1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Adrian Hunter 9 * Artem Bityutskiy (Битюцкий Артём) 10 */ 11 12 /* 13 * This file contains miscelanious TNC-related functions shared betweend 14 * different files. This file does not form any logically separate TNC 15 * sub-system. The file was created because there is a lot of TNC code and 16 * putting it all in one file would make that file too big and unreadable. 17 */ 18 19 #ifdef __UBOOT__ 20 #include <linux/err.h> 21 #endif 22 #include "ubifs.h" 23 24 /** 25 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal. 26 * @zr: root of the subtree to traverse 27 * @znode: previous znode 28 * 29 * This function implements levelorder TNC traversal. The LNC is ignored. 30 * Returns the next element or %NULL if @znode is already the last one. 31 */ 32 struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr, 33 struct ubifs_znode *znode) 34 { 35 int level, iip, level_search = 0; 36 struct ubifs_znode *zn; 37 38 ubifs_assert(zr); 39 40 if (unlikely(!znode)) 41 return zr; 42 43 if (unlikely(znode == zr)) { 44 if (znode->level == 0) 45 return NULL; 46 return ubifs_tnc_find_child(zr, 0); 47 } 48 49 level = znode->level; 50 51 iip = znode->iip; 52 while (1) { 53 ubifs_assert(znode->level <= zr->level); 54 55 /* 56 * First walk up until there is a znode with next branch to 57 * look at. 58 */ 59 while (znode->parent != zr && iip >= znode->parent->child_cnt) { 60 znode = znode->parent; 61 iip = znode->iip; 62 } 63 64 if (unlikely(znode->parent == zr && 65 iip >= znode->parent->child_cnt)) { 66 /* This level is done, switch to the lower one */ 67 level -= 1; 68 if (level_search || level < 0) 69 /* 70 * We were already looking for znode at lower 71 * level ('level_search'). As we are here 72 * again, it just does not exist. Or all levels 73 * were finished ('level < 0'). 74 */ 75 return NULL; 76 77 level_search = 1; 78 iip = -1; 79 znode = ubifs_tnc_find_child(zr, 0); 80 ubifs_assert(znode); 81 } 82 83 /* Switch to the next index */ 84 zn = ubifs_tnc_find_child(znode->parent, iip + 1); 85 if (!zn) { 86 /* No more children to look at, we have walk up */ 87 iip = znode->parent->child_cnt; 88 continue; 89 } 90 91 /* Walk back down to the level we came from ('level') */ 92 while (zn->level != level) { 93 znode = zn; 94 zn = ubifs_tnc_find_child(zn, 0); 95 if (!zn) { 96 /* 97 * This path is not too deep so it does not 98 * reach 'level'. Try next path. 99 */ 100 iip = znode->iip; 101 break; 102 } 103 } 104 105 if (zn) { 106 ubifs_assert(zn->level >= 0); 107 return zn; 108 } 109 } 110 } 111 112 /** 113 * ubifs_search_zbranch - search znode branch. 114 * @c: UBIFS file-system description object 115 * @znode: znode to search in 116 * @key: key to search for 117 * @n: znode branch slot number is returned here 118 * 119 * This is a helper function which search branch with key @key in @znode using 120 * binary search. The result of the search may be: 121 * o exact match, then %1 is returned, and the slot number of the branch is 122 * stored in @n; 123 * o no exact match, then %0 is returned and the slot number of the left 124 * closest branch is returned in @n; the slot if all keys in this znode are 125 * greater than @key, then %-1 is returned in @n. 126 */ 127 int ubifs_search_zbranch(const struct ubifs_info *c, 128 const struct ubifs_znode *znode, 129 const union ubifs_key *key, int *n) 130 { 131 int beg = 0, end = znode->child_cnt, uninitialized_var(mid); 132 int uninitialized_var(cmp); 133 const struct ubifs_zbranch *zbr = &znode->zbranch[0]; 134 135 ubifs_assert(end > beg); 136 137 while (end > beg) { 138 mid = (beg + end) >> 1; 139 cmp = keys_cmp(c, key, &zbr[mid].key); 140 if (cmp > 0) 141 beg = mid + 1; 142 else if (cmp < 0) 143 end = mid; 144 else { 145 *n = mid; 146 return 1; 147 } 148 } 149 150 *n = end - 1; 151 152 /* The insert point is after *n */ 153 ubifs_assert(*n >= -1 && *n < znode->child_cnt); 154 if (*n == -1) 155 ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0); 156 else 157 ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0); 158 if (*n + 1 < znode->child_cnt) 159 ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0); 160 161 return 0; 162 } 163 164 /** 165 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal. 166 * @znode: znode to start at (root of the sub-tree to traverse) 167 * 168 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is 169 * ignored. 170 */ 171 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode) 172 { 173 if (unlikely(!znode)) 174 return NULL; 175 176 while (znode->level > 0) { 177 struct ubifs_znode *child; 178 179 child = ubifs_tnc_find_child(znode, 0); 180 if (!child) 181 return znode; 182 znode = child; 183 } 184 185 return znode; 186 } 187 188 /** 189 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal. 190 * @znode: previous znode 191 * 192 * This function implements postorder TNC traversal. The LNC is ignored. 193 * Returns the next element or %NULL if @znode is already the last one. 194 */ 195 struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode) 196 { 197 struct ubifs_znode *zn; 198 199 ubifs_assert(znode); 200 if (unlikely(!znode->parent)) 201 return NULL; 202 203 /* Switch to the next index in the parent */ 204 zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1); 205 if (!zn) 206 /* This is in fact the last child, return parent */ 207 return znode->parent; 208 209 /* Go to the first znode in this new subtree */ 210 return ubifs_tnc_postorder_first(zn); 211 } 212 213 /** 214 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree. 215 * @znode: znode defining subtree to destroy 216 * 217 * This function destroys subtree of the TNC tree. Returns number of clean 218 * znodes in the subtree. 219 */ 220 long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode) 221 { 222 struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode); 223 long clean_freed = 0; 224 int n; 225 226 ubifs_assert(zn); 227 while (1) { 228 for (n = 0; n < zn->child_cnt; n++) { 229 if (!zn->zbranch[n].znode) 230 continue; 231 232 if (zn->level > 0 && 233 !ubifs_zn_dirty(zn->zbranch[n].znode)) 234 clean_freed += 1; 235 236 cond_resched(); 237 kfree(zn->zbranch[n].znode); 238 } 239 240 if (zn == znode) { 241 if (!ubifs_zn_dirty(zn)) 242 clean_freed += 1; 243 kfree(zn); 244 return clean_freed; 245 } 246 247 zn = ubifs_tnc_postorder_next(zn); 248 } 249 } 250 251 /** 252 * read_znode - read an indexing node from flash and fill znode. 253 * @c: UBIFS file-system description object 254 * @lnum: LEB of the indexing node to read 255 * @offs: node offset 256 * @len: node length 257 * @znode: znode to read to 258 * 259 * This function reads an indexing node from the flash media and fills znode 260 * with the read data. Returns zero in case of success and a negative error 261 * code in case of failure. The read indexing node is validated and if anything 262 * is wrong with it, this function prints complaint messages and returns 263 * %-EINVAL. 264 */ 265 static int read_znode(struct ubifs_info *c, int lnum, int offs, int len, 266 struct ubifs_znode *znode) 267 { 268 int i, err, type, cmp; 269 struct ubifs_idx_node *idx; 270 271 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS); 272 if (!idx) 273 return -ENOMEM; 274 275 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); 276 if (err < 0) { 277 kfree(idx); 278 return err; 279 } 280 281 znode->child_cnt = le16_to_cpu(idx->child_cnt); 282 znode->level = le16_to_cpu(idx->level); 283 284 dbg_tnc("LEB %d:%d, level %d, %d branch", 285 lnum, offs, znode->level, znode->child_cnt); 286 287 if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) { 288 ubifs_err("current fanout %d, branch count %d", 289 c->fanout, znode->child_cnt); 290 ubifs_err("max levels %d, znode level %d", 291 UBIFS_MAX_LEVELS, znode->level); 292 err = 1; 293 goto out_dump; 294 } 295 296 for (i = 0; i < znode->child_cnt; i++) { 297 const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 298 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 299 300 key_read(c, &br->key, &zbr->key); 301 zbr->lnum = le32_to_cpu(br->lnum); 302 zbr->offs = le32_to_cpu(br->offs); 303 zbr->len = le32_to_cpu(br->len); 304 zbr->znode = NULL; 305 306 /* Validate branch */ 307 308 if (zbr->lnum < c->main_first || 309 zbr->lnum >= c->leb_cnt || zbr->offs < 0 || 310 zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) { 311 ubifs_err("bad branch %d", i); 312 err = 2; 313 goto out_dump; 314 } 315 316 switch (key_type(c, &zbr->key)) { 317 case UBIFS_INO_KEY: 318 case UBIFS_DATA_KEY: 319 case UBIFS_DENT_KEY: 320 case UBIFS_XENT_KEY: 321 break; 322 default: 323 ubifs_err("bad key type at slot %d: %d", 324 i, key_type(c, &zbr->key)); 325 err = 3; 326 goto out_dump; 327 } 328 329 if (znode->level) 330 continue; 331 332 type = key_type(c, &zbr->key); 333 if (c->ranges[type].max_len == 0) { 334 if (zbr->len != c->ranges[type].len) { 335 ubifs_err("bad target node (type %d) length (%d)", 336 type, zbr->len); 337 ubifs_err("have to be %d", c->ranges[type].len); 338 err = 4; 339 goto out_dump; 340 } 341 } else if (zbr->len < c->ranges[type].min_len || 342 zbr->len > c->ranges[type].max_len) { 343 ubifs_err("bad target node (type %d) length (%d)", 344 type, zbr->len); 345 ubifs_err("have to be in range of %d-%d", 346 c->ranges[type].min_len, 347 c->ranges[type].max_len); 348 err = 5; 349 goto out_dump; 350 } 351 } 352 353 /* 354 * Ensure that the next key is greater or equivalent to the 355 * previous one. 356 */ 357 for (i = 0; i < znode->child_cnt - 1; i++) { 358 const union ubifs_key *key1, *key2; 359 360 key1 = &znode->zbranch[i].key; 361 key2 = &znode->zbranch[i + 1].key; 362 363 cmp = keys_cmp(c, key1, key2); 364 if (cmp > 0) { 365 ubifs_err("bad key order (keys %d and %d)", i, i + 1); 366 err = 6; 367 goto out_dump; 368 } else if (cmp == 0 && !is_hash_key(c, key1)) { 369 /* These can only be keys with colliding hash */ 370 ubifs_err("keys %d and %d are not hashed but equivalent", 371 i, i + 1); 372 err = 7; 373 goto out_dump; 374 } 375 } 376 377 kfree(idx); 378 return 0; 379 380 out_dump: 381 ubifs_err("bad indexing node at LEB %d:%d, error %d", lnum, offs, err); 382 ubifs_dump_node(c, idx); 383 kfree(idx); 384 return -EINVAL; 385 } 386 387 /** 388 * ubifs_load_znode - load znode to TNC cache. 389 * @c: UBIFS file-system description object 390 * @zbr: znode branch 391 * @parent: znode's parent 392 * @iip: index in parent 393 * 394 * This function loads znode pointed to by @zbr into the TNC cache and 395 * returns pointer to it in case of success and a negative error code in case 396 * of failure. 397 */ 398 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c, 399 struct ubifs_zbranch *zbr, 400 struct ubifs_znode *parent, int iip) 401 { 402 int err; 403 struct ubifs_znode *znode; 404 405 ubifs_assert(!zbr->znode); 406 /* 407 * A slab cache is not presently used for znodes because the znode size 408 * depends on the fanout which is stored in the superblock. 409 */ 410 znode = kzalloc(c->max_znode_sz, GFP_NOFS); 411 if (!znode) 412 return ERR_PTR(-ENOMEM); 413 414 err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode); 415 if (err) 416 goto out; 417 418 atomic_long_inc(&c->clean_zn_cnt); 419 420 /* 421 * Increment the global clean znode counter as well. It is OK that 422 * global and per-FS clean znode counters may be inconsistent for some 423 * short time (because we might be preempted at this point), the global 424 * one is only used in shrinker. 425 */ 426 atomic_long_inc(&ubifs_clean_zn_cnt); 427 428 zbr->znode = znode; 429 znode->parent = parent; 430 znode->time = get_seconds(); 431 znode->iip = iip; 432 433 return znode; 434 435 out: 436 kfree(znode); 437 return ERR_PTR(err); 438 } 439 440 /** 441 * ubifs_tnc_read_node - read a leaf node from the flash media. 442 * @c: UBIFS file-system description object 443 * @zbr: key and position of the node 444 * @node: node is returned here 445 * 446 * This function reads a node defined by @zbr from the flash media. Returns 447 * zero in case of success or a negative negative error code in case of 448 * failure. 449 */ 450 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 451 void *node) 452 { 453 union ubifs_key key1, *key = &zbr->key; 454 int err, type = key_type(c, key); 455 struct ubifs_wbuf *wbuf; 456 457 /* 458 * 'zbr' has to point to on-flash node. The node may sit in a bud and 459 * may even be in a write buffer, so we have to take care about this. 460 */ 461 wbuf = ubifs_get_wbuf(c, zbr->lnum); 462 if (wbuf) 463 err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len, 464 zbr->lnum, zbr->offs); 465 else 466 err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum, 467 zbr->offs); 468 469 if (err) { 470 dbg_tnck(key, "key "); 471 return err; 472 } 473 474 /* Make sure the key of the read node is correct */ 475 key_read(c, node + UBIFS_KEY_OFFSET, &key1); 476 if (!keys_eq(c, key, &key1)) { 477 ubifs_err("bad key in node at LEB %d:%d", 478 zbr->lnum, zbr->offs); 479 dbg_tnck(key, "looked for key "); 480 dbg_tnck(&key1, "but found node's key "); 481 ubifs_dump_node(c, node); 482 return -EINVAL; 483 } 484 485 return 0; 486 } 487