xref: /openbmc/u-boot/fs/ubifs/tnc_misc.c (revision 32c81ea6)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Adrian Hunter
9  *          Artem Bityutskiy (Битюцкий Артём)
10  */
11 
12 /*
13  * This file contains miscelanious TNC-related functions shared betweend
14  * different files. This file does not form any logically separate TNC
15  * sub-system. The file was created because there is a lot of TNC code and
16  * putting it all in one file would make that file too big and unreadable.
17  */
18 
19 #ifdef __UBOOT__
20 #include <linux/err.h>
21 #endif
22 #include "ubifs.h"
23 
24 /**
25  * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
26  * @zr: root of the subtree to traverse
27  * @znode: previous znode
28  *
29  * This function implements levelorder TNC traversal. The LNC is ignored.
30  * Returns the next element or %NULL if @znode is already the last one.
31  */
32 struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
33 					      struct ubifs_znode *znode)
34 {
35 	int level, iip, level_search = 0;
36 	struct ubifs_znode *zn;
37 
38 	ubifs_assert(zr);
39 
40 	if (unlikely(!znode))
41 		return zr;
42 
43 	if (unlikely(znode == zr)) {
44 		if (znode->level == 0)
45 			return NULL;
46 		return ubifs_tnc_find_child(zr, 0);
47 	}
48 
49 	level = znode->level;
50 
51 	iip = znode->iip;
52 	while (1) {
53 		ubifs_assert(znode->level <= zr->level);
54 
55 		/*
56 		 * First walk up until there is a znode with next branch to
57 		 * look at.
58 		 */
59 		while (znode->parent != zr && iip >= znode->parent->child_cnt) {
60 			znode = znode->parent;
61 			iip = znode->iip;
62 		}
63 
64 		if (unlikely(znode->parent == zr &&
65 			     iip >= znode->parent->child_cnt)) {
66 			/* This level is done, switch to the lower one */
67 			level -= 1;
68 			if (level_search || level < 0)
69 				/*
70 				 * We were already looking for znode at lower
71 				 * level ('level_search'). As we are here
72 				 * again, it just does not exist. Or all levels
73 				 * were finished ('level < 0').
74 				 */
75 				return NULL;
76 
77 			level_search = 1;
78 			iip = -1;
79 			znode = ubifs_tnc_find_child(zr, 0);
80 			ubifs_assert(znode);
81 		}
82 
83 		/* Switch to the next index */
84 		zn = ubifs_tnc_find_child(znode->parent, iip + 1);
85 		if (!zn) {
86 			/* No more children to look at, we have walk up */
87 			iip = znode->parent->child_cnt;
88 			continue;
89 		}
90 
91 		/* Walk back down to the level we came from ('level') */
92 		while (zn->level != level) {
93 			znode = zn;
94 			zn = ubifs_tnc_find_child(zn, 0);
95 			if (!zn) {
96 				/*
97 				 * This path is not too deep so it does not
98 				 * reach 'level'. Try next path.
99 				 */
100 				iip = znode->iip;
101 				break;
102 			}
103 		}
104 
105 		if (zn) {
106 			ubifs_assert(zn->level >= 0);
107 			return zn;
108 		}
109 	}
110 }
111 
112 /**
113  * ubifs_search_zbranch - search znode branch.
114  * @c: UBIFS file-system description object
115  * @znode: znode to search in
116  * @key: key to search for
117  * @n: znode branch slot number is returned here
118  *
119  * This is a helper function which search branch with key @key in @znode using
120  * binary search. The result of the search may be:
121  *   o exact match, then %1 is returned, and the slot number of the branch is
122  *     stored in @n;
123  *   o no exact match, then %0 is returned and the slot number of the left
124  *     closest branch is returned in @n; the slot if all keys in this znode are
125  *     greater than @key, then %-1 is returned in @n.
126  */
127 int ubifs_search_zbranch(const struct ubifs_info *c,
128 			 const struct ubifs_znode *znode,
129 			 const union ubifs_key *key, int *n)
130 {
131 	int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
132 	int uninitialized_var(cmp);
133 	const struct ubifs_zbranch *zbr = &znode->zbranch[0];
134 
135 	ubifs_assert(end > beg);
136 
137 	while (end > beg) {
138 		mid = (beg + end) >> 1;
139 		cmp = keys_cmp(c, key, &zbr[mid].key);
140 		if (cmp > 0)
141 			beg = mid + 1;
142 		else if (cmp < 0)
143 			end = mid;
144 		else {
145 			*n = mid;
146 			return 1;
147 		}
148 	}
149 
150 	*n = end - 1;
151 
152 	/* The insert point is after *n */
153 	ubifs_assert(*n >= -1 && *n < znode->child_cnt);
154 	if (*n == -1)
155 		ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0);
156 	else
157 		ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0);
158 	if (*n + 1 < znode->child_cnt)
159 		ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0);
160 
161 	return 0;
162 }
163 
164 /**
165  * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
166  * @znode: znode to start at (root of the sub-tree to traverse)
167  *
168  * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
169  * ignored.
170  */
171 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
172 {
173 	if (unlikely(!znode))
174 		return NULL;
175 
176 	while (znode->level > 0) {
177 		struct ubifs_znode *child;
178 
179 		child = ubifs_tnc_find_child(znode, 0);
180 		if (!child)
181 			return znode;
182 		znode = child;
183 	}
184 
185 	return znode;
186 }
187 
188 /**
189  * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
190  * @znode: previous znode
191  *
192  * This function implements postorder TNC traversal. The LNC is ignored.
193  * Returns the next element or %NULL if @znode is already the last one.
194  */
195 struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
196 {
197 	struct ubifs_znode *zn;
198 
199 	ubifs_assert(znode);
200 	if (unlikely(!znode->parent))
201 		return NULL;
202 
203 	/* Switch to the next index in the parent */
204 	zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
205 	if (!zn)
206 		/* This is in fact the last child, return parent */
207 		return znode->parent;
208 
209 	/* Go to the first znode in this new subtree */
210 	return ubifs_tnc_postorder_first(zn);
211 }
212 
213 /**
214  * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
215  * @znode: znode defining subtree to destroy
216  *
217  * This function destroys subtree of the TNC tree. Returns number of clean
218  * znodes in the subtree.
219  */
220 long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode)
221 {
222 	struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
223 	long clean_freed = 0;
224 	int n;
225 
226 	ubifs_assert(zn);
227 	while (1) {
228 		for (n = 0; n < zn->child_cnt; n++) {
229 			if (!zn->zbranch[n].znode)
230 				continue;
231 
232 			if (zn->level > 0 &&
233 			    !ubifs_zn_dirty(zn->zbranch[n].znode))
234 				clean_freed += 1;
235 
236 			cond_resched();
237 			kfree(zn->zbranch[n].znode);
238 		}
239 
240 		if (zn == znode) {
241 			if (!ubifs_zn_dirty(zn))
242 				clean_freed += 1;
243 			kfree(zn);
244 			return clean_freed;
245 		}
246 
247 		zn = ubifs_tnc_postorder_next(zn);
248 	}
249 }
250 
251 /**
252  * read_znode - read an indexing node from flash and fill znode.
253  * @c: UBIFS file-system description object
254  * @lnum: LEB of the indexing node to read
255  * @offs: node offset
256  * @len: node length
257  * @znode: znode to read to
258  *
259  * This function reads an indexing node from the flash media and fills znode
260  * with the read data. Returns zero in case of success and a negative error
261  * code in case of failure. The read indexing node is validated and if anything
262  * is wrong with it, this function prints complaint messages and returns
263  * %-EINVAL.
264  */
265 static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
266 		      struct ubifs_znode *znode)
267 {
268 	int i, err, type, cmp;
269 	struct ubifs_idx_node *idx;
270 
271 	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
272 	if (!idx)
273 		return -ENOMEM;
274 
275 	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
276 	if (err < 0) {
277 		kfree(idx);
278 		return err;
279 	}
280 
281 	znode->child_cnt = le16_to_cpu(idx->child_cnt);
282 	znode->level = le16_to_cpu(idx->level);
283 
284 	dbg_tnc("LEB %d:%d, level %d, %d branch",
285 		lnum, offs, znode->level, znode->child_cnt);
286 
287 	if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
288 		ubifs_err("current fanout %d, branch count %d",
289 			  c->fanout, znode->child_cnt);
290 		ubifs_err("max levels %d, znode level %d",
291 			  UBIFS_MAX_LEVELS, znode->level);
292 		err = 1;
293 		goto out_dump;
294 	}
295 
296 	for (i = 0; i < znode->child_cnt; i++) {
297 		const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
298 		struct ubifs_zbranch *zbr = &znode->zbranch[i];
299 
300 		key_read(c, &br->key, &zbr->key);
301 		zbr->lnum = le32_to_cpu(br->lnum);
302 		zbr->offs = le32_to_cpu(br->offs);
303 		zbr->len  = le32_to_cpu(br->len);
304 		zbr->znode = NULL;
305 
306 		/* Validate branch */
307 
308 		if (zbr->lnum < c->main_first ||
309 		    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
310 		    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
311 			ubifs_err("bad branch %d", i);
312 			err = 2;
313 			goto out_dump;
314 		}
315 
316 		switch (key_type(c, &zbr->key)) {
317 		case UBIFS_INO_KEY:
318 		case UBIFS_DATA_KEY:
319 		case UBIFS_DENT_KEY:
320 		case UBIFS_XENT_KEY:
321 			break;
322 		default:
323 			ubifs_err("bad key type at slot %d: %d",
324 				  i, key_type(c, &zbr->key));
325 			err = 3;
326 			goto out_dump;
327 		}
328 
329 		if (znode->level)
330 			continue;
331 
332 		type = key_type(c, &zbr->key);
333 		if (c->ranges[type].max_len == 0) {
334 			if (zbr->len != c->ranges[type].len) {
335 				ubifs_err("bad target node (type %d) length (%d)",
336 					  type, zbr->len);
337 				ubifs_err("have to be %d", c->ranges[type].len);
338 				err = 4;
339 				goto out_dump;
340 			}
341 		} else if (zbr->len < c->ranges[type].min_len ||
342 			   zbr->len > c->ranges[type].max_len) {
343 			ubifs_err("bad target node (type %d) length (%d)",
344 				  type, zbr->len);
345 			ubifs_err("have to be in range of %d-%d",
346 				  c->ranges[type].min_len,
347 				  c->ranges[type].max_len);
348 			err = 5;
349 			goto out_dump;
350 		}
351 	}
352 
353 	/*
354 	 * Ensure that the next key is greater or equivalent to the
355 	 * previous one.
356 	 */
357 	for (i = 0; i < znode->child_cnt - 1; i++) {
358 		const union ubifs_key *key1, *key2;
359 
360 		key1 = &znode->zbranch[i].key;
361 		key2 = &znode->zbranch[i + 1].key;
362 
363 		cmp = keys_cmp(c, key1, key2);
364 		if (cmp > 0) {
365 			ubifs_err("bad key order (keys %d and %d)", i, i + 1);
366 			err = 6;
367 			goto out_dump;
368 		} else if (cmp == 0 && !is_hash_key(c, key1)) {
369 			/* These can only be keys with colliding hash */
370 			ubifs_err("keys %d and %d are not hashed but equivalent",
371 				  i, i + 1);
372 			err = 7;
373 			goto out_dump;
374 		}
375 	}
376 
377 	kfree(idx);
378 	return 0;
379 
380 out_dump:
381 	ubifs_err("bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
382 	ubifs_dump_node(c, idx);
383 	kfree(idx);
384 	return -EINVAL;
385 }
386 
387 /**
388  * ubifs_load_znode - load znode to TNC cache.
389  * @c: UBIFS file-system description object
390  * @zbr: znode branch
391  * @parent: znode's parent
392  * @iip: index in parent
393  *
394  * This function loads znode pointed to by @zbr into the TNC cache and
395  * returns pointer to it in case of success and a negative error code in case
396  * of failure.
397  */
398 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
399 				     struct ubifs_zbranch *zbr,
400 				     struct ubifs_znode *parent, int iip)
401 {
402 	int err;
403 	struct ubifs_znode *znode;
404 
405 	ubifs_assert(!zbr->znode);
406 	/*
407 	 * A slab cache is not presently used for znodes because the znode size
408 	 * depends on the fanout which is stored in the superblock.
409 	 */
410 	znode = kzalloc(c->max_znode_sz, GFP_NOFS);
411 	if (!znode)
412 		return ERR_PTR(-ENOMEM);
413 
414 	err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
415 	if (err)
416 		goto out;
417 
418 	atomic_long_inc(&c->clean_zn_cnt);
419 
420 	/*
421 	 * Increment the global clean znode counter as well. It is OK that
422 	 * global and per-FS clean znode counters may be inconsistent for some
423 	 * short time (because we might be preempted at this point), the global
424 	 * one is only used in shrinker.
425 	 */
426 	atomic_long_inc(&ubifs_clean_zn_cnt);
427 
428 	zbr->znode = znode;
429 	znode->parent = parent;
430 	znode->time = get_seconds();
431 	znode->iip = iip;
432 
433 	return znode;
434 
435 out:
436 	kfree(znode);
437 	return ERR_PTR(err);
438 }
439 
440 /**
441  * ubifs_tnc_read_node - read a leaf node from the flash media.
442  * @c: UBIFS file-system description object
443  * @zbr: key and position of the node
444  * @node: node is returned here
445  *
446  * This function reads a node defined by @zbr from the flash media. Returns
447  * zero in case of success or a negative negative error code in case of
448  * failure.
449  */
450 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
451 			void *node)
452 {
453 	union ubifs_key key1, *key = &zbr->key;
454 	int err, type = key_type(c, key);
455 	struct ubifs_wbuf *wbuf;
456 
457 	/*
458 	 * 'zbr' has to point to on-flash node. The node may sit in a bud and
459 	 * may even be in a write buffer, so we have to take care about this.
460 	 */
461 	wbuf = ubifs_get_wbuf(c, zbr->lnum);
462 	if (wbuf)
463 		err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
464 					   zbr->lnum, zbr->offs);
465 	else
466 		err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
467 				      zbr->offs);
468 
469 	if (err) {
470 		dbg_tnck(key, "key ");
471 		return err;
472 	}
473 
474 	/* Make sure the key of the read node is correct */
475 	key_read(c, node + UBIFS_KEY_OFFSET, &key1);
476 	if (!keys_eq(c, key, &key1)) {
477 		ubifs_err("bad key in node at LEB %d:%d",
478 			  zbr->lnum, zbr->offs);
479 		dbg_tnck(key, "looked for key ");
480 		dbg_tnck(&key1, "but found node's key ");
481 		ubifs_dump_node(c, node);
482 		return -EINVAL;
483 	}
484 
485 	return 0;
486 }
487