1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 13 * the UBIFS B-tree. 14 * 15 * At the moment the locking rules of the TNC tree are quite simple and 16 * straightforward. We just have a mutex and lock it when we traverse the 17 * tree. If a znode is not in memory, we read it from flash while still having 18 * the mutex locked. 19 */ 20 21 #ifndef __UBOOT__ 22 #include <linux/crc32.h> 23 #include <linux/slab.h> 24 #else 25 #include <linux/compat.h> 26 #include <linux/err.h> 27 #include <linux/stat.h> 28 #endif 29 #include "ubifs.h" 30 31 /* 32 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 33 * @NAME_LESS: name corresponding to the first argument is less than second 34 * @NAME_MATCHES: names match 35 * @NAME_GREATER: name corresponding to the second argument is greater than 36 * first 37 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 38 * 39 * These constants were introduce to improve readability. 40 */ 41 enum { 42 NAME_LESS = 0, 43 NAME_MATCHES = 1, 44 NAME_GREATER = 2, 45 NOT_ON_MEDIA = 3, 46 }; 47 48 /** 49 * insert_old_idx - record an index node obsoleted since the last commit start. 50 * @c: UBIFS file-system description object 51 * @lnum: LEB number of obsoleted index node 52 * @offs: offset of obsoleted index node 53 * 54 * Returns %0 on success, and a negative error code on failure. 55 * 56 * For recovery, there must always be a complete intact version of the index on 57 * flash at all times. That is called the "old index". It is the index as at the 58 * time of the last successful commit. Many of the index nodes in the old index 59 * may be dirty, but they must not be erased until the next successful commit 60 * (at which point that index becomes the old index). 61 * 62 * That means that the garbage collection and the in-the-gaps method of 63 * committing must be able to determine if an index node is in the old index. 64 * Most of the old index nodes can be found by looking up the TNC using the 65 * 'lookup_znode()' function. However, some of the old index nodes may have 66 * been deleted from the current index or may have been changed so much that 67 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 68 * That is what this function does. The RB-tree is ordered by LEB number and 69 * offset because they uniquely identify the old index node. 70 */ 71 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 72 { 73 struct ubifs_old_idx *old_idx, *o; 74 struct rb_node **p, *parent = NULL; 75 76 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 77 if (unlikely(!old_idx)) 78 return -ENOMEM; 79 old_idx->lnum = lnum; 80 old_idx->offs = offs; 81 82 p = &c->old_idx.rb_node; 83 while (*p) { 84 parent = *p; 85 o = rb_entry(parent, struct ubifs_old_idx, rb); 86 if (lnum < o->lnum) 87 p = &(*p)->rb_left; 88 else if (lnum > o->lnum) 89 p = &(*p)->rb_right; 90 else if (offs < o->offs) 91 p = &(*p)->rb_left; 92 else if (offs > o->offs) 93 p = &(*p)->rb_right; 94 else { 95 ubifs_err(c, "old idx added twice!"); 96 kfree(old_idx); 97 return 0; 98 } 99 } 100 rb_link_node(&old_idx->rb, parent, p); 101 rb_insert_color(&old_idx->rb, &c->old_idx); 102 return 0; 103 } 104 105 /** 106 * insert_old_idx_znode - record a znode obsoleted since last commit start. 107 * @c: UBIFS file-system description object 108 * @znode: znode of obsoleted index node 109 * 110 * Returns %0 on success, and a negative error code on failure. 111 */ 112 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 113 { 114 if (znode->parent) { 115 struct ubifs_zbranch *zbr; 116 117 zbr = &znode->parent->zbranch[znode->iip]; 118 if (zbr->len) 119 return insert_old_idx(c, zbr->lnum, zbr->offs); 120 } else 121 if (c->zroot.len) 122 return insert_old_idx(c, c->zroot.lnum, 123 c->zroot.offs); 124 return 0; 125 } 126 127 /** 128 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 129 * @c: UBIFS file-system description object 130 * @znode: znode of obsoleted index node 131 * 132 * Returns %0 on success, and a negative error code on failure. 133 */ 134 static int ins_clr_old_idx_znode(struct ubifs_info *c, 135 struct ubifs_znode *znode) 136 { 137 int err; 138 139 if (znode->parent) { 140 struct ubifs_zbranch *zbr; 141 142 zbr = &znode->parent->zbranch[znode->iip]; 143 if (zbr->len) { 144 err = insert_old_idx(c, zbr->lnum, zbr->offs); 145 if (err) 146 return err; 147 zbr->lnum = 0; 148 zbr->offs = 0; 149 zbr->len = 0; 150 } 151 } else 152 if (c->zroot.len) { 153 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 154 if (err) 155 return err; 156 c->zroot.lnum = 0; 157 c->zroot.offs = 0; 158 c->zroot.len = 0; 159 } 160 return 0; 161 } 162 163 /** 164 * destroy_old_idx - destroy the old_idx RB-tree. 165 * @c: UBIFS file-system description object 166 * 167 * During start commit, the old_idx RB-tree is used to avoid overwriting index 168 * nodes that were in the index last commit but have since been deleted. This 169 * is necessary for recovery i.e. the old index must be kept intact until the 170 * new index is successfully written. The old-idx RB-tree is used for the 171 * in-the-gaps method of writing index nodes and is destroyed every commit. 172 */ 173 void destroy_old_idx(struct ubifs_info *c) 174 { 175 struct ubifs_old_idx *old_idx, *n; 176 177 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 178 kfree(old_idx); 179 180 c->old_idx = RB_ROOT; 181 } 182 183 /** 184 * copy_znode - copy a dirty znode. 185 * @c: UBIFS file-system description object 186 * @znode: znode to copy 187 * 188 * A dirty znode being committed may not be changed, so it is copied. 189 */ 190 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 191 struct ubifs_znode *znode) 192 { 193 struct ubifs_znode *zn; 194 195 zn = kmalloc(c->max_znode_sz, GFP_NOFS); 196 if (unlikely(!zn)) 197 return ERR_PTR(-ENOMEM); 198 199 memcpy(zn, znode, c->max_znode_sz); 200 zn->cnext = NULL; 201 __set_bit(DIRTY_ZNODE, &zn->flags); 202 __clear_bit(COW_ZNODE, &zn->flags); 203 204 ubifs_assert(!ubifs_zn_obsolete(znode)); 205 __set_bit(OBSOLETE_ZNODE, &znode->flags); 206 207 if (znode->level != 0) { 208 int i; 209 const int n = zn->child_cnt; 210 211 /* The children now have new parent */ 212 for (i = 0; i < n; i++) { 213 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 214 215 if (zbr->znode) 216 zbr->znode->parent = zn; 217 } 218 } 219 220 atomic_long_inc(&c->dirty_zn_cnt); 221 return zn; 222 } 223 224 /** 225 * add_idx_dirt - add dirt due to a dirty znode. 226 * @c: UBIFS file-system description object 227 * @lnum: LEB number of index node 228 * @dirt: size of index node 229 * 230 * This function updates lprops dirty space and the new size of the index. 231 */ 232 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 233 { 234 c->calc_idx_sz -= ALIGN(dirt, 8); 235 return ubifs_add_dirt(c, lnum, dirt); 236 } 237 238 /** 239 * dirty_cow_znode - ensure a znode is not being committed. 240 * @c: UBIFS file-system description object 241 * @zbr: branch of znode to check 242 * 243 * Returns dirtied znode on success or negative error code on failure. 244 */ 245 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 246 struct ubifs_zbranch *zbr) 247 { 248 struct ubifs_znode *znode = zbr->znode; 249 struct ubifs_znode *zn; 250 int err; 251 252 if (!ubifs_zn_cow(znode)) { 253 /* znode is not being committed */ 254 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 255 atomic_long_inc(&c->dirty_zn_cnt); 256 atomic_long_dec(&c->clean_zn_cnt); 257 atomic_long_dec(&ubifs_clean_zn_cnt); 258 err = add_idx_dirt(c, zbr->lnum, zbr->len); 259 if (unlikely(err)) 260 return ERR_PTR(err); 261 } 262 return znode; 263 } 264 265 zn = copy_znode(c, znode); 266 if (IS_ERR(zn)) 267 return zn; 268 269 if (zbr->len) { 270 err = insert_old_idx(c, zbr->lnum, zbr->offs); 271 if (unlikely(err)) 272 return ERR_PTR(err); 273 err = add_idx_dirt(c, zbr->lnum, zbr->len); 274 } else 275 err = 0; 276 277 zbr->znode = zn; 278 zbr->lnum = 0; 279 zbr->offs = 0; 280 zbr->len = 0; 281 282 if (unlikely(err)) 283 return ERR_PTR(err); 284 return zn; 285 } 286 287 /** 288 * lnc_add - add a leaf node to the leaf node cache. 289 * @c: UBIFS file-system description object 290 * @zbr: zbranch of leaf node 291 * @node: leaf node 292 * 293 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 294 * purpose of the leaf node cache is to save re-reading the same leaf node over 295 * and over again. Most things are cached by VFS, however the file system must 296 * cache directory entries for readdir and for resolving hash collisions. The 297 * present implementation of the leaf node cache is extremely simple, and 298 * allows for error returns that are not used but that may be needed if a more 299 * complex implementation is created. 300 * 301 * Note, this function does not add the @node object to LNC directly, but 302 * allocates a copy of the object and adds the copy to LNC. The reason for this 303 * is that @node has been allocated outside of the TNC subsystem and will be 304 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 305 * may be changed at any time, e.g. freed by the shrinker. 306 */ 307 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 308 const void *node) 309 { 310 int err; 311 void *lnc_node; 312 const struct ubifs_dent_node *dent = node; 313 314 ubifs_assert(!zbr->leaf); 315 ubifs_assert(zbr->len != 0); 316 ubifs_assert(is_hash_key(c, &zbr->key)); 317 318 err = ubifs_validate_entry(c, dent); 319 if (err) { 320 dump_stack(); 321 ubifs_dump_node(c, dent); 322 return err; 323 } 324 325 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 326 if (!lnc_node) 327 /* We don't have to have the cache, so no error */ 328 return 0; 329 330 zbr->leaf = lnc_node; 331 return 0; 332 } 333 334 /** 335 * lnc_add_directly - add a leaf node to the leaf-node-cache. 336 * @c: UBIFS file-system description object 337 * @zbr: zbranch of leaf node 338 * @node: leaf node 339 * 340 * This function is similar to 'lnc_add()', but it does not create a copy of 341 * @node but inserts @node to TNC directly. 342 */ 343 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 344 void *node) 345 { 346 int err; 347 348 ubifs_assert(!zbr->leaf); 349 ubifs_assert(zbr->len != 0); 350 351 err = ubifs_validate_entry(c, node); 352 if (err) { 353 dump_stack(); 354 ubifs_dump_node(c, node); 355 return err; 356 } 357 358 zbr->leaf = node; 359 return 0; 360 } 361 362 /** 363 * lnc_free - remove a leaf node from the leaf node cache. 364 * @zbr: zbranch of leaf node 365 * @node: leaf node 366 */ 367 static void lnc_free(struct ubifs_zbranch *zbr) 368 { 369 if (!zbr->leaf) 370 return; 371 kfree(zbr->leaf); 372 zbr->leaf = NULL; 373 } 374 375 /** 376 * tnc_read_node_nm - read a "hashed" leaf node. 377 * @c: UBIFS file-system description object 378 * @zbr: key and position of the node 379 * @node: node is returned here 380 * 381 * This function reads a "hashed" node defined by @zbr from the leaf node cache 382 * (in it is there) or from the hash media, in which case the node is also 383 * added to LNC. Returns zero in case of success or a negative negative error 384 * code in case of failure. 385 */ 386 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, 387 void *node) 388 { 389 int err; 390 391 ubifs_assert(is_hash_key(c, &zbr->key)); 392 393 if (zbr->leaf) { 394 /* Read from the leaf node cache */ 395 ubifs_assert(zbr->len != 0); 396 memcpy(node, zbr->leaf, zbr->len); 397 return 0; 398 } 399 400 err = ubifs_tnc_read_node(c, zbr, node); 401 if (err) 402 return err; 403 404 /* Add the node to the leaf node cache */ 405 err = lnc_add(c, zbr, node); 406 return err; 407 } 408 409 /** 410 * try_read_node - read a node if it is a node. 411 * @c: UBIFS file-system description object 412 * @buf: buffer to read to 413 * @type: node type 414 * @len: node length (not aligned) 415 * @lnum: LEB number of node to read 416 * @offs: offset of node to read 417 * 418 * This function tries to read a node of known type and length, checks it and 419 * stores it in @buf. This function returns %1 if a node is present and %0 if 420 * a node is not present. A negative error code is returned for I/O errors. 421 * This function performs that same function as ubifs_read_node except that 422 * it does not require that there is actually a node present and instead 423 * the return code indicates if a node was read. 424 * 425 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 426 * is true (it is controlled by corresponding mount option). However, if 427 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 428 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 429 * because during mounting or re-mounting from R/O mode to R/W mode we may read 430 * journal nodes (when replying the journal or doing the recovery) and the 431 * journal nodes may potentially be corrupted, so checking is required. 432 */ 433 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 434 int len, int lnum, int offs) 435 { 436 int err, node_len; 437 struct ubifs_ch *ch = buf; 438 uint32_t crc, node_crc; 439 440 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 441 442 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 443 if (err) { 444 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", 445 type, lnum, offs, err); 446 return err; 447 } 448 449 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 450 return 0; 451 452 if (ch->node_type != type) 453 return 0; 454 455 node_len = le32_to_cpu(ch->len); 456 if (node_len != len) 457 return 0; 458 459 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && 460 !c->remounting_rw) 461 return 1; 462 463 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 464 node_crc = le32_to_cpu(ch->crc); 465 if (crc != node_crc) 466 return 0; 467 468 return 1; 469 } 470 471 /** 472 * fallible_read_node - try to read a leaf node. 473 * @c: UBIFS file-system description object 474 * @key: key of node to read 475 * @zbr: position of node 476 * @node: node returned 477 * 478 * This function tries to read a node and returns %1 if the node is read, %0 479 * if the node is not present, and a negative error code in the case of error. 480 */ 481 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 482 struct ubifs_zbranch *zbr, void *node) 483 { 484 int ret; 485 486 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 487 488 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 489 zbr->offs); 490 if (ret == 1) { 491 union ubifs_key node_key; 492 struct ubifs_dent_node *dent = node; 493 494 /* All nodes have key in the same place */ 495 key_read(c, &dent->key, &node_key); 496 if (keys_cmp(c, key, &node_key) != 0) 497 ret = 0; 498 } 499 if (ret == 0 && c->replaying) 500 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 501 zbr->lnum, zbr->offs, zbr->len); 502 return ret; 503 } 504 505 /** 506 * matches_name - determine if a direntry or xattr entry matches a given name. 507 * @c: UBIFS file-system description object 508 * @zbr: zbranch of dent 509 * @nm: name to match 510 * 511 * This function checks if xentry/direntry referred by zbranch @zbr matches name 512 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 513 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 514 * of failure, a negative error code is returned. 515 */ 516 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 517 const struct qstr *nm) 518 { 519 struct ubifs_dent_node *dent; 520 int nlen, err; 521 522 /* If possible, match against the dent in the leaf node cache */ 523 if (!zbr->leaf) { 524 dent = kmalloc(zbr->len, GFP_NOFS); 525 if (!dent) 526 return -ENOMEM; 527 528 err = ubifs_tnc_read_node(c, zbr, dent); 529 if (err) 530 goto out_free; 531 532 /* Add the node to the leaf node cache */ 533 err = lnc_add_directly(c, zbr, dent); 534 if (err) 535 goto out_free; 536 } else 537 dent = zbr->leaf; 538 539 nlen = le16_to_cpu(dent->nlen); 540 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 541 if (err == 0) { 542 if (nlen == nm->len) 543 return NAME_MATCHES; 544 else if (nlen < nm->len) 545 return NAME_LESS; 546 else 547 return NAME_GREATER; 548 } else if (err < 0) 549 return NAME_LESS; 550 else 551 return NAME_GREATER; 552 553 out_free: 554 kfree(dent); 555 return err; 556 } 557 558 /** 559 * get_znode - get a TNC znode that may not be loaded yet. 560 * @c: UBIFS file-system description object 561 * @znode: parent znode 562 * @n: znode branch slot number 563 * 564 * This function returns the znode or a negative error code. 565 */ 566 static struct ubifs_znode *get_znode(struct ubifs_info *c, 567 struct ubifs_znode *znode, int n) 568 { 569 struct ubifs_zbranch *zbr; 570 571 zbr = &znode->zbranch[n]; 572 if (zbr->znode) 573 znode = zbr->znode; 574 else 575 znode = ubifs_load_znode(c, zbr, znode, n); 576 return znode; 577 } 578 579 /** 580 * tnc_next - find next TNC entry. 581 * @c: UBIFS file-system description object 582 * @zn: znode is passed and returned here 583 * @n: znode branch slot number is passed and returned here 584 * 585 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 586 * no next entry, or a negative error code otherwise. 587 */ 588 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 589 { 590 struct ubifs_znode *znode = *zn; 591 int nn = *n; 592 593 nn += 1; 594 if (nn < znode->child_cnt) { 595 *n = nn; 596 return 0; 597 } 598 while (1) { 599 struct ubifs_znode *zp; 600 601 zp = znode->parent; 602 if (!zp) 603 return -ENOENT; 604 nn = znode->iip + 1; 605 znode = zp; 606 if (nn < znode->child_cnt) { 607 znode = get_znode(c, znode, nn); 608 if (IS_ERR(znode)) 609 return PTR_ERR(znode); 610 while (znode->level != 0) { 611 znode = get_znode(c, znode, 0); 612 if (IS_ERR(znode)) 613 return PTR_ERR(znode); 614 } 615 nn = 0; 616 break; 617 } 618 } 619 *zn = znode; 620 *n = nn; 621 return 0; 622 } 623 624 /** 625 * tnc_prev - find previous TNC entry. 626 * @c: UBIFS file-system description object 627 * @zn: znode is returned here 628 * @n: znode branch slot number is passed and returned here 629 * 630 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 631 * there is no next entry, or a negative error code otherwise. 632 */ 633 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 634 { 635 struct ubifs_znode *znode = *zn; 636 int nn = *n; 637 638 if (nn > 0) { 639 *n = nn - 1; 640 return 0; 641 } 642 while (1) { 643 struct ubifs_znode *zp; 644 645 zp = znode->parent; 646 if (!zp) 647 return -ENOENT; 648 nn = znode->iip - 1; 649 znode = zp; 650 if (nn >= 0) { 651 znode = get_znode(c, znode, nn); 652 if (IS_ERR(znode)) 653 return PTR_ERR(znode); 654 while (znode->level != 0) { 655 nn = znode->child_cnt - 1; 656 znode = get_znode(c, znode, nn); 657 if (IS_ERR(znode)) 658 return PTR_ERR(znode); 659 } 660 nn = znode->child_cnt - 1; 661 break; 662 } 663 } 664 *zn = znode; 665 *n = nn; 666 return 0; 667 } 668 669 /** 670 * resolve_collision - resolve a collision. 671 * @c: UBIFS file-system description object 672 * @key: key of a directory or extended attribute entry 673 * @zn: znode is returned here 674 * @n: zbranch number is passed and returned here 675 * @nm: name of the entry 676 * 677 * This function is called for "hashed" keys to make sure that the found key 678 * really corresponds to the looked up node (directory or extended attribute 679 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 680 * %0 is returned if @nm is not found and @zn and @n are set to the previous 681 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 682 * This means that @n may be set to %-1 if the leftmost key in @zn is the 683 * previous one. A negative error code is returned on failures. 684 */ 685 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 686 struct ubifs_znode **zn, int *n, 687 const struct qstr *nm) 688 { 689 int err; 690 691 err = matches_name(c, &(*zn)->zbranch[*n], nm); 692 if (unlikely(err < 0)) 693 return err; 694 if (err == NAME_MATCHES) 695 return 1; 696 697 if (err == NAME_GREATER) { 698 /* Look left */ 699 while (1) { 700 err = tnc_prev(c, zn, n); 701 if (err == -ENOENT) { 702 ubifs_assert(*n == 0); 703 *n = -1; 704 return 0; 705 } 706 if (err < 0) 707 return err; 708 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 709 /* 710 * We have found the branch after which we would 711 * like to insert, but inserting in this znode 712 * may still be wrong. Consider the following 3 713 * znodes, in the case where we are resolving a 714 * collision with Key2. 715 * 716 * znode zp 717 * ---------------------- 718 * level 1 | Key0 | Key1 | 719 * ----------------------- 720 * | | 721 * znode za | | znode zb 722 * ------------ ------------ 723 * level 0 | Key0 | | Key2 | 724 * ------------ ------------ 725 * 726 * The lookup finds Key2 in znode zb. Lets say 727 * there is no match and the name is greater so 728 * we look left. When we find Key0, we end up 729 * here. If we return now, we will insert into 730 * znode za at slot n = 1. But that is invalid 731 * according to the parent's keys. Key2 must 732 * be inserted into znode zb. 733 * 734 * Note, this problem is not relevant for the 735 * case when we go right, because 736 * 'tnc_insert()' would correct the parent key. 737 */ 738 if (*n == (*zn)->child_cnt - 1) { 739 err = tnc_next(c, zn, n); 740 if (err) { 741 /* Should be impossible */ 742 ubifs_assert(0); 743 if (err == -ENOENT) 744 err = -EINVAL; 745 return err; 746 } 747 ubifs_assert(*n == 0); 748 *n = -1; 749 } 750 return 0; 751 } 752 err = matches_name(c, &(*zn)->zbranch[*n], nm); 753 if (err < 0) 754 return err; 755 if (err == NAME_LESS) 756 return 0; 757 if (err == NAME_MATCHES) 758 return 1; 759 ubifs_assert(err == NAME_GREATER); 760 } 761 } else { 762 int nn = *n; 763 struct ubifs_znode *znode = *zn; 764 765 /* Look right */ 766 while (1) { 767 err = tnc_next(c, &znode, &nn); 768 if (err == -ENOENT) 769 return 0; 770 if (err < 0) 771 return err; 772 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 773 return 0; 774 err = matches_name(c, &znode->zbranch[nn], nm); 775 if (err < 0) 776 return err; 777 if (err == NAME_GREATER) 778 return 0; 779 *zn = znode; 780 *n = nn; 781 if (err == NAME_MATCHES) 782 return 1; 783 ubifs_assert(err == NAME_LESS); 784 } 785 } 786 } 787 788 /** 789 * fallible_matches_name - determine if a dent matches a given name. 790 * @c: UBIFS file-system description object 791 * @zbr: zbranch of dent 792 * @nm: name to match 793 * 794 * This is a "fallible" version of 'matches_name()' function which does not 795 * panic if the direntry/xentry referred by @zbr does not exist on the media. 796 * 797 * This function checks if xentry/direntry referred by zbranch @zbr matches name 798 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 799 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 800 * if xentry/direntry referred by @zbr does not exist on the media. A negative 801 * error code is returned in case of failure. 802 */ 803 static int fallible_matches_name(struct ubifs_info *c, 804 struct ubifs_zbranch *zbr, 805 const struct qstr *nm) 806 { 807 struct ubifs_dent_node *dent; 808 int nlen, err; 809 810 /* If possible, match against the dent in the leaf node cache */ 811 if (!zbr->leaf) { 812 dent = kmalloc(zbr->len, GFP_NOFS); 813 if (!dent) 814 return -ENOMEM; 815 816 err = fallible_read_node(c, &zbr->key, zbr, dent); 817 if (err < 0) 818 goto out_free; 819 if (err == 0) { 820 /* The node was not present */ 821 err = NOT_ON_MEDIA; 822 goto out_free; 823 } 824 ubifs_assert(err == 1); 825 826 err = lnc_add_directly(c, zbr, dent); 827 if (err) 828 goto out_free; 829 } else 830 dent = zbr->leaf; 831 832 nlen = le16_to_cpu(dent->nlen); 833 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 834 if (err == 0) { 835 if (nlen == nm->len) 836 return NAME_MATCHES; 837 else if (nlen < nm->len) 838 return NAME_LESS; 839 else 840 return NAME_GREATER; 841 } else if (err < 0) 842 return NAME_LESS; 843 else 844 return NAME_GREATER; 845 846 out_free: 847 kfree(dent); 848 return err; 849 } 850 851 /** 852 * fallible_resolve_collision - resolve a collision even if nodes are missing. 853 * @c: UBIFS file-system description object 854 * @key: key 855 * @zn: znode is returned here 856 * @n: branch number is passed and returned here 857 * @nm: name of directory entry 858 * @adding: indicates caller is adding a key to the TNC 859 * 860 * This is a "fallible" version of the 'resolve_collision()' function which 861 * does not panic if one of the nodes referred to by TNC does not exist on the 862 * media. This may happen when replaying the journal if a deleted node was 863 * Garbage-collected and the commit was not done. A branch that refers to a node 864 * that is not present is called a dangling branch. The following are the return 865 * codes for this function: 866 * o if @nm was found, %1 is returned and @zn and @n are set to the found 867 * branch; 868 * o if we are @adding and @nm was not found, %0 is returned; 869 * o if we are not @adding and @nm was not found, but a dangling branch was 870 * found, then %1 is returned and @zn and @n are set to the dangling branch; 871 * o a negative error code is returned in case of failure. 872 */ 873 static int fallible_resolve_collision(struct ubifs_info *c, 874 const union ubifs_key *key, 875 struct ubifs_znode **zn, int *n, 876 const struct qstr *nm, int adding) 877 { 878 struct ubifs_znode *o_znode = NULL, *znode = *zn; 879 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 880 881 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 882 if (unlikely(cmp < 0)) 883 return cmp; 884 if (cmp == NAME_MATCHES) 885 return 1; 886 if (cmp == NOT_ON_MEDIA) { 887 o_znode = znode; 888 o_n = nn; 889 /* 890 * We are unlucky and hit a dangling branch straight away. 891 * Now we do not really know where to go to find the needed 892 * branch - to the left or to the right. Well, let's try left. 893 */ 894 unsure = 1; 895 } else if (!adding) 896 unsure = 1; /* Remove a dangling branch wherever it is */ 897 898 if (cmp == NAME_GREATER || unsure) { 899 /* Look left */ 900 while (1) { 901 err = tnc_prev(c, zn, n); 902 if (err == -ENOENT) { 903 ubifs_assert(*n == 0); 904 *n = -1; 905 break; 906 } 907 if (err < 0) 908 return err; 909 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 910 /* See comments in 'resolve_collision()' */ 911 if (*n == (*zn)->child_cnt - 1) { 912 err = tnc_next(c, zn, n); 913 if (err) { 914 /* Should be impossible */ 915 ubifs_assert(0); 916 if (err == -ENOENT) 917 err = -EINVAL; 918 return err; 919 } 920 ubifs_assert(*n == 0); 921 *n = -1; 922 } 923 break; 924 } 925 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 926 if (err < 0) 927 return err; 928 if (err == NAME_MATCHES) 929 return 1; 930 if (err == NOT_ON_MEDIA) { 931 o_znode = *zn; 932 o_n = *n; 933 continue; 934 } 935 if (!adding) 936 continue; 937 if (err == NAME_LESS) 938 break; 939 else 940 unsure = 0; 941 } 942 } 943 944 if (cmp == NAME_LESS || unsure) { 945 /* Look right */ 946 *zn = znode; 947 *n = nn; 948 while (1) { 949 err = tnc_next(c, &znode, &nn); 950 if (err == -ENOENT) 951 break; 952 if (err < 0) 953 return err; 954 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 955 break; 956 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 957 if (err < 0) 958 return err; 959 if (err == NAME_GREATER) 960 break; 961 *zn = znode; 962 *n = nn; 963 if (err == NAME_MATCHES) 964 return 1; 965 if (err == NOT_ON_MEDIA) { 966 o_znode = znode; 967 o_n = nn; 968 } 969 } 970 } 971 972 /* Never match a dangling branch when adding */ 973 if (adding || !o_znode) 974 return 0; 975 976 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 977 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 978 o_znode->zbranch[o_n].len); 979 *zn = o_znode; 980 *n = o_n; 981 return 1; 982 } 983 984 /** 985 * matches_position - determine if a zbranch matches a given position. 986 * @zbr: zbranch of dent 987 * @lnum: LEB number of dent to match 988 * @offs: offset of dent to match 989 * 990 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 991 */ 992 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 993 { 994 if (zbr->lnum == lnum && zbr->offs == offs) 995 return 1; 996 else 997 return 0; 998 } 999 1000 /** 1001 * resolve_collision_directly - resolve a collision directly. 1002 * @c: UBIFS file-system description object 1003 * @key: key of directory entry 1004 * @zn: znode is passed and returned here 1005 * @n: zbranch number is passed and returned here 1006 * @lnum: LEB number of dent node to match 1007 * @offs: offset of dent node to match 1008 * 1009 * This function is used for "hashed" keys to make sure the found directory or 1010 * extended attribute entry node is what was looked for. It is used when the 1011 * flash address of the right node is known (@lnum:@offs) which makes it much 1012 * easier to resolve collisions (no need to read entries and match full 1013 * names). This function returns %1 and sets @zn and @n if the collision is 1014 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1015 * previous directory entry. Otherwise a negative error code is returned. 1016 */ 1017 static int resolve_collision_directly(struct ubifs_info *c, 1018 const union ubifs_key *key, 1019 struct ubifs_znode **zn, int *n, 1020 int lnum, int offs) 1021 { 1022 struct ubifs_znode *znode; 1023 int nn, err; 1024 1025 znode = *zn; 1026 nn = *n; 1027 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1028 return 1; 1029 1030 /* Look left */ 1031 while (1) { 1032 err = tnc_prev(c, &znode, &nn); 1033 if (err == -ENOENT) 1034 break; 1035 if (err < 0) 1036 return err; 1037 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1038 break; 1039 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1040 *zn = znode; 1041 *n = nn; 1042 return 1; 1043 } 1044 } 1045 1046 /* Look right */ 1047 znode = *zn; 1048 nn = *n; 1049 while (1) { 1050 err = tnc_next(c, &znode, &nn); 1051 if (err == -ENOENT) 1052 return 0; 1053 if (err < 0) 1054 return err; 1055 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1056 return 0; 1057 *zn = znode; 1058 *n = nn; 1059 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1060 return 1; 1061 } 1062 } 1063 1064 /** 1065 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1066 * @c: UBIFS file-system description object 1067 * @znode: znode to dirty 1068 * 1069 * If we do not have a unique key that resides in a znode, then we cannot 1070 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1071 * This function records the path back to the last dirty ancestor, and then 1072 * dirties the znodes on that path. 1073 */ 1074 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1075 struct ubifs_znode *znode) 1076 { 1077 struct ubifs_znode *zp; 1078 int *path = c->bottom_up_buf, p = 0; 1079 1080 ubifs_assert(c->zroot.znode); 1081 ubifs_assert(znode); 1082 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1083 kfree(c->bottom_up_buf); 1084 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), 1085 GFP_NOFS); 1086 if (!c->bottom_up_buf) 1087 return ERR_PTR(-ENOMEM); 1088 path = c->bottom_up_buf; 1089 } 1090 if (c->zroot.znode->level) { 1091 /* Go up until parent is dirty */ 1092 while (1) { 1093 int n; 1094 1095 zp = znode->parent; 1096 if (!zp) 1097 break; 1098 n = znode->iip; 1099 ubifs_assert(p < c->zroot.znode->level); 1100 path[p++] = n; 1101 if (!zp->cnext && ubifs_zn_dirty(znode)) 1102 break; 1103 znode = zp; 1104 } 1105 } 1106 1107 /* Come back down, dirtying as we go */ 1108 while (1) { 1109 struct ubifs_zbranch *zbr; 1110 1111 zp = znode->parent; 1112 if (zp) { 1113 ubifs_assert(path[p - 1] >= 0); 1114 ubifs_assert(path[p - 1] < zp->child_cnt); 1115 zbr = &zp->zbranch[path[--p]]; 1116 znode = dirty_cow_znode(c, zbr); 1117 } else { 1118 ubifs_assert(znode == c->zroot.znode); 1119 znode = dirty_cow_znode(c, &c->zroot); 1120 } 1121 if (IS_ERR(znode) || !p) 1122 break; 1123 ubifs_assert(path[p - 1] >= 0); 1124 ubifs_assert(path[p - 1] < znode->child_cnt); 1125 znode = znode->zbranch[path[p - 1]].znode; 1126 } 1127 1128 return znode; 1129 } 1130 1131 /** 1132 * ubifs_lookup_level0 - search for zero-level znode. 1133 * @c: UBIFS file-system description object 1134 * @key: key to lookup 1135 * @zn: znode is returned here 1136 * @n: znode branch slot number is returned here 1137 * 1138 * This function looks up the TNC tree and search for zero-level znode which 1139 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1140 * cases: 1141 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1142 * is returned and slot number of the matched branch is stored in @n; 1143 * o not exact match, which means that zero-level znode does not contain 1144 * @key, then %0 is returned and slot number of the closest branch is stored 1145 * in @n; 1146 * o @key is so small that it is even less than the lowest key of the 1147 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1148 * 1149 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1150 * function reads corresponding indexing nodes and inserts them to TNC. In 1151 * case of failure, a negative error code is returned. 1152 */ 1153 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1154 struct ubifs_znode **zn, int *n) 1155 { 1156 int err, exact; 1157 struct ubifs_znode *znode; 1158 unsigned long time = get_seconds(); 1159 1160 dbg_tnck(key, "search key "); 1161 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 1162 1163 znode = c->zroot.znode; 1164 if (unlikely(!znode)) { 1165 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1166 if (IS_ERR(znode)) 1167 return PTR_ERR(znode); 1168 } 1169 1170 znode->time = time; 1171 1172 while (1) { 1173 struct ubifs_zbranch *zbr; 1174 1175 exact = ubifs_search_zbranch(c, znode, key, n); 1176 1177 if (znode->level == 0) 1178 break; 1179 1180 if (*n < 0) 1181 *n = 0; 1182 zbr = &znode->zbranch[*n]; 1183 1184 if (zbr->znode) { 1185 znode->time = time; 1186 znode = zbr->znode; 1187 continue; 1188 } 1189 1190 /* znode is not in TNC cache, load it from the media */ 1191 znode = ubifs_load_znode(c, zbr, znode, *n); 1192 if (IS_ERR(znode)) 1193 return PTR_ERR(znode); 1194 } 1195 1196 *zn = znode; 1197 if (exact || !is_hash_key(c, key) || *n != -1) { 1198 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1199 return exact; 1200 } 1201 1202 /* 1203 * Here is a tricky place. We have not found the key and this is a 1204 * "hashed" key, which may collide. The rest of the code deals with 1205 * situations like this: 1206 * 1207 * | 3 | 5 | 1208 * / \ 1209 * | 3 | 5 | | 6 | 7 | (x) 1210 * 1211 * Or more a complex example: 1212 * 1213 * | 1 | 5 | 1214 * / \ 1215 * | 1 | 3 | | 5 | 8 | 1216 * \ / 1217 * | 5 | 5 | | 6 | 7 | (x) 1218 * 1219 * In the examples, if we are looking for key "5", we may reach nodes 1220 * marked with "(x)". In this case what we have do is to look at the 1221 * left and see if there is "5" key there. If there is, we have to 1222 * return it. 1223 * 1224 * Note, this whole situation is possible because we allow to have 1225 * elements which are equivalent to the next key in the parent in the 1226 * children of current znode. For example, this happens if we split a 1227 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1228 * like this: 1229 * | 3 | 5 | 1230 * / \ 1231 * | 3 | 5 | | 5 | 6 | 7 | 1232 * ^ 1233 * And this becomes what is at the first "picture" after key "5" marked 1234 * with "^" is removed. What could be done is we could prohibit 1235 * splitting in the middle of the colliding sequence. Also, when 1236 * removing the leftmost key, we would have to correct the key of the 1237 * parent node, which would introduce additional complications. Namely, 1238 * if we changed the leftmost key of the parent znode, the garbage 1239 * collector would be unable to find it (GC is doing this when GC'ing 1240 * indexing LEBs). Although we already have an additional RB-tree where 1241 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1242 * after the commit. But anyway, this does not look easy to implement 1243 * so we did not try this. 1244 */ 1245 err = tnc_prev(c, &znode, n); 1246 if (err == -ENOENT) { 1247 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1248 *n = -1; 1249 return 0; 1250 } 1251 if (unlikely(err < 0)) 1252 return err; 1253 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1254 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1255 *n = -1; 1256 return 0; 1257 } 1258 1259 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1260 *zn = znode; 1261 return 1; 1262 } 1263 1264 /** 1265 * lookup_level0_dirty - search for zero-level znode dirtying. 1266 * @c: UBIFS file-system description object 1267 * @key: key to lookup 1268 * @zn: znode is returned here 1269 * @n: znode branch slot number is returned here 1270 * 1271 * This function looks up the TNC tree and search for zero-level znode which 1272 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1273 * cases: 1274 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1275 * is returned and slot number of the matched branch is stored in @n; 1276 * o not exact match, which means that zero-level znode does not contain @key 1277 * then %0 is returned and slot number of the closed branch is stored in 1278 * @n; 1279 * o @key is so small that it is even less than the lowest key of the 1280 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1281 * 1282 * Additionally all znodes in the path from the root to the located zero-level 1283 * znode are marked as dirty. 1284 * 1285 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1286 * function reads corresponding indexing nodes and inserts them to TNC. In 1287 * case of failure, a negative error code is returned. 1288 */ 1289 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1290 struct ubifs_znode **zn, int *n) 1291 { 1292 int err, exact; 1293 struct ubifs_znode *znode; 1294 unsigned long time = get_seconds(); 1295 1296 dbg_tnck(key, "search and dirty key "); 1297 1298 znode = c->zroot.znode; 1299 if (unlikely(!znode)) { 1300 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1301 if (IS_ERR(znode)) 1302 return PTR_ERR(znode); 1303 } 1304 1305 znode = dirty_cow_znode(c, &c->zroot); 1306 if (IS_ERR(znode)) 1307 return PTR_ERR(znode); 1308 1309 znode->time = time; 1310 1311 while (1) { 1312 struct ubifs_zbranch *zbr; 1313 1314 exact = ubifs_search_zbranch(c, znode, key, n); 1315 1316 if (znode->level == 0) 1317 break; 1318 1319 if (*n < 0) 1320 *n = 0; 1321 zbr = &znode->zbranch[*n]; 1322 1323 if (zbr->znode) { 1324 znode->time = time; 1325 znode = dirty_cow_znode(c, zbr); 1326 if (IS_ERR(znode)) 1327 return PTR_ERR(znode); 1328 continue; 1329 } 1330 1331 /* znode is not in TNC cache, load it from the media */ 1332 znode = ubifs_load_znode(c, zbr, znode, *n); 1333 if (IS_ERR(znode)) 1334 return PTR_ERR(znode); 1335 znode = dirty_cow_znode(c, zbr); 1336 if (IS_ERR(znode)) 1337 return PTR_ERR(znode); 1338 } 1339 1340 *zn = znode; 1341 if (exact || !is_hash_key(c, key) || *n != -1) { 1342 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1343 return exact; 1344 } 1345 1346 /* 1347 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1348 * code. 1349 */ 1350 err = tnc_prev(c, &znode, n); 1351 if (err == -ENOENT) { 1352 *n = -1; 1353 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1354 return 0; 1355 } 1356 if (unlikely(err < 0)) 1357 return err; 1358 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1359 *n = -1; 1360 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1361 return 0; 1362 } 1363 1364 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1365 znode = dirty_cow_bottom_up(c, znode); 1366 if (IS_ERR(znode)) 1367 return PTR_ERR(znode); 1368 } 1369 1370 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1371 *zn = znode; 1372 return 1; 1373 } 1374 1375 /** 1376 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1377 * @c: UBIFS file-system description object 1378 * @lnum: LEB number 1379 * @gc_seq1: garbage collection sequence number 1380 * 1381 * This function determines if @lnum may have been garbage collected since 1382 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1383 * %0 is returned. 1384 */ 1385 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1386 { 1387 #ifndef __UBOOT__ 1388 int gc_seq2, gced_lnum; 1389 1390 gced_lnum = c->gced_lnum; 1391 smp_rmb(); 1392 gc_seq2 = c->gc_seq; 1393 /* Same seq means no GC */ 1394 if (gc_seq1 == gc_seq2) 1395 return 0; 1396 /* Different by more than 1 means we don't know */ 1397 if (gc_seq1 + 1 != gc_seq2) 1398 return 1; 1399 /* 1400 * We have seen the sequence number has increased by 1. Now we need to 1401 * be sure we read the right LEB number, so read it again. 1402 */ 1403 smp_rmb(); 1404 if (gced_lnum != c->gced_lnum) 1405 return 1; 1406 /* Finally we can check lnum */ 1407 if (gced_lnum == lnum) 1408 return 1; 1409 #else 1410 /* No garbage collection in the read-only U-Boot implementation */ 1411 #endif 1412 return 0; 1413 } 1414 1415 /** 1416 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1417 * @c: UBIFS file-system description object 1418 * @key: node key to lookup 1419 * @node: the node is returned here 1420 * @lnum: LEB number is returned here 1421 * @offs: offset is returned here 1422 * 1423 * This function looks up and reads node with key @key. The caller has to make 1424 * sure the @node buffer is large enough to fit the node. Returns zero in case 1425 * of success, %-ENOENT if the node was not found, and a negative error code in 1426 * case of failure. The node location can be returned in @lnum and @offs. 1427 */ 1428 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1429 void *node, int *lnum, int *offs) 1430 { 1431 int found, n, err, safely = 0, gc_seq1; 1432 struct ubifs_znode *znode; 1433 struct ubifs_zbranch zbr, *zt; 1434 1435 again: 1436 mutex_lock(&c->tnc_mutex); 1437 found = ubifs_lookup_level0(c, key, &znode, &n); 1438 if (!found) { 1439 err = -ENOENT; 1440 goto out; 1441 } else if (found < 0) { 1442 err = found; 1443 goto out; 1444 } 1445 zt = &znode->zbranch[n]; 1446 if (lnum) { 1447 *lnum = zt->lnum; 1448 *offs = zt->offs; 1449 } 1450 if (is_hash_key(c, key)) { 1451 /* 1452 * In this case the leaf node cache gets used, so we pass the 1453 * address of the zbranch and keep the mutex locked 1454 */ 1455 err = tnc_read_node_nm(c, zt, node); 1456 goto out; 1457 } 1458 if (safely) { 1459 err = ubifs_tnc_read_node(c, zt, node); 1460 goto out; 1461 } 1462 /* Drop the TNC mutex prematurely and race with garbage collection */ 1463 zbr = znode->zbranch[n]; 1464 gc_seq1 = c->gc_seq; 1465 mutex_unlock(&c->tnc_mutex); 1466 1467 if (ubifs_get_wbuf(c, zbr.lnum)) { 1468 /* We do not GC journal heads */ 1469 err = ubifs_tnc_read_node(c, &zbr, node); 1470 return err; 1471 } 1472 1473 err = fallible_read_node(c, key, &zbr, node); 1474 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1475 /* 1476 * The node may have been GC'ed out from under us so try again 1477 * while keeping the TNC mutex locked. 1478 */ 1479 safely = 1; 1480 goto again; 1481 } 1482 return 0; 1483 1484 out: 1485 mutex_unlock(&c->tnc_mutex); 1486 return err; 1487 } 1488 1489 /** 1490 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1491 * @c: UBIFS file-system description object 1492 * @bu: bulk-read parameters and results 1493 * 1494 * Lookup consecutive data node keys for the same inode that reside 1495 * consecutively in the same LEB. This function returns zero in case of success 1496 * and a negative error code in case of failure. 1497 * 1498 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1499 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1500 * maximum possible amount of nodes for bulk-read. 1501 */ 1502 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1503 { 1504 int n, err = 0, lnum = -1, uninitialized_var(offs); 1505 int uninitialized_var(len); 1506 unsigned int block = key_block(c, &bu->key); 1507 struct ubifs_znode *znode; 1508 1509 bu->cnt = 0; 1510 bu->blk_cnt = 0; 1511 bu->eof = 0; 1512 1513 mutex_lock(&c->tnc_mutex); 1514 /* Find first key */ 1515 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1516 if (err < 0) 1517 goto out; 1518 if (err) { 1519 /* Key found */ 1520 len = znode->zbranch[n].len; 1521 /* The buffer must be big enough for at least 1 node */ 1522 if (len > bu->buf_len) { 1523 err = -EINVAL; 1524 goto out; 1525 } 1526 /* Add this key */ 1527 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1528 bu->blk_cnt += 1; 1529 lnum = znode->zbranch[n].lnum; 1530 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1531 } 1532 while (1) { 1533 struct ubifs_zbranch *zbr; 1534 union ubifs_key *key; 1535 unsigned int next_block; 1536 1537 /* Find next key */ 1538 err = tnc_next(c, &znode, &n); 1539 if (err) 1540 goto out; 1541 zbr = &znode->zbranch[n]; 1542 key = &zbr->key; 1543 /* See if there is another data key for this file */ 1544 if (key_inum(c, key) != key_inum(c, &bu->key) || 1545 key_type(c, key) != UBIFS_DATA_KEY) { 1546 err = -ENOENT; 1547 goto out; 1548 } 1549 if (lnum < 0) { 1550 /* First key found */ 1551 lnum = zbr->lnum; 1552 offs = ALIGN(zbr->offs + zbr->len, 8); 1553 len = zbr->len; 1554 if (len > bu->buf_len) { 1555 err = -EINVAL; 1556 goto out; 1557 } 1558 } else { 1559 /* 1560 * The data nodes must be in consecutive positions in 1561 * the same LEB. 1562 */ 1563 if (zbr->lnum != lnum || zbr->offs != offs) 1564 goto out; 1565 offs += ALIGN(zbr->len, 8); 1566 len = ALIGN(len, 8) + zbr->len; 1567 /* Must not exceed buffer length */ 1568 if (len > bu->buf_len) 1569 goto out; 1570 } 1571 /* Allow for holes */ 1572 next_block = key_block(c, key); 1573 bu->blk_cnt += (next_block - block - 1); 1574 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1575 goto out; 1576 block = next_block; 1577 /* Add this key */ 1578 bu->zbranch[bu->cnt++] = *zbr; 1579 bu->blk_cnt += 1; 1580 /* See if we have room for more */ 1581 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1582 goto out; 1583 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1584 goto out; 1585 } 1586 out: 1587 if (err == -ENOENT) { 1588 bu->eof = 1; 1589 err = 0; 1590 } 1591 bu->gc_seq = c->gc_seq; 1592 mutex_unlock(&c->tnc_mutex); 1593 if (err) 1594 return err; 1595 /* 1596 * An enormous hole could cause bulk-read to encompass too many 1597 * page cache pages, so limit the number here. 1598 */ 1599 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1600 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1601 /* 1602 * Ensure that bulk-read covers a whole number of page cache 1603 * pages. 1604 */ 1605 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1606 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1607 return 0; 1608 if (bu->eof) { 1609 /* At the end of file we can round up */ 1610 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1611 return 0; 1612 } 1613 /* Exclude data nodes that do not make up a whole page cache page */ 1614 block = key_block(c, &bu->key) + bu->blk_cnt; 1615 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1616 while (bu->cnt) { 1617 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1618 break; 1619 bu->cnt -= 1; 1620 } 1621 return 0; 1622 } 1623 1624 /** 1625 * read_wbuf - bulk-read from a LEB with a wbuf. 1626 * @wbuf: wbuf that may overlap the read 1627 * @buf: buffer into which to read 1628 * @len: read length 1629 * @lnum: LEB number from which to read 1630 * @offs: offset from which to read 1631 * 1632 * This functions returns %0 on success or a negative error code on failure. 1633 */ 1634 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1635 int offs) 1636 { 1637 const struct ubifs_info *c = wbuf->c; 1638 int rlen, overlap; 1639 1640 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1641 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1642 ubifs_assert(!(offs & 7) && offs < c->leb_size); 1643 ubifs_assert(offs + len <= c->leb_size); 1644 1645 spin_lock(&wbuf->lock); 1646 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1647 if (!overlap) { 1648 /* We may safely unlock the write-buffer and read the data */ 1649 spin_unlock(&wbuf->lock); 1650 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1651 } 1652 1653 /* Don't read under wbuf */ 1654 rlen = wbuf->offs - offs; 1655 if (rlen < 0) 1656 rlen = 0; 1657 1658 /* Copy the rest from the write-buffer */ 1659 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1660 spin_unlock(&wbuf->lock); 1661 1662 if (rlen > 0) 1663 /* Read everything that goes before write-buffer */ 1664 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1665 1666 return 0; 1667 } 1668 1669 /** 1670 * validate_data_node - validate data nodes for bulk-read. 1671 * @c: UBIFS file-system description object 1672 * @buf: buffer containing data node to validate 1673 * @zbr: zbranch of data node to validate 1674 * 1675 * This functions returns %0 on success or a negative error code on failure. 1676 */ 1677 static int validate_data_node(struct ubifs_info *c, void *buf, 1678 struct ubifs_zbranch *zbr) 1679 { 1680 union ubifs_key key1; 1681 struct ubifs_ch *ch = buf; 1682 int err, len; 1683 1684 if (ch->node_type != UBIFS_DATA_NODE) { 1685 ubifs_err(c, "bad node type (%d but expected %d)", 1686 ch->node_type, UBIFS_DATA_NODE); 1687 goto out_err; 1688 } 1689 1690 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1691 if (err) { 1692 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); 1693 goto out; 1694 } 1695 1696 len = le32_to_cpu(ch->len); 1697 if (len != zbr->len) { 1698 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); 1699 goto out_err; 1700 } 1701 1702 /* Make sure the key of the read node is correct */ 1703 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1704 if (!keys_eq(c, &zbr->key, &key1)) { 1705 ubifs_err(c, "bad key in node at LEB %d:%d", 1706 zbr->lnum, zbr->offs); 1707 dbg_tnck(&zbr->key, "looked for key "); 1708 dbg_tnck(&key1, "found node's key "); 1709 goto out_err; 1710 } 1711 1712 return 0; 1713 1714 out_err: 1715 err = -EINVAL; 1716 out: 1717 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1718 ubifs_dump_node(c, buf); 1719 dump_stack(); 1720 return err; 1721 } 1722 1723 /** 1724 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1725 * @c: UBIFS file-system description object 1726 * @bu: bulk-read parameters and results 1727 * 1728 * This functions reads and validates the data nodes that were identified by the 1729 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1730 * -EAGAIN to indicate a race with GC, or another negative error code on 1731 * failure. 1732 */ 1733 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1734 { 1735 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1736 struct ubifs_wbuf *wbuf; 1737 void *buf; 1738 1739 len = bu->zbranch[bu->cnt - 1].offs; 1740 len += bu->zbranch[bu->cnt - 1].len - offs; 1741 if (len > bu->buf_len) { 1742 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); 1743 return -EINVAL; 1744 } 1745 1746 /* Do the read */ 1747 wbuf = ubifs_get_wbuf(c, lnum); 1748 if (wbuf) 1749 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1750 else 1751 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1752 1753 /* Check for a race with GC */ 1754 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1755 return -EAGAIN; 1756 1757 if (err && err != -EBADMSG) { 1758 ubifs_err(c, "failed to read from LEB %d:%d, error %d", 1759 lnum, offs, err); 1760 dump_stack(); 1761 dbg_tnck(&bu->key, "key "); 1762 return err; 1763 } 1764 1765 /* Validate the nodes read */ 1766 buf = bu->buf; 1767 for (i = 0; i < bu->cnt; i++) { 1768 err = validate_data_node(c, buf, &bu->zbranch[i]); 1769 if (err) 1770 return err; 1771 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1772 } 1773 1774 return 0; 1775 } 1776 1777 /** 1778 * do_lookup_nm- look up a "hashed" node. 1779 * @c: UBIFS file-system description object 1780 * @key: node key to lookup 1781 * @node: the node is returned here 1782 * @nm: node name 1783 * 1784 * This function look up and reads a node which contains name hash in the key. 1785 * Since the hash may have collisions, there may be many nodes with the same 1786 * key, so we have to sequentially look to all of them until the needed one is 1787 * found. This function returns zero in case of success, %-ENOENT if the node 1788 * was not found, and a negative error code in case of failure. 1789 */ 1790 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1791 void *node, const struct qstr *nm) 1792 { 1793 int found, n, err; 1794 struct ubifs_znode *znode; 1795 1796 dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name); 1797 mutex_lock(&c->tnc_mutex); 1798 found = ubifs_lookup_level0(c, key, &znode, &n); 1799 if (!found) { 1800 err = -ENOENT; 1801 goto out_unlock; 1802 } else if (found < 0) { 1803 err = found; 1804 goto out_unlock; 1805 } 1806 1807 ubifs_assert(n >= 0); 1808 1809 err = resolve_collision(c, key, &znode, &n, nm); 1810 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1811 if (unlikely(err < 0)) 1812 goto out_unlock; 1813 if (err == 0) { 1814 err = -ENOENT; 1815 goto out_unlock; 1816 } 1817 1818 err = tnc_read_node_nm(c, &znode->zbranch[n], node); 1819 1820 out_unlock: 1821 mutex_unlock(&c->tnc_mutex); 1822 return err; 1823 } 1824 1825 /** 1826 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1827 * @c: UBIFS file-system description object 1828 * @key: node key to lookup 1829 * @node: the node is returned here 1830 * @nm: node name 1831 * 1832 * This function look up and reads a node which contains name hash in the key. 1833 * Since the hash may have collisions, there may be many nodes with the same 1834 * key, so we have to sequentially look to all of them until the needed one is 1835 * found. This function returns zero in case of success, %-ENOENT if the node 1836 * was not found, and a negative error code in case of failure. 1837 */ 1838 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1839 void *node, const struct qstr *nm) 1840 { 1841 int err, len; 1842 const struct ubifs_dent_node *dent = node; 1843 1844 /* 1845 * We assume that in most of the cases there are no name collisions and 1846 * 'ubifs_tnc_lookup()' returns us the right direntry. 1847 */ 1848 err = ubifs_tnc_lookup(c, key, node); 1849 if (err) 1850 return err; 1851 1852 len = le16_to_cpu(dent->nlen); 1853 if (nm->len == len && !memcmp(dent->name, nm->name, len)) 1854 return 0; 1855 1856 /* 1857 * Unluckily, there are hash collisions and we have to iterate over 1858 * them look at each direntry with colliding name hash sequentially. 1859 */ 1860 return do_lookup_nm(c, key, node, nm); 1861 } 1862 1863 /** 1864 * correct_parent_keys - correct parent znodes' keys. 1865 * @c: UBIFS file-system description object 1866 * @znode: znode to correct parent znodes for 1867 * 1868 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1869 * zbranch changes, keys of parent znodes have to be corrected. This helper 1870 * function is called in such situations and corrects the keys if needed. 1871 */ 1872 static void correct_parent_keys(const struct ubifs_info *c, 1873 struct ubifs_znode *znode) 1874 { 1875 union ubifs_key *key, *key1; 1876 1877 ubifs_assert(znode->parent); 1878 ubifs_assert(znode->iip == 0); 1879 1880 key = &znode->zbranch[0].key; 1881 key1 = &znode->parent->zbranch[0].key; 1882 1883 while (keys_cmp(c, key, key1) < 0) { 1884 key_copy(c, key, key1); 1885 znode = znode->parent; 1886 znode->alt = 1; 1887 if (!znode->parent || znode->iip) 1888 break; 1889 key1 = &znode->parent->zbranch[0].key; 1890 } 1891 } 1892 1893 /** 1894 * insert_zbranch - insert a zbranch into a znode. 1895 * @znode: znode into which to insert 1896 * @zbr: zbranch to insert 1897 * @n: slot number to insert to 1898 * 1899 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 1900 * znode's array of zbranches and keeps zbranches consolidated, so when a new 1901 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 1902 * slot, zbranches starting from @n have to be moved right. 1903 */ 1904 static void insert_zbranch(struct ubifs_znode *znode, 1905 const struct ubifs_zbranch *zbr, int n) 1906 { 1907 int i; 1908 1909 ubifs_assert(ubifs_zn_dirty(znode)); 1910 1911 if (znode->level) { 1912 for (i = znode->child_cnt; i > n; i--) { 1913 znode->zbranch[i] = znode->zbranch[i - 1]; 1914 if (znode->zbranch[i].znode) 1915 znode->zbranch[i].znode->iip = i; 1916 } 1917 if (zbr->znode) 1918 zbr->znode->iip = n; 1919 } else 1920 for (i = znode->child_cnt; i > n; i--) 1921 znode->zbranch[i] = znode->zbranch[i - 1]; 1922 1923 znode->zbranch[n] = *zbr; 1924 znode->child_cnt += 1; 1925 1926 /* 1927 * After inserting at slot zero, the lower bound of the key range of 1928 * this znode may have changed. If this znode is subsequently split 1929 * then the upper bound of the key range may change, and furthermore 1930 * it could change to be lower than the original lower bound. If that 1931 * happens, then it will no longer be possible to find this znode in the 1932 * TNC using the key from the index node on flash. That is bad because 1933 * if it is not found, we will assume it is obsolete and may overwrite 1934 * it. Then if there is an unclean unmount, we will start using the 1935 * old index which will be broken. 1936 * 1937 * So we first mark znodes that have insertions at slot zero, and then 1938 * if they are split we add their lnum/offs to the old_idx tree. 1939 */ 1940 if (n == 0) 1941 znode->alt = 1; 1942 } 1943 1944 /** 1945 * tnc_insert - insert a node into TNC. 1946 * @c: UBIFS file-system description object 1947 * @znode: znode to insert into 1948 * @zbr: branch to insert 1949 * @n: slot number to insert new zbranch to 1950 * 1951 * This function inserts a new node described by @zbr into znode @znode. If 1952 * znode does not have a free slot for new zbranch, it is split. Parent znodes 1953 * are splat as well if needed. Returns zero in case of success or a negative 1954 * error code in case of failure. 1955 */ 1956 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 1957 struct ubifs_zbranch *zbr, int n) 1958 { 1959 struct ubifs_znode *zn, *zi, *zp; 1960 int i, keep, move, appending = 0; 1961 union ubifs_key *key = &zbr->key, *key1; 1962 1963 ubifs_assert(n >= 0 && n <= c->fanout); 1964 1965 /* Implement naive insert for now */ 1966 again: 1967 zp = znode->parent; 1968 if (znode->child_cnt < c->fanout) { 1969 ubifs_assert(n != c->fanout); 1970 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 1971 1972 insert_zbranch(znode, zbr, n); 1973 1974 /* Ensure parent's key is correct */ 1975 if (n == 0 && zp && znode->iip == 0) 1976 correct_parent_keys(c, znode); 1977 1978 return 0; 1979 } 1980 1981 /* 1982 * Unfortunately, @znode does not have more empty slots and we have to 1983 * split it. 1984 */ 1985 dbg_tnck(key, "splitting level %d, key ", znode->level); 1986 1987 if (znode->alt) 1988 /* 1989 * We can no longer be sure of finding this znode by key, so we 1990 * record it in the old_idx tree. 1991 */ 1992 ins_clr_old_idx_znode(c, znode); 1993 1994 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 1995 if (!zn) 1996 return -ENOMEM; 1997 zn->parent = zp; 1998 zn->level = znode->level; 1999 2000 /* Decide where to split */ 2001 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2002 /* Try not to split consecutive data keys */ 2003 if (n == c->fanout) { 2004 key1 = &znode->zbranch[n - 1].key; 2005 if (key_inum(c, key1) == key_inum(c, key) && 2006 key_type(c, key1) == UBIFS_DATA_KEY) 2007 appending = 1; 2008 } else 2009 goto check_split; 2010 } else if (appending && n != c->fanout) { 2011 /* Try not to split consecutive data keys */ 2012 appending = 0; 2013 check_split: 2014 if (n >= (c->fanout + 1) / 2) { 2015 key1 = &znode->zbranch[0].key; 2016 if (key_inum(c, key1) == key_inum(c, key) && 2017 key_type(c, key1) == UBIFS_DATA_KEY) { 2018 key1 = &znode->zbranch[n].key; 2019 if (key_inum(c, key1) != key_inum(c, key) || 2020 key_type(c, key1) != UBIFS_DATA_KEY) { 2021 keep = n; 2022 move = c->fanout - keep; 2023 zi = znode; 2024 goto do_split; 2025 } 2026 } 2027 } 2028 } 2029 2030 if (appending) { 2031 keep = c->fanout; 2032 move = 0; 2033 } else { 2034 keep = (c->fanout + 1) / 2; 2035 move = c->fanout - keep; 2036 } 2037 2038 /* 2039 * Although we don't at present, we could look at the neighbors and see 2040 * if we can move some zbranches there. 2041 */ 2042 2043 if (n < keep) { 2044 /* Insert into existing znode */ 2045 zi = znode; 2046 move += 1; 2047 keep -= 1; 2048 } else { 2049 /* Insert into new znode */ 2050 zi = zn; 2051 n -= keep; 2052 /* Re-parent */ 2053 if (zn->level != 0) 2054 zbr->znode->parent = zn; 2055 } 2056 2057 do_split: 2058 2059 __set_bit(DIRTY_ZNODE, &zn->flags); 2060 atomic_long_inc(&c->dirty_zn_cnt); 2061 2062 zn->child_cnt = move; 2063 znode->child_cnt = keep; 2064 2065 dbg_tnc("moving %d, keeping %d", move, keep); 2066 2067 /* Move zbranch */ 2068 for (i = 0; i < move; i++) { 2069 zn->zbranch[i] = znode->zbranch[keep + i]; 2070 /* Re-parent */ 2071 if (zn->level != 0) 2072 if (zn->zbranch[i].znode) { 2073 zn->zbranch[i].znode->parent = zn; 2074 zn->zbranch[i].znode->iip = i; 2075 } 2076 } 2077 2078 /* Insert new key and branch */ 2079 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2080 2081 insert_zbranch(zi, zbr, n); 2082 2083 /* Insert new znode (produced by spitting) into the parent */ 2084 if (zp) { 2085 if (n == 0 && zi == znode && znode->iip == 0) 2086 correct_parent_keys(c, znode); 2087 2088 /* Locate insertion point */ 2089 n = znode->iip + 1; 2090 2091 /* Tail recursion */ 2092 zbr->key = zn->zbranch[0].key; 2093 zbr->znode = zn; 2094 zbr->lnum = 0; 2095 zbr->offs = 0; 2096 zbr->len = 0; 2097 znode = zp; 2098 2099 goto again; 2100 } 2101 2102 /* We have to split root znode */ 2103 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2104 2105 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2106 if (!zi) 2107 return -ENOMEM; 2108 2109 zi->child_cnt = 2; 2110 zi->level = znode->level + 1; 2111 2112 __set_bit(DIRTY_ZNODE, &zi->flags); 2113 atomic_long_inc(&c->dirty_zn_cnt); 2114 2115 zi->zbranch[0].key = znode->zbranch[0].key; 2116 zi->zbranch[0].znode = znode; 2117 zi->zbranch[0].lnum = c->zroot.lnum; 2118 zi->zbranch[0].offs = c->zroot.offs; 2119 zi->zbranch[0].len = c->zroot.len; 2120 zi->zbranch[1].key = zn->zbranch[0].key; 2121 zi->zbranch[1].znode = zn; 2122 2123 c->zroot.lnum = 0; 2124 c->zroot.offs = 0; 2125 c->zroot.len = 0; 2126 c->zroot.znode = zi; 2127 2128 zn->parent = zi; 2129 zn->iip = 1; 2130 znode->parent = zi; 2131 znode->iip = 0; 2132 2133 return 0; 2134 } 2135 2136 /** 2137 * ubifs_tnc_add - add a node to TNC. 2138 * @c: UBIFS file-system description object 2139 * @key: key to add 2140 * @lnum: LEB number of node 2141 * @offs: node offset 2142 * @len: node length 2143 * 2144 * This function adds a node with key @key to TNC. The node may be new or it may 2145 * obsolete some existing one. Returns %0 on success or negative error code on 2146 * failure. 2147 */ 2148 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2149 int offs, int len) 2150 { 2151 int found, n, err = 0; 2152 struct ubifs_znode *znode; 2153 2154 mutex_lock(&c->tnc_mutex); 2155 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2156 found = lookup_level0_dirty(c, key, &znode, &n); 2157 if (!found) { 2158 struct ubifs_zbranch zbr; 2159 2160 zbr.znode = NULL; 2161 zbr.lnum = lnum; 2162 zbr.offs = offs; 2163 zbr.len = len; 2164 key_copy(c, key, &zbr.key); 2165 err = tnc_insert(c, znode, &zbr, n + 1); 2166 } else if (found == 1) { 2167 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2168 2169 lnc_free(zbr); 2170 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2171 zbr->lnum = lnum; 2172 zbr->offs = offs; 2173 zbr->len = len; 2174 } else 2175 err = found; 2176 if (!err) 2177 err = dbg_check_tnc(c, 0); 2178 mutex_unlock(&c->tnc_mutex); 2179 2180 return err; 2181 } 2182 2183 /** 2184 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2185 * @c: UBIFS file-system description object 2186 * @key: key to add 2187 * @old_lnum: LEB number of old node 2188 * @old_offs: old node offset 2189 * @lnum: LEB number of node 2190 * @offs: node offset 2191 * @len: node length 2192 * 2193 * This function replaces a node with key @key in the TNC only if the old node 2194 * is found. This function is called by garbage collection when node are moved. 2195 * Returns %0 on success or negative error code on failure. 2196 */ 2197 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2198 int old_lnum, int old_offs, int lnum, int offs, int len) 2199 { 2200 int found, n, err = 0; 2201 struct ubifs_znode *znode; 2202 2203 mutex_lock(&c->tnc_mutex); 2204 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2205 old_offs, lnum, offs, len); 2206 found = lookup_level0_dirty(c, key, &znode, &n); 2207 if (found < 0) { 2208 err = found; 2209 goto out_unlock; 2210 } 2211 2212 if (found == 1) { 2213 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2214 2215 found = 0; 2216 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2217 lnc_free(zbr); 2218 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2219 if (err) 2220 goto out_unlock; 2221 zbr->lnum = lnum; 2222 zbr->offs = offs; 2223 zbr->len = len; 2224 found = 1; 2225 } else if (is_hash_key(c, key)) { 2226 found = resolve_collision_directly(c, key, &znode, &n, 2227 old_lnum, old_offs); 2228 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2229 found, znode, n, old_lnum, old_offs); 2230 if (found < 0) { 2231 err = found; 2232 goto out_unlock; 2233 } 2234 2235 if (found) { 2236 /* Ensure the znode is dirtied */ 2237 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2238 znode = dirty_cow_bottom_up(c, znode); 2239 if (IS_ERR(znode)) { 2240 err = PTR_ERR(znode); 2241 goto out_unlock; 2242 } 2243 } 2244 zbr = &znode->zbranch[n]; 2245 lnc_free(zbr); 2246 err = ubifs_add_dirt(c, zbr->lnum, 2247 zbr->len); 2248 if (err) 2249 goto out_unlock; 2250 zbr->lnum = lnum; 2251 zbr->offs = offs; 2252 zbr->len = len; 2253 } 2254 } 2255 } 2256 2257 if (!found) 2258 err = ubifs_add_dirt(c, lnum, len); 2259 2260 if (!err) 2261 err = dbg_check_tnc(c, 0); 2262 2263 out_unlock: 2264 mutex_unlock(&c->tnc_mutex); 2265 return err; 2266 } 2267 2268 /** 2269 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2270 * @c: UBIFS file-system description object 2271 * @key: key to add 2272 * @lnum: LEB number of node 2273 * @offs: node offset 2274 * @len: node length 2275 * @nm: node name 2276 * 2277 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2278 * may have collisions, like directory entry keys. 2279 */ 2280 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2281 int lnum, int offs, int len, const struct qstr *nm) 2282 { 2283 int found, n, err = 0; 2284 struct ubifs_znode *znode; 2285 2286 mutex_lock(&c->tnc_mutex); 2287 dbg_tnck(key, "LEB %d:%d, name '%.*s', key ", 2288 lnum, offs, nm->len, nm->name); 2289 found = lookup_level0_dirty(c, key, &znode, &n); 2290 if (found < 0) { 2291 err = found; 2292 goto out_unlock; 2293 } 2294 2295 if (found == 1) { 2296 if (c->replaying) 2297 found = fallible_resolve_collision(c, key, &znode, &n, 2298 nm, 1); 2299 else 2300 found = resolve_collision(c, key, &znode, &n, nm); 2301 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2302 if (found < 0) { 2303 err = found; 2304 goto out_unlock; 2305 } 2306 2307 /* Ensure the znode is dirtied */ 2308 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2309 znode = dirty_cow_bottom_up(c, znode); 2310 if (IS_ERR(znode)) { 2311 err = PTR_ERR(znode); 2312 goto out_unlock; 2313 } 2314 } 2315 2316 if (found == 1) { 2317 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2318 2319 lnc_free(zbr); 2320 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2321 zbr->lnum = lnum; 2322 zbr->offs = offs; 2323 zbr->len = len; 2324 goto out_unlock; 2325 } 2326 } 2327 2328 if (!found) { 2329 struct ubifs_zbranch zbr; 2330 2331 zbr.znode = NULL; 2332 zbr.lnum = lnum; 2333 zbr.offs = offs; 2334 zbr.len = len; 2335 key_copy(c, key, &zbr.key); 2336 err = tnc_insert(c, znode, &zbr, n + 1); 2337 if (err) 2338 goto out_unlock; 2339 if (c->replaying) { 2340 /* 2341 * We did not find it in the index so there may be a 2342 * dangling branch still in the index. So we remove it 2343 * by passing 'ubifs_tnc_remove_nm()' the same key but 2344 * an unmatchable name. 2345 */ 2346 struct qstr noname = { .name = "" }; 2347 2348 err = dbg_check_tnc(c, 0); 2349 mutex_unlock(&c->tnc_mutex); 2350 if (err) 2351 return err; 2352 return ubifs_tnc_remove_nm(c, key, &noname); 2353 } 2354 } 2355 2356 out_unlock: 2357 if (!err) 2358 err = dbg_check_tnc(c, 0); 2359 mutex_unlock(&c->tnc_mutex); 2360 return err; 2361 } 2362 2363 /** 2364 * tnc_delete - delete a znode form TNC. 2365 * @c: UBIFS file-system description object 2366 * @znode: znode to delete from 2367 * @n: zbranch slot number to delete 2368 * 2369 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2370 * case of success and a negative error code in case of failure. 2371 */ 2372 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2373 { 2374 struct ubifs_zbranch *zbr; 2375 struct ubifs_znode *zp; 2376 int i, err; 2377 2378 /* Delete without merge for now */ 2379 ubifs_assert(znode->level == 0); 2380 ubifs_assert(n >= 0 && n < c->fanout); 2381 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2382 2383 zbr = &znode->zbranch[n]; 2384 lnc_free(zbr); 2385 2386 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2387 if (err) { 2388 ubifs_dump_znode(c, znode); 2389 return err; 2390 } 2391 2392 /* We do not "gap" zbranch slots */ 2393 for (i = n; i < znode->child_cnt - 1; i++) 2394 znode->zbranch[i] = znode->zbranch[i + 1]; 2395 znode->child_cnt -= 1; 2396 2397 if (znode->child_cnt > 0) 2398 return 0; 2399 2400 /* 2401 * This was the last zbranch, we have to delete this znode from the 2402 * parent. 2403 */ 2404 2405 do { 2406 ubifs_assert(!ubifs_zn_obsolete(znode)); 2407 ubifs_assert(ubifs_zn_dirty(znode)); 2408 2409 zp = znode->parent; 2410 n = znode->iip; 2411 2412 atomic_long_dec(&c->dirty_zn_cnt); 2413 2414 err = insert_old_idx_znode(c, znode); 2415 if (err) 2416 return err; 2417 2418 if (znode->cnext) { 2419 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2420 atomic_long_inc(&c->clean_zn_cnt); 2421 atomic_long_inc(&ubifs_clean_zn_cnt); 2422 } else 2423 kfree(znode); 2424 znode = zp; 2425 } while (znode->child_cnt == 1); /* while removing last child */ 2426 2427 /* Remove from znode, entry n - 1 */ 2428 znode->child_cnt -= 1; 2429 ubifs_assert(znode->level != 0); 2430 for (i = n; i < znode->child_cnt; i++) { 2431 znode->zbranch[i] = znode->zbranch[i + 1]; 2432 if (znode->zbranch[i].znode) 2433 znode->zbranch[i].znode->iip = i; 2434 } 2435 2436 /* 2437 * If this is the root and it has only 1 child then 2438 * collapse the tree. 2439 */ 2440 if (!znode->parent) { 2441 while (znode->child_cnt == 1 && znode->level != 0) { 2442 zp = znode; 2443 zbr = &znode->zbranch[0]; 2444 znode = get_znode(c, znode, 0); 2445 if (IS_ERR(znode)) 2446 return PTR_ERR(znode); 2447 znode = dirty_cow_znode(c, zbr); 2448 if (IS_ERR(znode)) 2449 return PTR_ERR(znode); 2450 znode->parent = NULL; 2451 znode->iip = 0; 2452 if (c->zroot.len) { 2453 err = insert_old_idx(c, c->zroot.lnum, 2454 c->zroot.offs); 2455 if (err) 2456 return err; 2457 } 2458 c->zroot.lnum = zbr->lnum; 2459 c->zroot.offs = zbr->offs; 2460 c->zroot.len = zbr->len; 2461 c->zroot.znode = znode; 2462 ubifs_assert(!ubifs_zn_obsolete(zp)); 2463 ubifs_assert(ubifs_zn_dirty(zp)); 2464 atomic_long_dec(&c->dirty_zn_cnt); 2465 2466 if (zp->cnext) { 2467 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2468 atomic_long_inc(&c->clean_zn_cnt); 2469 atomic_long_inc(&ubifs_clean_zn_cnt); 2470 } else 2471 kfree(zp); 2472 } 2473 } 2474 2475 return 0; 2476 } 2477 2478 /** 2479 * ubifs_tnc_remove - remove an index entry of a node. 2480 * @c: UBIFS file-system description object 2481 * @key: key of node 2482 * 2483 * Returns %0 on success or negative error code on failure. 2484 */ 2485 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2486 { 2487 int found, n, err = 0; 2488 struct ubifs_znode *znode; 2489 2490 mutex_lock(&c->tnc_mutex); 2491 dbg_tnck(key, "key "); 2492 found = lookup_level0_dirty(c, key, &znode, &n); 2493 if (found < 0) { 2494 err = found; 2495 goto out_unlock; 2496 } 2497 if (found == 1) 2498 err = tnc_delete(c, znode, n); 2499 if (!err) 2500 err = dbg_check_tnc(c, 0); 2501 2502 out_unlock: 2503 mutex_unlock(&c->tnc_mutex); 2504 return err; 2505 } 2506 2507 /** 2508 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2509 * @c: UBIFS file-system description object 2510 * @key: key of node 2511 * @nm: directory entry name 2512 * 2513 * Returns %0 on success or negative error code on failure. 2514 */ 2515 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2516 const struct qstr *nm) 2517 { 2518 int n, err; 2519 struct ubifs_znode *znode; 2520 2521 mutex_lock(&c->tnc_mutex); 2522 dbg_tnck(key, "%.*s, key ", nm->len, nm->name); 2523 err = lookup_level0_dirty(c, key, &znode, &n); 2524 if (err < 0) 2525 goto out_unlock; 2526 2527 if (err) { 2528 if (c->replaying) 2529 err = fallible_resolve_collision(c, key, &znode, &n, 2530 nm, 0); 2531 else 2532 err = resolve_collision(c, key, &znode, &n, nm); 2533 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2534 if (err < 0) 2535 goto out_unlock; 2536 if (err) { 2537 /* Ensure the znode is dirtied */ 2538 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2539 znode = dirty_cow_bottom_up(c, znode); 2540 if (IS_ERR(znode)) { 2541 err = PTR_ERR(znode); 2542 goto out_unlock; 2543 } 2544 } 2545 err = tnc_delete(c, znode, n); 2546 } 2547 } 2548 2549 out_unlock: 2550 if (!err) 2551 err = dbg_check_tnc(c, 0); 2552 mutex_unlock(&c->tnc_mutex); 2553 return err; 2554 } 2555 2556 /** 2557 * key_in_range - determine if a key falls within a range of keys. 2558 * @c: UBIFS file-system description object 2559 * @key: key to check 2560 * @from_key: lowest key in range 2561 * @to_key: highest key in range 2562 * 2563 * This function returns %1 if the key is in range and %0 otherwise. 2564 */ 2565 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2566 union ubifs_key *from_key, union ubifs_key *to_key) 2567 { 2568 if (keys_cmp(c, key, from_key) < 0) 2569 return 0; 2570 if (keys_cmp(c, key, to_key) > 0) 2571 return 0; 2572 return 1; 2573 } 2574 2575 /** 2576 * ubifs_tnc_remove_range - remove index entries in range. 2577 * @c: UBIFS file-system description object 2578 * @from_key: lowest key to remove 2579 * @to_key: highest key to remove 2580 * 2581 * This function removes index entries starting at @from_key and ending at 2582 * @to_key. This function returns zero in case of success and a negative error 2583 * code in case of failure. 2584 */ 2585 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2586 union ubifs_key *to_key) 2587 { 2588 int i, n, k, err = 0; 2589 struct ubifs_znode *znode; 2590 union ubifs_key *key; 2591 2592 mutex_lock(&c->tnc_mutex); 2593 while (1) { 2594 /* Find first level 0 znode that contains keys to remove */ 2595 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2596 if (err < 0) 2597 goto out_unlock; 2598 2599 if (err) 2600 key = from_key; 2601 else { 2602 err = tnc_next(c, &znode, &n); 2603 if (err == -ENOENT) { 2604 err = 0; 2605 goto out_unlock; 2606 } 2607 if (err < 0) 2608 goto out_unlock; 2609 key = &znode->zbranch[n].key; 2610 if (!key_in_range(c, key, from_key, to_key)) { 2611 err = 0; 2612 goto out_unlock; 2613 } 2614 } 2615 2616 /* Ensure the znode is dirtied */ 2617 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2618 znode = dirty_cow_bottom_up(c, znode); 2619 if (IS_ERR(znode)) { 2620 err = PTR_ERR(znode); 2621 goto out_unlock; 2622 } 2623 } 2624 2625 /* Remove all keys in range except the first */ 2626 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2627 key = &znode->zbranch[i].key; 2628 if (!key_in_range(c, key, from_key, to_key)) 2629 break; 2630 lnc_free(&znode->zbranch[i]); 2631 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2632 znode->zbranch[i].len); 2633 if (err) { 2634 ubifs_dump_znode(c, znode); 2635 goto out_unlock; 2636 } 2637 dbg_tnck(key, "removing key "); 2638 } 2639 if (k) { 2640 for (i = n + 1 + k; i < znode->child_cnt; i++) 2641 znode->zbranch[i - k] = znode->zbranch[i]; 2642 znode->child_cnt -= k; 2643 } 2644 2645 /* Now delete the first */ 2646 err = tnc_delete(c, znode, n); 2647 if (err) 2648 goto out_unlock; 2649 } 2650 2651 out_unlock: 2652 if (!err) 2653 err = dbg_check_tnc(c, 0); 2654 mutex_unlock(&c->tnc_mutex); 2655 return err; 2656 } 2657 2658 /** 2659 * ubifs_tnc_remove_ino - remove an inode from TNC. 2660 * @c: UBIFS file-system description object 2661 * @inum: inode number to remove 2662 * 2663 * This function remove inode @inum and all the extended attributes associated 2664 * with the anode from TNC and returns zero in case of success or a negative 2665 * error code in case of failure. 2666 */ 2667 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2668 { 2669 union ubifs_key key1, key2; 2670 struct ubifs_dent_node *xent, *pxent = NULL; 2671 struct qstr nm = { .name = NULL }; 2672 2673 dbg_tnc("ino %lu", (unsigned long)inum); 2674 2675 /* 2676 * Walk all extended attribute entries and remove them together with 2677 * corresponding extended attribute inodes. 2678 */ 2679 lowest_xent_key(c, &key1, inum); 2680 while (1) { 2681 ino_t xattr_inum; 2682 int err; 2683 2684 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2685 if (IS_ERR(xent)) { 2686 err = PTR_ERR(xent); 2687 if (err == -ENOENT) 2688 break; 2689 return err; 2690 } 2691 2692 xattr_inum = le64_to_cpu(xent->inum); 2693 dbg_tnc("xent '%s', ino %lu", xent->name, 2694 (unsigned long)xattr_inum); 2695 2696 nm.name = xent->name; 2697 nm.len = le16_to_cpu(xent->nlen); 2698 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2699 if (err) { 2700 kfree(xent); 2701 return err; 2702 } 2703 2704 lowest_ino_key(c, &key1, xattr_inum); 2705 highest_ino_key(c, &key2, xattr_inum); 2706 err = ubifs_tnc_remove_range(c, &key1, &key2); 2707 if (err) { 2708 kfree(xent); 2709 return err; 2710 } 2711 2712 kfree(pxent); 2713 pxent = xent; 2714 key_read(c, &xent->key, &key1); 2715 } 2716 2717 kfree(pxent); 2718 lowest_ino_key(c, &key1, inum); 2719 highest_ino_key(c, &key2, inum); 2720 2721 return ubifs_tnc_remove_range(c, &key1, &key2); 2722 } 2723 2724 /** 2725 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2726 * @c: UBIFS file-system description object 2727 * @key: key of last entry 2728 * @nm: name of last entry found or %NULL 2729 * 2730 * This function finds and reads the next directory or extended attribute entry 2731 * after the given key (@key) if there is one. @nm is used to resolve 2732 * collisions. 2733 * 2734 * If the name of the current entry is not known and only the key is known, 2735 * @nm->name has to be %NULL. In this case the semantics of this function is a 2736 * little bit different and it returns the entry corresponding to this key, not 2737 * the next one. If the key was not found, the closest "right" entry is 2738 * returned. 2739 * 2740 * If the fist entry has to be found, @key has to contain the lowest possible 2741 * key value for this inode and @name has to be %NULL. 2742 * 2743 * This function returns the found directory or extended attribute entry node 2744 * in case of success, %-ENOENT is returned if no entry was found, and a 2745 * negative error code is returned in case of failure. 2746 */ 2747 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2748 union ubifs_key *key, 2749 const struct qstr *nm) 2750 { 2751 int n, err, type = key_type(c, key); 2752 struct ubifs_znode *znode; 2753 struct ubifs_dent_node *dent; 2754 struct ubifs_zbranch *zbr; 2755 union ubifs_key *dkey; 2756 2757 dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)"); 2758 ubifs_assert(is_hash_key(c, key)); 2759 2760 mutex_lock(&c->tnc_mutex); 2761 err = ubifs_lookup_level0(c, key, &znode, &n); 2762 if (unlikely(err < 0)) 2763 goto out_unlock; 2764 2765 if (nm->name) { 2766 if (err) { 2767 /* Handle collisions */ 2768 err = resolve_collision(c, key, &znode, &n, nm); 2769 dbg_tnc("rc returned %d, znode %p, n %d", 2770 err, znode, n); 2771 if (unlikely(err < 0)) 2772 goto out_unlock; 2773 } 2774 2775 /* Now find next entry */ 2776 err = tnc_next(c, &znode, &n); 2777 if (unlikely(err)) 2778 goto out_unlock; 2779 } else { 2780 /* 2781 * The full name of the entry was not given, in which case the 2782 * behavior of this function is a little different and it 2783 * returns current entry, not the next one. 2784 */ 2785 if (!err) { 2786 /* 2787 * However, the given key does not exist in the TNC 2788 * tree and @znode/@n variables contain the closest 2789 * "preceding" element. Switch to the next one. 2790 */ 2791 err = tnc_next(c, &znode, &n); 2792 if (err) 2793 goto out_unlock; 2794 } 2795 } 2796 2797 zbr = &znode->zbranch[n]; 2798 dent = kmalloc(zbr->len, GFP_NOFS); 2799 if (unlikely(!dent)) { 2800 err = -ENOMEM; 2801 goto out_unlock; 2802 } 2803 2804 /* 2805 * The above 'tnc_next()' call could lead us to the next inode, check 2806 * this. 2807 */ 2808 dkey = &zbr->key; 2809 if (key_inum(c, dkey) != key_inum(c, key) || 2810 key_type(c, dkey) != type) { 2811 err = -ENOENT; 2812 goto out_free; 2813 } 2814 2815 err = tnc_read_node_nm(c, zbr, dent); 2816 if (unlikely(err)) 2817 goto out_free; 2818 2819 mutex_unlock(&c->tnc_mutex); 2820 return dent; 2821 2822 out_free: 2823 kfree(dent); 2824 out_unlock: 2825 mutex_unlock(&c->tnc_mutex); 2826 return ERR_PTR(err); 2827 } 2828 2829 /** 2830 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 2831 * @c: UBIFS file-system description object 2832 * 2833 * Destroy left-over obsolete znodes from a failed commit. 2834 */ 2835 static void tnc_destroy_cnext(struct ubifs_info *c) 2836 { 2837 struct ubifs_znode *cnext; 2838 2839 if (!c->cnext) 2840 return; 2841 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 2842 cnext = c->cnext; 2843 do { 2844 struct ubifs_znode *znode = cnext; 2845 2846 cnext = cnext->cnext; 2847 if (ubifs_zn_obsolete(znode)) 2848 kfree(znode); 2849 } while (cnext && cnext != c->cnext); 2850 } 2851 2852 /** 2853 * ubifs_tnc_close - close TNC subsystem and free all related resources. 2854 * @c: UBIFS file-system description object 2855 */ 2856 void ubifs_tnc_close(struct ubifs_info *c) 2857 { 2858 tnc_destroy_cnext(c); 2859 if (c->zroot.znode) { 2860 long n, freed; 2861 2862 n = atomic_long_read(&c->clean_zn_cnt); 2863 freed = ubifs_destroy_tnc_subtree(c->zroot.znode); 2864 ubifs_assert(freed == n); 2865 atomic_long_sub(n, &ubifs_clean_zn_cnt); 2866 } 2867 kfree(c->gap_lebs); 2868 kfree(c->ilebs); 2869 destroy_old_idx(c); 2870 } 2871 2872 /** 2873 * left_znode - get the znode to the left. 2874 * @c: UBIFS file-system description object 2875 * @znode: znode 2876 * 2877 * This function returns a pointer to the znode to the left of @znode or NULL if 2878 * there is not one. A negative error code is returned on failure. 2879 */ 2880 static struct ubifs_znode *left_znode(struct ubifs_info *c, 2881 struct ubifs_znode *znode) 2882 { 2883 int level = znode->level; 2884 2885 while (1) { 2886 int n = znode->iip - 1; 2887 2888 /* Go up until we can go left */ 2889 znode = znode->parent; 2890 if (!znode) 2891 return NULL; 2892 if (n >= 0) { 2893 /* Now go down the rightmost branch to 'level' */ 2894 znode = get_znode(c, znode, n); 2895 if (IS_ERR(znode)) 2896 return znode; 2897 while (znode->level != level) { 2898 n = znode->child_cnt - 1; 2899 znode = get_znode(c, znode, n); 2900 if (IS_ERR(znode)) 2901 return znode; 2902 } 2903 break; 2904 } 2905 } 2906 return znode; 2907 } 2908 2909 /** 2910 * right_znode - get the znode to the right. 2911 * @c: UBIFS file-system description object 2912 * @znode: znode 2913 * 2914 * This function returns a pointer to the znode to the right of @znode or NULL 2915 * if there is not one. A negative error code is returned on failure. 2916 */ 2917 static struct ubifs_znode *right_znode(struct ubifs_info *c, 2918 struct ubifs_znode *znode) 2919 { 2920 int level = znode->level; 2921 2922 while (1) { 2923 int n = znode->iip + 1; 2924 2925 /* Go up until we can go right */ 2926 znode = znode->parent; 2927 if (!znode) 2928 return NULL; 2929 if (n < znode->child_cnt) { 2930 /* Now go down the leftmost branch to 'level' */ 2931 znode = get_znode(c, znode, n); 2932 if (IS_ERR(znode)) 2933 return znode; 2934 while (znode->level != level) { 2935 znode = get_znode(c, znode, 0); 2936 if (IS_ERR(znode)) 2937 return znode; 2938 } 2939 break; 2940 } 2941 } 2942 return znode; 2943 } 2944 2945 /** 2946 * lookup_znode - find a particular indexing node from TNC. 2947 * @c: UBIFS file-system description object 2948 * @key: index node key to lookup 2949 * @level: index node level 2950 * @lnum: index node LEB number 2951 * @offs: index node offset 2952 * 2953 * This function searches an indexing node by its first key @key and its 2954 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 2955 * nodes it traverses to TNC. This function is called for indexing nodes which 2956 * were found on the media by scanning, for example when garbage-collecting or 2957 * when doing in-the-gaps commit. This means that the indexing node which is 2958 * looked for does not have to have exactly the same leftmost key @key, because 2959 * the leftmost key may have been changed, in which case TNC will contain a 2960 * dirty znode which still refers the same @lnum:@offs. This function is clever 2961 * enough to recognize such indexing nodes. 2962 * 2963 * Note, if a znode was deleted or changed too much, then this function will 2964 * not find it. For situations like this UBIFS has the old index RB-tree 2965 * (indexed by @lnum:@offs). 2966 * 2967 * This function returns a pointer to the znode found or %NULL if it is not 2968 * found. A negative error code is returned on failure. 2969 */ 2970 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 2971 union ubifs_key *key, int level, 2972 int lnum, int offs) 2973 { 2974 struct ubifs_znode *znode, *zn; 2975 int n, nn; 2976 2977 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 2978 2979 /* 2980 * The arguments have probably been read off flash, so don't assume 2981 * they are valid. 2982 */ 2983 if (level < 0) 2984 return ERR_PTR(-EINVAL); 2985 2986 /* Get the root znode */ 2987 znode = c->zroot.znode; 2988 if (!znode) { 2989 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 2990 if (IS_ERR(znode)) 2991 return znode; 2992 } 2993 /* Check if it is the one we are looking for */ 2994 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 2995 return znode; 2996 /* Descend to the parent level i.e. (level + 1) */ 2997 if (level >= znode->level) 2998 return NULL; 2999 while (1) { 3000 ubifs_search_zbranch(c, znode, key, &n); 3001 if (n < 0) { 3002 /* 3003 * We reached a znode where the leftmost key is greater 3004 * than the key we are searching for. This is the same 3005 * situation as the one described in a huge comment at 3006 * the end of the 'ubifs_lookup_level0()' function. And 3007 * for exactly the same reasons we have to try to look 3008 * left before giving up. 3009 */ 3010 znode = left_znode(c, znode); 3011 if (!znode) 3012 return NULL; 3013 if (IS_ERR(znode)) 3014 return znode; 3015 ubifs_search_zbranch(c, znode, key, &n); 3016 ubifs_assert(n >= 0); 3017 } 3018 if (znode->level == level + 1) 3019 break; 3020 znode = get_znode(c, znode, n); 3021 if (IS_ERR(znode)) 3022 return znode; 3023 } 3024 /* Check if the child is the one we are looking for */ 3025 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3026 return get_znode(c, znode, n); 3027 /* If the key is unique, there is nowhere else to look */ 3028 if (!is_hash_key(c, key)) 3029 return NULL; 3030 /* 3031 * The key is not unique and so may be also in the znodes to either 3032 * side. 3033 */ 3034 zn = znode; 3035 nn = n; 3036 /* Look left */ 3037 while (1) { 3038 /* Move one branch to the left */ 3039 if (n) 3040 n -= 1; 3041 else { 3042 znode = left_znode(c, znode); 3043 if (!znode) 3044 break; 3045 if (IS_ERR(znode)) 3046 return znode; 3047 n = znode->child_cnt - 1; 3048 } 3049 /* Check it */ 3050 if (znode->zbranch[n].lnum == lnum && 3051 znode->zbranch[n].offs == offs) 3052 return get_znode(c, znode, n); 3053 /* Stop if the key is less than the one we are looking for */ 3054 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3055 break; 3056 } 3057 /* Back to the middle */ 3058 znode = zn; 3059 n = nn; 3060 /* Look right */ 3061 while (1) { 3062 /* Move one branch to the right */ 3063 if (++n >= znode->child_cnt) { 3064 znode = right_znode(c, znode); 3065 if (!znode) 3066 break; 3067 if (IS_ERR(znode)) 3068 return znode; 3069 n = 0; 3070 } 3071 /* Check it */ 3072 if (znode->zbranch[n].lnum == lnum && 3073 znode->zbranch[n].offs == offs) 3074 return get_znode(c, znode, n); 3075 /* Stop if the key is greater than the one we are looking for */ 3076 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3077 break; 3078 } 3079 return NULL; 3080 } 3081 3082 /** 3083 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3084 * @c: UBIFS file-system description object 3085 * @key: key of index node 3086 * @level: index node level 3087 * @lnum: LEB number of index node 3088 * @offs: offset of index node 3089 * 3090 * This function returns %0 if the index node is not referred to in the TNC, %1 3091 * if the index node is referred to in the TNC and the corresponding znode is 3092 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3093 * znode is clean, and a negative error code in case of failure. 3094 * 3095 * Note, the @key argument has to be the key of the first child. Also note, 3096 * this function relies on the fact that 0:0 is never a valid LEB number and 3097 * offset for a main-area node. 3098 */ 3099 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3100 int lnum, int offs) 3101 { 3102 struct ubifs_znode *znode; 3103 3104 znode = lookup_znode(c, key, level, lnum, offs); 3105 if (!znode) 3106 return 0; 3107 if (IS_ERR(znode)) 3108 return PTR_ERR(znode); 3109 3110 return ubifs_zn_dirty(znode) ? 1 : 2; 3111 } 3112 3113 /** 3114 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3115 * @c: UBIFS file-system description object 3116 * @key: node key 3117 * @lnum: node LEB number 3118 * @offs: node offset 3119 * 3120 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3121 * not, and a negative error code in case of failure. 3122 * 3123 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3124 * and offset for a main-area node. 3125 */ 3126 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3127 int lnum, int offs) 3128 { 3129 struct ubifs_zbranch *zbr; 3130 struct ubifs_znode *znode, *zn; 3131 int n, found, err, nn; 3132 const int unique = !is_hash_key(c, key); 3133 3134 found = ubifs_lookup_level0(c, key, &znode, &n); 3135 if (found < 0) 3136 return found; /* Error code */ 3137 if (!found) 3138 return 0; 3139 zbr = &znode->zbranch[n]; 3140 if (lnum == zbr->lnum && offs == zbr->offs) 3141 return 1; /* Found it */ 3142 if (unique) 3143 return 0; 3144 /* 3145 * Because the key is not unique, we have to look left 3146 * and right as well 3147 */ 3148 zn = znode; 3149 nn = n; 3150 /* Look left */ 3151 while (1) { 3152 err = tnc_prev(c, &znode, &n); 3153 if (err == -ENOENT) 3154 break; 3155 if (err) 3156 return err; 3157 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3158 break; 3159 zbr = &znode->zbranch[n]; 3160 if (lnum == zbr->lnum && offs == zbr->offs) 3161 return 1; /* Found it */ 3162 } 3163 /* Look right */ 3164 znode = zn; 3165 n = nn; 3166 while (1) { 3167 err = tnc_next(c, &znode, &n); 3168 if (err) { 3169 if (err == -ENOENT) 3170 return 0; 3171 return err; 3172 } 3173 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3174 break; 3175 zbr = &znode->zbranch[n]; 3176 if (lnum == zbr->lnum && offs == zbr->offs) 3177 return 1; /* Found it */ 3178 } 3179 return 0; 3180 } 3181 3182 /** 3183 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3184 * @c: UBIFS file-system description object 3185 * @key: node key 3186 * @level: index node level (if it is an index node) 3187 * @lnum: node LEB number 3188 * @offs: node offset 3189 * @is_idx: non-zero if the node is an index node 3190 * 3191 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3192 * negative error code in case of failure. For index nodes, @key has to be the 3193 * key of the first child. An index node is considered to be in the TNC only if 3194 * the corresponding znode is clean or has not been loaded. 3195 */ 3196 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3197 int lnum, int offs, int is_idx) 3198 { 3199 int err; 3200 3201 mutex_lock(&c->tnc_mutex); 3202 if (is_idx) { 3203 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3204 if (err < 0) 3205 goto out_unlock; 3206 if (err == 1) 3207 /* The index node was found but it was dirty */ 3208 err = 0; 3209 else if (err == 2) 3210 /* The index node was found and it was clean */ 3211 err = 1; 3212 else 3213 BUG_ON(err != 0); 3214 } else 3215 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3216 3217 out_unlock: 3218 mutex_unlock(&c->tnc_mutex); 3219 return err; 3220 } 3221 3222 /** 3223 * ubifs_dirty_idx_node - dirty an index node. 3224 * @c: UBIFS file-system description object 3225 * @key: index node key 3226 * @level: index node level 3227 * @lnum: index node LEB number 3228 * @offs: index node offset 3229 * 3230 * This function loads and dirties an index node so that it can be garbage 3231 * collected. The @key argument has to be the key of the first child. This 3232 * function relies on the fact that 0:0 is never a valid LEB number and offset 3233 * for a main-area node. Returns %0 on success and a negative error code on 3234 * failure. 3235 */ 3236 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3237 int lnum, int offs) 3238 { 3239 struct ubifs_znode *znode; 3240 int err = 0; 3241 3242 mutex_lock(&c->tnc_mutex); 3243 znode = lookup_znode(c, key, level, lnum, offs); 3244 if (!znode) 3245 goto out_unlock; 3246 if (IS_ERR(znode)) { 3247 err = PTR_ERR(znode); 3248 goto out_unlock; 3249 } 3250 znode = dirty_cow_bottom_up(c, znode); 3251 if (IS_ERR(znode)) { 3252 err = PTR_ERR(znode); 3253 goto out_unlock; 3254 } 3255 3256 out_unlock: 3257 mutex_unlock(&c->tnc_mutex); 3258 return err; 3259 } 3260 3261 /** 3262 * dbg_check_inode_size - check if inode size is correct. 3263 * @c: UBIFS file-system description object 3264 * @inum: inode number 3265 * @size: inode size 3266 * 3267 * This function makes sure that the inode size (@size) is correct and it does 3268 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3269 * if it has a data page beyond @size, and other negative error code in case of 3270 * other errors. 3271 */ 3272 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3273 loff_t size) 3274 { 3275 int err, n; 3276 union ubifs_key from_key, to_key, *key; 3277 struct ubifs_znode *znode; 3278 unsigned int block; 3279 3280 if (!S_ISREG(inode->i_mode)) 3281 return 0; 3282 if (!dbg_is_chk_gen(c)) 3283 return 0; 3284 3285 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3286 data_key_init(c, &from_key, inode->i_ino, block); 3287 highest_data_key(c, &to_key, inode->i_ino); 3288 3289 mutex_lock(&c->tnc_mutex); 3290 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3291 if (err < 0) 3292 goto out_unlock; 3293 3294 if (err) { 3295 key = &from_key; 3296 goto out_dump; 3297 } 3298 3299 err = tnc_next(c, &znode, &n); 3300 if (err == -ENOENT) { 3301 err = 0; 3302 goto out_unlock; 3303 } 3304 if (err < 0) 3305 goto out_unlock; 3306 3307 ubifs_assert(err == 0); 3308 key = &znode->zbranch[n].key; 3309 if (!key_in_range(c, key, &from_key, &to_key)) 3310 goto out_unlock; 3311 3312 out_dump: 3313 block = key_block(c, key); 3314 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", 3315 (unsigned long)inode->i_ino, size, 3316 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3317 mutex_unlock(&c->tnc_mutex); 3318 ubifs_dump_inode(c, inode); 3319 dump_stack(); 3320 return -EINVAL; 3321 3322 out_unlock: 3323 mutex_unlock(&c->tnc_mutex); 3324 return err; 3325 } 3326