 0)
1360 		return YAFFS_OK;
1361 
1362 	return YAFFS_FAIL;
1363 }
1364 
1365 /*------------------------ Short Operations Cache ------------------------------
1366  *   In many situations where there is no high level buffering  a lot of
1367  *   reads might be short sequential reads, and a lot of writes may be short
1368  *   sequential writes. eg. scanning/writing a jpeg file.
1369  *   In these cases, a short read/write cache can provide a huge perfomance
1370  *   benefit with dumb-as-a-rock code.
1371  *   In Linux, the page cache provides read buffering and the short op cache
1372  *   provides write buffering.
1373  *
1374  *   There are a small number (~10) of cache chunks per device so that we don't
1375  *   need a very intelligent search.
1376  */
1377 
1378 static int yaffs_obj_cache_dirty(struct yaffs_obj *obj)
1379 {
1380 	struct yaffs_dev *dev = obj->my_dev;
1381 	int i;
1382 	struct yaffs_cache *cache;
1383 	int n_caches = obj->my_dev->param.n_caches;
1384 
1385 	for (i = 0; i < n_caches; i++) {
1386 		cache = &dev->cache[i];
1387 		if (cache->object == obj && cache->dirty)
1388 			return 1;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static void yaffs_flush_file_cache(struct yaffs_obj *obj)
1395 {
1396 	struct yaffs_dev *dev = obj->my_dev;
1397 	int lowest = -99;	/* Stop compiler whining. */
1398 	int i;
1399 	struct yaffs_cache *cache;
1400 	int chunk_written = 0;
1401 	int n_caches = obj->my_dev->param.n_caches;
1402 
1403 	if (n_caches < 1)
1404 		return;
1405 	do {
1406 		cache = NULL;
1407 
1408 		/* Find the lowest dirty chunk for this object */
1409 		for (i = 0; i < n_caches; i++) {
1410 			if (dev->cache[i].object == obj &&
1411 			    dev->cache[i].dirty) {
1412 				if (!cache ||
1413 				    dev->cache[i].chunk_id < lowest) {
1414 					cache = &dev->cache[i];
1415 					lowest = cache->chunk_id;
1416 				}
1417 			}
1418 		}
1419 
1420 		if (cache && !cache->locked) {
1421 			/* Write it out and free it up */
1422 			chunk_written =
1423 			    yaffs_wr_data_obj(cache->object,
1424 					      cache->chunk_id,
1425 					      cache->data,
1426 					      cache->n_bytes, 1);
1427 			cache->dirty = 0;
1428 			cache->object = NULL;
1429 		}
1430 	} while (cache && chunk_written > 0);
1431 
1432 	if (cache)
1433 		/* Hoosterman, disk full while writing cache out. */
1434 		yaffs_trace(YAFFS_TRACE_ERROR,
1435 			"yaffs tragedy: no space during cache write");
1436 }
1437 
1438 /*yaffs_flush_whole_cache(dev)
1439  *
1440  *
1441  */
1442 
1443 void yaffs_flush_whole_cache(struct yaffs_dev *dev)
1444 {
1445 	struct yaffs_obj *obj;
1446 	int n_caches = dev->param.n_caches;
1447 	int i;
1448 
1449 	/* Find a dirty object in the cache and flush it...
1450 	 * until there are no further dirty objects.
1451 	 */
1452 	do {
1453 		obj = NULL;
1454 		for (i = 0; i < n_caches && !obj; i++) {
1455 			if (dev->cache[i].object && dev->cache[i].dirty)
1456 				obj = dev->cache[i].object;
1457 		}
1458 		if (obj)
1459 			yaffs_flush_file_cache(obj);
1460 	} while (obj);
1461 
1462 }
1463 
1464 /* Grab us a cache chunk for use.
1465  * First look for an empty one.
1466  * Then look for the least recently used non-dirty one.
1467  * Then look for the least recently used dirty one...., flush and look again.
1468  */
1469 static struct yaffs_cache *yaffs_grab_chunk_worker(struct yaffs_dev *dev)
1470 {
1471 	int i;
1472 
1473 	if (dev->param.n_caches > 0) {
1474 		for (i = 0; i < dev->param.n_caches; i++) {
1475 			if (!dev->cache[i].object)
1476 				return &dev->cache[i];
1477 		}
1478 	}
1479 	return NULL;
1480 }
1481 
1482 static struct yaffs_cache *yaffs_grab_chunk_cache(struct yaffs_dev *dev)
1483 {
1484 	struct yaffs_cache *cache;
1485 	struct yaffs_obj *the_obj;
1486 	int usage;
1487 	int i;
1488 	int pushout;
1489 
1490 	if (dev->param.n_caches < 1)
1491 		return NULL;
1492 
1493 	/* Try find a non-dirty one... */
1494 
1495 	cache = yaffs_grab_chunk_worker(dev);
1496 
1497 	if (!cache) {
1498 		/* They were all dirty, find the LRU object and flush
1499 		 * its cache, then  find again.
1500 		 * NB what's here is not very accurate,
1501 		 * we actually flush the object with the LRU chunk.
1502 		 */
1503 
1504 		/* With locking we can't assume we can use entry zero,
1505 		 * Set the_obj to a valid pointer for Coverity. */
1506 		the_obj = dev->cache[0].object;
1507 		usage = -1;
1508 		cache = NULL;
1509 		pushout = -1;
1510 
1511 		for (i = 0; i < dev->param.n_caches; i++) {
1512 			if (dev->cache[i].object &&
1513 			    !dev->cache[i].locked &&
1514 			    (dev->cache[i].last_use < usage ||
1515 			    !cache)) {
1516 				usage = dev->cache[i].last_use;
1517 				the_obj = dev->cache[i].object;
1518 				cache = &dev->cache[i];
1519 				pushout = i;
1520 			}
1521 		}
1522 
1523 		if (!cache || cache->dirty) {
1524 			/* Flush and try again */
1525 			yaffs_flush_file_cache(the_obj);
1526 			cache = yaffs_grab_chunk_worker(dev);
1527 		}
1528 	}
1529 	return cache;
1530 }
1531 
1532 /* Find a cached chunk */
1533 static struct yaffs_cache *yaffs_find_chunk_cache(const struct yaffs_obj *obj,
1534 						  int chunk_id)
1535 {
1536 	struct yaffs_dev *dev = obj->my_dev;
1537 	int i;
1538 
1539 	if (dev->param.n_caches < 1)
1540 		return NULL;
1541 
1542 	for (i = 0; i < dev->param.n_caches; i++) {
1543 		if (dev->cache[i].object == obj &&
1544 		    dev->cache[i].chunk_id == chunk_id) {
1545 			dev->cache_hits++;
1546 
1547 			return &dev->cache[i];
1548 		}
1549 	}
1550 	return NULL;
1551 }
1552 
1553 /* Mark the chunk for the least recently used algorithym */
1554 static void yaffs_use_cache(struct yaffs_dev *dev, struct yaffs_cache *cache,
1555 			    int is_write)
1556 {
1557 	int i;
1558 
1559 	if (dev->param.n_caches < 1)
1560 		return;
1561 
1562 	if (dev->cache_last_use < 0 ||
1563 		dev->cache_last_use > 100000000) {
1564 		/* Reset the cache usages */
1565 		for (i = 1; i < dev->param.n_caches; i++)
1566 			dev->cache[i].last_use = 0;
1567 
1568 		dev->cache_last_use = 0;
1569 	}
1570 	dev->cache_last_use++;
1571 	cache->last_use = dev->cache_last_use;
1572 
1573 	if (is_write)
1574 		cache->dirty = 1;
1575 }
1576 
1577 /* Invalidate a single cache page.
1578  * Do this when a whole page gets written,
1579  * ie the short cache for this page is no longer valid.
1580  */
1581 static void yaffs_invalidate_chunk_cache(struct yaffs_obj *object, int chunk_id)
1582 {
1583 	struct yaffs_cache *cache;
1584 
1585 	if (object->my_dev->param.n_caches > 0) {
1586 		cache = yaffs_find_chunk_cache(object, chunk_id);
1587 
1588 		if (cache)
1589 			cache->object = NULL;
1590 	}
1591 }
1592 
1593 /* Invalidate all the cache pages associated with this object
1594  * Do this whenever ther file is deleted or resized.
1595  */
1596 static void yaffs_invalidate_whole_cache(struct yaffs_obj *in)
1597 {
1598 	int i;
1599 	struct yaffs_dev *dev = in->my_dev;
1600 
1601 	if (dev->param.n_caches > 0) {
1602 		/* Invalidate it. */
1603 		for (i = 0; i < dev->param.n_caches; i++) {
1604 			if (dev->cache[i].object == in)
1605 				dev->cache[i].object = NULL;
1606 		}
1607 	}
1608 }
1609 
1610 static void yaffs_unhash_obj(struct yaffs_obj *obj)
1611 {
1612 	int bucket;
1613 	struct yaffs_dev *dev = obj->my_dev;
1614 
1615 	/* If it is still linked into the bucket list, free from the list */
1616 	if (!list_empty(&obj->hash_link)) {
1617 		list_del_init(&obj->hash_link);
1618 		bucket = yaffs_hash_fn(obj->obj_id);
1619 		dev->obj_bucket[bucket].count--;
1620 	}
1621 }
1622 
1623 /*  FreeObject frees up a Object and puts it back on the free list */
1624 static void yaffs_free_obj(struct yaffs_obj *obj)
1625 {
1626 	struct yaffs_dev *dev;
1627 
1628 	if (!obj) {
1629 		BUG();
1630 		return;
1631 	}
1632 	dev = obj->my_dev;
1633 	yaffs_trace(YAFFS_TRACE_OS, "FreeObject %p inode %p",
1634 		obj, obj->my_inode);
1635 	if (obj->parent)
1636 		BUG();
1637 	if (!list_empty(&obj->siblings))
1638 		BUG();
1639 
1640 	if (obj->my_inode) {
1641 		/* We're still hooked up to a cached inode.
1642 		 * Don't delete now, but mark for later deletion
1643 		 */
1644 		obj->defered_free = 1;
1645 		return;
1646 	}
1647 
1648 	yaffs_unhash_obj(obj);
1649 
1650 	yaffs_free_raw_obj(dev, obj);
1651 	dev->n_obj--;
1652 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
1653 }
1654 
1655 void yaffs_handle_defered_free(struct yaffs_obj *obj)
1656 {
1657 	if (obj->defered_free)
1658 		yaffs_free_obj(obj);
1659 }
1660 
1661 static int yaffs_generic_obj_del(struct yaffs_obj *in)
1662 {
1663 	/* Iinvalidate the file's data in the cache, without flushing. */
1664 	yaffs_invalidate_whole_cache(in);
1665 
1666 	if (in->my_dev->param.is_yaffs2 && in->parent != in->my_dev->del_dir) {
1667 		/* Move to unlinked directory so we have a deletion record */
1668 		yaffs_change_obj_name(in, in->my_dev->del_dir, _Y("deleted"), 0,
1669 				      0);
1670 	}
1671 
1672 	yaffs_remove_obj_from_dir(in);
1673 	yaffs_chunk_del(in->my_dev, in->hdr_chunk, 1, __LINE__);
1674 	in->hdr_chunk = 0;
1675 
1676 	yaffs_free_obj(in);
1677 	return YAFFS_OK;
1678 
1679 }
1680 
1681 static void yaffs_soft_del_file(struct yaffs_obj *obj)
1682 {
1683 	if (!obj->deleted ||
1684 	    obj->variant_type != YAFFS_OBJECT_TYPE_FILE ||
1685 	    obj->soft_del)
1686 		return;
1687 
1688 	if (obj->n_data_chunks <= 0) {
1689 		/* Empty file with no duplicate object headers,
1690 		 * just delete it immediately */
1691 		yaffs_free_tnode(obj->my_dev, obj->variant.file_variant.top);
1692 		obj->variant.file_variant.top = NULL;
1693 		yaffs_trace(YAFFS_TRACE_TRACING,
1694 			"yaffs: Deleting empty file %d",
1695 			obj->obj_id);
1696 		yaffs_generic_obj_del(obj);
1697 	} else {
1698 		yaffs_soft_del_worker(obj,
1699 				      obj->variant.file_variant.top,
1700 				      obj->variant.
1701 				      file_variant.top_level, 0);
1702 		obj->soft_del = 1;
1703 	}
1704 }
1705 
1706 /* Pruning removes any part of the file structure tree that is beyond the
1707  * bounds of the file (ie that does not point to chunks).
1708  *
1709  * A file should only get pruned when its size is reduced.
1710  *
1711  * Before pruning, the chunks must be pulled from the tree and the
1712  * level 0 tnode entries must be zeroed out.
1713  * Could also use this for file deletion, but that's probably better handled
1714  * by a special case.
1715  *
1716  * This function is recursive. For levels > 0 the function is called again on
1717  * any sub-tree. For level == 0 we just check if the sub-tree has data.
1718  * If there is no data in a subtree then it is pruned.
1719  */
1720 
1721 static struct yaffs_tnode *yaffs_prune_worker(struct yaffs_dev *dev,
1722 					      struct yaffs_tnode *tn, u32 level,
1723 					      int del0)
1724 {
1725 	int i;
1726 	int has_data;
1727 
1728 	if (!tn)
1729 		return tn;
1730 
1731 	has_data = 0;
1732 
1733 	if (level > 0) {
1734 		for (i = 0; i < YAFFS_NTNODES_INTERNAL; i++) {
1735 			if (tn->internal[i]) {
1736 				tn->internal[i] =
1737 				    yaffs_prune_worker(dev,
1738 						tn->internal[i],
1739 						level - 1,
1740 						(i == 0) ? del0 : 1);
1741 			}
1742 
1743 			if (tn->internal[i])
1744 				has_data++;
1745 		}
1746 	} else {
1747 		int tnode_size_u32 = dev->tnode_size / sizeof(u32);
1748 		u32 *map = (u32 *) tn;
1749 
1750 		for (i = 0; !has_data && i < tnode_size_u32; i++) {
1751 			if (map[i])
1752 				has_data++;
1753 		}
1754 	}
1755 
1756 	if (has_data == 0 && del0) {
1757 		/* Free and return NULL */
1758 		yaffs_free_tnode(dev, tn);
1759 		tn = NULL;
1760 	}
1761 	return tn;
1762 }
1763 
1764 static int yaffs_prune_tree(struct yaffs_dev *dev,
1765 			    struct yaffs_file_var *file_struct)
1766 {
1767 	int i;
1768 	int has_data;
1769 	int done = 0;
1770 	struct yaffs_tnode *tn;
1771 
1772 	if (file_struct->top_level < 1)
1773 		return YAFFS_OK;
1774 
1775 	file_struct->top =
1776 	   yaffs_prune_worker(dev, file_struct->top, file_struct->top_level, 0);
1777 
1778 	/* Now we have a tree with all the non-zero branches NULL but
1779 	 * the height is the same as it was.
1780 	 * Let's see if we can trim internal tnodes to shorten the tree.
1781 	 * We can do this if only the 0th element in the tnode is in use
1782 	 * (ie all the non-zero are NULL)
1783 	 */
1784 
1785 	while (file_struct->top_level && !done) {
1786 		tn = file_struct->top;
1787 
1788 		has_data = 0;
1789 		for (i = 1; i < YAFFS_NTNODES_INTERNAL; i++) {
1790 			if (tn->internal[i])
1791 				has_data++;
1792 		}
1793 
1794 		if (!has_data) {
1795 			file_struct->top = tn->internal[0];
1796 			file_struct->top_level--;
1797 			yaffs_free_tnode(dev, tn);
1798 		} else {
1799 			done = 1;
1800 		}
1801 	}
1802 
1803 	return YAFFS_OK;
1804 }
1805 
1806 /*-------------------- End of File Structure functions.-------------------*/
1807 
1808 /* alloc_empty_obj gets us a clean Object.*/
1809 static struct yaffs_obj *yaffs_alloc_empty_obj(struct yaffs_dev *dev)
1810 {
1811 	struct yaffs_obj *obj = yaffs_alloc_raw_obj(dev);
1812 
1813 	if (!obj)
1814 		return obj;
1815 
1816 	dev->n_obj++;
1817 
1818 	/* Now sweeten it up... */
1819 
1820 	memset(obj, 0, sizeof(struct yaffs_obj));
1821 	obj->being_created = 1;
1822 
1823 	obj->my_dev = dev;
1824 	obj->hdr_chunk = 0;
1825 	obj->variant_type = YAFFS_OBJECT_TYPE_UNKNOWN;
1826 	INIT_LIST_HEAD(&(obj->hard_links));
1827 	INIT_LIST_HEAD(&(obj->hash_link));
1828 	INIT_LIST_HEAD(&obj->siblings);
1829 
1830 	/* Now make the directory sane */
1831 	if (dev->root_dir) {
1832 		obj->parent = dev->root_dir;
1833 		list_add(&(obj->siblings),
1834 			 &dev->root_dir->variant.dir_variant.children);
1835 	}
1836 
1837 	/* Add it to the lost and found directory.
1838 	 * NB Can't put root or lost-n-found in lost-n-found so
1839 	 * check if lost-n-found exists first
1840 	 */
1841 	if (dev->lost_n_found)
1842 		yaffs_add_obj_to_dir(dev->lost_n_found, obj);
1843 
1844 	obj->being_created = 0;
1845 
1846 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
1847 
1848 	return obj;
1849 }
1850 
1851 static int yaffs_find_nice_bucket(struct yaffs_dev *dev)
1852 {
1853 	int i;
1854 	int l = 999;
1855 	int lowest = 999999;
1856 
1857 	/* Search for the shortest list or one that
1858 	 * isn't too long.
1859 	 */
1860 
1861 	for (i = 0; i < 10 && lowest > 4; i++) {
1862 		dev->bucket_finder++;
1863 		dev->bucket_finder %= YAFFS_NOBJECT_BUCKETS;
1864 		if (dev->obj_bucket[dev->bucket_finder].count < lowest) {
1865 			lowest = dev->obj_bucket[dev->bucket_finder].count;
1866 			l = dev->bucket_finder;
1867 		}
1868 	}
1869 
1870 	return l;
1871 }
1872 
1873 static int yaffs_new_obj_id(struct yaffs_dev *dev)
1874 {
1875 	int bucket = yaffs_find_nice_bucket(dev);
1876 	int found = 0;
1877 	struct list_head *i;
1878 	u32 n = (u32) bucket;
1879 
1880 	/* Now find an object value that has not already been taken
1881 	 * by scanning the list.
1882 	 */
1883 
1884 	while (!found) {
1885 		found = 1;
1886 		n += YAFFS_NOBJECT_BUCKETS;
1887 		if (1 || dev->obj_bucket[bucket].count > 0) {
1888 			list_for_each(i, &dev->obj_bucket[bucket].list) {
1889 				/* If there is already one in the list */
1890 				if (i && list_entry(i, struct yaffs_obj,
1891 						    hash_link)->obj_id == n) {
1892 					found = 0;
1893 				}
1894 			}
1895 		}
1896 	}
1897 	return n;
1898 }
1899 
1900 static void yaffs_hash_obj(struct yaffs_obj *in)
1901 {
1902 	int bucket = yaffs_hash_fn(in->obj_id);
1903 	struct yaffs_dev *dev = in->my_dev;
1904 
1905 	list_add(&in->hash_link, &dev->obj_bucket[bucket].list);
1906 	dev->obj_bucket[bucket].count++;
1907 }
1908 
1909 struct yaffs_obj *yaffs_find_by_number(struct yaffs_dev *dev, u32 number)
1910 {
1911 	int bucket = yaffs_hash_fn(number);
1912 	struct list_head *i;
1913 	struct yaffs_obj *in;
1914 
1915 	list_for_each(i, &dev->obj_bucket[bucket].list) {
1916 		/* Look if it is in the list */
1917 		in = list_entry(i, struct yaffs_obj, hash_link);
1918 		if (in->obj_id == number) {
1919 			/* Don't show if it is defered free */
1920 			if (in->defered_free)
1921 				return NULL;
1922 			return in;
1923 		}
1924 	}
1925 
1926 	return NULL;
1927 }
1928 
1929 struct yaffs_obj *yaffs_new_obj(struct yaffs_dev *dev, int number,
1930 				enum yaffs_obj_type type)
1931 {
1932 	struct yaffs_obj *the_obj = NULL;
1933 	struct yaffs_tnode *tn = NULL;
1934 
1935 	if (number < 0)
1936 		number = yaffs_new_obj_id(dev);
1937 
1938 	if (type == YAFFS_OBJECT_TYPE_FILE) {
1939 		tn = yaffs_get_tnode(dev);
1940 		if (!tn)
1941 			return NULL;
1942 	}
1943 
1944 	the_obj = yaffs_alloc_empty_obj(dev);
1945 	if (!the_obj) {
1946 		if (tn)
1947 			yaffs_free_tnode(dev, tn);
1948 		return NULL;
1949 	}
1950 
1951 	the_obj->fake = 0;
1952 	the_obj->rename_allowed = 1;
1953 	the_obj->unlink_allowed = 1;
1954 	the_obj->obj_id = number;
1955 	yaffs_hash_obj(the_obj);
1956 	the_obj->variant_type = type;
1957 	yaffs_load_current_time(the_obj, 1, 1);
1958 
1959 	switch (type) {
1960 	case YAFFS_OBJECT_TYPE_FILE:
1961 		the_obj->variant.file_variant.file_size = 0;
1962 		the_obj->variant.file_variant.scanned_size = 0;
1963 		the_obj->variant.file_variant.shrink_size =
1964 						yaffs_max_file_size(dev);
1965 		the_obj->variant.file_variant.top_level = 0;
1966 		the_obj->variant.file_variant.top = tn;
1967 		break;
1968 	case YAFFS_OBJECT_TYPE_DIRECTORY:
1969 		INIT_LIST_HEAD(&the_obj->variant.dir_variant.children);
1970 		INIT_LIST_HEAD(&the_obj->variant.dir_variant.dirty);
1971 		break;
1972 	case YAFFS_OBJECT_TYPE_SYMLINK:
1973 	case YAFFS_OBJECT_TYPE_HARDLINK:
1974 	case YAFFS_OBJECT_TYPE_SPECIAL:
1975 		/* No action required */
1976 		break;
1977 	case YAFFS_OBJECT_TYPE_UNKNOWN:
1978 		/* todo this should not happen */
1979 		break;
1980 	}
1981 	return the_obj;
1982 }
1983 
1984 static struct yaffs_obj *yaffs_create_fake_dir(struct yaffs_dev *dev,
1985 					       int number, u32 mode)
1986 {
1987 
1988 	struct yaffs_obj *obj =
1989 	    yaffs_new_obj(dev, number, YAFFS_OBJECT_TYPE_DIRECTORY);
1990 
1991 	if (!obj)
1992 		return NULL;
1993 
1994 	obj->fake = 1;	/* it is fake so it might not use NAND */
1995 	obj->rename_allowed = 0;
1996 	obj->unlink_allowed = 0;
1997 	obj->deleted = 0;
1998 	obj->unlinked = 0;
1999 	obj->yst_mode = mode;
2000 	obj->my_dev = dev;
2001 	obj->hdr_chunk = 0;	/* Not a valid chunk. */
2002 	return obj;
2003 
2004 }
2005 
2006 
2007 static void yaffs_init_tnodes_and_objs(struct yaffs_dev *dev)
2008 {
2009 	int i;
2010 
2011 	dev->n_obj = 0;
2012 	dev->n_tnodes = 0;
2013 	yaffs_init_raw_tnodes_and_objs(dev);
2014 
2015 	for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) {
2016 		INIT_LIST_HEAD(&dev->obj_bucket[i].list);
2017 		dev->obj_bucket[i].count = 0;
2018 	}
2019 }
2020 
2021 struct yaffs_obj *yaffs_find_or_create_by_number(struct yaffs_dev *dev,
2022 						 int number,
2023 						 enum yaffs_obj_type type)
2024 {
2025 	struct yaffs_obj *the_obj = NULL;
2026 
2027 	if (number > 0)
2028 		the_obj = yaffs_find_by_number(dev, number);
2029 
2030 	if (!the_obj)
2031 		the_obj = yaffs_new_obj(dev, number, type);
2032 
2033 	return the_obj;
2034 
2035 }
2036 
2037 YCHAR *yaffs_clone_str(const YCHAR *str)
2038 {
2039 	YCHAR *new_str = NULL;
2040 	int len;
2041 
2042 	if (!str)
2043 		str = _Y("");
2044 
2045 	len = yaffs_strnlen(str, YAFFS_MAX_ALIAS_LENGTH);
2046 	new_str = kmalloc((len + 1) * sizeof(YCHAR), GFP_NOFS);
2047 	if (new_str) {
2048 		yaffs_strncpy(new_str, str, len);
2049 		new_str[len] = 0;
2050 	}
2051 	return new_str;
2052 
2053 }
2054 /*
2055  *yaffs_update_parent() handles fixing a directories mtime and ctime when a new
2056  * link (ie. name) is created or deleted in the directory.
2057  *
2058  * ie.
2059  *   create dir/a : update dir's mtime/ctime
2060  *   rm dir/a:   update dir's mtime/ctime
2061  *   modify dir/a: don't update dir's mtimme/ctime
2062  *
2063  * This can be handled immediately or defered. Defering helps reduce the number
2064  * of updates when many files in a directory are changed within a brief period.
2065  *
2066  * If the directory updating is defered then yaffs_update_dirty_dirs must be
2067  * called periodically.
2068  */
2069 
2070 static void yaffs_update_parent(struct yaffs_obj *obj)
2071 {
2072 	struct yaffs_dev *dev;
2073 
2074 	if (!obj)
2075 		return;
2076 	dev = obj->my_dev;
2077 	obj->dirty = 1;
2078 	yaffs_load_current_time(obj, 0, 1);
2079 	if (dev->param.defered_dir_update) {
2080 		struct list_head *link = &obj->variant.dir_variant.dirty;
2081 
2082 		if (list_empty(link)) {
2083 			list_add(link, &dev->dirty_dirs);
2084 			yaffs_trace(YAFFS_TRACE_BACKGROUND,
2085 			  "Added object %d to dirty directories",
2086 			   obj->obj_id);
2087 		}
2088 
2089 	} else {
2090 		yaffs_update_oh(obj, NULL, 0, 0, 0, NULL);
2091 	}
2092 }
2093 
2094 void yaffs_update_dirty_dirs(struct yaffs_dev *dev)
2095 {
2096 	struct list_head *link;
2097 	struct yaffs_obj *obj;
2098 	struct yaffs_dir_var *d_s;
2099 	union yaffs_obj_var *o_v;
2100 
2101 	yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update dirty directories");
2102 
2103 	while (!list_empty(&dev->dirty_dirs)) {
2104 		link = dev->dirty_dirs.next;
2105 		list_del_init(link);
2106 
2107 		d_s = list_entry(link, struct yaffs_dir_var, dirty);
2108 		o_v = list_entry(d_s, union yaffs_obj_var, dir_variant);
2109 		obj = list_entry(o_v, struct yaffs_obj, variant);
2110 
2111 		yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update directory %d",
2112 			obj->obj_id);
2113 
2114 		if (obj->dirty)
2115 			yaffs_update_oh(obj, NULL, 0, 0, 0, NULL);
2116 	}
2117 }
2118 
2119 /*
2120  * Mknod (create) a new object.
2121  * equiv_obj only has meaning for a hard link;
2122  * alias_str only has meaning for a symlink.
2123  * rdev only has meaning for devices (a subset of special objects)
2124  */
2125 
2126 static struct yaffs_obj *yaffs_create_obj(enum yaffs_obj_type type,
2127 					  struct yaffs_obj *parent,
2128 					  const YCHAR *name,
2129 					  u32 mode,
2130 					  u32 uid,
2131 					  u32 gid,
2132 					  struct yaffs_obj *equiv_obj,
2133 					  const YCHAR *alias_str, u32 rdev)
2134 {
2135 	struct yaffs_obj *in;
2136 	YCHAR *str = NULL;
2137 	struct yaffs_dev *dev = parent->my_dev;
2138 
2139 	/* Check if the entry exists.
2140 	 * If it does then fail the call since we don't want a dup. */
2141 	if (yaffs_find_by_name(parent, name))
2142 		return NULL;
2143 
2144 	if (type == YAFFS_OBJECT_TYPE_SYMLINK) {
2145 		str = yaffs_clone_str(alias_str);
2146 		if (!str)
2147 			return NULL;
2148 	}
2149 
2150 	in = yaffs_new_obj(dev, -1, type);
2151 
2152 	if (!in) {
2153 		kfree(str);
2154 		return NULL;
2155 	}
2156 
2157 	in->hdr_chunk = 0;
2158 	in->valid = 1;
2159 	in->variant_type = type;
2160 
2161 	in->yst_mode = mode;
2162 
2163 	yaffs_attribs_init(in, gid, uid, rdev);
2164 
2165 	in->n_data_chunks = 0;
2166 
2167 	yaffs_set_obj_name(in, name);
2168 	in->dirty = 1;
2169 
2170 	yaffs_add_obj_to_dir(parent, in);
2171 
2172 	in->my_dev = parent->my_dev;
2173 
2174 	switch (type) {
2175 	case YAFFS_OBJECT_TYPE_SYMLINK:
2176 		in->variant.symlink_variant.alias = str;
2177 		break;
2178 	case YAFFS_OBJECT_TYPE_HARDLINK:
2179 		in->variant.hardlink_variant.equiv_obj = equiv_obj;
2180 		in->variant.hardlink_variant.equiv_id = equiv_obj->obj_id;
2181 		list_add(&in->hard_links, &equiv_obj->hard_links);
2182 		break;
2183 	case YAFFS_OBJECT_TYPE_FILE:
2184 	case YAFFS_OBJECT_TYPE_DIRECTORY:
2185 	case YAFFS_OBJECT_TYPE_SPECIAL:
2186 	case YAFFS_OBJECT_TYPE_UNKNOWN:
2187 		/* do nothing */
2188 		break;
2189 	}
2190 
2191 	if (yaffs_update_oh(in, name, 0, 0, 0, NULL) < 0) {
2192 		/* Could not create the object header, fail */
2193 		yaffs_del_obj(in);
2194 		in = NULL;
2195 	}
2196 
2197 	if (in)
2198 		yaffs_update_parent(parent);
2199 
2200 	return in;
2201 }
2202 
2203 struct yaffs_obj *yaffs_create_file(struct yaffs_obj *parent,
2204 				    const YCHAR *name, u32 mode, u32 uid,
2205 				    u32 gid)
2206 {
2207 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_FILE, parent, name, mode,
2208 				uid, gid, NULL, NULL, 0);
2209 }
2210 
2211 struct yaffs_obj *yaffs_create_dir(struct yaffs_obj *parent, const YCHAR *name,
2212 				   u32 mode, u32 uid, u32 gid)
2213 {
2214 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_DIRECTORY, parent, name,
2215 				mode, uid, gid, NULL, NULL, 0);
2216 }
2217 
2218 struct yaffs_obj *yaffs_create_special(struct yaffs_obj *parent,
2219 				       const YCHAR *name, u32 mode, u32 uid,
2220 				       u32 gid, u32 rdev)
2221 {
2222 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_SPECIAL, parent, name, mode,
2223 				uid, gid, NULL, NULL, rdev);
2224 }
2225 
2226 struct yaffs_obj *yaffs_create_symlink(struct yaffs_obj *parent,
2227 				       const YCHAR *name, u32 mode, u32 uid,
2228 				       u32 gid, const YCHAR *alias)
2229 {
2230 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_SYMLINK, parent, name, mode,
2231 				uid, gid, NULL, alias, 0);
2232 }
2233 
2234 /* yaffs_link_obj returns the object id of the equivalent object.*/
2235 struct yaffs_obj *yaffs_link_obj(struct yaffs_obj *parent, const YCHAR * name,
2236 				 struct yaffs_obj *equiv_obj)
2237 {
2238 	/* Get the real object in case we were fed a hard link obj */
2239 	equiv_obj = yaffs_get_equivalent_obj(equiv_obj);
2240 
2241 	if (yaffs_create_obj(YAFFS_OBJECT_TYPE_HARDLINK,
2242 			parent, name, 0, 0, 0,
2243 			equiv_obj, NULL, 0))
2244 		return equiv_obj;
2245 
2246 	return NULL;
2247 
2248 }
2249 
2250 
2251 
2252 /*---------------------- Block Management and Page Allocation -------------*/
2253 
2254 static void yaffs_deinit_blocks(struct yaffs_dev *dev)
2255 {
2256 	if (dev->block_info_alt && dev->block_info)
2257 		vfree(dev->block_info);
2258 	else
2259 		kfree(dev->block_info);
2260 
2261 	dev->block_info_alt = 0;
2262 
2263 	dev->block_info = NULL;
2264 
2265 	if (dev->chunk_bits_alt && dev->chunk_bits)
2266 		vfree(dev->chunk_bits);
2267 	else
2268 		kfree(dev->chunk_bits);
2269 	dev->chunk_bits_alt = 0;
2270 	dev->chunk_bits = NULL;
2271 }
2272 
2273 static int yaffs_init_blocks(struct yaffs_dev *dev)
2274 {
2275 	int n_blocks = dev->internal_end_block - dev->internal_start_block + 1;
2276 
2277 	dev->block_info = NULL;
2278 	dev->chunk_bits = NULL;
2279 	dev->alloc_block = -1;	/* force it to get a new one */
2280 
2281 	/* If the first allocation strategy fails, thry the alternate one */
2282 	dev->block_info =
2283 		kmalloc(n_blocks * sizeof(struct yaffs_block_info), GFP_NOFS);
2284 	if (!dev->block_info) {
2285 		dev->block_info =
2286 		    vmalloc(n_blocks * sizeof(struct yaffs_block_info));
2287 		dev->block_info_alt = 1;
2288 	} else {
2289 		dev->block_info_alt = 0;
2290 	}
2291 
2292 	if (!dev->block_info)
2293 		goto alloc_error;
2294 
2295 	/* Set up dynamic blockinfo stuff. Round up bytes. */
2296 	dev->chunk_bit_stride = (dev->param.chunks_per_block + 7) / 8;
2297 	dev->chunk_bits =
2298 		kmalloc(dev->chunk_bit_stride * n_blocks, GFP_NOFS);
2299 	if (!dev->chunk_bits) {
2300 		dev->chunk_bits =
2301 		    vmalloc(dev->chunk_bit_stride * n_blocks);
2302 		dev->chunk_bits_alt = 1;
2303 	} else {
2304 		dev->chunk_bits_alt = 0;
2305 	}
2306 	if (!dev->chunk_bits)
2307 		goto alloc_error;
2308 
2309 
2310 	memset(dev->block_info, 0, n_blocks * sizeof(struct yaffs_block_info));
2311 	memset(dev->chunk_bits, 0, dev->chunk_bit_stride * n_blocks);
2312 	return YAFFS_OK;
2313 
2314 alloc_error:
2315 	yaffs_deinit_blocks(dev);
2316 	return YAFFS_FAIL;
2317 }
2318 
2319 
2320 void yaffs_block_became_dirty(struct yaffs_dev *dev, int block_no)
2321 {
2322 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, block_no);
2323 	int erased_ok = 0;
2324 	int i;
2325 
2326 	/* If the block is still healthy erase it and mark as clean.
2327 	 * If the block has had a data failure, then retire it.
2328 	 */
2329 
2330 	yaffs_trace(YAFFS_TRACE_GC | YAFFS_TRACE_ERASE,
2331 		"yaffs_block_became_dirty block %d state %d %s",
2332 		block_no, bi->block_state,
2333 		(bi->needs_retiring) ? "needs retiring" : "");
2334 
2335 	yaffs2_clear_oldest_dirty_seq(dev, bi);
2336 
2337 	bi->block_state = YAFFS_BLOCK_STATE_DIRTY;
2338 
2339 	/* If this is the block being garbage collected then stop gc'ing */
2340 	if (block_no == dev->gc_block)
2341 		dev->gc_block = 0;
2342 
2343 	/* If this block is currently the best candidate for gc
2344 	 * then drop as a candidate */
2345 	if (block_no == dev->gc_dirtiest) {
2346 		dev->gc_dirtiest = 0;
2347 		dev->gc_pages_in_use = 0;
2348 	}
2349 
2350 	if (!bi->needs_retiring) {
2351 		yaffs2_checkpt_invalidate(dev);
2352 		erased_ok = yaffs_erase_block(dev, block_no);
2353 		if (!erased_ok) {
2354 			dev->n_erase_failures++;
2355 			yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
2356 			  "**>> Erasure failed %d", block_no);
2357 		}
2358 	}
2359 
2360 	/* Verify erasure if needed */
2361 	if (erased_ok &&
2362 	    ((yaffs_trace_mask & YAFFS_TRACE_ERASE) ||
2363 	     !yaffs_skip_verification(dev))) {
2364 		for (i = 0; i < dev->param.chunks_per_block; i++) {
2365 			if (!yaffs_check_chunk_erased(dev,
2366 				block_no * dev->param.chunks_per_block + i)) {
2367 				yaffs_trace(YAFFS_TRACE_ERROR,
2368 					">>Block %d erasure supposedly OK, but chunk %d not erased",
2369 					block_no, i);
2370 			}
2371 		}
2372 	}
2373 
2374 	if (!erased_ok) {
2375 		/* We lost a block of free space */
2376 		dev->n_free_chunks -= dev->param.chunks_per_block;
2377 		yaffs_retire_block(dev, block_no);
2378 		yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
2379 			"**>> Block %d retired", block_no);
2380 		return;
2381 	}
2382 
2383 	/* Clean it up... */
2384 	bi->block_state = YAFFS_BLOCK_STATE_EMPTY;
2385 	bi->seq_number = 0;
2386 	dev->n_erased_blocks++;
2387 	bi->pages_in_use = 0;
2388 	bi->soft_del_pages = 0;
2389 	bi->has_shrink_hdr = 0;
2390 	bi->skip_erased_check = 1;	/* Clean, so no need to check */
2391 	bi->gc_prioritise = 0;
2392 	bi->has_summary = 0;
2393 
2394 	yaffs_clear_chunk_bits(dev, block_no);
2395 
2396 	yaffs_trace(YAFFS_TRACE_ERASE, "Erased block %d", block_no);
2397 }
2398 
2399 static inline int yaffs_gc_process_chunk(struct yaffs_dev *dev,
2400 					struct yaffs_block_info *bi,
2401 					int old_chunk, u8 *buffer)
2402 {
2403 	int new_chunk;
2404 	int mark_flash = 1;
2405 	struct yaffs_ext_tags tags;
2406 	struct yaffs_obj *object;
2407 	int matching_chunk;
2408 	int ret_val = YAFFS_OK;
2409 
2410 	memset(&tags, 0, sizeof(tags));
2411 	yaffs_rd_chunk_tags_nand(dev, old_chunk,
2412 				 buffer, &tags);
2413 	object = yaffs_find_by_number(dev, tags.obj_id);
2414 
2415 	yaffs_trace(YAFFS_TRACE_GC_DETAIL,
2416 		"Collecting chunk in block %d, %d %d %d ",
2417 		dev->gc_chunk, tags.obj_id,
2418 		tags.chunk_id, tags.n_bytes);
2419 
2420 	if (object && !yaffs_skip_verification(dev)) {
2421 		if (tags.chunk_id == 0)
2422 			matching_chunk =
2423 			    object->hdr_chunk;
2424 		else if (object->soft_del)
2425 			/* Defeat the test */
2426 			matching_chunk = old_chunk;
2427 		else
2428 			matching_chunk =
2429 			    yaffs_find_chunk_in_file
2430 			    (object, tags.chunk_id,
2431 			     NULL);
2432 
2433 		if (old_chunk != matching_chunk)
2434 			yaffs_trace(YAFFS_TRACE_ERROR,
2435 				"gc: page in gc mismatch: %d %d %d %d",
2436 				old_chunk,
2437 				matching_chunk,
2438 				tags.obj_id,
2439 				tags.chunk_id);
2440 	}
2441 
2442 	if (!object) {
2443 		yaffs_trace(YAFFS_TRACE_ERROR,
2444 			"page %d in gc has no object: %d %d %d ",
2445 			old_chunk,
2446 			tags.obj_id, tags.chunk_id,
2447 			tags.n_bytes);
2448 	}
2449 
2450 	if (object &&
2451 	    object->deleted &&
2452 	    object->soft_del && tags.chunk_id != 0) {
2453 		/* Data chunk in a soft deleted file,
2454 		 * throw it away.
2455 		 * It's a soft deleted data chunk,
2456 		 * No need to copy this, just forget
2457 		 * about it and fix up the object.
2458 		 */
2459 
2460 		/* Free chunks already includes
2461 		 * softdeleted chunks, how ever this
2462 		 * chunk is going to soon be really
2463 		 * deleted which will increment free
2464 		 * chunks. We have to decrement free
2465 		 * chunks so this works out properly.
2466 		 */
2467 		dev->n_free_chunks--;
2468 		bi->soft_del_pages--;
2469 
2470 		object->n_data_chunks--;
2471 		if (object->n_data_chunks <= 0) {
2472 			/* remeber to clean up obj */
2473 			dev->gc_cleanup_list[dev->n_clean_ups] = tags.obj_id;
2474 			dev->n_clean_ups++;
2475 		}
2476 		mark_flash = 0;
2477 	} else if (object) {
2478 		/* It's either a data chunk in a live
2479 		 * file or an ObjectHeader, so we're
2480 		 * interested in it.
2481 		 * NB Need to keep the ObjectHeaders of
2482 		 * deleted files until the whole file
2483 		 * has been deleted off
2484 		 */
2485 		tags.serial_number++;
2486 		dev->n_gc_copies++;
2487 
2488 		if (tags.chunk_id == 0) {
2489 			/* It is an object Id,
2490 			 * We need to nuke the
2491 			 * shrinkheader flags since its
2492 			 * work is done.
2493 			 * Also need to clean up
2494 			 * shadowing.
2495 			 */
2496 			struct yaffs_obj_hdr *oh;
2497 			oh = (struct yaffs_obj_hdr *) buffer;
2498 
2499 			oh->is_shrink = 0;
2500 			tags.extra_is_shrink = 0;
2501 			oh->shadows_obj = 0;
2502 			oh->inband_shadowed_obj_id = 0;
2503 			tags.extra_shadows = 0;
2504 
2505 			/* Update file size */
2506 			if (object->variant_type == YAFFS_OBJECT_TYPE_FILE) {
2507 				yaffs_oh_size_load(oh,
2508 				    object->variant.file_variant.file_size);
2509 				tags.extra_file_size =
2510 				    object->variant.file_variant.file_size;
2511 			}
2512 
2513 			yaffs_verify_oh(object, oh, &tags, 1);
2514 			new_chunk =
2515 			    yaffs_write_new_chunk(dev, (u8 *) oh, &tags, 1);
2516 		} else {
2517 			new_chunk =
2518 			    yaffs_write_new_chunk(dev, buffer, &tags, 1);
2519 		}
2520 
2521 		if (new_chunk < 0) {
2522 			ret_val = YAFFS_FAIL;
2523 		} else {
2524 
2525 			/* Now fix up the Tnodes etc. */
2526 
2527 			if (tags.chunk_id == 0) {
2528 				/* It's a header */
2529 				object->hdr_chunk = new_chunk;
2530 				object->serial = tags.serial_number;
2531 			} else {
2532 				/* It's a data chunk */
2533 				yaffs_put_chunk_in_file(object, tags.chunk_id,
2534 							new_chunk, 0);
2535 			}
2536 		}
2537 	}
2538 	if (ret_val == YAFFS_OK)
2539 		yaffs_chunk_del(dev, old_chunk, mark_flash, __LINE__);
2540 	return ret_val;
2541 }
2542 
2543 static int yaffs_gc_block(struct yaffs_dev *dev, int block, int whole_block)
2544 {
2545 	int old_chunk;
2546 	int ret_val = YAFFS_OK;
2547 	int i;
2548 	int is_checkpt_block;
2549 	int max_copies;
2550 	int chunks_before = yaffs_get_erased_chunks(dev);
2551 	int chunks_after;
2552 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, block);
2553 
2554 	is_checkpt_block = (bi->block_state == YAFFS_BLOCK_STATE_CHECKPOINT);
2555 
2556 	yaffs_trace(YAFFS_TRACE_TRACING,
2557 		"Collecting block %d, in use %d, shrink %d, whole_block %d",
2558 		block, bi->pages_in_use, bi->has_shrink_hdr,
2559 		whole_block);
2560 
2561 	/*yaffs_verify_free_chunks(dev); */
2562 
2563 	if (bi->block_state == YAFFS_BLOCK_STATE_FULL)
2564 		bi->block_state = YAFFS_BLOCK_STATE_COLLECTING;
2565 
2566 	bi->has_shrink_hdr = 0;	/* clear the flag so that the block can erase */
2567 
2568 	dev->gc_disable = 1;
2569 
2570 	yaffs_summary_gc(dev, block);
2571 
2572 	if (is_checkpt_block || !yaffs_still_some_chunks(dev, block)) {
2573 		yaffs_trace(YAFFS_TRACE_TRACING,
2574 			"Collecting block %d that has no chunks in use",
2575 			block);
2576 		yaffs_block_became_dirty(dev, block);
2577 	} else {
2578 
2579 		u8 *buffer = yaffs_get_temp_buffer(dev);
2580 
2581 		yaffs_verify_blk(dev, bi, block);
2582 
2583 		max_copies = (whole_block) ? dev->param.chunks_per_block : 5;
2584 		old_chunk = block * dev->param.chunks_per_block + dev->gc_chunk;
2585 
2586 		for (/* init already done */ ;
2587 		     ret_val == YAFFS_OK &&
2588 		     dev->gc_chunk < dev->param.chunks_per_block &&
2589 		     (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) &&
2590 		     max_copies > 0;
2591 		     dev->gc_chunk++, old_chunk++) {
2592 			if (yaffs_check_chunk_bit(dev, block, dev->gc_chunk)) {
2593 				/* Page is in use and might need to be copied */
2594 				max_copies--;
2595 				ret_val = yaffs_gc_process_chunk(dev, bi,
2596 							old_chunk, buffer);
2597 			}
2598 		}
2599 		yaffs_release_temp_buffer(dev, buffer);
2600 	}
2601 
2602 	yaffs_verify_collected_blk(dev, bi, block);
2603 
2604 	if (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) {
2605 		/*
2606 		 * The gc did not complete. Set block state back to FULL
2607 		 * because checkpointing does not restore gc.
2608 		 */
2609 		bi->block_state = YAFFS_BLOCK_STATE_FULL;
2610 	} else {
2611 		/* The gc completed. */
2612 		/* Do any required cleanups */
2613 		for (i = 0; i < dev->n_clean_ups; i++) {
2614 			/* Time to delete the file too */
2615 			struct yaffs_obj *object =
2616 			    yaffs_find_by_number(dev, dev->gc_cleanup_list[i]);
2617 			if (object) {
2618 				yaffs_free_tnode(dev,
2619 					  object->variant.file_variant.top);
2620 				object->variant.file_variant.top = NULL;
2621 				yaffs_trace(YAFFS_TRACE_GC,
2622 					"yaffs: About to finally delete object %d",
2623 					object->obj_id);
2624 				yaffs_generic_obj_del(object);
2625 				object->my_dev->n_deleted_files--;
2626 			}
2627 
2628 		}
2629 		chunks_after = yaffs_get_erased_chunks(dev);
2630 		if (chunks_before >= chunks_after)
2631 			yaffs_trace(YAFFS_TRACE_GC,
2632 				"gc did not increase free chunks before %d after %d",
2633 				chunks_before, chunks_after);
2634 		dev->gc_block = 0;
2635 		dev->gc_chunk = 0;
2636 		dev->n_clean_ups = 0;
2637 	}
2638 
2639 	dev->gc_disable = 0;
2640 
2641 	return ret_val;
2642 }
2643 
2644 /*
2645  * find_gc_block() selects the dirtiest block (or close enough)
2646  * for garbage collection.
2647  */
2648 
2649 static unsigned yaffs_find_gc_block(struct yaffs_dev *dev,
2650 				    int aggressive, int background)
2651 {
2652 	int i;
2653 	int iterations;
2654 	unsigned selected = 0;
2655 	int prioritised = 0;
2656 	int prioritised_exist = 0;
2657 	struct yaffs_block_info *bi;
2658 	int threshold;
2659 
2660 	/* First let's see if we need to grab a prioritised block */
2661 	if (dev->has_pending_prioritised_gc && !aggressive) {
2662 		dev->gc_dirtiest = 0;
2663 		bi = dev->block_info;
2664 		for (i = dev->internal_start_block;
2665 		     i <= dev->internal_end_block && !selected; i++) {
2666 
2667 			if (bi->gc_prioritise) {
2668 				prioritised_exist = 1;
2669 				if (bi->block_state == YAFFS_BLOCK_STATE_FULL &&
2670 				    yaffs_block_ok_for_gc(dev, bi)) {
2671 					selected = i;
2672 					prioritised = 1;
2673 				}
2674 			}
2675 			bi++;
2676 		}
2677 
2678 		/*
2679 		 * If there is a prioritised block and none was selected then
2680 		 * this happened because there is at least one old dirty block
2681 		 * gumming up the works. Let's gc the oldest dirty block.
2682 		 */
2683 
2684 		if (prioritised_exist &&
2685 		    !selected && dev->oldest_dirty_block > 0)
2686 			selected = dev->oldest_dirty_block;
2687 
2688 		if (!prioritised_exist)	/* None found, so we can clear this */
2689 			dev->has_pending_prioritised_gc = 0;
2690 	}
2691 
2692 	/* If we're doing aggressive GC then we are happy to take a less-dirty
2693 	 * block, and search harder.
2694 	 * else (leasurely gc), then we only bother to do this if the
2695 	 * block has only a few pages in use.
2696 	 */
2697 
2698 	if (!selected) {
2699 		int pages_used;
2700 		int n_blocks =
2701 		    dev->internal_end_block - dev->internal_start_block + 1;
2702 		if (aggressive) {
2703 			threshold = dev->param.chunks_per_block;
2704 			iterations = n_blocks;
2705 		} else {
2706 			int max_threshold;
2707 
2708 			if (background)
2709 				max_threshold = dev->param.chunks_per_block / 2;
2710 			else
2711 				max_threshold = dev->param.chunks_per_block / 8;
2712 
2713 			if (max_threshold < YAFFS_GC_PASSIVE_THRESHOLD)
2714 				max_threshold = YAFFS_GC_PASSIVE_THRESHOLD;
2715 
2716 			threshold = background ? (dev->gc_not_done + 2) * 2 : 0;
2717 			if (threshold < YAFFS_GC_PASSIVE_THRESHOLD)
2718 				threshold = YAFFS_GC_PASSIVE_THRESHOLD;
2719 			if (threshold > max_threshold)
2720 				threshold = max_threshold;
2721 
2722 			iterations = n_blocks / 16 + 1;
2723 			if (iterations > 100)
2724 				iterations = 100;
2725 		}
2726 
2727 		for (i = 0;
2728 		     i < iterations &&
2729 		     (dev->gc_dirtiest < 1 ||
2730 		      dev->gc_pages_in_use > YAFFS_GC_GOOD_ENOUGH);
2731 		     i++) {
2732 			dev->gc_block_finder++;
2733 			if (dev->gc_block_finder < dev->internal_start_block ||
2734 			    dev->gc_block_finder > dev->internal_end_block)
2735 				dev->gc_block_finder =
2736 				    dev->internal_start_block;
2737 
2738 			bi = yaffs_get_block_info(dev, dev->gc_block_finder);
2739 
2740 			pages_used = bi->pages_in_use - bi->soft_del_pages;
2741 
2742 			if (bi->block_state == YAFFS_BLOCK_STATE_FULL &&
2743 			    pages_used < dev->param.chunks_per_block &&
2744 			    (dev->gc_dirtiest < 1 ||
2745 			     pages_used < dev->gc_pages_in_use) &&
2746 			    yaffs_block_ok_for_gc(dev, bi)) {
2747 				dev->gc_dirtiest = dev->gc_block_finder;
2748 				dev->gc_pages_in_use = pages_used;
2749 			}
2750 		}
2751 
2752 		if (dev->gc_dirtiest > 0 && dev->gc_pages_in_use <= threshold)
2753 			selected = dev->gc_dirtiest;
2754 	}
2755 
2756 	/*
2757 	 * If nothing has been selected for a while, try the oldest dirty
2758 	 * because that's gumming up the works.
2759 	 */
2760 
2761 	if (!selected && dev->param.is_yaffs2 &&
2762 	    dev->gc_not_done >= (background ? 10 : 20)) {
2763 		yaffs2_find_oldest_dirty_seq(dev);
2764 		if (dev->oldest_dirty_block > 0) {
2765 			selected = dev->oldest_dirty_block;
2766 			dev->gc_dirtiest = selected;
2767 			dev->oldest_dirty_gc_count++;
2768 			bi = yaffs_get_block_info(dev, selected);
2769 			dev->gc_pages_in_use =
2770 			    bi->pages_in_use - bi->soft_del_pages;
2771 		} else {
2772 			dev->gc_not_done = 0;
2773 		}
2774 	}
2775 
2776 	if (selected) {
2777 		yaffs_trace(YAFFS_TRACE_GC,
2778 			"GC Selected block %d with %d free, prioritised:%d",
2779 			selected,
2780 			dev->param.chunks_per_block - dev->gc_pages_in_use,
2781 			prioritised);
2782 
2783 		dev->n_gc_blocks++;
2784 		if (background)
2785 			dev->bg_gcs++;
2786 
2787 		dev->gc_dirtiest = 0;
2788 		dev->gc_pages_in_use = 0;
2789 		dev->gc_not_done = 0;
2790 		if (dev->refresh_skip > 0)
2791 			dev->refresh_skip--;
2792 	} else {
2793 		dev->gc_not_done++;
2794 		yaffs_trace(YAFFS_TRACE_GC,
2795 			"GC none: finder %d skip %d threshold %d dirtiest %d using %d oldest %d%s",
2796 			dev->gc_block_finder, dev->gc_not_done, threshold,
2797 			dev->gc_dirtiest, dev->gc_pages_in_use,
2798 			dev->oldest_dirty_block, background ? " bg" : "");
2799 	}
2800 
2801 	return selected;
2802 }
2803 
2804 /* New garbage collector
2805  * If we're very low on erased blocks then we do aggressive garbage collection
2806  * otherwise we do "leasurely" garbage collection.
2807  * Aggressive gc looks further (whole array) and will accept less dirty blocks.
2808  * Passive gc only inspects smaller areas and only accepts more dirty blocks.
2809  *
2810  * The idea is to help clear out space in a more spread-out manner.
2811  * Dunno if it really does anything useful.
2812  */
2813 static int yaffs_check_gc(struct yaffs_dev *dev, int background)
2814 {
2815 	int aggressive = 0;
2816 	int gc_ok = YAFFS_OK;
2817 	int max_tries = 0;
2818 	int min_erased;
2819 	int erased_chunks;
2820 	int checkpt_block_adjust;
2821 
2822 	if (dev->param.gc_control && (dev->param.gc_control(dev) & 1) == 0)
2823 		return YAFFS_OK;
2824 
2825 	if (dev->gc_disable)
2826 		/* Bail out so we don't get recursive gc */
2827 		return YAFFS_OK;
2828 
2829 	/* This loop should pass the first time.
2830 	 * Only loops here if the collection does not increase space.
2831 	 */
2832 
2833 	do {
2834 		max_tries++;
2835 
2836 		checkpt_block_adjust = yaffs_calc_checkpt_blocks_required(dev);
2837 
2838 		min_erased =
2839 		    dev->param.n_reserved_blocks + checkpt_block_adjust + 1;
2840 		erased_chunks =
2841 		    dev->n_erased_blocks * dev->param.chunks_per_block;
2842 
2843 		/* If we need a block soon then do aggressive gc. */
2844 		if (dev->n_erased_blocks < min_erased)
2845 			aggressive = 1;
2846 		else {
2847 			if (!background
2848 			    && erased_chunks > (dev->n_free_chunks / 4))
2849 				break;
2850 
2851 			if (dev->gc_skip > 20)
2852 				dev->gc_skip = 20;
2853 			if (erased_chunks < dev->n_free_chunks / 2 ||
2854 			    dev->gc_skip < 1 || background)
2855 				aggressive = 0;
2856 			else {
2857 				dev->gc_skip--;
2858 				break;
2859 			}
2860 		}
2861 
2862 		dev->gc_skip = 5;
2863 
2864 		/* If we don't already have a block being gc'd then see if we
2865 		 * should start another */
2866 
2867 		if (dev->gc_block < 1 && !aggressive) {
2868 			dev->gc_block = yaffs2_find_refresh_block(dev);
2869 			dev->gc_chunk = 0;
2870 			dev->n_clean_ups = 0;
2871 		}
2872 		if (dev->gc_block < 1) {
2873 			dev->gc_block =
2874 			    yaffs_find_gc_block(dev, aggressive, background);
2875 			dev->gc_chunk = 0;
2876 			dev->n_clean_ups = 0;
2877 		}
2878 
2879 		if (dev->gc_block > 0) {
2880 			dev->all_gcs++;
2881 			if (!aggressive)
2882 				dev->passive_gc_count++;
2883 
2884 			yaffs_trace(YAFFS_TRACE_GC,
2885 				"yaffs: GC n_erased_blocks %d aggressive %d",
2886 				dev->n_erased_blocks, aggressive);
2887 
2888 			gc_ok = yaffs_gc_block(dev, dev->gc_block, aggressive);
2889 		}
2890 
2891 		if (dev->n_erased_blocks < (dev->param.n_reserved_blocks) &&
2892 		    dev->gc_block > 0) {
2893 			yaffs_trace(YAFFS_TRACE_GC,
2894 				"yaffs: GC !!!no reclaim!!! n_erased_blocks %d after try %d block %d",
2895 				dev->n_erased_blocks, max_tries,
2896 				dev->gc_block);
2897 		}
2898 	} while ((dev->n_erased_blocks < dev->param.n_reserved_blocks) &&
2899 		 (dev->gc_block > 0) && (max_tries < 2));
2900 
2901 	return aggressive ? gc_ok : YAFFS_OK;
2902 }
2903 
2904 /*
2905  * yaffs_bg_gc()
2906  * Garbage collects. Intended to be called from a background thread.
2907  * Returns non-zero if at least half the free chunks are erased.
2908  */
2909 int yaffs_bg_gc(struct yaffs_dev *dev, unsigned urgency)
2910 {
2911 	int erased_chunks = dev->n_erased_blocks * dev->param.chunks_per_block;
2912 
2913 	yaffs_trace(YAFFS_TRACE_BACKGROUND, "Background gc %u", urgency);
2914 
2915 	yaffs_check_gc(dev, 1);
2916 	return erased_chunks > dev->n_free_chunks / 2;
2917 }
2918 
2919 /*-------------------- Data file manipulation -----------------*/
2920 
2921 static int yaffs_rd_data_obj(struct yaffs_obj *in, int inode_chunk, u8 * buffer)
2922 {
2923 	int nand_chunk = yaffs_find_chunk_in_file(in, inode_chunk, NULL);
2924 
2925 	if (nand_chunk >= 0)
2926 		return yaffs_rd_chunk_tags_nand(in->my_dev, nand_chunk,
2927 						buffer, NULL);
2928 	else {
2929 		yaffs_trace(YAFFS_TRACE_NANDACCESS,
2930 			"Chunk %d not found zero instead",
2931 			nand_chunk);
2932 		/* get sane (zero) data if you read a hole */
2933 		memset(buffer, 0, in->my_dev->data_bytes_per_chunk);
2934 		return 0;
2935 	}
2936 
2937 }
2938 
2939 void yaffs_chunk_del(struct yaffs_dev *dev, int chunk_id, int mark_flash,
2940 		     int lyn)
2941 {
2942 	int block;
2943 	int page;
2944 	struct yaffs_ext_tags tags;
2945 	struct yaffs_block_info *bi;
2946 
2947 	if (chunk_id <= 0)
2948 		return;
2949 
2950 	dev->n_deletions++;
2951 	block = chunk_id / dev->param.chunks_per_block;
2952 	page = chunk_id % dev->param.chunks_per_block;
2953 
2954 	if (!yaffs_check_chunk_bit(dev, block, page))
2955 		yaffs_trace(YAFFS_TRACE_VERIFY,
2956 			"Deleting invalid chunk %d", chunk_id);
2957 
2958 	bi = yaffs_get_block_info(dev, block);
2959 
2960 	yaffs2_update_oldest_dirty_seq(dev, block, bi);
2961 
2962 	yaffs_trace(YAFFS_TRACE_DELETION,
2963 		"line %d delete of chunk %d",
2964 		lyn, chunk_id);
2965 
2966 	if (!dev->param.is_yaffs2 && mark_flash &&
2967 	    bi->block_state != YAFFS_BLOCK_STATE_COLLECTING) {
2968 
2969 		memset(&tags, 0, sizeof(tags));
2970 		tags.is_deleted = 1;
2971 		yaffs_wr_chunk_tags_nand(dev, chunk_id, NULL, &tags);
2972 		yaffs_handle_chunk_update(dev, chunk_id, &tags);
2973 	} else {
2974 		dev->n_unmarked_deletions++;
2975 	}
2976 
2977 	/* Pull out of the management area.
2978 	 * If the whole block became dirty, this will kick off an erasure.
2979 	 */
2980 	if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING ||
2981 	    bi->block_state == YAFFS_BLOCK_STATE_FULL ||
2982 	    bi->block_state == YAFFS_BLOCK_STATE_NEEDS_SCAN ||
2983 	    bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) {
2984 		dev->n_free_chunks++;
2985 		yaffs_clear_chunk_bit(dev, block, page);
2986 		bi->pages_in_use--;
2987 
2988 		if (bi->pages_in_use == 0 &&
2989 		    !bi->has_shrink_hdr &&
2990 		    bi->block_state != YAFFS_BLOCK_STATE_ALLOCATING &&
2991 		    bi->block_state != YAFFS_BLOCK_STATE_NEEDS_SCAN) {
2992 			yaffs_block_became_dirty(dev, block);
2993 		}
2994 	}
2995 }
2996 
2997 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk,
2998 			     const u8 *buffer, int n_bytes, int use_reserve)
2999 {
3000 	/* Find old chunk Need to do this to get serial number
3001 	 * Write new one and patch into tree.
3002 	 * Invalidate old tags.
3003 	 */
3004 
3005 	int prev_chunk_id;
3006 	struct yaffs_ext_tags prev_tags;
3007 	int new_chunk_id;
3008 	struct yaffs_ext_tags new_tags;
3009 	struct yaffs_dev *dev = in->my_dev;
3010 
3011 	yaffs_check_gc(dev, 0);
3012 
3013 	/* Get the previous chunk at this location in the file if it exists.
3014 	 * If it does not exist then put a zero into the tree. This creates
3015 	 * the tnode now, rather than later when it is harder to clean up.
3016 	 */
3017 	prev_chunk_id = yaffs_find_chunk_in_file(in, inode_chunk, &prev_tags);
3018 	if (prev_chunk_id < 1 &&
3019 	    !yaffs_put_chunk_in_file(in, inode_chunk, 0, 0))
3020 		return 0;
3021 
3022 	/* Set up new tags */
3023 	memset(&new_tags, 0, sizeof(new_tags));
3024 
3025 	new_tags.chunk_id = inode_chunk;
3026 	new_tags.obj_id = in->obj_id;
3027 	new_tags.serial_number =
3028 	    (prev_chunk_id > 0) ? prev_tags.serial_number + 1 : 1;
3029 	new_tags.n_bytes = n_bytes;
3030 
3031 	if (n_bytes < 1 || n_bytes > dev->param.total_bytes_per_chunk) {
3032 		yaffs_trace(YAFFS_TRACE_ERROR,
3033 		  "Writing %d bytes to chunk!!!!!!!!!",
3034 		   n_bytes);
3035 		BUG();
3036 	}
3037 
3038 	new_chunk_id =
3039 	    yaffs_write_new_chunk(dev, buffer, &new_tags, use_reserve);
3040 
3041 	if (new_chunk_id > 0) {
3042 		yaffs_put_chunk_in_file(in, inode_chunk, new_chunk_id, 0);
3043 
3044 		if (prev_chunk_id > 0)
3045 			yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__);
3046 
3047 		yaffs_verify_file_sane(in);
3048 	}
3049 	return new_chunk_id;
3050 
3051 }
3052 
3053 
3054 
3055 static int yaffs_do_xattrib_mod(struct yaffs_obj *obj, int set,
3056 				const YCHAR *name, const void *value, int size,
3057 				int flags)
3058 {
3059 	struct yaffs_xattr_mod xmod;
3060 	int result;
3061 
3062 	xmod.set = set;
3063 	xmod.name = name;
3064 	xmod.data = value;
3065 	xmod.size = size;
3066 	xmod.flags = flags;
3067 	xmod.result = -ENOSPC;
3068 
3069 	result = yaffs_update_oh(obj, NULL, 0, 0, 0, &xmod);
3070 
3071 	if (result > 0)
3072 		return xmod.result;
3073 	else
3074 		return -ENOSPC;
3075 }
3076 
3077 static int yaffs_apply_xattrib_mod(struct yaffs_obj *obj, char *buffer,
3078 				   struct yaffs_xattr_mod *xmod)
3079 {
3080 	int retval = 0;
3081 	int x_offs = sizeof(struct yaffs_obj_hdr);
3082 	struct yaffs_dev *dev = obj->my_dev;
3083 	int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr);
3084 	char *x_buffer = buffer + x_offs;
3085 
3086 	if (xmod->set)
3087 		retval =
3088 		    nval_set(x_buffer, x_size, xmod->name, xmod->data,
3089 			     xmod->size, xmod->flags);
3090 	else
3091 		retval = nval_del(x_buffer, x_size, xmod->name);
3092 
3093 	obj->has_xattr = nval_hasvalues(x_buffer, x_size);
3094 	obj->xattr_known = 1;
3095 	xmod->result = retval;
3096 
3097 	return retval;
3098 }
3099 
3100 static int yaffs_do_xattrib_fetch(struct yaffs_obj *obj, const YCHAR *name,
3101 				  void *value, int size)
3102 {
3103 	char *buffer = NULL;
3104 	int result;
3105 	struct yaffs_ext_tags tags;
3106 	struct yaffs_dev *dev = obj->my_dev;
3107 	int x_offs = sizeof(struct yaffs_obj_hdr);
3108 	int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr);
3109 	char *x_buffer;
3110 	int retval = 0;
3111 
3112 	if (obj->hdr_chunk < 1)
3113 		return -ENODATA;
3114 
3115 	/* If we know that the object has no xattribs then don't do all the
3116 	 * reading and parsing.
3117 	 */
3118 	if (obj->xattr_known && !obj->has_xattr) {
3119 		if (name)
3120 			return -ENODATA;
3121 		else
3122 			return 0;
3123 	}
3124 
3125 	buffer = (char *)yaffs_get_temp_buffer(dev);
3126 	if (!buffer)
3127 		return -ENOMEM;
3128 
3129 	result =
3130 	    yaffs_rd_chunk_tags_nand(dev, obj->hdr_chunk, (u8 *) buffer, &tags);
3131 
3132 	if (result != YAFFS_OK)
3133 		retval = -ENOENT;
3134 	else {
3135 		x_buffer = buffer + x_offs;
3136 
3137 		if (!obj->xattr_known) {
3138 			obj->has_xattr = nval_hasvalues(x_buffer, x_size);
3139 			obj->xattr_known = 1;
3140 		}
3141 
3142 		if (name)
3143 			retval = nval_get(x_buffer, x_size, name, value, size);
3144 		else
3145 			retval = nval_list(x_buffer, x_size, value, size);
3146 	}
3147 	yaffs_release_temp_buffer(dev, (u8 *) buffer);
3148 	return retval;
3149 }
3150 
3151 int yaffs_set_xattrib(struct yaffs_obj *obj, const YCHAR * name,
3152 		      const void *value, int size, int flags)
3153 {
3154 	return yaffs_do_xattrib_mod(obj, 1, name, value, size, flags);
3155 }
3156 
3157 int yaffs_remove_xattrib(struct yaffs_obj *obj, const YCHAR * name)
3158 {
3159 	return yaffs_do_xattrib_mod(obj, 0, name, NULL, 0, 0);
3160 }
3161 
3162 int yaffs_get_xattrib(struct yaffs_obj *obj, const YCHAR * name, void *value,
3163 		      int size)
3164 {
3165 	return yaffs_do_xattrib_fetch(obj, name, value, size);
3166 }
3167 
3168 int yaffs_list_xattrib(struct yaffs_obj *obj, char *buffer, int size)
3169 {
3170 	return yaffs_do_xattrib_fetch(obj, NULL, buffer, size);
3171 }
3172 
3173 static void yaffs_check_obj_details_loaded(struct yaffs_obj *in)
3174 {
3175 	u8 *buf;
3176 	struct yaffs_obj_hdr *oh;
3177 	struct yaffs_dev *dev;
3178 	struct yaffs_ext_tags tags;
3179 	int result;
3180 	int alloc_failed = 0;
3181 
3182 	if (!in || !in->lazy_loaded || in->hdr_chunk < 1)
3183 		return;
3184 
3185 	dev = in->my_dev;
3186 	in->lazy_loaded = 0;
3187 	buf = yaffs_get_temp_buffer(dev);
3188 
3189 	result = yaffs_rd_chunk_tags_nand(dev, in->hdr_chunk, buf, &tags);
3190 	oh = (struct yaffs_obj_hdr *)buf;
3191 
3192 	in->yst_mode = oh->yst_mode;
3193 	yaffs_load_attribs(in, oh);
3194 	yaffs_set_obj_name_from_oh(in, oh);
3195 
3196 	if (in->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) {
3197 		in->variant.symlink_variant.alias =
3198 		    yaffs_clone_str(oh->alias);
3199 		if (!in->variant.symlink_variant.alias)
3200 			alloc_failed = 1;	/* Not returned */
3201 	}
3202 	yaffs_release_temp_buffer(dev, buf);
3203 }
3204 
3205 static void yaffs_load_name_from_oh(struct yaffs_dev *dev, YCHAR *name,
3206 				    const YCHAR *oh_name, int buff_size)
3207 {
3208 #ifdef CONFIG_YAFFS_AUTO_UNICODE
3209 	if (dev->param.auto_unicode) {
3210 		if (*oh_name) {
3211 			/* It is an ASCII name, do an ASCII to
3212 			 * unicode conversion */
3213 			const char *ascii_oh_name = (const char *)oh_name;
3214 			int n = buff_size - 1;
3215 			while (n > 0 && *ascii_oh_name) {
3216 				*name = *ascii_oh_name;
3217 				name++;
3218 				ascii_oh_name++;
3219 				n--;
3220 			}
3221 		} else {
3222 			yaffs_strncpy(name, oh_name + 1, buff_size - 1);
3223 		}
3224 	} else {
3225 #else
3226 	dev = dev;
3227 	{
3228 #endif
3229 		yaffs_strncpy(name, oh_name, buff_size - 1);
3230 	}
3231 }
3232 
3233 static void yaffs_load_oh_from_name(struct yaffs_dev *dev, YCHAR *oh_name,
3234 				    const YCHAR *name)
3235 {
3236 #ifdef CONFIG_YAFFS_AUTO_UNICODE
3237 
3238 	int is_ascii;
3239 	YCHAR *w;
3240 
3241 	if (dev->param.auto_unicode) {
3242 
3243 		is_ascii = 1;
3244 		w = name;
3245 
3246 		/* Figure out if the name will fit in ascii character set */
3247 		while (is_ascii && *w) {
3248 			if ((*w) & 0xff00)
3249 				is_ascii = 0;
3250 			w++;
3251 		}
3252 
3253 		if (is_ascii) {
3254 			/* It is an ASCII name, so convert unicode to ascii */
3255 			char *ascii_oh_name = (char *)oh_name;
3256 			int n = YAFFS_MAX_NAME_LENGTH - 1;
3257 			while (n > 0 && *name) {
3258 				*ascii_oh_name = *name;
3259 				name++;
3260 				ascii_oh_name++;
3261 				n--;
3262 			}
3263 		} else {
3264 			/* Unicode name, so save starting at the second YCHAR */
3265 			*oh_name = 0;
3266 			yaffs_strncpy(oh_name + 1, name, YAFFS_MAX_NAME_LENGTH - 2);
3267 		}
3268 	} else {
3269 #else
3270 	dev = dev;
3271 	{
3272 #endif
3273 		yaffs_strncpy(oh_name, name, YAFFS_MAX_NAME_LENGTH - 1);
3274 	}
3275 }
3276 
3277 /* UpdateObjectHeader updates the header on NAND for an object.
3278  * If name is not NULL, then that new name is used.
3279  */
3280 int yaffs_update_oh(struct yaffs_obj *in, const YCHAR *name, int force,
3281 		    int is_shrink, int shadows, struct yaffs_xattr_mod *xmod)
3282 {
3283 
3284 	struct yaffs_block_info *bi;
3285 	struct yaffs_dev *dev = in->my_dev;
3286 	int prev_chunk_id;
3287 	int ret_val = 0;
3288 	int result = 0;
3289 	int new_chunk_id;
3290 	struct yaffs_ext_tags new_tags;
3291 	struct yaffs_ext_tags old_tags;
3292 	const YCHAR *alias = NULL;
3293 	u8 *buffer = NULL;
3294 	YCHAR old_name[YAFFS_MAX_NAME_LENGTH + 1];
3295 	struct yaffs_obj_hdr *oh = NULL;
3296 	loff_t file_size = 0;
3297 
3298 	yaffs_strcpy(old_name, _Y("silly old name"));
3299 
3300 	if (in->fake && in != dev->root_dir && !force && !xmod)
3301 		return ret_val;
3302 
3303 	yaffs_check_gc(dev, 0);
3304 	yaffs_check_obj_details_loaded(in);
3305 
3306 	buffer = yaffs_get_temp_buffer(in->my_dev);
3307 	oh = (struct yaffs_obj_hdr *)buffer;
3308 
3309 	prev_chunk_id = in->hdr_chunk;
3310 
3311 	if (prev_chunk_id > 0) {
3312 		result = yaffs_rd_chunk_tags_nand(dev, prev_chunk_id,
3313 						  buffer, &old_tags);
3314 
3315 		yaffs_verify_oh(in, oh, &old_tags, 0);
3316 		memcpy(old_name, oh->name, sizeof(oh->name));
3317 		memset(buffer, 0xff, sizeof(struct yaffs_obj_hdr));
3318 	} else {
3319 		memset(buffer, 0xff, dev->data_bytes_per_chunk);
3320 	}
3321 
3322 	oh->type = in->variant_type;
3323 	oh->yst_mode = in->yst_mode;
3324 	oh->shadows_obj = oh->inband_shadowed_obj_id = shadows;
3325 
3326 	yaffs_load_attribs_oh(oh, in);
3327 
3328 	if (in->parent)
3329 		oh->parent_obj_id = in->parent->obj_id;
3330 	else
3331 		oh->parent_obj_id = 0;
3332 
3333 	if (name && *name) {
3334 		memset(oh->name, 0, sizeof(oh->name));
3335 		yaffs_load_oh_from_name(dev, oh->name, name);
3336 	} else if (prev_chunk_id > 0) {
3337 		memcpy(oh->name, old_name, sizeof(oh->name));
3338 	} else {
3339 		memset(oh->name, 0, sizeof(oh->name));
3340 	}
3341 
3342 	oh->is_shrink = is_shrink;
3343 
3344 	switch (in->variant_type) {
3345 	case YAFFS_OBJECT_TYPE_UNKNOWN:
3346 		/* Should not happen */
3347 		break;
3348 	case YAFFS_OBJECT_TYPE_FILE:
3349 		if (oh->parent_obj_id != YAFFS_OBJECTID_DELETED &&
3350 		    oh->parent_obj_id != YAFFS_OBJECTID_UNLINKED)
3351 			file_size = in->variant.file_variant.file_size;
3352 		yaffs_oh_size_load(oh, file_size);
3353 		break;
3354 	case YAFFS_OBJECT_TYPE_HARDLINK:
3355 		oh->equiv_id = in->variant.hardlink_variant.equiv_id;
3356 		break;
3357 	case YAFFS_OBJECT_TYPE_SPECIAL:
3358 		/* Do nothing */
3359 		break;
3360 	case YAFFS_OBJECT_TYPE_DIRECTORY:
3361 		/* Do nothing */
3362 		break;
3363 	case YAFFS_OBJECT_TYPE_SYMLINK:
3364 		alias = in->variant.symlink_variant.alias;
3365 		if (!alias)
3366 			alias = _Y("no alias");
3367 		yaffs_strncpy(oh->alias, alias, YAFFS_MAX_ALIAS_LENGTH);
3368 		oh->alias[YAFFS_MAX_ALIAS_LENGTH] = 0;
3369 		break;
3370 	}
3371 
3372 	/* process any xattrib modifications */
3373 	if (xmod)
3374 		yaffs_apply_xattrib_mod(in, (char *)buffer, xmod);
3375 
3376 	/* Tags */
3377 	memset(&new_tags, 0, sizeof(new_tags));
3378 	in->serial++;
3379 	new_tags.chunk_id = 0;
3380 	new_tags.obj_id = in->obj_id;
3381 	new_tags.serial_number = in->serial;
3382 
3383 	/* Add extra info for file header */
3384 	new_tags.extra_available = 1;
3385 	new_tags.extra_parent_id = oh->parent_obj_id;
3386 	new_tags.extra_file_size = file_size;
3387 	new_tags.extra_is_shrink = oh->is_shrink;
3388 	new_tags.extra_equiv_id = oh->equiv_id;
3389 	new_tags.extra_shadows = (oh->shadows_obj > 0) ? 1 : 0;
3390 	new_tags.extra_obj_type = in->variant_type;
3391 	yaffs_verify_oh(in, oh, &new_tags, 1);
3392 
3393 	/* Create new chunk in NAND */
3394 	new_chunk_id =
3395 	    yaffs_write_new_chunk(dev, buffer, &new_tags,
3396 				  (prev_chunk_id > 0) ? 1 : 0);
3397 
3398 	if (buffer)
3399 		yaffs_release_temp_buffer(dev, buffer);
3400 
3401 	if (new_chunk_id < 0)
3402 		return new_chunk_id;
3403 
3404 	in->hdr_chunk = new_chunk_id;
3405 
3406 	if (prev_chunk_id > 0)
3407 		yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__);
3408 
3409 	if (!yaffs_obj_cache_dirty(in))
3410 		in->dirty = 0;
3411 
3412 	/* If this was a shrink, then mark the block
3413 	 * that the chunk lives on */
3414 	if (is_shrink) {
3415 		bi = yaffs_get_block_info(in->my_dev,
3416 					  new_chunk_id /
3417 					  in->my_dev->param.chunks_per_block);
3418 		bi->has_shrink_hdr = 1;
3419 	}
3420 
3421 
3422 	return new_chunk_id;
3423 }
3424 
3425 /*--------------------- File read/write ------------------------
3426  * Read and write have very similar structures.
3427  * In general the read/write has three parts to it
3428  * An incomplete chunk to start with (if the read/write is not chunk-aligned)
3429  * Some complete chunks
3430  * An incomplete chunk to end off with
3431  *
3432  * Curve-balls: the first chunk might also be the last chunk.
3433  */
3434 
3435 int yaffs_file_rd(struct yaffs_obj *in, u8 * buffer, loff_t offset, int n_bytes)
3436 {
3437 	int chunk;
3438 	u32 start;
3439 	int n_copy;
3440 	int n = n_bytes;
3441 	int n_done = 0;
3442 	struct yaffs_cache *cache;
3443 	struct yaffs_dev *dev;
3444 
3445 	dev = in->my_dev;
3446 
3447 	while (n > 0) {
3448 		yaffs_addr_to_chunk(dev, offset, &chunk, &start);
3449 		chunk++;
3450 
3451 		/* OK now check for the curveball where the start and end are in
3452 		 * the same chunk.
3453 		 */
3454 		if ((start + n) < dev->data_bytes_per_chunk)
3455 			n_copy = n;
3456 		else
3457 			n_copy = dev->data_bytes_per_chunk - start;
3458 
3459 		cache = yaffs_find_chunk_cache(in, chunk);
3460 
3461 		/* If the chunk is already in the cache or it is less than
3462 		 * a whole chunk or we're using inband tags then use the cache
3463 		 * (if there is caching) else bypass the cache.
3464 		 */
3465 		if (cache || n_copy != dev->data_bytes_per_chunk ||
3466 		    dev->param.inband_tags) {
3467 			if (dev->param.n_caches > 0) {
3468 
3469 				/* If we can't find the data in the cache,
3470 				 * then load it up. */
3471 
3472 				if (!cache) {
3473 					cache =
3474 					    yaffs_grab_chunk_cache(in->my_dev);
3475 					cache->object = in;
3476 					cache->chunk_id = chunk;
3477 					cache->dirty = 0;
3478 					cache->locked = 0;
3479 					yaffs_rd_data_obj(in, chunk,
3480 							  cache->data);
3481 					cache->n_bytes = 0;
3482 				}
3483 
3484 				yaffs_use_cache(dev, cache, 0);
3485 
3486 				cache->locked = 1;
3487 
3488 				memcpy(buffer, &cache->data[start], n_copy);
3489 
3490 				cache->locked = 0;
3491 			} else {
3492 				/* Read into the local buffer then copy.. */
3493 
3494 				u8 *local_buffer =
3495 				    yaffs_get_temp_buffer(dev);
3496 				yaffs_rd_data_obj(in, chunk, local_buffer);
3497 
3498 				memcpy(buffer, &local_buffer[start], n_copy);
3499 
3500 				yaffs_release_temp_buffer(dev, local_buffer);
3501 			}
3502 		} else {
3503 			/* A full chunk. Read directly into the buffer. */
3504 			yaffs_rd_data_obj(in, chunk, buffer);
3505 		}
3506 		n -= n_copy;
3507 		offset += n_copy;
3508 		buffer += n_copy;
3509 		n_done += n_copy;
3510 	}
3511 	return n_done;
3512 }
3513 
3514 int yaffs_do_file_wr(struct yaffs_obj *in, const u8 *buffer, loff_t offset,
3515 		     int n_bytes, int write_through)
3516 {
3517 
3518 	int chunk;
3519 	u32 start;
3520 	int n_copy;
3521 	int n = n_bytes;
3522 	int n_done = 0;
3523 	int n_writeback;
3524 	loff_t start_write = offset;
3525 	int chunk_written = 0;
3526 	u32 n_bytes_read;
3527 	loff_t chunk_start;
3528 	struct yaffs_dev *dev;
3529 
3530 	dev = in->my_dev;
3531 
3532 	while (n > 0 && chunk_written >= 0) {
3533 		yaffs_addr_to_chunk(dev, offset, &chunk, &start);
3534 
3535 		if (((loff_t)chunk) *
3536 		    dev->data_bytes_per_chunk + start != offset ||
3537 		    start >= dev->data_bytes_per_chunk) {
3538 			yaffs_trace(YAFFS_TRACE_ERROR,
3539 				"AddrToChunk of offset %lld gives chunk %d start %d",
3540 				offset, chunk, start);
3541 		}
3542 		chunk++;	/* File pos to chunk in file offset */
3543 
3544 		/* OK now check for the curveball where the start and end are in
3545 		 * the same chunk.
3546 		 */
3547 
3548 		if ((start + n) < dev->data_bytes_per_chunk) {
3549 			n_copy = n;
3550 
3551 			/* Now calculate how many bytes to write back....
3552 			 * If we're overwriting and not writing to then end of
3553 			 * file then we need to write back as much as was there
3554 			 * before.
3555 			 */
3556 
3557 			chunk_start = (((loff_t)(chunk - 1)) *
3558 					dev->data_bytes_per_chunk);
3559 
3560 			if (chunk_start > in->variant.file_variant.file_size)
3561 				n_bytes_read = 0;	/* Past end of file */
3562 			else
3563 				n_bytes_read =
3564 				    in->variant.file_variant.file_size -
3565 				    chunk_start;
3566 
3567 			if (n_bytes_read > dev->data_bytes_per_chunk)
3568 				n_bytes_read = dev->data_bytes_per_chunk;
3569 
3570 			n_writeback =
3571 			    (n_bytes_read >
3572 			     (start + n)) ? n_bytes_read : (start + n);
3573 
3574 			if (n_writeback < 0 ||
3575 			    n_writeback > dev->data_bytes_per_chunk)
3576 				BUG();
3577 
3578 		} else {
3579 			n_copy = dev->data_bytes_per_chunk - start;
3580 			n_writeback = dev->data_bytes_per_chunk;
3581 		}
3582 
3583 		if (n_copy != dev->data_bytes_per_chunk ||
3584 		    dev->param.inband_tags) {
3585 			/* An incomplete start or end chunk (or maybe both
3586 			 * start and end chunk), or we're using inband tags,
3587 			 * so we want to use the cache buffers.
3588 			 */
3589 			if (dev->param.n_caches > 0) {
3590 				struct yaffs_cache *cache;
3591 
3592 				/* If we can't find the data in the cache, then
3593 				 * load the cache */
3594 				cache = yaffs_find_chunk_cache(in, chunk);
3595 
3596 				if (!cache &&
3597 				    yaffs_check_alloc_available(dev, 1)) {
3598 					cache = yaffs_grab_chunk_cache(dev);
3599 					cache->object = in;
3600 					cache->chunk_id = chunk;
3601 					cache->dirty = 0;
3602 					cache->locked = 0;
3603 					yaffs_rd_data_obj(in, chunk,
3604 							  cache->data);
3605 				} else if (cache &&
3606 					   !cache->dirty &&
3607 					   !yaffs_check_alloc_available(dev,
3608 									1)) {
3609 					/* Drop the cache if it was a read cache
3610 					 * item and no space check has been made
3611 					 * for it.
3612 					 */
3613 					cache = NULL;
3614 				}
3615 
3616 				if (cache) {
3617 					yaffs_use_cache(dev, cache, 1);
3618 					cache->locked = 1;
3619 
3620 					memcpy(&cache->data[start], buffer,
3621 					       n_copy);
3622 
3623 					cache->locked = 0;
3624 					cache->n_bytes = n_writeback;
3625 
3626 					if (write_through) {
3627 						chunk_written =
3628 						    yaffs_wr_data_obj
3629 						    (cache->object,
3630 						     cache->chunk_id,
3631 						     cache->data,
3632 						     cache->n_bytes, 1);
3633 						cache->dirty = 0;
3634 					}
3635 				} else {
3636 					chunk_written = -1;	/* fail write */
3637 				}
3638 			} else {
3639 				/* An incomplete start or end chunk (or maybe
3640 				 * both start and end chunk). Read into the
3641 				 * local buffer then copy over and write back.
3642 				 */
3643 
3644 				u8 *local_buffer = yaffs_get_temp_buffer(dev);
3645 
3646 				yaffs_rd_data_obj(in, chunk, local_buffer);
3647 				memcpy(&local_buffer[start], buffer, n_copy);
3648 
3649 				chunk_written =
3650 				    yaffs_wr_data_obj(in, chunk,
3651 						      local_buffer,
3652 						      n_writeback, 0);
3653 
3654 				yaffs_release_temp_buffer(dev, local_buffer);
3655 			}
3656 		} else {
3657 			/* A full chunk. Write directly from the buffer. */
3658 
3659 			chunk_written =
3660 			    yaffs_wr_data_obj(in, chunk, buffer,
3661 					      dev->data_bytes_per_chunk, 0);
3662 
3663 			/* Since we've overwritten the cached data,
3664 			 * we better invalidate it. */
3665 			yaffs_invalidate_chunk_cache(in, chunk);
3666 		}
3667 
3668 		if (chunk_written >= 0) {
3669 			n -= n_copy;
3670 			offset += n_copy;
3671 			buffer += n_copy;
3672 			n_done += n_copy;
3673 		}
3674 	}
3675 
3676 	/* Update file object */
3677 
3678 	if ((start_write + n_done) > in->variant.file_variant.file_size)
3679 		in->variant.file_variant.file_size = (start_write + n_done);
3680 
3681 	in->dirty = 1;
3682 	return n_done;
3683 }
3684 
3685 int yaffs_wr_file(struct yaffs_obj *in, const u8 *buffer, loff_t offset,
3686 		  int n_bytes, int write_through)
3687 {
3688 	yaffs2_handle_hole(in, offset);
3689 	return yaffs_do_file_wr(in, buffer, offset, n_bytes, write_through);
3690 }
3691 
3692 /* ---------------------- File resizing stuff ------------------ */
3693 
3694 static void yaffs_prune_chunks(struct yaffs_obj *in, loff_t new_size)
3695 {
3696 
3697 	struct yaffs_dev *dev = in->my_dev;
3698 	loff_t old_size = in->variant.file_variant.file_size;
3699 	int i;
3700 	int chunk_id;
3701 	u32 dummy;
3702 	int last_del;
3703 	int start_del;
3704 
3705 	if (old_size > 0)
3706 		yaffs_addr_to_chunk(dev, old_size - 1, &last_del, &dummy);
3707 	else
3708 		last_del = 0;
3709 
3710 	yaffs_addr_to_chunk(dev, new_size + dev->data_bytes_per_chunk - 1,
3711 				&start_del, &dummy);
3712 	last_del++;
3713 	start_del++;
3714 
3715 	/* Delete backwards so that we don't end up with holes if
3716 	 * power is lost part-way through the operation.
3717 	 */
3718 	for (i = last_del; i >= start_del; i--) {
3719 		/* NB this could be optimised somewhat,
3720 		 * eg. could retrieve the tags and write them without
3721 		 * using yaffs_chunk_del
3722 		 */
3723 
3724 		chunk_id = yaffs_find_del_file_chunk(in, i, NULL);
3725 
3726 		if (chunk_id < 1)
3727 			continue;
3728 
3729 		if (chunk_id <
3730 		    (dev->internal_start_block * dev->param.chunks_per_block) ||
3731 		    chunk_id >=
3732 		    ((dev->internal_end_block + 1) *
3733 		      dev->param.chunks_per_block)) {
3734 			yaffs_trace(YAFFS_TRACE_ALWAYS,
3735 				"Found daft chunk_id %d for %d",
3736 				chunk_id, i);
3737 		} else {
3738 			in->n_data_chunks--;
3739 			yaffs_chunk_del(dev, chunk_id, 1, __LINE__);
3740 		}
3741 	}
3742 }
3743 
3744 void yaffs_resize_file_down(struct yaffs_obj *obj, loff_t new_size)
3745 {
3746 	int new_full;
3747 	u32 new_partial;
3748 	struct yaffs_dev *dev = obj->my_dev;
3749 
3750 	yaffs_addr_to_chunk(dev, new_size, &new_full, &new_partial);
3751 
3752 	yaffs_prune_chunks(obj, new_size);
3753 
3754 	if (new_partial != 0) {
3755 		int last_chunk = 1 + new_full;
3756 		u8 *local_buffer = yaffs_get_temp_buffer(dev);
3757 
3758 		/* Rewrite the last chunk with its new size and zero pad */
3759 		yaffs_rd_data_obj(obj, last_chunk, local_buffer);
3760 		memset(local_buffer + new_partial, 0,
3761 		       dev->data_bytes_per_chunk - new_partial);
3762 
3763 		yaffs_wr_data_obj(obj, last_chunk, local_buffer,
3764 				  new_partial, 1);
3765 
3766 		yaffs_release_temp_buffer(dev, local_buffer);
3767 	}
3768 
3769 	obj->variant.file_variant.file_size = new_size;
3770 
3771 	yaffs_prune_tree(dev, &obj->variant.file_variant);
3772 }
3773 
3774 int yaffs_resize_file(struct yaffs_obj *in, loff_t new_size)
3775 {
3776 	struct yaffs_dev *dev = in->my_dev;
3777 	loff_t old_size = in->variant.file_variant.file_size;
3778 
3779 	yaffs_flush_file_cache(in);
3780 	yaffs_invalidate_whole_cache(in);
3781 
3782 	yaffs_check_gc(dev, 0);
3783 
3784 	if (in->variant_type != YAFFS_OBJECT_TYPE_FILE)
3785 		return YAFFS_FAIL;
3786 
3787 	if (new_size == old_size)
3788 		return YAFFS_OK;
3789 
3790 	if (new_size > old_size) {
3791 		yaffs2_handle_hole(in, new_size);
3792 		in->variant.file_variant.file_size = new_size;
3793 	} else {
3794 		/* new_size < old_size */
3795 		yaffs_resize_file_down(in, new_size);
3796 	}
3797 
3798 	/* Write a new object header to reflect the resize.
3799 	 * show we've shrunk the file, if need be
3800 	 * Do this only if the file is not in the deleted directories
3801 	 * and is not shadowed.
3802 	 */
3803 	if (in->parent &&
3804 	    !in->is_shadowed &&
3805 	    in->parent->obj_id != YAFFS_OBJECTID_UNLINKED &&
3806 	    in->parent->obj_id != YAFFS_OBJECTID_DELETED)
3807 		yaffs_update_oh(in, NULL, 0, 0, 0, NULL);
3808 
3809 	return YAFFS_OK;
3810 }
3811 
3812 int yaffs_flush_file(struct yaffs_obj *in, int update_time, int data_sync)
3813 {
3814 	if (!in->dirty)
3815 		return YAFFS_OK;
3816 
3817 	yaffs_flush_file_cache(in);
3818 
3819 	if (data_sync)
3820 		return YAFFS_OK;
3821 
3822 	if (update_time)
3823 		yaffs_load_current_time(in, 0, 0);
3824 
3825 	return (yaffs_update_oh(in, NULL, 0, 0, 0, NULL) >= 0) ?
3826 				YAFFS_OK : YAFFS_FAIL;
3827 }
3828 
3829 
3830 /* yaffs_del_file deletes the whole file data
3831  * and the inode associated with the file.
3832  * It does not delete the links associated with the file.
3833  */
3834 static int yaffs_unlink_file_if_needed(struct yaffs_obj *in)
3835 {
3836 	int ret_val;
3837 	int del_now = 0;
3838 	struct yaffs_dev *dev = in->my_dev;
3839 
3840 	if (!in->my_inode)
3841 		del_now = 1;
3842 
3843 	if (del_now) {
3844 		ret_val =
3845 		    yaffs_change_obj_name(in, in->my_dev->del_dir,
3846 					  _Y("deleted"), 0, 0);
3847 		yaffs_trace(YAFFS_TRACE_TRACING,
3848 			"yaffs: immediate deletion of file %d",
3849 			in->obj_id);
3850 		in->deleted = 1;
3851 		in->my_dev->n_deleted_files++;
3852 		if (dev->param.disable_soft_del || dev->param.is_yaffs2)
3853 			yaffs_resize_file(in, 0);
3854 		yaffs_soft_del_file(in);
3855 	} else {
3856 		ret_val =
3857 		    yaffs_change_obj_name(in, in->my_dev->unlinked_dir,
3858 					  _Y("unlinked"), 0, 0);
3859 	}
3860 	return ret_val;
3861 }
3862 
3863 int yaffs_del_file(struct yaffs_obj *in)
3864 {
3865 	int ret_val = YAFFS_OK;
3866 	int deleted;	/* Need to cache value on stack if in is freed */
3867 	struct yaffs_dev *dev = in->my_dev;
3868 
3869 	if (dev->param.disable_soft_del || dev->param.is_yaffs2)
3870 		yaffs_resize_file(in, 0);
3871 
3872 	if (in->n_data_chunks > 0) {
3873 		/* Use soft deletion if there is data in the file.
3874 		 * That won't be the case if it has been resized to zero.
3875 		 */
3876 		if (!in->unlinked)
3877 			ret_val = yaffs_unlink_file_if_needed(in);
3878 
3879 		deleted = in->deleted;
3880 
3881 		if (ret_val == YAFFS_OK && in->unlinked && !in->deleted) {
3882 			in->deleted = 1;
3883 			deleted = 1;
3884 			in->my_dev->n_deleted_files++;
3885 			yaffs_soft_del_file(in);
3886 		}
3887 		return deleted ? YAFFS_OK : YAFFS_FAIL;
3888 	} else {
3889 		/* The file has no data chunks so we toss it immediately */
3890 		yaffs_free_tnode(in->my_dev, in->variant.file_variant.top);
3891 		in->variant.file_variant.top = NULL;
3892 		yaffs_generic_obj_del(in);
3893 
3894 		return YAFFS_OK;
3895 	}
3896 }
3897 
3898 int yaffs_is_non_empty_dir(struct yaffs_obj *obj)
3899 {
3900 	return (obj &&
3901 		obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY) &&
3902 		!(list_empty(&obj->variant.dir_variant.children));
3903 }
3904 
3905 static int yaffs_del_dir(struct yaffs_obj *obj)
3906 {
3907 	/* First check that the directory is empty. */
3908 	if (yaffs_is_non_empty_dir(obj))
3909 		return YAFFS_FAIL;
3910 
3911 	return yaffs_generic_obj_del(obj);
3912 }
3913 
3914 static int yaffs_del_symlink(struct yaffs_obj *in)
3915 {
3916 	kfree(in->variant.symlink_variant.alias);
3917 	in->variant.symlink_variant.alias = NULL;
3918 
3919 	return yaffs_generic_obj_del(in);
3920 }
3921 
3922 static int yaffs_del_link(struct yaffs_obj *in)
3923 {
3924 	/* remove this hardlink from the list associated with the equivalent
3925 	 * object
3926 	 */
3927 	list_del_init(&in->hard_links);
3928 	return yaffs_generic_obj_del(in);
3929 }
3930 
3931 int yaffs_del_obj(struct yaffs_obj *obj)
3932 {
3933 	int ret_val = -1;
3934 
3935 	switch (obj->variant_type) {
3936 	case YAFFS_OBJECT_TYPE_FILE:
3937 		ret_val = yaffs_del_file(obj);
3938 		break;
3939 	case YAFFS_OBJECT_TYPE_DIRECTORY:
3940 		if (!list_empty(&obj->variant.dir_variant.dirty)) {
3941 			yaffs_trace(YAFFS_TRACE_BACKGROUND,
3942 				"Remove object %d from dirty directories",
3943 				obj->obj_id);
3944 			list_del_init(&obj->variant.dir_variant.dirty);
3945 		}
3946 		return yaffs_del_dir(obj);
3947 		break;
3948 	case YAFFS_OBJECT_TYPE_SYMLINK:
3949 		ret_val = yaffs_del_symlink(obj);
3950 		break;
3951 	case YAFFS_OBJECT_TYPE_HARDLINK:
3952 		ret_val = yaffs_del_link(obj);
3953 		break;
3954 	case YAFFS_OBJECT_TYPE_SPECIAL:
3955 		ret_val = yaffs_generic_obj_del(obj);
3956 		break;
3957 	case YAFFS_OBJECT_TYPE_UNKNOWN:
3958 		ret_val = 0;
3959 		break;		/* should not happen. */
3960 	}
3961 	return ret_val;
3962 }
3963 
3964 static int yaffs_unlink_worker(struct yaffs_obj *obj)
3965 {
3966 	int del_now = 0;
3967 
3968 	if (!obj)
3969 		return YAFFS_FAIL;
3970 
3971 	if (!obj->my_inode)
3972 		del_now = 1;
3973 
3974 	yaffs_update_parent(obj->parent);
3975 
3976 	if (obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) {
3977 		return yaffs_del_link(obj);
3978 	} else if (!list_empty(&obj->hard_links)) {
3979 		/* Curve ball: We're unlinking an object that has a hardlink.
3980 		 *
3981 		 * This problem arises because we are not strictly following
3982 		 * The Linux link/inode model.
3983 		 *
3984 		 * We can't really delete the object.
3985 		 * Instead, we do the following:
3986 		 * - Select a hardlink.
3987 		 * - Unhook it from the hard links
3988 		 * - Move it from its parent directory so that the rename works.
3989 		 * - Rename the object to the hardlink's name.
3990 		 * - Delete the hardlink
3991 		 */
3992 
3993 		struct yaffs_obj *hl;
3994 		struct yaffs_obj *parent;
3995 		int ret_val;
3996 		YCHAR name[YAFFS_MAX_NAME_LENGTH + 1];
3997 
3998 		hl = list_entry(obj->hard_links.next, struct yaffs_obj,
3999 				hard_links);
4000 
4001 		yaffs_get_obj_name(hl, name, YAFFS_MAX_NAME_LENGTH + 1);
4002 		parent = hl->parent;
4003 
4004 		list_del_init(&hl->hard_links);
4005 
4006 		yaffs_add_obj_to_dir(obj->my_dev->unlinked_dir, hl);
4007 
4008 		ret_val = yaffs_change_obj_name(obj, parent, name, 0, 0);
4009 
4010 		if (ret_val == YAFFS_OK)
4011 			ret_val = yaffs_generic_obj_del(hl);
4012 
4013 		return ret_val;
4014 
4015 	} else if (del_now) {
4016 		switch (obj->variant_type) {
4017 		case YAFFS_OBJECT_TYPE_FILE:
4018 			return yaffs_del_file(obj);
4019 			break;
4020 		case YAFFS_OBJECT_TYPE_DIRECTORY:
4021 			list_del_init(&obj->variant.dir_variant.dirty);
4022 			return yaffs_del_dir(obj);
4023 			break;
4024 		case YAFFS_OBJECT_TYPE_SYMLINK:
4025 			return yaffs_del_symlink(obj);
4026 			break;
4027 		case YAFFS_OBJECT_TYPE_SPECIAL:
4028 			return yaffs_generic_obj_del(obj);
4029 			break;
4030 		case YAFFS_OBJECT_TYPE_HARDLINK:
4031 		case YAFFS_OBJECT_TYPE_UNKNOWN:
4032 		default:
4033 			return YAFFS_FAIL;
4034 		}
4035 	} else if (yaffs_is_non_empty_dir(obj)) {
4036 		return YAFFS_FAIL;
4037 	} else {
4038 		return yaffs_change_obj_name(obj, obj->my_dev->unlinked_dir,
4039 						_Y("unlinked"), 0, 0);
4040 	}
4041 }
4042 
4043 static int yaffs_unlink_obj(struct yaffs_obj *obj)
4044 {
4045 	if (obj && obj->unlink_allowed)
4046 		return yaffs_unlink_worker(obj);
4047 
4048 	return YAFFS_FAIL;
4049 }
4050 
4051 int yaffs_unlinker(struct yaffs_obj *dir, const YCHAR *name)
4052 {
4053 	struct yaffs_obj *obj;
4054 
4055 	obj = yaffs_find_by_name(dir, name);
4056 	return yaffs_unlink_obj(obj);
4057 }
4058 
4059 /* Note:
4060  * If old_name is NULL then we take old_dir as the object to be renamed.
4061  */
4062 int yaffs_rename_obj(struct yaffs_obj *old_dir, const YCHAR *old_name,
4063 		     struct yaffs_obj *new_dir, const YCHAR *new_name)
4064 {
4065 	struct yaffs_obj *obj = NULL;
4066 	struct yaffs_obj *existing_target = NULL;
4067 	int force = 0;
4068 	int result;
4069 	struct yaffs_dev *dev;
4070 
4071 	if (!old_dir || old_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4072 		BUG();
4073 		return YAFFS_FAIL;
4074 	}
4075 	if (!new_dir || new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4076 		BUG();
4077 		return YAFFS_FAIL;
4078 	}
4079 
4080 	dev = old_dir->my_dev;
4081 
4082 #ifdef CONFIG_YAFFS_CASE_INSENSITIVE
4083 	/* Special case for case insemsitive systems.
4084 	 * While look-up is case insensitive, the name isn't.
4085 	 * Therefore we might want to change x.txt to X.txt
4086 	 */
4087 	if (old_dir == new_dir &&
4088 		old_name && new_name &&
4089 		yaffs_strcmp(old_name, new_name) == 0)
4090 		force = 1;
4091 #endif
4092 
4093 	if (yaffs_strnlen(new_name, YAFFS_MAX_NAME_LENGTH + 1) >
4094 	    YAFFS_MAX_NAME_LENGTH)
4095 		/* ENAMETOOLONG */
4096 		return YAFFS_FAIL;
4097 
4098 	if (old_name)
4099 		obj = yaffs_find_by_name(old_dir, old_name);
4100 	else{
4101 		obj = old_dir;
4102 		old_dir = obj->parent;
4103 	}
4104 
4105 	if (obj && obj->rename_allowed) {
4106 		/* Now handle an existing target, if there is one */
4107 		existing_target = yaffs_find_by_name(new_dir, new_name);
4108 		if (yaffs_is_non_empty_dir(existing_target)) {
4109 			return YAFFS_FAIL;	/* ENOTEMPTY */
4110 		} else if (existing_target && existing_target != obj) {
4111 			/* Nuke the target first, using shadowing,
4112 			 * but only if it isn't the same object.
4113 			 *
4114 			 * Note we must disable gc here otherwise it can mess
4115 			 * up the shadowing.
4116 			 *
4117 			 */
4118 			dev->gc_disable = 1;
4119 			yaffs_change_obj_name(obj, new_dir, new_name, force,
4120 					      existing_target->obj_id);
4121 			existing_target->is_shadowed = 1;
4122 			yaffs_unlink_obj(existing_target);
4123 			dev->gc_disable = 0;
4124 		}
4125 
4126 		result = yaffs_change_obj_name(obj, new_dir, new_name, 1, 0);
4127 
4128 		yaffs_update_parent(old_dir);
4129 		if (new_dir != old_dir)
4130 			yaffs_update_parent(new_dir);
4131 
4132 		return result;
4133 	}
4134 	return YAFFS_FAIL;
4135 }
4136 
4137 /*----------------------- Initialisation Scanning ---------------------- */
4138 
4139 void yaffs_handle_shadowed_obj(struct yaffs_dev *dev, int obj_id,
4140 			       int backward_scanning)
4141 {
4142 	struct yaffs_obj *obj;
4143 
4144 	if (backward_scanning) {
4145 		/* Handle YAFFS2 case (backward scanning)
4146 		 * If the shadowed object exists then ignore.
4147 		 */
4148 		obj = yaffs_find_by_number(dev, obj_id);
4149 		if (obj)
4150 			return;
4151 	}
4152 
4153 	/* Let's create it (if it does not exist) assuming it is a file so that
4154 	 * it can do shrinking etc.
4155 	 * We put it in unlinked dir to be cleaned up after the scanning
4156 	 */
4157 	obj =
4158 	    yaffs_find_or_create_by_number(dev, obj_id, YAFFS_OBJECT_TYPE_FILE);
4159 	if (!obj)
4160 		return;
4161 	obj->is_shadowed = 1;
4162 	yaffs_add_obj_to_dir(dev->unlinked_dir, obj);
4163 	obj->variant.file_variant.shrink_size = 0;
4164 	obj->valid = 1;		/* So that we don't read any other info. */
4165 }
4166 
4167 void yaffs_link_fixup(struct yaffs_dev *dev, struct list_head *hard_list)
4168 {
4169 	struct list_head *lh;
4170 	struct list_head *save;
4171 	struct yaffs_obj *hl;
4172 	struct yaffs_obj *in;
4173 
4174 	list_for_each_safe(lh, save, hard_list) {
4175 		hl = list_entry(lh, struct yaffs_obj, hard_links);
4176 		in = yaffs_find_by_number(dev,
4177 					hl->variant.hardlink_variant.equiv_id);
4178 
4179 		if (in) {
4180 			/* Add the hardlink pointers */
4181 			hl->variant.hardlink_variant.equiv_obj = in;
4182 			list_add(&hl->hard_links, &in->hard_links);
4183 		} else {
4184 			/* Todo Need to report/handle this better.
4185 			 * Got a problem... hardlink to a non-existant object
4186 			 */
4187 			hl->variant.hardlink_variant.equiv_obj = NULL;
4188 			INIT_LIST_HEAD(&hl->hard_links);
4189 		}
4190 	}
4191 }
4192 
4193 static void yaffs_strip_deleted_objs(struct yaffs_dev *dev)
4194 {
4195 	/*
4196 	 *  Sort out state of unlinked and deleted objects after scanning.
4197 	 */
4198 	struct list_head *i;
4199 	struct list_head *n;
4200 	struct yaffs_obj *l;
4201 
4202 	if (dev->read_only)
4203 		return;
4204 
4205 	/* Soft delete all the unlinked files */
4206 	list_for_each_safe(i, n,
4207 			   &dev->unlinked_dir->variant.dir_variant.children) {
4208 		l = list_entry(i, struct yaffs_obj, siblings);
4209 		yaffs_del_obj(l);
4210 	}
4211 
4212 	list_for_each_safe(i, n, &dev->del_dir->variant.dir_variant.children) {
4213 		l = list_entry(i, struct yaffs_obj, siblings);
4214 		yaffs_del_obj(l);
4215 	}
4216 }
4217 
4218 /*
4219  * This code iterates through all the objects making sure that they are rooted.
4220  * Any unrooted objects are re-rooted in lost+found.
4221  * An object needs to be in one of:
4222  * - Directly under deleted, unlinked
4223  * - Directly or indirectly under root.
4224  *
4225  * Note:
4226  *  This code assumes that we don't ever change the current relationships
4227  *  between directories:
4228  *   root_dir->parent == unlinked_dir->parent == del_dir->parent == NULL
4229  *   lost-n-found->parent == root_dir
4230  *
4231  * This fixes the problem where directories might have inadvertently been
4232  * deleted leaving the object "hanging" without being rooted in the
4233  * directory tree.
4234  */
4235 
4236 static int yaffs_has_null_parent(struct yaffs_dev *dev, struct yaffs_obj *obj)
4237 {
4238 	return (obj == dev->del_dir ||
4239 		obj == dev->unlinked_dir || obj == dev->root_dir);
4240 }
4241 
4242 static void yaffs_fix_hanging_objs(struct yaffs_dev *dev)
4243 {
4244 	struct yaffs_obj *obj;
4245 	struct yaffs_obj *parent;
4246 	int i;
4247 	struct list_head *lh;
4248 	struct list_head *n;
4249 	int depth_limit;
4250 	int hanging;
4251 
4252 	if (dev->read_only)
4253 		return;
4254 
4255 	/* Iterate through the objects in each hash entry,
4256 	 * looking at each object.
4257 	 * Make sure it is rooted.
4258 	 */
4259 
4260 	for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) {
4261 		list_for_each_safe(lh, n, &dev->obj_bucket[i].list) {
4262 			obj = list_entry(lh, struct yaffs_obj, hash_link);
4263 			parent = obj->parent;
4264 
4265 			if (yaffs_has_null_parent(dev, obj)) {
4266 				/* These directories are not hanging */
4267 				hanging = 0;
4268 			} else if (!parent ||
4269 				   parent->variant_type !=
4270 				   YAFFS_OBJECT_TYPE_DIRECTORY) {
4271 				hanging = 1;
4272 			} else if (yaffs_has_null_parent(dev, parent)) {
4273 				hanging = 0;
4274 			} else {
4275 				/*
4276 				 * Need to follow the parent chain to
4277 				 * see if it is hanging.
4278 				 */
4279 				hanging = 0;
4280 				depth_limit = 100;
4281 
4282 				while (parent != dev->root_dir &&
4283 				       parent->parent &&
4284 				       parent->parent->variant_type ==
4285 				       YAFFS_OBJECT_TYPE_DIRECTORY &&
4286 				       depth_limit > 0) {
4287 					parent = parent->parent;
4288 					depth_limit--;
4289 				}
4290 				if (parent != dev->root_dir)
4291 					hanging = 1;
4292 			}
4293 			if (hanging) {
4294 				yaffs_trace(YAFFS_TRACE_SCAN,
4295 					"Hanging object %d moved to lost and found",
4296 					obj->obj_id);
4297 				yaffs_add_obj_to_dir(dev->lost_n_found, obj);
4298 			}
4299 		}
4300 	}
4301 }
4302 
4303 /*
4304  * Delete directory contents for cleaning up lost and found.
4305  */
4306 static void yaffs_del_dir_contents(struct yaffs_obj *dir)
4307 {
4308 	struct yaffs_obj *obj;
4309 	struct list_head *lh;
4310 	struct list_head *n;
4311 
4312 	if (dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY)
4313 		BUG();
4314 
4315 	list_for_each_safe(lh, n, &dir->variant.dir_variant.children) {
4316 		obj = list_entry(lh, struct yaffs_obj, siblings);
4317 		if (obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY)
4318 			yaffs_del_dir_contents(obj);
4319 		yaffs_trace(YAFFS_TRACE_SCAN,
4320 			"Deleting lost_found object %d",
4321 			obj->obj_id);
4322 		yaffs_unlink_obj(obj);
4323 	}
4324 }
4325 
4326 static void yaffs_empty_l_n_f(struct yaffs_dev *dev)
4327 {
4328 	yaffs_del_dir_contents(dev->lost_n_found);
4329 }
4330 
4331 
4332 struct yaffs_obj *yaffs_find_by_name(struct yaffs_obj *directory,
4333 				     const YCHAR *name)
4334 {
4335 	int sum;
4336 	struct list_head *i;
4337 	YCHAR buffer[YAFFS_MAX_NAME_LENGTH + 1];
4338 	struct yaffs_obj *l;
4339 
4340 	if (!name)
4341 		return NULL;
4342 
4343 	if (!directory) {
4344 		yaffs_trace(YAFFS_TRACE_ALWAYS,
4345 			"tragedy: yaffs_find_by_name: null pointer directory"
4346 			);
4347 		BUG();
4348 		return NULL;
4349 	}
4350 	if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4351 		yaffs_trace(YAFFS_TRACE_ALWAYS,
4352 			"tragedy: yaffs_find_by_name: non-directory"
4353 			);
4354 		BUG();
4355 	}
4356 
4357 	sum = yaffs_calc_name_sum(name);
4358 
4359 	list_for_each(i, &directory->variant.dir_variant.children) {
4360 		l = list_entry(i, struct yaffs_obj, siblings);
4361 
4362 		if (l->parent != directory)
4363 			BUG();
4364 
4365 		yaffs_check_obj_details_loaded(l);
4366 
4367 		/* Special case for lost-n-found */
4368 		if (l->obj_id == YAFFS_OBJECTID_LOSTNFOUND) {
4369 			if (!yaffs_strcmp(name, YAFFS_LOSTNFOUND_NAME))
4370 				return l;
4371 		} else if (l->sum == sum || l->hdr_chunk <= 0) {
4372 			/* LostnFound chunk called Objxxx
4373 			 * Do a real check
4374 			 */
4375 			yaffs_get_obj_name(l, buffer,
4376 				YAFFS_MAX_NAME_LENGTH + 1);
4377 			if (!yaffs_strncmp(name, buffer, YAFFS_MAX_NAME_LENGTH))
4378 				return l;
4379 		}
4380 	}
4381 	return NULL;
4382 }
4383 
4384 /* GetEquivalentObject dereferences any hard links to get to the
4385  * actual object.
4386  */
4387 
4388 struct yaffs_obj *yaffs_get_equivalent_obj(struct yaffs_obj *obj)
4389 {
4390 	if (obj && obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) {
4391 		obj = obj->variant.hardlink_variant.equiv_obj;
4392 		yaffs_check_obj_details_loaded(obj);
4393 	}
4394 	return obj;
4395 }
4396 
4397 /*
4398  *  A note or two on object names.
4399  *  * If the object name is missing, we then make one up in the form objnnn
4400  *
4401  *  * ASCII names are stored in the object header's name field from byte zero
4402  *  * Unicode names are historically stored starting from byte zero.
4403  *
4404  * Then there are automatic Unicode names...
4405  * The purpose of these is to save names in a way that can be read as
4406  * ASCII or Unicode names as appropriate, thus allowing a Unicode and ASCII
4407  * system to share files.
4408  *
4409  * These automatic unicode are stored slightly differently...
4410  *  - If the name can fit in the ASCII character space then they are saved as
4411  *    ascii names as per above.
4412  *  - If the name needs Unicode then the name is saved in Unicode
4413  *    starting at oh->name[1].
4414 
4415  */
4416 static void yaffs_fix_null_name(struct yaffs_obj *obj, YCHAR *name,
4417 				int buffer_size)
4418 {
4419 	/* Create an object name if we could not find one. */
4420 	if (yaffs_strnlen(name, YAFFS_MAX_NAME_LENGTH) == 0) {
4421 		YCHAR local_name[20];
4422 		YCHAR num_string[20];
4423 		YCHAR *x = &num_string[19];
4424 		unsigned v = obj->obj_id;
4425 		num_string[19] = 0;
4426 		while (v > 0) {
4427 			x--;
4428 			*x = '0' + (v % 10);
4429 			v /= 10;
4430 		}
4431 		/* make up a name */
4432 		yaffs_strcpy(local_name, YAFFS_LOSTNFOUND_PREFIX);
4433 		yaffs_strcat(local_name, x);
4434 		yaffs_strncpy(name, local_name, buffer_size - 1);
4435 	}
4436 }
4437 
4438 int yaffs_get_obj_name(struct yaffs_obj *obj, YCHAR *name, int buffer_size)
4439 {
4440 	memset(name, 0, buffer_size * sizeof(YCHAR));
4441 	yaffs_check_obj_details_loaded(obj);
4442 	if (obj->obj_id == YAFFS_OBJECTID_LOSTNFOUND) {
4443 		yaffs_strncpy(name, YAFFS_LOSTNFOUND_NAME, buffer_size - 1);
4444 	} else if (obj->short_name[0]) {
4445 		yaffs_strcpy(name, obj->short_name);
4446 	} else if (obj->hdr_chunk > 0) {
4447 		int result;
4448 		u8 *buffer = yaffs_get_temp_buffer(obj->my_dev);
4449 
4450 		struct yaffs_obj_hdr *oh = (struct yaffs_obj_hdr *)buffer;
4451 
4452 		memset(buffer, 0, obj->my_dev->data_bytes_per_chunk);
4453 
4454 		if (obj->hdr_chunk > 0) {
4455 			result = yaffs_rd_chunk_tags_nand(obj->my_dev,
4456 							  obj->hdr_chunk,
4457 							  buffer, NULL);
4458 		}
4459 		yaffs_load_name_from_oh(obj->my_dev, name, oh->name,
4460 					buffer_size);
4461 
4462 		yaffs_release_temp_buffer(obj->my_dev, buffer);
4463 	}
4464 
4465 	yaffs_fix_null_name(obj, name, buffer_size);
4466 
4467 	return yaffs_strnlen(name, YAFFS_MAX_NAME_LENGTH);
4468 }
4469 
4470 loff_t yaffs_get_obj_length(struct yaffs_obj *obj)
4471 {
4472 	/* Dereference any hard linking */
4473 	obj = yaffs_get_equivalent_obj(obj);
4474 
4475 	if (obj->variant_type == YAFFS_OBJECT_TYPE_FILE)
4476 		return obj->variant.file_variant.file_size;
4477 	if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) {
4478 		if (!obj->variant.symlink_variant.alias)
4479 			return 0;
4480 		return yaffs_strnlen(obj->variant.symlink_variant.alias,
4481 				     YAFFS_MAX_ALIAS_LENGTH);
4482 	} else {
4483 		/* Only a directory should drop through to here */
4484 		return obj->my_dev->data_bytes_per_chunk;
4485 	}
4486 }
4487 
4488 int yaffs_get_obj_link_count(struct yaffs_obj *obj)
4489 {
4490 	int count = 0;
4491 	struct list_head *i;
4492 
4493 	if (!obj->unlinked)
4494 		count++;	/* the object itself */
4495 
4496 	list_for_each(i, &obj->hard_links)
4497 	    count++;		/* add the hard links; */
4498 
4499 	return count;
4500 }
4501 
4502 int yaffs_get_obj_inode(struct yaffs_obj *obj)
4503 {
4504 	obj = yaffs_get_equivalent_obj(obj);
4505 
4506 	return obj->obj_id;
4507 }
4508 
4509 unsigned yaffs_get_obj_type(struct yaffs_obj *obj)
4510 {
4511 	obj = yaffs_get_equivalent_obj(obj);
4512 
4513 	switch (obj->variant_type) {
4514 	case YAFFS_OBJECT_TYPE_FILE:
4515 		return DT_REG;
4516 		break;
4517 	case YAFFS_OBJECT_TYPE_DIRECTORY:
4518 		return DT_DIR;
4519 		break;
4520 	case YAFFS_OBJECT_TYPE_SYMLINK:
4521 		return DT_LNK;
4522 		break;
4523 	case YAFFS_OBJECT_TYPE_HARDLINK:
4524 		return DT_REG;
4525 		break;
4526 	case YAFFS_OBJECT_TYPE_SPECIAL:
4527 		if (S_ISFIFO(obj->yst_mode))
4528 			return DT_FIFO;
4529 		if (S_ISCHR(obj->yst_mode))
4530 			return DT_CHR;
4531 		if (S_ISBLK(obj->yst_mode))
4532 			return DT_BLK;
4533 		if (S_ISSOCK(obj->yst_mode))
4534 			return DT_SOCK;
4535 		return DT_REG;
4536 		break;
4537 	default:
4538 		return DT_REG;
4539 		break;
4540 	}
4541 }
4542 
4543 YCHAR *yaffs_get_symlink_alias(struct yaffs_obj *obj)
4544 {
4545 	obj = yaffs_get_equivalent_obj(obj);
4546 	if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK)
4547 		return yaffs_clone_str(obj->variant.symlink_variant.alias);
4548 	else
4549 		return yaffs_clone_str(_Y(""));
4550 }
4551 
4552 /*--------------------------- Initialisation code -------------------------- */
4553 
4554 static int yaffs_check_dev_fns(const struct yaffs_dev *dev)
4555 {
4556 	/* Common functions, gotta have */
4557 	if (!dev->param.erase_fn || !dev->param.initialise_flash_fn)
4558 		return 0;
4559 
4560 	/* Can use the "with tags" style interface for yaffs1 or yaffs2 */
4561 	if (dev->param.write_chunk_tags_fn &&
4562 	    dev->param.read_chunk_tags_fn &&
4563 	    !dev->param.write_chunk_fn &&
4564 	    !dev->param.read_chunk_fn &&
4565 	    dev->param.bad_block_fn && dev->param.query_block_fn)
4566 		return 1;
4567 
4568 	/* Can use the "spare" style interface for yaffs1 */
4569 	if (!dev->param.is_yaffs2 &&
4570 	    !dev->param.write_chunk_tags_fn &&
4571 	    !dev->param.read_chunk_tags_fn &&
4572 	    dev->param.write_chunk_fn &&
4573 	    dev->param.read_chunk_fn &&
4574 	    !dev->param.bad_block_fn && !dev->param.query_block_fn)
4575 		return 1;
4576 
4577 	return 0;		/* bad */
4578 }
4579 
4580 static int yaffs_create_initial_dir(struct yaffs_dev *dev)
4581 {
4582 	/* Initialise the unlinked, deleted, root and lost+found directories */
4583 	dev->lost_n_found = dev->root_dir = NULL;
4584 	dev->unlinked_dir = dev->del_dir = NULL;
4585 	dev->unlinked_dir =
4586 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_UNLINKED, S_IFDIR);
4587 	dev->del_dir =
4588 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_DELETED, S_IFDIR);
4589 	dev->root_dir =
4590 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_ROOT,
4591 				  YAFFS_ROOT_MODE | S_IFDIR);
4592 	dev->lost_n_found =
4593 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_LOSTNFOUND,
4594 				  YAFFS_LOSTNFOUND_MODE | S_IFDIR);
4595 
4596 	if (dev->lost_n_found && dev->root_dir && dev->unlinked_dir
4597 	    && dev->del_dir) {
4598 		yaffs_add_obj_to_dir(dev->root_dir, dev->lost_n_found);
4599 		return YAFFS_OK;
4600 	}
4601 	return YAFFS_FAIL;
4602 }
4603 
4604 int yaffs_guts_initialise(struct yaffs_dev *dev)
4605 {
4606 	int init_failed = 0;
4607 	unsigned x;
4608 	int bits;
4609 
4610 	yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: yaffs_guts_initialise()");
4611 
4612 	/* Check stuff that must be set */
4613 
4614 	if (!dev) {
4615 		yaffs_trace(YAFFS_TRACE_ALWAYS,
4616 			"yaffs: Need a device"
4617 			);
4618 		return YAFFS_FAIL;
4619 	}
4620 
4621 	if (dev->is_mounted) {
4622 		yaffs_trace(YAFFS_TRACE_ALWAYS, "device already mounted");
4623 		return YAFFS_FAIL;
4624 	}
4625 
4626 	dev->internal_start_block = dev->param.start_block;
4627 	dev->internal_end_block = dev->param.end_block;
4628 	dev->block_offset = 0;
4629 	dev->chunk_offset = 0;
4630 	dev->n_free_chunks = 0;
4631 
4632 	dev->gc_block = 0;
4633 
4634 	if (dev->param.start_block == 0) {
4635 		dev->internal_start_block = dev->param.start_block + 1;
4636 		dev->internal_end_block = dev->param.end_block + 1;
4637 		dev->block_offset = 1;
4638 		dev->chunk_offset = dev->param.chunks_per_block;
4639 	}
4640 
4641 	/* Check geometry parameters. */
4642 
4643 	if ((!dev->param.inband_tags && dev->param.is_yaffs2 &&
4644 		dev->param.total_bytes_per_chunk < 1024) ||
4645 		(!dev->param.is_yaffs2 &&
4646 			dev->param.total_bytes_per_chunk < 512) ||
4647 		(dev->param.inband_tags && !dev->param.is_yaffs2) ||
4648 		 dev->param.chunks_per_block < 2 ||
4649 		 dev->param.n_reserved_blocks < 2 ||
4650 		dev->internal_start_block <= 0 ||
4651 		dev->internal_end_block <= 0 ||
4652 		dev->internal_end_block <=
4653 		(dev->internal_start_block + dev->param.n_reserved_blocks + 2)
4654 		) {
4655 		/* otherwise it is too small */
4656 		yaffs_trace(YAFFS_TRACE_ALWAYS,
4657 			"NAND geometry problems: chunk size %d, type is yaffs%s, inband_tags %d ",
4658 			dev->param.total_bytes_per_chunk,
4659 			dev->param.is_yaffs2 ? "2" : "",
4660 			dev->param.inband_tags);
4661 		return YAFFS_FAIL;
4662 	}
4663 
4664 	if (yaffs_init_nand(dev) != YAFFS_OK) {
4665 		yaffs_trace(YAFFS_TRACE_ALWAYS, "InitialiseNAND failed");
4666 		return YAFFS_FAIL;
4667 	}
4668 
4669 	/* Sort out space for inband tags, if required */
4670 	if (dev->param.inband_tags)
4671 		dev->data_bytes_per_chunk =
4672 		    dev->param.total_bytes_per_chunk -
4673 		    sizeof(struct yaffs_packed_tags2_tags_only);
4674 	else
4675 		dev->data_bytes_per_chunk = dev->param.total_bytes_per_chunk;
4676 
4677 	/* Got the right mix of functions? */
4678 	if (!yaffs_check_dev_fns(dev)) {
4679 		/* Function missing */
4680 		yaffs_trace(YAFFS_TRACE_ALWAYS,
4681 			"device function(s) missing or wrong");
4682 
4683 		return YAFFS_FAIL;
4684 	}
4685 
4686 	/* Finished with most checks. Further checks happen later on too. */
4687 
4688 	dev->is_mounted = 1;
4689 
4690 	/* OK now calculate a few things for the device */
4691 
4692 	/*
4693 	 *  Calculate all the chunk size manipulation numbers:
4694 	 */
4695 	x = dev->data_bytes_per_chunk;
4696 	/* We always use dev->chunk_shift and dev->chunk_div */
4697 	dev->chunk_shift = calc_shifts(x);
4698 	x >>= dev->chunk_shift;
4699 	dev->chunk_div = x;
4700 	/* We only use chunk mask if chunk_div is 1 */
4701 	dev->chunk_mask = (1 << dev->chunk_shift) - 1;
4702 
4703 	/*
4704 	 * Calculate chunk_grp_bits.
4705 	 * We need to find the next power of 2 > than internal_end_block
4706 	 */
4707 
4708 	x = dev->param.chunks_per_block * (dev->internal_end_block + 1);
4709 
4710 	bits = calc_shifts_ceiling(x);
4711 
4712 	/* Set up tnode width if wide tnodes are enabled. */
4713 	if (!dev->param.wide_tnodes_disabled) {
4714 		/* bits must be even so that we end up with 32-bit words */
4715 		if (bits & 1)
4716 			bits++;
4717 		if (bits < 16)
4718 			dev->tnode_width = 16;
4719 		else
4720 			dev->tnode_width = bits;
4721 	} else {
4722 		dev->tnode_width = 16;
4723 	}
4724 
4725 	dev->tnode_mask = (1 << dev->tnode_width) - 1;
4726 
4727 	/* Level0 Tnodes are 16 bits or wider (if wide tnodes are enabled),
4728 	 * so if the bitwidth of the
4729 	 * chunk range we're using is greater than 16 we need
4730 	 * to figure out chunk shift and chunk_grp_size
4731 	 */
4732 
4733 	if (bits <= dev->tnode_width)
4734 		dev->chunk_grp_bits = 0;
4735 	else
4736 		dev->chunk_grp_bits = bits - dev->tnode_width;
4737 
4738 	dev->tnode_size = (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8;
4739 	if (dev->tnode_size < sizeof(struct yaffs_tnode))
4740 		dev->tnode_size = sizeof(struct yaffs_tnode);
4741 
4742 	dev->chunk_grp_size = 1 << dev->chunk_grp_bits;
4743 
4744 	if (dev->param.chunks_per_block < dev->chunk_grp_size) {
4745 		/* We have a problem because the soft delete won't work if
4746 		 * the chunk group size > chunks per block.
4747 		 * This can be remedied by using larger "virtual blocks".
4748 		 */
4749 		yaffs_trace(YAFFS_TRACE_ALWAYS, "chunk group too large");
4750 
4751 		return YAFFS_FAIL;
4752 	}
4753 
4754 	/* Finished verifying the device, continue with initialisation */
4755 
4756 	/* More device initialisation */
4757 	dev->all_gcs = 0;
4758 	dev->passive_gc_count = 0;
4759 	dev->oldest_dirty_gc_count = 0;
4760 	dev->bg_gcs = 0;
4761 	dev->gc_block_finder = 0;
4762 	dev->buffered_block = -1;
4763 	dev->doing_buffered_block_rewrite = 0;
4764 	dev->n_deleted_files = 0;
4765 	dev->n_bg_deletions = 0;
4766 	dev->n_unlinked_files = 0;
4767 	dev->n_ecc_fixed = 0;
4768 	dev->n_ecc_unfixed = 0;
4769 	dev->n_tags_ecc_fixed = 0;
4770 	dev->n_tags_ecc_unfixed = 0;
4771 	dev->n_erase_failures = 0;
4772 	dev->n_erased_blocks = 0;
4773 	dev->gc_disable = 0;
4774 	dev->has_pending_prioritised_gc = 1;
4775 		/* Assume the worst for now, will get fixed on first GC */
4776 	INIT_LIST_HEAD(&dev->dirty_dirs);
4777 	dev->oldest_dirty_seq = 0;
4778 	dev->oldest_dirty_block = 0;
4779 
4780 	/* Initialise temporary buffers and caches. */
4781 	if (!yaffs_init_tmp_buffers(dev))
4782 		init_failed = 1;
4783 
4784 	dev->cache = NULL;
4785 	dev->gc_cleanup_list = NULL;
4786 
4787 	if (!init_failed && dev->param.n_caches > 0) {
4788 		int i;
4789 		void *buf;
4790 		int cache_bytes =
4791 		    dev->param.n_caches * sizeof(struct yaffs_cache);
4792 
4793 		if (dev->param.n_caches > YAFFS_MAX_SHORT_OP_CACHES)
4794 			dev->param.n_caches = YAFFS_MAX_SHORT_OP_CACHES;
4795 
4796 		dev->cache = kmalloc(cache_bytes, GFP_NOFS);
4797 
4798 		buf = (u8 *) dev->cache;
4799 
4800 		if (dev->cache)
4801 			memset(dev->cache, 0, cache_bytes);
4802 
4803 		for (i = 0; i < dev->param.n_caches && buf; i++) {
4804 			dev->cache[i].object = NULL;
4805 			dev->cache[i].last_use = 0;
4806 			dev->cache[i].dirty = 0;
4807 			dev->cache[i].data = buf =
4808 			    kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS);
4809 		}
4810 		if (!buf)
4811 			init_failed = 1;
4812 
4813 		dev->cache_last_use = 0;
4814 	}
4815 
4816 	dev->cache_hits = 0;
4817 
4818 	if (!init_failed) {
4819 		dev->gc_cleanup_list =
4820 		    kmalloc(dev->param.chunks_per_block * sizeof(u32),
4821 					GFP_NOFS);
4822 		if (!dev->gc_cleanup_list)
4823 			init_failed = 1;
4824 	}
4825 
4826 	if (dev->param.is_yaffs2)
4827 		dev->param.use_header_file_size = 1;
4828 
4829 	if (!init_failed && !yaffs_init_blocks(dev))
4830 		init_failed = 1;
4831 
4832 	yaffs_init_tnodes_and_objs(dev);
4833 
4834 	if (!init_failed && !yaffs_create_initial_dir(dev))
4835 		init_failed = 1;
4836 
4837 	if (!init_failed && dev->param.is_yaffs2 &&
4838 		!dev->param.disable_summary &&
4839 		!yaffs_summary_init(dev))
4840 		init_failed = 1;
4841 
4842 	if (!init_failed) {
4843 		/* Now scan the flash. */
4844 		if (dev->param.is_yaffs2) {
4845 			if (yaffs2_checkpt_restore(dev)) {
4846 				yaffs_check_obj_details_loaded(dev->root_dir);
4847 				yaffs_trace(YAFFS_TRACE_CHECKPOINT |
4848 					YAFFS_TRACE_MOUNT,
4849 					"yaffs: restored from checkpoint"
4850 					);
4851 			} else {
4852 
4853 				/* Clean up the mess caused by an aborted
4854 				 * checkpoint load then scan backwards.
4855 				 */
4856 				yaffs_deinit_blocks(dev);
4857 
4858 				yaffs_deinit_tnodes_and_objs(dev);
4859 
4860 				dev->n_erased_blocks = 0;
4861 				dev->n_free_chunks = 0;
4862 				dev->alloc_block = -1;
4863 				dev->alloc_page = -1;
4864 				dev->n_deleted_files = 0;
4865 				dev->n_unlinked_files = 0;
4866 				dev->n_bg_deletions = 0;
4867 
4868 				if (!init_failed && !yaffs_init_blocks(dev))
4869 					init_failed = 1;
4870 
4871 				yaffs_init_tnodes_and_objs(dev);
4872 
4873 				if (!init_failed
4874 				    && !yaffs_create_initial_dir(dev))
4875 					init_failed = 1;
4876 
4877 				if (!init_failed && !yaffs2_scan_backwards(dev))
4878 					init_failed = 1;
4879 			}
4880 		} else if (!yaffs1_scan(dev)) {
4881 			init_failed = 1;
4882 		}
4883 
4884 		yaffs_strip_deleted_objs(dev);
4885 		yaffs_fix_hanging_objs(dev);
4886 		if (dev->param.empty_lost_n_found)
4887 			yaffs_empty_l_n_f(dev);
4888 	}
4889 
4890 	if (init_failed) {
4891 		/* Clean up the mess */
4892 		yaffs_trace(YAFFS_TRACE_TRACING,
4893 		  "yaffs: yaffs_guts_initialise() aborted.");
4894 
4895 		yaffs_deinitialise(dev);
4896 		return YAFFS_FAIL;
4897 	}
4898 
4899 	/* Zero out stats */
4900 	dev->n_page_reads = 0;
4901 	dev->n_page_writes = 0;
4902 	dev->n_erasures = 0;
4903 	dev->n_gc_copies = 0;
4904 	dev->n_retried_writes = 0;
4905 
4906 	dev->n_retired_blocks = 0;
4907 
4908 	yaffs_verify_free_chunks(dev);
4909 	yaffs_verify_blocks(dev);
4910 
4911 	/* Clean up any aborted checkpoint data */
4912 	if (!dev->is_checkpointed && dev->blocks_in_checkpt > 0)
4913 		yaffs2_checkpt_invalidate(dev);
4914 
4915 	yaffs_trace(YAFFS_TRACE_TRACING,
4916 	  "yaffs: yaffs_guts_initialise() done.");
4917 	return YAFFS_OK;
4918 }
4919 
4920 void yaffs_deinitialise(struct yaffs_dev *dev)
4921 {
4922 	if (dev->is_mounted) {
4923 		int i;
4924 
4925 		yaffs_deinit_blocks(dev);
4926 		yaffs_deinit_tnodes_and_objs(dev);
4927 		yaffs_summary_deinit(dev);
4928 
4929 		if (dev->param.n_caches > 0 && dev->cache) {
4930 
4931 			for (i = 0; i < dev->param.n_caches; i++) {
4932 				kfree(dev->cache[i].data);
4933 				dev->cache[i].data = NULL;
4934 			}
4935 
4936 			kfree(dev->cache);
4937 			dev->cache = NULL;
4938 		}
4939 
4940 		kfree(dev->gc_cleanup_list);
4941 
4942 		for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++)
4943 			kfree(dev->temp_buffer[i].buffer);
4944 
4945 		dev->is_mounted = 0;
4946 
4947 		if (dev->param.deinitialise_flash_fn)
4948 			dev->param.deinitialise_flash_fn(dev);
4949 	}
4950 }
4951 
4952 int yaffs_count_free_chunks(struct yaffs_dev *dev)
4953 {
4954 	int n_free = 0;
4955 	int b;
4956 	struct yaffs_block_info *blk;
4957 
4958 	blk = dev->block_info;
4959 	for (b = dev->internal_start_block; b <= dev->internal_end_block; b++) {
4960 		switch (blk->block_state) {
4961 		case YAFFS_BLOCK_STATE_EMPTY:
4962 		case YAFFS_BLOCK_STATE_ALLOCATING:
4963 		case YAFFS_BLOCK_STATE_COLLECTING:
4964 		case YAFFS_BLOCK_STATE_FULL:
4965 			n_free +=
4966 			    (dev->param.chunks_per_block - blk->pages_in_use +
4967 			     blk->soft_del_pages);
4968 			break;
4969 		default:
4970 			break;
4971 		}
4972 		blk++;
4973 	}
4974 	return n_free;
4975 }
4976 
4977 int yaffs_get_n_free_chunks(struct yaffs_dev *dev)
4978 {
4979 	/* This is what we report to the outside world */
4980 	int n_free;
4981 	int n_dirty_caches;
4982 	int blocks_for_checkpt;
4983 	int i;
4984 
4985 	n_free = dev->n_free_chunks;
4986 	n_free += dev->n_deleted_files;
4987 
4988 	/* Now count and subtract the number of dirty chunks in the cache. */
4989 
4990 	for (n_dirty_caches = 0, i = 0; i < dev->param.n_caches; i++) {
4991 		if (dev->cache[i].dirty)
4992 			n_dirty_caches++;
4993 	}
4994 
4995 	n_free -= n_dirty_caches;
4996 
4997 	n_free -=
4998 	    ((dev->param.n_reserved_blocks + 1) * dev->param.chunks_per_block);
4999 
5000 	/* Now figure checkpoint space and report that... */
5001 	blocks_for_checkpt = yaffs_calc_checkpt_blocks_required(dev);
5002 
5003 	n_free -= (blocks_for_checkpt * dev->param.chunks_per_block);
5004 
5005 	if (n_free < 0)
5006 		n_free = 0;
5007 
5008 	return n_free;
5009 }
5010 
5011 /*\
5012  * Marshalling functions to get loff_t file sizes into aand out of
5013  * object headers.
5014  */
5015 void yaffs_oh_size_load(struct yaffs_obj_hdr *oh, loff_t fsize)
5016 {
5017 	oh->file_size_low = (fsize & 0xFFFFFFFF);
5018 	oh->file_size_high = ((fsize >> 32) & 0xFFFFFFFF);
5019 }
5020 
5021 loff_t yaffs_oh_to_size(struct yaffs_obj_hdr *oh)
5022 {
5023 	loff_t retval;
5024 
5025 	if (~(oh->file_size_high))
5026 		retval = (((loff_t) oh->file_size_high) << 32) |
5027 			(((loff_t) oh->file_size_low) & 0xFFFFFFFF);
5028 	else
5029 		retval = (loff_t) oh->file_size_low;
5030 
5031 	return retval;
5032 }
5033