xref: /openbmc/u-boot/fs/ubifs/tnc.c (revision d08215a5)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Adrian Hunter
9  *          Artem Bityutskiy (Битюцкий Артём)
10  */
11 
12 /*
13  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
14  * the UBIFS B-tree.
15  *
16  * At the moment the locking rules of the TNC tree are quite simple and
17  * straightforward. We just have a mutex and lock it when we traverse the
18  * tree. If a znode is not in memory, we read it from flash while still having
19  * the mutex locked.
20  */
21 
22 #define __UBOOT__
23 #ifndef __UBOOT__
24 #include <linux/crc32.h>
25 #include <linux/slab.h>
26 #else
27 #include <linux/compat.h>
28 #include <linux/err.h>
29 #include <linux/stat.h>
30 #endif
31 #include "ubifs.h"
32 
33 /*
34  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
35  * @NAME_LESS: name corresponding to the first argument is less than second
36  * @NAME_MATCHES: names match
37  * @NAME_GREATER: name corresponding to the second argument is greater than
38  *                first
39  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
40  *
41  * These constants were introduce to improve readability.
42  */
43 enum {
44 	NAME_LESS    = 0,
45 	NAME_MATCHES = 1,
46 	NAME_GREATER = 2,
47 	NOT_ON_MEDIA = 3,
48 };
49 
50 /**
51  * insert_old_idx - record an index node obsoleted since the last commit start.
52  * @c: UBIFS file-system description object
53  * @lnum: LEB number of obsoleted index node
54  * @offs: offset of obsoleted index node
55  *
56  * Returns %0 on success, and a negative error code on failure.
57  *
58  * For recovery, there must always be a complete intact version of the index on
59  * flash at all times. That is called the "old index". It is the index as at the
60  * time of the last successful commit. Many of the index nodes in the old index
61  * may be dirty, but they must not be erased until the next successful commit
62  * (at which point that index becomes the old index).
63  *
64  * That means that the garbage collection and the in-the-gaps method of
65  * committing must be able to determine if an index node is in the old index.
66  * Most of the old index nodes can be found by looking up the TNC using the
67  * 'lookup_znode()' function. However, some of the old index nodes may have
68  * been deleted from the current index or may have been changed so much that
69  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
70  * That is what this function does. The RB-tree is ordered by LEB number and
71  * offset because they uniquely identify the old index node.
72  */
73 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
74 {
75 	struct ubifs_old_idx *old_idx, *o;
76 	struct rb_node **p, *parent = NULL;
77 
78 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
79 	if (unlikely(!old_idx))
80 		return -ENOMEM;
81 	old_idx->lnum = lnum;
82 	old_idx->offs = offs;
83 
84 	p = &c->old_idx.rb_node;
85 	while (*p) {
86 		parent = *p;
87 		o = rb_entry(parent, struct ubifs_old_idx, rb);
88 		if (lnum < o->lnum)
89 			p = &(*p)->rb_left;
90 		else if (lnum > o->lnum)
91 			p = &(*p)->rb_right;
92 		else if (offs < o->offs)
93 			p = &(*p)->rb_left;
94 		else if (offs > o->offs)
95 			p = &(*p)->rb_right;
96 		else {
97 			ubifs_err("old idx added twice!");
98 			kfree(old_idx);
99 			return 0;
100 		}
101 	}
102 	rb_link_node(&old_idx->rb, parent, p);
103 	rb_insert_color(&old_idx->rb, &c->old_idx);
104 	return 0;
105 }
106 
107 /**
108  * insert_old_idx_znode - record a znode obsoleted since last commit start.
109  * @c: UBIFS file-system description object
110  * @znode: znode of obsoleted index node
111  *
112  * Returns %0 on success, and a negative error code on failure.
113  */
114 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
115 {
116 	if (znode->parent) {
117 		struct ubifs_zbranch *zbr;
118 
119 		zbr = &znode->parent->zbranch[znode->iip];
120 		if (zbr->len)
121 			return insert_old_idx(c, zbr->lnum, zbr->offs);
122 	} else
123 		if (c->zroot.len)
124 			return insert_old_idx(c, c->zroot.lnum,
125 					      c->zroot.offs);
126 	return 0;
127 }
128 
129 /**
130  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
131  * @c: UBIFS file-system description object
132  * @znode: znode of obsoleted index node
133  *
134  * Returns %0 on success, and a negative error code on failure.
135  */
136 static int ins_clr_old_idx_znode(struct ubifs_info *c,
137 				 struct ubifs_znode *znode)
138 {
139 	int err;
140 
141 	if (znode->parent) {
142 		struct ubifs_zbranch *zbr;
143 
144 		zbr = &znode->parent->zbranch[znode->iip];
145 		if (zbr->len) {
146 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
147 			if (err)
148 				return err;
149 			zbr->lnum = 0;
150 			zbr->offs = 0;
151 			zbr->len = 0;
152 		}
153 	} else
154 		if (c->zroot.len) {
155 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
156 			if (err)
157 				return err;
158 			c->zroot.lnum = 0;
159 			c->zroot.offs = 0;
160 			c->zroot.len = 0;
161 		}
162 	return 0;
163 }
164 
165 /**
166  * destroy_old_idx - destroy the old_idx RB-tree.
167  * @c: UBIFS file-system description object
168  *
169  * During start commit, the old_idx RB-tree is used to avoid overwriting index
170  * nodes that were in the index last commit but have since been deleted.  This
171  * is necessary for recovery i.e. the old index must be kept intact until the
172  * new index is successfully written.  The old-idx RB-tree is used for the
173  * in-the-gaps method of writing index nodes and is destroyed every commit.
174  */
175 void destroy_old_idx(struct ubifs_info *c)
176 {
177 	struct ubifs_old_idx *old_idx, *n;
178 
179 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
180 		kfree(old_idx);
181 
182 	c->old_idx = RB_ROOT;
183 }
184 
185 /**
186  * copy_znode - copy a dirty znode.
187  * @c: UBIFS file-system description object
188  * @znode: znode to copy
189  *
190  * A dirty znode being committed may not be changed, so it is copied.
191  */
192 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
193 				      struct ubifs_znode *znode)
194 {
195 	struct ubifs_znode *zn;
196 
197 	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
198 	if (unlikely(!zn))
199 		return ERR_PTR(-ENOMEM);
200 
201 	memcpy(zn, znode, c->max_znode_sz);
202 	zn->cnext = NULL;
203 	__set_bit(DIRTY_ZNODE, &zn->flags);
204 	__clear_bit(COW_ZNODE, &zn->flags);
205 
206 	ubifs_assert(!ubifs_zn_obsolete(znode));
207 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
208 
209 	if (znode->level != 0) {
210 		int i;
211 		const int n = zn->child_cnt;
212 
213 		/* The children now have new parent */
214 		for (i = 0; i < n; i++) {
215 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
216 
217 			if (zbr->znode)
218 				zbr->znode->parent = zn;
219 		}
220 	}
221 
222 	atomic_long_inc(&c->dirty_zn_cnt);
223 	return zn;
224 }
225 
226 /**
227  * add_idx_dirt - add dirt due to a dirty znode.
228  * @c: UBIFS file-system description object
229  * @lnum: LEB number of index node
230  * @dirt: size of index node
231  *
232  * This function updates lprops dirty space and the new size of the index.
233  */
234 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
235 {
236 	c->calc_idx_sz -= ALIGN(dirt, 8);
237 	return ubifs_add_dirt(c, lnum, dirt);
238 }
239 
240 /**
241  * dirty_cow_znode - ensure a znode is not being committed.
242  * @c: UBIFS file-system description object
243  * @zbr: branch of znode to check
244  *
245  * Returns dirtied znode on success or negative error code on failure.
246  */
247 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
248 					   struct ubifs_zbranch *zbr)
249 {
250 	struct ubifs_znode *znode = zbr->znode;
251 	struct ubifs_znode *zn;
252 	int err;
253 
254 	if (!ubifs_zn_cow(znode)) {
255 		/* znode is not being committed */
256 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
257 			atomic_long_inc(&c->dirty_zn_cnt);
258 			atomic_long_dec(&c->clean_zn_cnt);
259 			atomic_long_dec(&ubifs_clean_zn_cnt);
260 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
261 			if (unlikely(err))
262 				return ERR_PTR(err);
263 		}
264 		return znode;
265 	}
266 
267 	zn = copy_znode(c, znode);
268 	if (IS_ERR(zn))
269 		return zn;
270 
271 	if (zbr->len) {
272 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
273 		if (unlikely(err))
274 			return ERR_PTR(err);
275 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
276 	} else
277 		err = 0;
278 
279 	zbr->znode = zn;
280 	zbr->lnum = 0;
281 	zbr->offs = 0;
282 	zbr->len = 0;
283 
284 	if (unlikely(err))
285 		return ERR_PTR(err);
286 	return zn;
287 }
288 
289 /**
290  * lnc_add - add a leaf node to the leaf node cache.
291  * @c: UBIFS file-system description object
292  * @zbr: zbranch of leaf node
293  * @node: leaf node
294  *
295  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
296  * purpose of the leaf node cache is to save re-reading the same leaf node over
297  * and over again. Most things are cached by VFS, however the file system must
298  * cache directory entries for readdir and for resolving hash collisions. The
299  * present implementation of the leaf node cache is extremely simple, and
300  * allows for error returns that are not used but that may be needed if a more
301  * complex implementation is created.
302  *
303  * Note, this function does not add the @node object to LNC directly, but
304  * allocates a copy of the object and adds the copy to LNC. The reason for this
305  * is that @node has been allocated outside of the TNC subsystem and will be
306  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
307  * may be changed at any time, e.g. freed by the shrinker.
308  */
309 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
310 		   const void *node)
311 {
312 	int err;
313 	void *lnc_node;
314 	const struct ubifs_dent_node *dent = node;
315 
316 	ubifs_assert(!zbr->leaf);
317 	ubifs_assert(zbr->len != 0);
318 	ubifs_assert(is_hash_key(c, &zbr->key));
319 
320 	err = ubifs_validate_entry(c, dent);
321 	if (err) {
322 		dump_stack();
323 		ubifs_dump_node(c, dent);
324 		return err;
325 	}
326 
327 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
328 	if (!lnc_node)
329 		/* We don't have to have the cache, so no error */
330 		return 0;
331 
332 	zbr->leaf = lnc_node;
333 	return 0;
334 }
335 
336  /**
337  * lnc_add_directly - add a leaf node to the leaf-node-cache.
338  * @c: UBIFS file-system description object
339  * @zbr: zbranch of leaf node
340  * @node: leaf node
341  *
342  * This function is similar to 'lnc_add()', but it does not create a copy of
343  * @node but inserts @node to TNC directly.
344  */
345 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
346 			    void *node)
347 {
348 	int err;
349 
350 	ubifs_assert(!zbr->leaf);
351 	ubifs_assert(zbr->len != 0);
352 
353 	err = ubifs_validate_entry(c, node);
354 	if (err) {
355 		dump_stack();
356 		ubifs_dump_node(c, node);
357 		return err;
358 	}
359 
360 	zbr->leaf = node;
361 	return 0;
362 }
363 
364 /**
365  * lnc_free - remove a leaf node from the leaf node cache.
366  * @zbr: zbranch of leaf node
367  * @node: leaf node
368  */
369 static void lnc_free(struct ubifs_zbranch *zbr)
370 {
371 	if (!zbr->leaf)
372 		return;
373 	kfree(zbr->leaf);
374 	zbr->leaf = NULL;
375 }
376 
377 /**
378  * tnc_read_node_nm - read a "hashed" leaf node.
379  * @c: UBIFS file-system description object
380  * @zbr: key and position of the node
381  * @node: node is returned here
382  *
383  * This function reads a "hashed" node defined by @zbr from the leaf node cache
384  * (in it is there) or from the hash media, in which case the node is also
385  * added to LNC. Returns zero in case of success or a negative negative error
386  * code in case of failure.
387  */
388 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
389 			    void *node)
390 {
391 	int err;
392 
393 	ubifs_assert(is_hash_key(c, &zbr->key));
394 
395 	if (zbr->leaf) {
396 		/* Read from the leaf node cache */
397 		ubifs_assert(zbr->len != 0);
398 		memcpy(node, zbr->leaf, zbr->len);
399 		return 0;
400 	}
401 
402 	err = ubifs_tnc_read_node(c, zbr, node);
403 	if (err)
404 		return err;
405 
406 	/* Add the node to the leaf node cache */
407 	err = lnc_add(c, zbr, node);
408 	return err;
409 }
410 
411 /**
412  * try_read_node - read a node if it is a node.
413  * @c: UBIFS file-system description object
414  * @buf: buffer to read to
415  * @type: node type
416  * @len: node length (not aligned)
417  * @lnum: LEB number of node to read
418  * @offs: offset of node to read
419  *
420  * This function tries to read a node of known type and length, checks it and
421  * stores it in @buf. This function returns %1 if a node is present and %0 if
422  * a node is not present. A negative error code is returned for I/O errors.
423  * This function performs that same function as ubifs_read_node except that
424  * it does not require that there is actually a node present and instead
425  * the return code indicates if a node was read.
426  *
427  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
428  * is true (it is controlled by corresponding mount option). However, if
429  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
430  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
431  * because during mounting or re-mounting from R/O mode to R/W mode we may read
432  * journal nodes (when replying the journal or doing the recovery) and the
433  * journal nodes may potentially be corrupted, so checking is required.
434  */
435 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
436 			 int len, int lnum, int offs)
437 {
438 	int err, node_len;
439 	struct ubifs_ch *ch = buf;
440 	uint32_t crc, node_crc;
441 
442 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
443 
444 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
445 	if (err) {
446 		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
447 			  type, lnum, offs, err);
448 		return err;
449 	}
450 
451 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
452 		return 0;
453 
454 	if (ch->node_type != type)
455 		return 0;
456 
457 	node_len = le32_to_cpu(ch->len);
458 	if (node_len != len)
459 		return 0;
460 
461 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
462 	    !c->remounting_rw)
463 		return 1;
464 
465 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
466 	node_crc = le32_to_cpu(ch->crc);
467 	if (crc != node_crc)
468 		return 0;
469 
470 	return 1;
471 }
472 
473 /**
474  * fallible_read_node - try to read a leaf node.
475  * @c: UBIFS file-system description object
476  * @key:  key of node to read
477  * @zbr:  position of node
478  * @node: node returned
479  *
480  * This function tries to read a node and returns %1 if the node is read, %0
481  * if the node is not present, and a negative error code in the case of error.
482  */
483 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
484 			      struct ubifs_zbranch *zbr, void *node)
485 {
486 	int ret;
487 
488 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
489 
490 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
491 			    zbr->offs);
492 	if (ret == 1) {
493 		union ubifs_key node_key;
494 		struct ubifs_dent_node *dent = node;
495 
496 		/* All nodes have key in the same place */
497 		key_read(c, &dent->key, &node_key);
498 		if (keys_cmp(c, key, &node_key) != 0)
499 			ret = 0;
500 	}
501 	if (ret == 0 && c->replaying)
502 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
503 			zbr->lnum, zbr->offs, zbr->len);
504 	return ret;
505 }
506 
507 /**
508  * matches_name - determine if a direntry or xattr entry matches a given name.
509  * @c: UBIFS file-system description object
510  * @zbr: zbranch of dent
511  * @nm: name to match
512  *
513  * This function checks if xentry/direntry referred by zbranch @zbr matches name
514  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
515  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
516  * of failure, a negative error code is returned.
517  */
518 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
519 			const struct qstr *nm)
520 {
521 	struct ubifs_dent_node *dent;
522 	int nlen, err;
523 
524 	/* If possible, match against the dent in the leaf node cache */
525 	if (!zbr->leaf) {
526 		dent = kmalloc(zbr->len, GFP_NOFS);
527 		if (!dent)
528 			return -ENOMEM;
529 
530 		err = ubifs_tnc_read_node(c, zbr, dent);
531 		if (err)
532 			goto out_free;
533 
534 		/* Add the node to the leaf node cache */
535 		err = lnc_add_directly(c, zbr, dent);
536 		if (err)
537 			goto out_free;
538 	} else
539 		dent = zbr->leaf;
540 
541 	nlen = le16_to_cpu(dent->nlen);
542 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
543 	if (err == 0) {
544 		if (nlen == nm->len)
545 			return NAME_MATCHES;
546 		else if (nlen < nm->len)
547 			return NAME_LESS;
548 		else
549 			return NAME_GREATER;
550 	} else if (err < 0)
551 		return NAME_LESS;
552 	else
553 		return NAME_GREATER;
554 
555 out_free:
556 	kfree(dent);
557 	return err;
558 }
559 
560 /**
561  * get_znode - get a TNC znode that may not be loaded yet.
562  * @c: UBIFS file-system description object
563  * @znode: parent znode
564  * @n: znode branch slot number
565  *
566  * This function returns the znode or a negative error code.
567  */
568 static struct ubifs_znode *get_znode(struct ubifs_info *c,
569 				     struct ubifs_znode *znode, int n)
570 {
571 	struct ubifs_zbranch *zbr;
572 
573 	zbr = &znode->zbranch[n];
574 	if (zbr->znode)
575 		znode = zbr->znode;
576 	else
577 		znode = ubifs_load_znode(c, zbr, znode, n);
578 	return znode;
579 }
580 
581 /**
582  * tnc_next - find next TNC entry.
583  * @c: UBIFS file-system description object
584  * @zn: znode is passed and returned here
585  * @n: znode branch slot number is passed and returned here
586  *
587  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
588  * no next entry, or a negative error code otherwise.
589  */
590 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
591 {
592 	struct ubifs_znode *znode = *zn;
593 	int nn = *n;
594 
595 	nn += 1;
596 	if (nn < znode->child_cnt) {
597 		*n = nn;
598 		return 0;
599 	}
600 	while (1) {
601 		struct ubifs_znode *zp;
602 
603 		zp = znode->parent;
604 		if (!zp)
605 			return -ENOENT;
606 		nn = znode->iip + 1;
607 		znode = zp;
608 		if (nn < znode->child_cnt) {
609 			znode = get_znode(c, znode, nn);
610 			if (IS_ERR(znode))
611 				return PTR_ERR(znode);
612 			while (znode->level != 0) {
613 				znode = get_znode(c, znode, 0);
614 				if (IS_ERR(znode))
615 					return PTR_ERR(znode);
616 			}
617 			nn = 0;
618 			break;
619 		}
620 	}
621 	*zn = znode;
622 	*n = nn;
623 	return 0;
624 }
625 
626 /**
627  * tnc_prev - find previous TNC entry.
628  * @c: UBIFS file-system description object
629  * @zn: znode is returned here
630  * @n: znode branch slot number is passed and returned here
631  *
632  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
633  * there is no next entry, or a negative error code otherwise.
634  */
635 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
636 {
637 	struct ubifs_znode *znode = *zn;
638 	int nn = *n;
639 
640 	if (nn > 0) {
641 		*n = nn - 1;
642 		return 0;
643 	}
644 	while (1) {
645 		struct ubifs_znode *zp;
646 
647 		zp = znode->parent;
648 		if (!zp)
649 			return -ENOENT;
650 		nn = znode->iip - 1;
651 		znode = zp;
652 		if (nn >= 0) {
653 			znode = get_znode(c, znode, nn);
654 			if (IS_ERR(znode))
655 				return PTR_ERR(znode);
656 			while (znode->level != 0) {
657 				nn = znode->child_cnt - 1;
658 				znode = get_znode(c, znode, nn);
659 				if (IS_ERR(znode))
660 					return PTR_ERR(znode);
661 			}
662 			nn = znode->child_cnt - 1;
663 			break;
664 		}
665 	}
666 	*zn = znode;
667 	*n = nn;
668 	return 0;
669 }
670 
671 /**
672  * resolve_collision - resolve a collision.
673  * @c: UBIFS file-system description object
674  * @key: key of a directory or extended attribute entry
675  * @zn: znode is returned here
676  * @n: zbranch number is passed and returned here
677  * @nm: name of the entry
678  *
679  * This function is called for "hashed" keys to make sure that the found key
680  * really corresponds to the looked up node (directory or extended attribute
681  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
682  * %0 is returned if @nm is not found and @zn and @n are set to the previous
683  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
684  * This means that @n may be set to %-1 if the leftmost key in @zn is the
685  * previous one. A negative error code is returned on failures.
686  */
687 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
688 			     struct ubifs_znode **zn, int *n,
689 			     const struct qstr *nm)
690 {
691 	int err;
692 
693 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
694 	if (unlikely(err < 0))
695 		return err;
696 	if (err == NAME_MATCHES)
697 		return 1;
698 
699 	if (err == NAME_GREATER) {
700 		/* Look left */
701 		while (1) {
702 			err = tnc_prev(c, zn, n);
703 			if (err == -ENOENT) {
704 				ubifs_assert(*n == 0);
705 				*n = -1;
706 				return 0;
707 			}
708 			if (err < 0)
709 				return err;
710 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
711 				/*
712 				 * We have found the branch after which we would
713 				 * like to insert, but inserting in this znode
714 				 * may still be wrong. Consider the following 3
715 				 * znodes, in the case where we are resolving a
716 				 * collision with Key2.
717 				 *
718 				 *                  znode zp
719 				 *            ----------------------
720 				 * level 1     |  Key0  |  Key1  |
721 				 *            -----------------------
722 				 *                 |            |
723 				 *       znode za  |            |  znode zb
724 				 *          ------------      ------------
725 				 * level 0  |  Key0  |        |  Key2  |
726 				 *          ------------      ------------
727 				 *
728 				 * The lookup finds Key2 in znode zb. Lets say
729 				 * there is no match and the name is greater so
730 				 * we look left. When we find Key0, we end up
731 				 * here. If we return now, we will insert into
732 				 * znode za at slot n = 1.  But that is invalid
733 				 * according to the parent's keys.  Key2 must
734 				 * be inserted into znode zb.
735 				 *
736 				 * Note, this problem is not relevant for the
737 				 * case when we go right, because
738 				 * 'tnc_insert()' would correct the parent key.
739 				 */
740 				if (*n == (*zn)->child_cnt - 1) {
741 					err = tnc_next(c, zn, n);
742 					if (err) {
743 						/* Should be impossible */
744 						ubifs_assert(0);
745 						if (err == -ENOENT)
746 							err = -EINVAL;
747 						return err;
748 					}
749 					ubifs_assert(*n == 0);
750 					*n = -1;
751 				}
752 				return 0;
753 			}
754 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
755 			if (err < 0)
756 				return err;
757 			if (err == NAME_LESS)
758 				return 0;
759 			if (err == NAME_MATCHES)
760 				return 1;
761 			ubifs_assert(err == NAME_GREATER);
762 		}
763 	} else {
764 		int nn = *n;
765 		struct ubifs_znode *znode = *zn;
766 
767 		/* Look right */
768 		while (1) {
769 			err = tnc_next(c, &znode, &nn);
770 			if (err == -ENOENT)
771 				return 0;
772 			if (err < 0)
773 				return err;
774 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
775 				return 0;
776 			err = matches_name(c, &znode->zbranch[nn], nm);
777 			if (err < 0)
778 				return err;
779 			if (err == NAME_GREATER)
780 				return 0;
781 			*zn = znode;
782 			*n = nn;
783 			if (err == NAME_MATCHES)
784 				return 1;
785 			ubifs_assert(err == NAME_LESS);
786 		}
787 	}
788 }
789 
790 /**
791  * fallible_matches_name - determine if a dent matches a given name.
792  * @c: UBIFS file-system description object
793  * @zbr: zbranch of dent
794  * @nm: name to match
795  *
796  * This is a "fallible" version of 'matches_name()' function which does not
797  * panic if the direntry/xentry referred by @zbr does not exist on the media.
798  *
799  * This function checks if xentry/direntry referred by zbranch @zbr matches name
800  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
801  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
802  * if xentry/direntry referred by @zbr does not exist on the media. A negative
803  * error code is returned in case of failure.
804  */
805 static int fallible_matches_name(struct ubifs_info *c,
806 				 struct ubifs_zbranch *zbr,
807 				 const struct qstr *nm)
808 {
809 	struct ubifs_dent_node *dent;
810 	int nlen, err;
811 
812 	/* If possible, match against the dent in the leaf node cache */
813 	if (!zbr->leaf) {
814 		dent = kmalloc(zbr->len, GFP_NOFS);
815 		if (!dent)
816 			return -ENOMEM;
817 
818 		err = fallible_read_node(c, &zbr->key, zbr, dent);
819 		if (err < 0)
820 			goto out_free;
821 		if (err == 0) {
822 			/* The node was not present */
823 			err = NOT_ON_MEDIA;
824 			goto out_free;
825 		}
826 		ubifs_assert(err == 1);
827 
828 		err = lnc_add_directly(c, zbr, dent);
829 		if (err)
830 			goto out_free;
831 	} else
832 		dent = zbr->leaf;
833 
834 	nlen = le16_to_cpu(dent->nlen);
835 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
836 	if (err == 0) {
837 		if (nlen == nm->len)
838 			return NAME_MATCHES;
839 		else if (nlen < nm->len)
840 			return NAME_LESS;
841 		else
842 			return NAME_GREATER;
843 	} else if (err < 0)
844 		return NAME_LESS;
845 	else
846 		return NAME_GREATER;
847 
848 out_free:
849 	kfree(dent);
850 	return err;
851 }
852 
853 /**
854  * fallible_resolve_collision - resolve a collision even if nodes are missing.
855  * @c: UBIFS file-system description object
856  * @key: key
857  * @zn: znode is returned here
858  * @n: branch number is passed and returned here
859  * @nm: name of directory entry
860  * @adding: indicates caller is adding a key to the TNC
861  *
862  * This is a "fallible" version of the 'resolve_collision()' function which
863  * does not panic if one of the nodes referred to by TNC does not exist on the
864  * media. This may happen when replaying the journal if a deleted node was
865  * Garbage-collected and the commit was not done. A branch that refers to a node
866  * that is not present is called a dangling branch. The following are the return
867  * codes for this function:
868  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
869  *    branch;
870  *  o if we are @adding and @nm was not found, %0 is returned;
871  *  o if we are not @adding and @nm was not found, but a dangling branch was
872  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
873  *  o a negative error code is returned in case of failure.
874  */
875 static int fallible_resolve_collision(struct ubifs_info *c,
876 				      const union ubifs_key *key,
877 				      struct ubifs_znode **zn, int *n,
878 				      const struct qstr *nm, int adding)
879 {
880 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
881 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
882 
883 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
884 	if (unlikely(cmp < 0))
885 		return cmp;
886 	if (cmp == NAME_MATCHES)
887 		return 1;
888 	if (cmp == NOT_ON_MEDIA) {
889 		o_znode = znode;
890 		o_n = nn;
891 		/*
892 		 * We are unlucky and hit a dangling branch straight away.
893 		 * Now we do not really know where to go to find the needed
894 		 * branch - to the left or to the right. Well, let's try left.
895 		 */
896 		unsure = 1;
897 	} else if (!adding)
898 		unsure = 1; /* Remove a dangling branch wherever it is */
899 
900 	if (cmp == NAME_GREATER || unsure) {
901 		/* Look left */
902 		while (1) {
903 			err = tnc_prev(c, zn, n);
904 			if (err == -ENOENT) {
905 				ubifs_assert(*n == 0);
906 				*n = -1;
907 				break;
908 			}
909 			if (err < 0)
910 				return err;
911 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
912 				/* See comments in 'resolve_collision()' */
913 				if (*n == (*zn)->child_cnt - 1) {
914 					err = tnc_next(c, zn, n);
915 					if (err) {
916 						/* Should be impossible */
917 						ubifs_assert(0);
918 						if (err == -ENOENT)
919 							err = -EINVAL;
920 						return err;
921 					}
922 					ubifs_assert(*n == 0);
923 					*n = -1;
924 				}
925 				break;
926 			}
927 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
928 			if (err < 0)
929 				return err;
930 			if (err == NAME_MATCHES)
931 				return 1;
932 			if (err == NOT_ON_MEDIA) {
933 				o_znode = *zn;
934 				o_n = *n;
935 				continue;
936 			}
937 			if (!adding)
938 				continue;
939 			if (err == NAME_LESS)
940 				break;
941 			else
942 				unsure = 0;
943 		}
944 	}
945 
946 	if (cmp == NAME_LESS || unsure) {
947 		/* Look right */
948 		*zn = znode;
949 		*n = nn;
950 		while (1) {
951 			err = tnc_next(c, &znode, &nn);
952 			if (err == -ENOENT)
953 				break;
954 			if (err < 0)
955 				return err;
956 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
957 				break;
958 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
959 			if (err < 0)
960 				return err;
961 			if (err == NAME_GREATER)
962 				break;
963 			*zn = znode;
964 			*n = nn;
965 			if (err == NAME_MATCHES)
966 				return 1;
967 			if (err == NOT_ON_MEDIA) {
968 				o_znode = znode;
969 				o_n = nn;
970 			}
971 		}
972 	}
973 
974 	/* Never match a dangling branch when adding */
975 	if (adding || !o_znode)
976 		return 0;
977 
978 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
979 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
980 		o_znode->zbranch[o_n].len);
981 	*zn = o_znode;
982 	*n = o_n;
983 	return 1;
984 }
985 
986 /**
987  * matches_position - determine if a zbranch matches a given position.
988  * @zbr: zbranch of dent
989  * @lnum: LEB number of dent to match
990  * @offs: offset of dent to match
991  *
992  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
993  */
994 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
995 {
996 	if (zbr->lnum == lnum && zbr->offs == offs)
997 		return 1;
998 	else
999 		return 0;
1000 }
1001 
1002 /**
1003  * resolve_collision_directly - resolve a collision directly.
1004  * @c: UBIFS file-system description object
1005  * @key: key of directory entry
1006  * @zn: znode is passed and returned here
1007  * @n: zbranch number is passed and returned here
1008  * @lnum: LEB number of dent node to match
1009  * @offs: offset of dent node to match
1010  *
1011  * This function is used for "hashed" keys to make sure the found directory or
1012  * extended attribute entry node is what was looked for. It is used when the
1013  * flash address of the right node is known (@lnum:@offs) which makes it much
1014  * easier to resolve collisions (no need to read entries and match full
1015  * names). This function returns %1 and sets @zn and @n if the collision is
1016  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1017  * previous directory entry. Otherwise a negative error code is returned.
1018  */
1019 static int resolve_collision_directly(struct ubifs_info *c,
1020 				      const union ubifs_key *key,
1021 				      struct ubifs_znode **zn, int *n,
1022 				      int lnum, int offs)
1023 {
1024 	struct ubifs_znode *znode;
1025 	int nn, err;
1026 
1027 	znode = *zn;
1028 	nn = *n;
1029 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1030 		return 1;
1031 
1032 	/* Look left */
1033 	while (1) {
1034 		err = tnc_prev(c, &znode, &nn);
1035 		if (err == -ENOENT)
1036 			break;
1037 		if (err < 0)
1038 			return err;
1039 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1040 			break;
1041 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1042 			*zn = znode;
1043 			*n = nn;
1044 			return 1;
1045 		}
1046 	}
1047 
1048 	/* Look right */
1049 	znode = *zn;
1050 	nn = *n;
1051 	while (1) {
1052 		err = tnc_next(c, &znode, &nn);
1053 		if (err == -ENOENT)
1054 			return 0;
1055 		if (err < 0)
1056 			return err;
1057 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1058 			return 0;
1059 		*zn = znode;
1060 		*n = nn;
1061 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1062 			return 1;
1063 	}
1064 }
1065 
1066 /**
1067  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1068  * @c: UBIFS file-system description object
1069  * @znode: znode to dirty
1070  *
1071  * If we do not have a unique key that resides in a znode, then we cannot
1072  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1073  * This function records the path back to the last dirty ancestor, and then
1074  * dirties the znodes on that path.
1075  */
1076 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1077 					       struct ubifs_znode *znode)
1078 {
1079 	struct ubifs_znode *zp;
1080 	int *path = c->bottom_up_buf, p = 0;
1081 
1082 	ubifs_assert(c->zroot.znode);
1083 	ubifs_assert(znode);
1084 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1085 		kfree(c->bottom_up_buf);
1086 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1087 					   GFP_NOFS);
1088 		if (!c->bottom_up_buf)
1089 			return ERR_PTR(-ENOMEM);
1090 		path = c->bottom_up_buf;
1091 	}
1092 	if (c->zroot.znode->level) {
1093 		/* Go up until parent is dirty */
1094 		while (1) {
1095 			int n;
1096 
1097 			zp = znode->parent;
1098 			if (!zp)
1099 				break;
1100 			n = znode->iip;
1101 			ubifs_assert(p < c->zroot.znode->level);
1102 			path[p++] = n;
1103 			if (!zp->cnext && ubifs_zn_dirty(znode))
1104 				break;
1105 			znode = zp;
1106 		}
1107 	}
1108 
1109 	/* Come back down, dirtying as we go */
1110 	while (1) {
1111 		struct ubifs_zbranch *zbr;
1112 
1113 		zp = znode->parent;
1114 		if (zp) {
1115 			ubifs_assert(path[p - 1] >= 0);
1116 			ubifs_assert(path[p - 1] < zp->child_cnt);
1117 			zbr = &zp->zbranch[path[--p]];
1118 			znode = dirty_cow_znode(c, zbr);
1119 		} else {
1120 			ubifs_assert(znode == c->zroot.znode);
1121 			znode = dirty_cow_znode(c, &c->zroot);
1122 		}
1123 		if (IS_ERR(znode) || !p)
1124 			break;
1125 		ubifs_assert(path[p - 1] >= 0);
1126 		ubifs_assert(path[p - 1] < znode->child_cnt);
1127 		znode = znode->zbranch[path[p - 1]].znode;
1128 	}
1129 
1130 	return znode;
1131 }
1132 
1133 /**
1134  * ubifs_lookup_level0 - search for zero-level znode.
1135  * @c: UBIFS file-system description object
1136  * @key:  key to lookup
1137  * @zn: znode is returned here
1138  * @n: znode branch slot number is returned here
1139  *
1140  * This function looks up the TNC tree and search for zero-level znode which
1141  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1142  * cases:
1143  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1144  *     is returned and slot number of the matched branch is stored in @n;
1145  *   o not exact match, which means that zero-level znode does not contain
1146  *     @key, then %0 is returned and slot number of the closest branch is stored
1147  *     in @n;
1148  *   o @key is so small that it is even less than the lowest key of the
1149  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1150  *
1151  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1152  * function reads corresponding indexing nodes and inserts them to TNC. In
1153  * case of failure, a negative error code is returned.
1154  */
1155 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1156 			struct ubifs_znode **zn, int *n)
1157 {
1158 	int err, exact;
1159 	struct ubifs_znode *znode;
1160 	unsigned long time = get_seconds();
1161 
1162 	dbg_tnck(key, "search key ");
1163 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1164 
1165 	znode = c->zroot.znode;
1166 	if (unlikely(!znode)) {
1167 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1168 		if (IS_ERR(znode))
1169 			return PTR_ERR(znode);
1170 	}
1171 
1172 	znode->time = time;
1173 
1174 	while (1) {
1175 		struct ubifs_zbranch *zbr;
1176 
1177 		exact = ubifs_search_zbranch(c, znode, key, n);
1178 
1179 		if (znode->level == 0)
1180 			break;
1181 
1182 		if (*n < 0)
1183 			*n = 0;
1184 		zbr = &znode->zbranch[*n];
1185 
1186 		if (zbr->znode) {
1187 			znode->time = time;
1188 			znode = zbr->znode;
1189 			continue;
1190 		}
1191 
1192 		/* znode is not in TNC cache, load it from the media */
1193 		znode = ubifs_load_znode(c, zbr, znode, *n);
1194 		if (IS_ERR(znode))
1195 			return PTR_ERR(znode);
1196 	}
1197 
1198 	*zn = znode;
1199 	if (exact || !is_hash_key(c, key) || *n != -1) {
1200 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1201 		return exact;
1202 	}
1203 
1204 	/*
1205 	 * Here is a tricky place. We have not found the key and this is a
1206 	 * "hashed" key, which may collide. The rest of the code deals with
1207 	 * situations like this:
1208 	 *
1209 	 *                  | 3 | 5 |
1210 	 *                  /       \
1211 	 *          | 3 | 5 |      | 6 | 7 | (x)
1212 	 *
1213 	 * Or more a complex example:
1214 	 *
1215 	 *                | 1 | 5 |
1216 	 *                /       \
1217 	 *       | 1 | 3 |         | 5 | 8 |
1218 	 *              \           /
1219 	 *          | 5 | 5 |   | 6 | 7 | (x)
1220 	 *
1221 	 * In the examples, if we are looking for key "5", we may reach nodes
1222 	 * marked with "(x)". In this case what we have do is to look at the
1223 	 * left and see if there is "5" key there. If there is, we have to
1224 	 * return it.
1225 	 *
1226 	 * Note, this whole situation is possible because we allow to have
1227 	 * elements which are equivalent to the next key in the parent in the
1228 	 * children of current znode. For example, this happens if we split a
1229 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1230 	 * like this:
1231 	 *                      | 3 | 5 |
1232 	 *                       /     \
1233 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1234 	 *                              ^
1235 	 * And this becomes what is at the first "picture" after key "5" marked
1236 	 * with "^" is removed. What could be done is we could prohibit
1237 	 * splitting in the middle of the colliding sequence. Also, when
1238 	 * removing the leftmost key, we would have to correct the key of the
1239 	 * parent node, which would introduce additional complications. Namely,
1240 	 * if we changed the leftmost key of the parent znode, the garbage
1241 	 * collector would be unable to find it (GC is doing this when GC'ing
1242 	 * indexing LEBs). Although we already have an additional RB-tree where
1243 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1244 	 * after the commit. But anyway, this does not look easy to implement
1245 	 * so we did not try this.
1246 	 */
1247 	err = tnc_prev(c, &znode, n);
1248 	if (err == -ENOENT) {
1249 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1250 		*n = -1;
1251 		return 0;
1252 	}
1253 	if (unlikely(err < 0))
1254 		return err;
1255 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1256 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1257 		*n = -1;
1258 		return 0;
1259 	}
1260 
1261 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1262 	*zn = znode;
1263 	return 1;
1264 }
1265 
1266 /**
1267  * lookup_level0_dirty - search for zero-level znode dirtying.
1268  * @c: UBIFS file-system description object
1269  * @key:  key to lookup
1270  * @zn: znode is returned here
1271  * @n: znode branch slot number is returned here
1272  *
1273  * This function looks up the TNC tree and search for zero-level znode which
1274  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1275  * cases:
1276  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1277  *     is returned and slot number of the matched branch is stored in @n;
1278  *   o not exact match, which means that zero-level znode does not contain @key
1279  *     then %0 is returned and slot number of the closed branch is stored in
1280  *     @n;
1281  *   o @key is so small that it is even less than the lowest key of the
1282  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1283  *
1284  * Additionally all znodes in the path from the root to the located zero-level
1285  * znode are marked as dirty.
1286  *
1287  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1288  * function reads corresponding indexing nodes and inserts them to TNC. In
1289  * case of failure, a negative error code is returned.
1290  */
1291 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1292 			       struct ubifs_znode **zn, int *n)
1293 {
1294 	int err, exact;
1295 	struct ubifs_znode *znode;
1296 	unsigned long time = get_seconds();
1297 
1298 	dbg_tnck(key, "search and dirty key ");
1299 
1300 	znode = c->zroot.znode;
1301 	if (unlikely(!znode)) {
1302 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1303 		if (IS_ERR(znode))
1304 			return PTR_ERR(znode);
1305 	}
1306 
1307 	znode = dirty_cow_znode(c, &c->zroot);
1308 	if (IS_ERR(znode))
1309 		return PTR_ERR(znode);
1310 
1311 	znode->time = time;
1312 
1313 	while (1) {
1314 		struct ubifs_zbranch *zbr;
1315 
1316 		exact = ubifs_search_zbranch(c, znode, key, n);
1317 
1318 		if (znode->level == 0)
1319 			break;
1320 
1321 		if (*n < 0)
1322 			*n = 0;
1323 		zbr = &znode->zbranch[*n];
1324 
1325 		if (zbr->znode) {
1326 			znode->time = time;
1327 			znode = dirty_cow_znode(c, zbr);
1328 			if (IS_ERR(znode))
1329 				return PTR_ERR(znode);
1330 			continue;
1331 		}
1332 
1333 		/* znode is not in TNC cache, load it from the media */
1334 		znode = ubifs_load_znode(c, zbr, znode, *n);
1335 		if (IS_ERR(znode))
1336 			return PTR_ERR(znode);
1337 		znode = dirty_cow_znode(c, zbr);
1338 		if (IS_ERR(znode))
1339 			return PTR_ERR(znode);
1340 	}
1341 
1342 	*zn = znode;
1343 	if (exact || !is_hash_key(c, key) || *n != -1) {
1344 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1345 		return exact;
1346 	}
1347 
1348 	/*
1349 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1350 	 * code.
1351 	 */
1352 	err = tnc_prev(c, &znode, n);
1353 	if (err == -ENOENT) {
1354 		*n = -1;
1355 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1356 		return 0;
1357 	}
1358 	if (unlikely(err < 0))
1359 		return err;
1360 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1361 		*n = -1;
1362 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1363 		return 0;
1364 	}
1365 
1366 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1367 		znode = dirty_cow_bottom_up(c, znode);
1368 		if (IS_ERR(znode))
1369 			return PTR_ERR(znode);
1370 	}
1371 
1372 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1373 	*zn = znode;
1374 	return 1;
1375 }
1376 
1377 /**
1378  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1379  * @c: UBIFS file-system description object
1380  * @lnum: LEB number
1381  * @gc_seq1: garbage collection sequence number
1382  *
1383  * This function determines if @lnum may have been garbage collected since
1384  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1385  * %0 is returned.
1386  */
1387 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1388 {
1389 #ifndef __UBOOT__
1390 	int gc_seq2, gced_lnum;
1391 
1392 	gced_lnum = c->gced_lnum;
1393 	smp_rmb();
1394 	gc_seq2 = c->gc_seq;
1395 	/* Same seq means no GC */
1396 	if (gc_seq1 == gc_seq2)
1397 		return 0;
1398 	/* Different by more than 1 means we don't know */
1399 	if (gc_seq1 + 1 != gc_seq2)
1400 		return 1;
1401 	/*
1402 	 * We have seen the sequence number has increased by 1. Now we need to
1403 	 * be sure we read the right LEB number, so read it again.
1404 	 */
1405 	smp_rmb();
1406 	if (gced_lnum != c->gced_lnum)
1407 		return 1;
1408 	/* Finally we can check lnum */
1409 	if (gced_lnum == lnum)
1410 		return 1;
1411 #else
1412 	/* No garbage collection in the read-only U-Boot implementation */
1413 #endif
1414 	return 0;
1415 }
1416 
1417 /**
1418  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1419  * @c: UBIFS file-system description object
1420  * @key: node key to lookup
1421  * @node: the node is returned here
1422  * @lnum: LEB number is returned here
1423  * @offs: offset is returned here
1424  *
1425  * This function looks up and reads node with key @key. The caller has to make
1426  * sure the @node buffer is large enough to fit the node. Returns zero in case
1427  * of success, %-ENOENT if the node was not found, and a negative error code in
1428  * case of failure. The node location can be returned in @lnum and @offs.
1429  */
1430 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1431 		     void *node, int *lnum, int *offs)
1432 {
1433 	int found, n, err, safely = 0, gc_seq1;
1434 	struct ubifs_znode *znode;
1435 	struct ubifs_zbranch zbr, *zt;
1436 
1437 again:
1438 	mutex_lock(&c->tnc_mutex);
1439 	found = ubifs_lookup_level0(c, key, &znode, &n);
1440 	if (!found) {
1441 		err = -ENOENT;
1442 		goto out;
1443 	} else if (found < 0) {
1444 		err = found;
1445 		goto out;
1446 	}
1447 	zt = &znode->zbranch[n];
1448 	if (lnum) {
1449 		*lnum = zt->lnum;
1450 		*offs = zt->offs;
1451 	}
1452 	if (is_hash_key(c, key)) {
1453 		/*
1454 		 * In this case the leaf node cache gets used, so we pass the
1455 		 * address of the zbranch and keep the mutex locked
1456 		 */
1457 		err = tnc_read_node_nm(c, zt, node);
1458 		goto out;
1459 	}
1460 	if (safely) {
1461 		err = ubifs_tnc_read_node(c, zt, node);
1462 		goto out;
1463 	}
1464 	/* Drop the TNC mutex prematurely and race with garbage collection */
1465 	zbr = znode->zbranch[n];
1466 	gc_seq1 = c->gc_seq;
1467 	mutex_unlock(&c->tnc_mutex);
1468 
1469 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1470 		/* We do not GC journal heads */
1471 		err = ubifs_tnc_read_node(c, &zbr, node);
1472 		return err;
1473 	}
1474 
1475 	err = fallible_read_node(c, key, &zbr, node);
1476 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1477 		/*
1478 		 * The node may have been GC'ed out from under us so try again
1479 		 * while keeping the TNC mutex locked.
1480 		 */
1481 		safely = 1;
1482 		goto again;
1483 	}
1484 	return 0;
1485 
1486 out:
1487 	mutex_unlock(&c->tnc_mutex);
1488 	return err;
1489 }
1490 
1491 /**
1492  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1493  * @c: UBIFS file-system description object
1494  * @bu: bulk-read parameters and results
1495  *
1496  * Lookup consecutive data node keys for the same inode that reside
1497  * consecutively in the same LEB. This function returns zero in case of success
1498  * and a negative error code in case of failure.
1499  *
1500  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1501  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1502  * maximum possible amount of nodes for bulk-read.
1503  */
1504 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1505 {
1506 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1507 	int uninitialized_var(len);
1508 	unsigned int block = key_block(c, &bu->key);
1509 	struct ubifs_znode *znode;
1510 
1511 	bu->cnt = 0;
1512 	bu->blk_cnt = 0;
1513 	bu->eof = 0;
1514 
1515 	mutex_lock(&c->tnc_mutex);
1516 	/* Find first key */
1517 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1518 	if (err < 0)
1519 		goto out;
1520 	if (err) {
1521 		/* Key found */
1522 		len = znode->zbranch[n].len;
1523 		/* The buffer must be big enough for at least 1 node */
1524 		if (len > bu->buf_len) {
1525 			err = -EINVAL;
1526 			goto out;
1527 		}
1528 		/* Add this key */
1529 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1530 		bu->blk_cnt += 1;
1531 		lnum = znode->zbranch[n].lnum;
1532 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1533 	}
1534 	while (1) {
1535 		struct ubifs_zbranch *zbr;
1536 		union ubifs_key *key;
1537 		unsigned int next_block;
1538 
1539 		/* Find next key */
1540 		err = tnc_next(c, &znode, &n);
1541 		if (err)
1542 			goto out;
1543 		zbr = &znode->zbranch[n];
1544 		key = &zbr->key;
1545 		/* See if there is another data key for this file */
1546 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1547 		    key_type(c, key) != UBIFS_DATA_KEY) {
1548 			err = -ENOENT;
1549 			goto out;
1550 		}
1551 		if (lnum < 0) {
1552 			/* First key found */
1553 			lnum = zbr->lnum;
1554 			offs = ALIGN(zbr->offs + zbr->len, 8);
1555 			len = zbr->len;
1556 			if (len > bu->buf_len) {
1557 				err = -EINVAL;
1558 				goto out;
1559 			}
1560 		} else {
1561 			/*
1562 			 * The data nodes must be in consecutive positions in
1563 			 * the same LEB.
1564 			 */
1565 			if (zbr->lnum != lnum || zbr->offs != offs)
1566 				goto out;
1567 			offs += ALIGN(zbr->len, 8);
1568 			len = ALIGN(len, 8) + zbr->len;
1569 			/* Must not exceed buffer length */
1570 			if (len > bu->buf_len)
1571 				goto out;
1572 		}
1573 		/* Allow for holes */
1574 		next_block = key_block(c, key);
1575 		bu->blk_cnt += (next_block - block - 1);
1576 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1577 			goto out;
1578 		block = next_block;
1579 		/* Add this key */
1580 		bu->zbranch[bu->cnt++] = *zbr;
1581 		bu->blk_cnt += 1;
1582 		/* See if we have room for more */
1583 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1584 			goto out;
1585 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1586 			goto out;
1587 	}
1588 out:
1589 	if (err == -ENOENT) {
1590 		bu->eof = 1;
1591 		err = 0;
1592 	}
1593 	bu->gc_seq = c->gc_seq;
1594 	mutex_unlock(&c->tnc_mutex);
1595 	if (err)
1596 		return err;
1597 	/*
1598 	 * An enormous hole could cause bulk-read to encompass too many
1599 	 * page cache pages, so limit the number here.
1600 	 */
1601 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1602 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1603 	/*
1604 	 * Ensure that bulk-read covers a whole number of page cache
1605 	 * pages.
1606 	 */
1607 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1608 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1609 		return 0;
1610 	if (bu->eof) {
1611 		/* At the end of file we can round up */
1612 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1613 		return 0;
1614 	}
1615 	/* Exclude data nodes that do not make up a whole page cache page */
1616 	block = key_block(c, &bu->key) + bu->blk_cnt;
1617 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1618 	while (bu->cnt) {
1619 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1620 			break;
1621 		bu->cnt -= 1;
1622 	}
1623 	return 0;
1624 }
1625 
1626 /**
1627  * read_wbuf - bulk-read from a LEB with a wbuf.
1628  * @wbuf: wbuf that may overlap the read
1629  * @buf: buffer into which to read
1630  * @len: read length
1631  * @lnum: LEB number from which to read
1632  * @offs: offset from which to read
1633  *
1634  * This functions returns %0 on success or a negative error code on failure.
1635  */
1636 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1637 		     int offs)
1638 {
1639 	const struct ubifs_info *c = wbuf->c;
1640 	int rlen, overlap;
1641 
1642 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1643 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1644 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1645 	ubifs_assert(offs + len <= c->leb_size);
1646 
1647 	spin_lock(&wbuf->lock);
1648 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1649 	if (!overlap) {
1650 		/* We may safely unlock the write-buffer and read the data */
1651 		spin_unlock(&wbuf->lock);
1652 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1653 	}
1654 
1655 	/* Don't read under wbuf */
1656 	rlen = wbuf->offs - offs;
1657 	if (rlen < 0)
1658 		rlen = 0;
1659 
1660 	/* Copy the rest from the write-buffer */
1661 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1662 	spin_unlock(&wbuf->lock);
1663 
1664 	if (rlen > 0)
1665 		/* Read everything that goes before write-buffer */
1666 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1667 
1668 	return 0;
1669 }
1670 
1671 /**
1672  * validate_data_node - validate data nodes for bulk-read.
1673  * @c: UBIFS file-system description object
1674  * @buf: buffer containing data node to validate
1675  * @zbr: zbranch of data node to validate
1676  *
1677  * This functions returns %0 on success or a negative error code on failure.
1678  */
1679 static int validate_data_node(struct ubifs_info *c, void *buf,
1680 			      struct ubifs_zbranch *zbr)
1681 {
1682 	union ubifs_key key1;
1683 	struct ubifs_ch *ch = buf;
1684 	int err, len;
1685 
1686 	if (ch->node_type != UBIFS_DATA_NODE) {
1687 		ubifs_err("bad node type (%d but expected %d)",
1688 			  ch->node_type, UBIFS_DATA_NODE);
1689 		goto out_err;
1690 	}
1691 
1692 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1693 	if (err) {
1694 		ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1695 		goto out;
1696 	}
1697 
1698 	len = le32_to_cpu(ch->len);
1699 	if (len != zbr->len) {
1700 		ubifs_err("bad node length %d, expected %d", len, zbr->len);
1701 		goto out_err;
1702 	}
1703 
1704 	/* Make sure the key of the read node is correct */
1705 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1706 	if (!keys_eq(c, &zbr->key, &key1)) {
1707 		ubifs_err("bad key in node at LEB %d:%d",
1708 			  zbr->lnum, zbr->offs);
1709 		dbg_tnck(&zbr->key, "looked for key ");
1710 		dbg_tnck(&key1, "found node's key ");
1711 		goto out_err;
1712 	}
1713 
1714 	return 0;
1715 
1716 out_err:
1717 	err = -EINVAL;
1718 out:
1719 	ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1720 	ubifs_dump_node(c, buf);
1721 	dump_stack();
1722 	return err;
1723 }
1724 
1725 /**
1726  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1727  * @c: UBIFS file-system description object
1728  * @bu: bulk-read parameters and results
1729  *
1730  * This functions reads and validates the data nodes that were identified by the
1731  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1732  * -EAGAIN to indicate a race with GC, or another negative error code on
1733  * failure.
1734  */
1735 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1736 {
1737 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1738 	struct ubifs_wbuf *wbuf;
1739 	void *buf;
1740 
1741 	len = bu->zbranch[bu->cnt - 1].offs;
1742 	len += bu->zbranch[bu->cnt - 1].len - offs;
1743 	if (len > bu->buf_len) {
1744 		ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1745 		return -EINVAL;
1746 	}
1747 
1748 	/* Do the read */
1749 	wbuf = ubifs_get_wbuf(c, lnum);
1750 	if (wbuf)
1751 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1752 	else
1753 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1754 
1755 	/* Check for a race with GC */
1756 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1757 		return -EAGAIN;
1758 
1759 	if (err && err != -EBADMSG) {
1760 		ubifs_err("failed to read from LEB %d:%d, error %d",
1761 			  lnum, offs, err);
1762 		dump_stack();
1763 		dbg_tnck(&bu->key, "key ");
1764 		return err;
1765 	}
1766 
1767 	/* Validate the nodes read */
1768 	buf = bu->buf;
1769 	for (i = 0; i < bu->cnt; i++) {
1770 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1771 		if (err)
1772 			return err;
1773 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 /**
1780  * do_lookup_nm- look up a "hashed" node.
1781  * @c: UBIFS file-system description object
1782  * @key: node key to lookup
1783  * @node: the node is returned here
1784  * @nm: node name
1785  *
1786  * This function look up and reads a node which contains name hash in the key.
1787  * Since the hash may have collisions, there may be many nodes with the same
1788  * key, so we have to sequentially look to all of them until the needed one is
1789  * found. This function returns zero in case of success, %-ENOENT if the node
1790  * was not found, and a negative error code in case of failure.
1791  */
1792 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1793 			void *node, const struct qstr *nm)
1794 {
1795 	int found, n, err;
1796 	struct ubifs_znode *znode;
1797 
1798 	dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1799 	mutex_lock(&c->tnc_mutex);
1800 	found = ubifs_lookup_level0(c, key, &znode, &n);
1801 	if (!found) {
1802 		err = -ENOENT;
1803 		goto out_unlock;
1804 	} else if (found < 0) {
1805 		err = found;
1806 		goto out_unlock;
1807 	}
1808 
1809 	ubifs_assert(n >= 0);
1810 
1811 	err = resolve_collision(c, key, &znode, &n, nm);
1812 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1813 	if (unlikely(err < 0))
1814 		goto out_unlock;
1815 	if (err == 0) {
1816 		err = -ENOENT;
1817 		goto out_unlock;
1818 	}
1819 
1820 	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1821 
1822 out_unlock:
1823 	mutex_unlock(&c->tnc_mutex);
1824 	return err;
1825 }
1826 
1827 /**
1828  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1829  * @c: UBIFS file-system description object
1830  * @key: node key to lookup
1831  * @node: the node is returned here
1832  * @nm: node name
1833  *
1834  * This function look up and reads a node which contains name hash in the key.
1835  * Since the hash may have collisions, there may be many nodes with the same
1836  * key, so we have to sequentially look to all of them until the needed one is
1837  * found. This function returns zero in case of success, %-ENOENT if the node
1838  * was not found, and a negative error code in case of failure.
1839  */
1840 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1841 			void *node, const struct qstr *nm)
1842 {
1843 	int err, len;
1844 	const struct ubifs_dent_node *dent = node;
1845 
1846 	/*
1847 	 * We assume that in most of the cases there are no name collisions and
1848 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1849 	 */
1850 	err = ubifs_tnc_lookup(c, key, node);
1851 	if (err)
1852 		return err;
1853 
1854 	len = le16_to_cpu(dent->nlen);
1855 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1856 		return 0;
1857 
1858 	/*
1859 	 * Unluckily, there are hash collisions and we have to iterate over
1860 	 * them look at each direntry with colliding name hash sequentially.
1861 	 */
1862 	return do_lookup_nm(c, key, node, nm);
1863 }
1864 
1865 /**
1866  * correct_parent_keys - correct parent znodes' keys.
1867  * @c: UBIFS file-system description object
1868  * @znode: znode to correct parent znodes for
1869  *
1870  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1871  * zbranch changes, keys of parent znodes have to be corrected. This helper
1872  * function is called in such situations and corrects the keys if needed.
1873  */
1874 static void correct_parent_keys(const struct ubifs_info *c,
1875 				struct ubifs_znode *znode)
1876 {
1877 	union ubifs_key *key, *key1;
1878 
1879 	ubifs_assert(znode->parent);
1880 	ubifs_assert(znode->iip == 0);
1881 
1882 	key = &znode->zbranch[0].key;
1883 	key1 = &znode->parent->zbranch[0].key;
1884 
1885 	while (keys_cmp(c, key, key1) < 0) {
1886 		key_copy(c, key, key1);
1887 		znode = znode->parent;
1888 		znode->alt = 1;
1889 		if (!znode->parent || znode->iip)
1890 			break;
1891 		key1 = &znode->parent->zbranch[0].key;
1892 	}
1893 }
1894 
1895 /**
1896  * insert_zbranch - insert a zbranch into a znode.
1897  * @znode: znode into which to insert
1898  * @zbr: zbranch to insert
1899  * @n: slot number to insert to
1900  *
1901  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1902  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1903  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1904  * slot, zbranches starting from @n have to be moved right.
1905  */
1906 static void insert_zbranch(struct ubifs_znode *znode,
1907 			   const struct ubifs_zbranch *zbr, int n)
1908 {
1909 	int i;
1910 
1911 	ubifs_assert(ubifs_zn_dirty(znode));
1912 
1913 	if (znode->level) {
1914 		for (i = znode->child_cnt; i > n; i--) {
1915 			znode->zbranch[i] = znode->zbranch[i - 1];
1916 			if (znode->zbranch[i].znode)
1917 				znode->zbranch[i].znode->iip = i;
1918 		}
1919 		if (zbr->znode)
1920 			zbr->znode->iip = n;
1921 	} else
1922 		for (i = znode->child_cnt; i > n; i--)
1923 			znode->zbranch[i] = znode->zbranch[i - 1];
1924 
1925 	znode->zbranch[n] = *zbr;
1926 	znode->child_cnt += 1;
1927 
1928 	/*
1929 	 * After inserting at slot zero, the lower bound of the key range of
1930 	 * this znode may have changed. If this znode is subsequently split
1931 	 * then the upper bound of the key range may change, and furthermore
1932 	 * it could change to be lower than the original lower bound. If that
1933 	 * happens, then it will no longer be possible to find this znode in the
1934 	 * TNC using the key from the index node on flash. That is bad because
1935 	 * if it is not found, we will assume it is obsolete and may overwrite
1936 	 * it. Then if there is an unclean unmount, we will start using the
1937 	 * old index which will be broken.
1938 	 *
1939 	 * So we first mark znodes that have insertions at slot zero, and then
1940 	 * if they are split we add their lnum/offs to the old_idx tree.
1941 	 */
1942 	if (n == 0)
1943 		znode->alt = 1;
1944 }
1945 
1946 /**
1947  * tnc_insert - insert a node into TNC.
1948  * @c: UBIFS file-system description object
1949  * @znode: znode to insert into
1950  * @zbr: branch to insert
1951  * @n: slot number to insert new zbranch to
1952  *
1953  * This function inserts a new node described by @zbr into znode @znode. If
1954  * znode does not have a free slot for new zbranch, it is split. Parent znodes
1955  * are splat as well if needed. Returns zero in case of success or a negative
1956  * error code in case of failure.
1957  */
1958 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1959 		      struct ubifs_zbranch *zbr, int n)
1960 {
1961 	struct ubifs_znode *zn, *zi, *zp;
1962 	int i, keep, move, appending = 0;
1963 	union ubifs_key *key = &zbr->key, *key1;
1964 
1965 	ubifs_assert(n >= 0 && n <= c->fanout);
1966 
1967 	/* Implement naive insert for now */
1968 again:
1969 	zp = znode->parent;
1970 	if (znode->child_cnt < c->fanout) {
1971 		ubifs_assert(n != c->fanout);
1972 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1973 
1974 		insert_zbranch(znode, zbr, n);
1975 
1976 		/* Ensure parent's key is correct */
1977 		if (n == 0 && zp && znode->iip == 0)
1978 			correct_parent_keys(c, znode);
1979 
1980 		return 0;
1981 	}
1982 
1983 	/*
1984 	 * Unfortunately, @znode does not have more empty slots and we have to
1985 	 * split it.
1986 	 */
1987 	dbg_tnck(key, "splitting level %d, key ", znode->level);
1988 
1989 	if (znode->alt)
1990 		/*
1991 		 * We can no longer be sure of finding this znode by key, so we
1992 		 * record it in the old_idx tree.
1993 		 */
1994 		ins_clr_old_idx_znode(c, znode);
1995 
1996 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1997 	if (!zn)
1998 		return -ENOMEM;
1999 	zn->parent = zp;
2000 	zn->level = znode->level;
2001 
2002 	/* Decide where to split */
2003 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2004 		/* Try not to split consecutive data keys */
2005 		if (n == c->fanout) {
2006 			key1 = &znode->zbranch[n - 1].key;
2007 			if (key_inum(c, key1) == key_inum(c, key) &&
2008 			    key_type(c, key1) == UBIFS_DATA_KEY)
2009 				appending = 1;
2010 		} else
2011 			goto check_split;
2012 	} else if (appending && n != c->fanout) {
2013 		/* Try not to split consecutive data keys */
2014 		appending = 0;
2015 check_split:
2016 		if (n >= (c->fanout + 1) / 2) {
2017 			key1 = &znode->zbranch[0].key;
2018 			if (key_inum(c, key1) == key_inum(c, key) &&
2019 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2020 				key1 = &znode->zbranch[n].key;
2021 				if (key_inum(c, key1) != key_inum(c, key) ||
2022 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2023 					keep = n;
2024 					move = c->fanout - keep;
2025 					zi = znode;
2026 					goto do_split;
2027 				}
2028 			}
2029 		}
2030 	}
2031 
2032 	if (appending) {
2033 		keep = c->fanout;
2034 		move = 0;
2035 	} else {
2036 		keep = (c->fanout + 1) / 2;
2037 		move = c->fanout - keep;
2038 	}
2039 
2040 	/*
2041 	 * Although we don't at present, we could look at the neighbors and see
2042 	 * if we can move some zbranches there.
2043 	 */
2044 
2045 	if (n < keep) {
2046 		/* Insert into existing znode */
2047 		zi = znode;
2048 		move += 1;
2049 		keep -= 1;
2050 	} else {
2051 		/* Insert into new znode */
2052 		zi = zn;
2053 		n -= keep;
2054 		/* Re-parent */
2055 		if (zn->level != 0)
2056 			zbr->znode->parent = zn;
2057 	}
2058 
2059 do_split:
2060 
2061 	__set_bit(DIRTY_ZNODE, &zn->flags);
2062 	atomic_long_inc(&c->dirty_zn_cnt);
2063 
2064 	zn->child_cnt = move;
2065 	znode->child_cnt = keep;
2066 
2067 	dbg_tnc("moving %d, keeping %d", move, keep);
2068 
2069 	/* Move zbranch */
2070 	for (i = 0; i < move; i++) {
2071 		zn->zbranch[i] = znode->zbranch[keep + i];
2072 		/* Re-parent */
2073 		if (zn->level != 0)
2074 			if (zn->zbranch[i].znode) {
2075 				zn->zbranch[i].znode->parent = zn;
2076 				zn->zbranch[i].znode->iip = i;
2077 			}
2078 	}
2079 
2080 	/* Insert new key and branch */
2081 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2082 
2083 	insert_zbranch(zi, zbr, n);
2084 
2085 	/* Insert new znode (produced by spitting) into the parent */
2086 	if (zp) {
2087 		if (n == 0 && zi == znode && znode->iip == 0)
2088 			correct_parent_keys(c, znode);
2089 
2090 		/* Locate insertion point */
2091 		n = znode->iip + 1;
2092 
2093 		/* Tail recursion */
2094 		zbr->key = zn->zbranch[0].key;
2095 		zbr->znode = zn;
2096 		zbr->lnum = 0;
2097 		zbr->offs = 0;
2098 		zbr->len = 0;
2099 		znode = zp;
2100 
2101 		goto again;
2102 	}
2103 
2104 	/* We have to split root znode */
2105 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2106 
2107 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2108 	if (!zi)
2109 		return -ENOMEM;
2110 
2111 	zi->child_cnt = 2;
2112 	zi->level = znode->level + 1;
2113 
2114 	__set_bit(DIRTY_ZNODE, &zi->flags);
2115 	atomic_long_inc(&c->dirty_zn_cnt);
2116 
2117 	zi->zbranch[0].key = znode->zbranch[0].key;
2118 	zi->zbranch[0].znode = znode;
2119 	zi->zbranch[0].lnum = c->zroot.lnum;
2120 	zi->zbranch[0].offs = c->zroot.offs;
2121 	zi->zbranch[0].len = c->zroot.len;
2122 	zi->zbranch[1].key = zn->zbranch[0].key;
2123 	zi->zbranch[1].znode = zn;
2124 
2125 	c->zroot.lnum = 0;
2126 	c->zroot.offs = 0;
2127 	c->zroot.len = 0;
2128 	c->zroot.znode = zi;
2129 
2130 	zn->parent = zi;
2131 	zn->iip = 1;
2132 	znode->parent = zi;
2133 	znode->iip = 0;
2134 
2135 	return 0;
2136 }
2137 
2138 /**
2139  * ubifs_tnc_add - add a node to TNC.
2140  * @c: UBIFS file-system description object
2141  * @key: key to add
2142  * @lnum: LEB number of node
2143  * @offs: node offset
2144  * @len: node length
2145  *
2146  * This function adds a node with key @key to TNC. The node may be new or it may
2147  * obsolete some existing one. Returns %0 on success or negative error code on
2148  * failure.
2149  */
2150 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2151 		  int offs, int len)
2152 {
2153 	int found, n, err = 0;
2154 	struct ubifs_znode *znode;
2155 
2156 	mutex_lock(&c->tnc_mutex);
2157 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2158 	found = lookup_level0_dirty(c, key, &znode, &n);
2159 	if (!found) {
2160 		struct ubifs_zbranch zbr;
2161 
2162 		zbr.znode = NULL;
2163 		zbr.lnum = lnum;
2164 		zbr.offs = offs;
2165 		zbr.len = len;
2166 		key_copy(c, key, &zbr.key);
2167 		err = tnc_insert(c, znode, &zbr, n + 1);
2168 	} else if (found == 1) {
2169 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2170 
2171 		lnc_free(zbr);
2172 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2173 		zbr->lnum = lnum;
2174 		zbr->offs = offs;
2175 		zbr->len = len;
2176 	} else
2177 		err = found;
2178 	if (!err)
2179 		err = dbg_check_tnc(c, 0);
2180 	mutex_unlock(&c->tnc_mutex);
2181 
2182 	return err;
2183 }
2184 
2185 /**
2186  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2187  * @c: UBIFS file-system description object
2188  * @key: key to add
2189  * @old_lnum: LEB number of old node
2190  * @old_offs: old node offset
2191  * @lnum: LEB number of node
2192  * @offs: node offset
2193  * @len: node length
2194  *
2195  * This function replaces a node with key @key in the TNC only if the old node
2196  * is found.  This function is called by garbage collection when node are moved.
2197  * Returns %0 on success or negative error code on failure.
2198  */
2199 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2200 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2201 {
2202 	int found, n, err = 0;
2203 	struct ubifs_znode *znode;
2204 
2205 	mutex_lock(&c->tnc_mutex);
2206 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2207 		 old_offs, lnum, offs, len);
2208 	found = lookup_level0_dirty(c, key, &znode, &n);
2209 	if (found < 0) {
2210 		err = found;
2211 		goto out_unlock;
2212 	}
2213 
2214 	if (found == 1) {
2215 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2216 
2217 		found = 0;
2218 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2219 			lnc_free(zbr);
2220 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2221 			if (err)
2222 				goto out_unlock;
2223 			zbr->lnum = lnum;
2224 			zbr->offs = offs;
2225 			zbr->len = len;
2226 			found = 1;
2227 		} else if (is_hash_key(c, key)) {
2228 			found = resolve_collision_directly(c, key, &znode, &n,
2229 							   old_lnum, old_offs);
2230 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2231 				found, znode, n, old_lnum, old_offs);
2232 			if (found < 0) {
2233 				err = found;
2234 				goto out_unlock;
2235 			}
2236 
2237 			if (found) {
2238 				/* Ensure the znode is dirtied */
2239 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2240 					znode = dirty_cow_bottom_up(c, znode);
2241 					if (IS_ERR(znode)) {
2242 						err = PTR_ERR(znode);
2243 						goto out_unlock;
2244 					}
2245 				}
2246 				zbr = &znode->zbranch[n];
2247 				lnc_free(zbr);
2248 				err = ubifs_add_dirt(c, zbr->lnum,
2249 						     zbr->len);
2250 				if (err)
2251 					goto out_unlock;
2252 				zbr->lnum = lnum;
2253 				zbr->offs = offs;
2254 				zbr->len = len;
2255 			}
2256 		}
2257 	}
2258 
2259 	if (!found)
2260 		err = ubifs_add_dirt(c, lnum, len);
2261 
2262 	if (!err)
2263 		err = dbg_check_tnc(c, 0);
2264 
2265 out_unlock:
2266 	mutex_unlock(&c->tnc_mutex);
2267 	return err;
2268 }
2269 
2270 /**
2271  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2272  * @c: UBIFS file-system description object
2273  * @key: key to add
2274  * @lnum: LEB number of node
2275  * @offs: node offset
2276  * @len: node length
2277  * @nm: node name
2278  *
2279  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2280  * may have collisions, like directory entry keys.
2281  */
2282 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2283 		     int lnum, int offs, int len, const struct qstr *nm)
2284 {
2285 	int found, n, err = 0;
2286 	struct ubifs_znode *znode;
2287 
2288 	mutex_lock(&c->tnc_mutex);
2289 	dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2290 		 lnum, offs, nm->len, nm->name);
2291 	found = lookup_level0_dirty(c, key, &znode, &n);
2292 	if (found < 0) {
2293 		err = found;
2294 		goto out_unlock;
2295 	}
2296 
2297 	if (found == 1) {
2298 		if (c->replaying)
2299 			found = fallible_resolve_collision(c, key, &znode, &n,
2300 							   nm, 1);
2301 		else
2302 			found = resolve_collision(c, key, &znode, &n, nm);
2303 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2304 		if (found < 0) {
2305 			err = found;
2306 			goto out_unlock;
2307 		}
2308 
2309 		/* Ensure the znode is dirtied */
2310 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2311 			znode = dirty_cow_bottom_up(c, znode);
2312 			if (IS_ERR(znode)) {
2313 				err = PTR_ERR(znode);
2314 				goto out_unlock;
2315 			}
2316 		}
2317 
2318 		if (found == 1) {
2319 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2320 
2321 			lnc_free(zbr);
2322 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2323 			zbr->lnum = lnum;
2324 			zbr->offs = offs;
2325 			zbr->len = len;
2326 			goto out_unlock;
2327 		}
2328 	}
2329 
2330 	if (!found) {
2331 		struct ubifs_zbranch zbr;
2332 
2333 		zbr.znode = NULL;
2334 		zbr.lnum = lnum;
2335 		zbr.offs = offs;
2336 		zbr.len = len;
2337 		key_copy(c, key, &zbr.key);
2338 		err = tnc_insert(c, znode, &zbr, n + 1);
2339 		if (err)
2340 			goto out_unlock;
2341 		if (c->replaying) {
2342 			/*
2343 			 * We did not find it in the index so there may be a
2344 			 * dangling branch still in the index. So we remove it
2345 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2346 			 * an unmatchable name.
2347 			 */
2348 			struct qstr noname = { .name = "" };
2349 
2350 			err = dbg_check_tnc(c, 0);
2351 			mutex_unlock(&c->tnc_mutex);
2352 			if (err)
2353 				return err;
2354 			return ubifs_tnc_remove_nm(c, key, &noname);
2355 		}
2356 	}
2357 
2358 out_unlock:
2359 	if (!err)
2360 		err = dbg_check_tnc(c, 0);
2361 	mutex_unlock(&c->tnc_mutex);
2362 	return err;
2363 }
2364 
2365 /**
2366  * tnc_delete - delete a znode form TNC.
2367  * @c: UBIFS file-system description object
2368  * @znode: znode to delete from
2369  * @n: zbranch slot number to delete
2370  *
2371  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2372  * case of success and a negative error code in case of failure.
2373  */
2374 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2375 {
2376 	struct ubifs_zbranch *zbr;
2377 	struct ubifs_znode *zp;
2378 	int i, err;
2379 
2380 	/* Delete without merge for now */
2381 	ubifs_assert(znode->level == 0);
2382 	ubifs_assert(n >= 0 && n < c->fanout);
2383 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2384 
2385 	zbr = &znode->zbranch[n];
2386 	lnc_free(zbr);
2387 
2388 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2389 	if (err) {
2390 		ubifs_dump_znode(c, znode);
2391 		return err;
2392 	}
2393 
2394 	/* We do not "gap" zbranch slots */
2395 	for (i = n; i < znode->child_cnt - 1; i++)
2396 		znode->zbranch[i] = znode->zbranch[i + 1];
2397 	znode->child_cnt -= 1;
2398 
2399 	if (znode->child_cnt > 0)
2400 		return 0;
2401 
2402 	/*
2403 	 * This was the last zbranch, we have to delete this znode from the
2404 	 * parent.
2405 	 */
2406 
2407 	do {
2408 		ubifs_assert(!ubifs_zn_obsolete(znode));
2409 		ubifs_assert(ubifs_zn_dirty(znode));
2410 
2411 		zp = znode->parent;
2412 		n = znode->iip;
2413 
2414 		atomic_long_dec(&c->dirty_zn_cnt);
2415 
2416 		err = insert_old_idx_znode(c, znode);
2417 		if (err)
2418 			return err;
2419 
2420 		if (znode->cnext) {
2421 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2422 			atomic_long_inc(&c->clean_zn_cnt);
2423 			atomic_long_inc(&ubifs_clean_zn_cnt);
2424 		} else
2425 			kfree(znode);
2426 		znode = zp;
2427 	} while (znode->child_cnt == 1); /* while removing last child */
2428 
2429 	/* Remove from znode, entry n - 1 */
2430 	znode->child_cnt -= 1;
2431 	ubifs_assert(znode->level != 0);
2432 	for (i = n; i < znode->child_cnt; i++) {
2433 		znode->zbranch[i] = znode->zbranch[i + 1];
2434 		if (znode->zbranch[i].znode)
2435 			znode->zbranch[i].znode->iip = i;
2436 	}
2437 
2438 	/*
2439 	 * If this is the root and it has only 1 child then
2440 	 * collapse the tree.
2441 	 */
2442 	if (!znode->parent) {
2443 		while (znode->child_cnt == 1 && znode->level != 0) {
2444 			zp = znode;
2445 			zbr = &znode->zbranch[0];
2446 			znode = get_znode(c, znode, 0);
2447 			if (IS_ERR(znode))
2448 				return PTR_ERR(znode);
2449 			znode = dirty_cow_znode(c, zbr);
2450 			if (IS_ERR(znode))
2451 				return PTR_ERR(znode);
2452 			znode->parent = NULL;
2453 			znode->iip = 0;
2454 			if (c->zroot.len) {
2455 				err = insert_old_idx(c, c->zroot.lnum,
2456 						     c->zroot.offs);
2457 				if (err)
2458 					return err;
2459 			}
2460 			c->zroot.lnum = zbr->lnum;
2461 			c->zroot.offs = zbr->offs;
2462 			c->zroot.len = zbr->len;
2463 			c->zroot.znode = znode;
2464 			ubifs_assert(!ubifs_zn_obsolete(zp));
2465 			ubifs_assert(ubifs_zn_dirty(zp));
2466 			atomic_long_dec(&c->dirty_zn_cnt);
2467 
2468 			if (zp->cnext) {
2469 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2470 				atomic_long_inc(&c->clean_zn_cnt);
2471 				atomic_long_inc(&ubifs_clean_zn_cnt);
2472 			} else
2473 				kfree(zp);
2474 		}
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 /**
2481  * ubifs_tnc_remove - remove an index entry of a node.
2482  * @c: UBIFS file-system description object
2483  * @key: key of node
2484  *
2485  * Returns %0 on success or negative error code on failure.
2486  */
2487 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2488 {
2489 	int found, n, err = 0;
2490 	struct ubifs_znode *znode;
2491 
2492 	mutex_lock(&c->tnc_mutex);
2493 	dbg_tnck(key, "key ");
2494 	found = lookup_level0_dirty(c, key, &znode, &n);
2495 	if (found < 0) {
2496 		err = found;
2497 		goto out_unlock;
2498 	}
2499 	if (found == 1)
2500 		err = tnc_delete(c, znode, n);
2501 	if (!err)
2502 		err = dbg_check_tnc(c, 0);
2503 
2504 out_unlock:
2505 	mutex_unlock(&c->tnc_mutex);
2506 	return err;
2507 }
2508 
2509 /**
2510  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2511  * @c: UBIFS file-system description object
2512  * @key: key of node
2513  * @nm: directory entry name
2514  *
2515  * Returns %0 on success or negative error code on failure.
2516  */
2517 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2518 			const struct qstr *nm)
2519 {
2520 	int n, err;
2521 	struct ubifs_znode *znode;
2522 
2523 	mutex_lock(&c->tnc_mutex);
2524 	dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2525 	err = lookup_level0_dirty(c, key, &znode, &n);
2526 	if (err < 0)
2527 		goto out_unlock;
2528 
2529 	if (err) {
2530 		if (c->replaying)
2531 			err = fallible_resolve_collision(c, key, &znode, &n,
2532 							 nm, 0);
2533 		else
2534 			err = resolve_collision(c, key, &znode, &n, nm);
2535 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2536 		if (err < 0)
2537 			goto out_unlock;
2538 		if (err) {
2539 			/* Ensure the znode is dirtied */
2540 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2541 				znode = dirty_cow_bottom_up(c, znode);
2542 				if (IS_ERR(znode)) {
2543 					err = PTR_ERR(znode);
2544 					goto out_unlock;
2545 				}
2546 			}
2547 			err = tnc_delete(c, znode, n);
2548 		}
2549 	}
2550 
2551 out_unlock:
2552 	if (!err)
2553 		err = dbg_check_tnc(c, 0);
2554 	mutex_unlock(&c->tnc_mutex);
2555 	return err;
2556 }
2557 
2558 /**
2559  * key_in_range - determine if a key falls within a range of keys.
2560  * @c: UBIFS file-system description object
2561  * @key: key to check
2562  * @from_key: lowest key in range
2563  * @to_key: highest key in range
2564  *
2565  * This function returns %1 if the key is in range and %0 otherwise.
2566  */
2567 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2568 			union ubifs_key *from_key, union ubifs_key *to_key)
2569 {
2570 	if (keys_cmp(c, key, from_key) < 0)
2571 		return 0;
2572 	if (keys_cmp(c, key, to_key) > 0)
2573 		return 0;
2574 	return 1;
2575 }
2576 
2577 /**
2578  * ubifs_tnc_remove_range - remove index entries in range.
2579  * @c: UBIFS file-system description object
2580  * @from_key: lowest key to remove
2581  * @to_key: highest key to remove
2582  *
2583  * This function removes index entries starting at @from_key and ending at
2584  * @to_key.  This function returns zero in case of success and a negative error
2585  * code in case of failure.
2586  */
2587 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2588 			   union ubifs_key *to_key)
2589 {
2590 	int i, n, k, err = 0;
2591 	struct ubifs_znode *znode;
2592 	union ubifs_key *key;
2593 
2594 	mutex_lock(&c->tnc_mutex);
2595 	while (1) {
2596 		/* Find first level 0 znode that contains keys to remove */
2597 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2598 		if (err < 0)
2599 			goto out_unlock;
2600 
2601 		if (err)
2602 			key = from_key;
2603 		else {
2604 			err = tnc_next(c, &znode, &n);
2605 			if (err == -ENOENT) {
2606 				err = 0;
2607 				goto out_unlock;
2608 			}
2609 			if (err < 0)
2610 				goto out_unlock;
2611 			key = &znode->zbranch[n].key;
2612 			if (!key_in_range(c, key, from_key, to_key)) {
2613 				err = 0;
2614 				goto out_unlock;
2615 			}
2616 		}
2617 
2618 		/* Ensure the znode is dirtied */
2619 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2620 			znode = dirty_cow_bottom_up(c, znode);
2621 			if (IS_ERR(znode)) {
2622 				err = PTR_ERR(znode);
2623 				goto out_unlock;
2624 			}
2625 		}
2626 
2627 		/* Remove all keys in range except the first */
2628 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2629 			key = &znode->zbranch[i].key;
2630 			if (!key_in_range(c, key, from_key, to_key))
2631 				break;
2632 			lnc_free(&znode->zbranch[i]);
2633 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2634 					     znode->zbranch[i].len);
2635 			if (err) {
2636 				ubifs_dump_znode(c, znode);
2637 				goto out_unlock;
2638 			}
2639 			dbg_tnck(key, "removing key ");
2640 		}
2641 		if (k) {
2642 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2643 				znode->zbranch[i - k] = znode->zbranch[i];
2644 			znode->child_cnt -= k;
2645 		}
2646 
2647 		/* Now delete the first */
2648 		err = tnc_delete(c, znode, n);
2649 		if (err)
2650 			goto out_unlock;
2651 	}
2652 
2653 out_unlock:
2654 	if (!err)
2655 		err = dbg_check_tnc(c, 0);
2656 	mutex_unlock(&c->tnc_mutex);
2657 	return err;
2658 }
2659 
2660 /**
2661  * ubifs_tnc_remove_ino - remove an inode from TNC.
2662  * @c: UBIFS file-system description object
2663  * @inum: inode number to remove
2664  *
2665  * This function remove inode @inum and all the extended attributes associated
2666  * with the anode from TNC and returns zero in case of success or a negative
2667  * error code in case of failure.
2668  */
2669 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2670 {
2671 	union ubifs_key key1, key2;
2672 	struct ubifs_dent_node *xent, *pxent = NULL;
2673 	struct qstr nm = { .name = NULL };
2674 
2675 	dbg_tnc("ino %lu", (unsigned long)inum);
2676 
2677 	/*
2678 	 * Walk all extended attribute entries and remove them together with
2679 	 * corresponding extended attribute inodes.
2680 	 */
2681 	lowest_xent_key(c, &key1, inum);
2682 	while (1) {
2683 		ino_t xattr_inum;
2684 		int err;
2685 
2686 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2687 		if (IS_ERR(xent)) {
2688 			err = PTR_ERR(xent);
2689 			if (err == -ENOENT)
2690 				break;
2691 			return err;
2692 		}
2693 
2694 		xattr_inum = le64_to_cpu(xent->inum);
2695 		dbg_tnc("xent '%s', ino %lu", xent->name,
2696 			(unsigned long)xattr_inum);
2697 
2698 		nm.name = xent->name;
2699 		nm.len = le16_to_cpu(xent->nlen);
2700 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2701 		if (err) {
2702 			kfree(xent);
2703 			return err;
2704 		}
2705 
2706 		lowest_ino_key(c, &key1, xattr_inum);
2707 		highest_ino_key(c, &key2, xattr_inum);
2708 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2709 		if (err) {
2710 			kfree(xent);
2711 			return err;
2712 		}
2713 
2714 		kfree(pxent);
2715 		pxent = xent;
2716 		key_read(c, &xent->key, &key1);
2717 	}
2718 
2719 	kfree(pxent);
2720 	lowest_ino_key(c, &key1, inum);
2721 	highest_ino_key(c, &key2, inum);
2722 
2723 	return ubifs_tnc_remove_range(c, &key1, &key2);
2724 }
2725 
2726 /**
2727  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2728  * @c: UBIFS file-system description object
2729  * @key: key of last entry
2730  * @nm: name of last entry found or %NULL
2731  *
2732  * This function finds and reads the next directory or extended attribute entry
2733  * after the given key (@key) if there is one. @nm is used to resolve
2734  * collisions.
2735  *
2736  * If the name of the current entry is not known and only the key is known,
2737  * @nm->name has to be %NULL. In this case the semantics of this function is a
2738  * little bit different and it returns the entry corresponding to this key, not
2739  * the next one. If the key was not found, the closest "right" entry is
2740  * returned.
2741  *
2742  * If the fist entry has to be found, @key has to contain the lowest possible
2743  * key value for this inode and @name has to be %NULL.
2744  *
2745  * This function returns the found directory or extended attribute entry node
2746  * in case of success, %-ENOENT is returned if no entry was found, and a
2747  * negative error code is returned in case of failure.
2748  */
2749 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2750 					   union ubifs_key *key,
2751 					   const struct qstr *nm)
2752 {
2753 	int n, err, type = key_type(c, key);
2754 	struct ubifs_znode *znode;
2755 	struct ubifs_dent_node *dent;
2756 	struct ubifs_zbranch *zbr;
2757 	union ubifs_key *dkey;
2758 
2759 	dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2760 	ubifs_assert(is_hash_key(c, key));
2761 
2762 	mutex_lock(&c->tnc_mutex);
2763 	err = ubifs_lookup_level0(c, key, &znode, &n);
2764 	if (unlikely(err < 0))
2765 		goto out_unlock;
2766 
2767 	if (nm->name) {
2768 		if (err) {
2769 			/* Handle collisions */
2770 			err = resolve_collision(c, key, &znode, &n, nm);
2771 			dbg_tnc("rc returned %d, znode %p, n %d",
2772 				err, znode, n);
2773 			if (unlikely(err < 0))
2774 				goto out_unlock;
2775 		}
2776 
2777 		/* Now find next entry */
2778 		err = tnc_next(c, &znode, &n);
2779 		if (unlikely(err))
2780 			goto out_unlock;
2781 	} else {
2782 		/*
2783 		 * The full name of the entry was not given, in which case the
2784 		 * behavior of this function is a little different and it
2785 		 * returns current entry, not the next one.
2786 		 */
2787 		if (!err) {
2788 			/*
2789 			 * However, the given key does not exist in the TNC
2790 			 * tree and @znode/@n variables contain the closest
2791 			 * "preceding" element. Switch to the next one.
2792 			 */
2793 			err = tnc_next(c, &znode, &n);
2794 			if (err)
2795 				goto out_unlock;
2796 		}
2797 	}
2798 
2799 	zbr = &znode->zbranch[n];
2800 	dent = kmalloc(zbr->len, GFP_NOFS);
2801 	if (unlikely(!dent)) {
2802 		err = -ENOMEM;
2803 		goto out_unlock;
2804 	}
2805 
2806 	/*
2807 	 * The above 'tnc_next()' call could lead us to the next inode, check
2808 	 * this.
2809 	 */
2810 	dkey = &zbr->key;
2811 	if (key_inum(c, dkey) != key_inum(c, key) ||
2812 	    key_type(c, dkey) != type) {
2813 		err = -ENOENT;
2814 		goto out_free;
2815 	}
2816 
2817 	err = tnc_read_node_nm(c, zbr, dent);
2818 	if (unlikely(err))
2819 		goto out_free;
2820 
2821 	mutex_unlock(&c->tnc_mutex);
2822 	return dent;
2823 
2824 out_free:
2825 	kfree(dent);
2826 out_unlock:
2827 	mutex_unlock(&c->tnc_mutex);
2828 	return ERR_PTR(err);
2829 }
2830 
2831 #ifndef __UBOOT__
2832 /**
2833  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2834  * @c: UBIFS file-system description object
2835  *
2836  * Destroy left-over obsolete znodes from a failed commit.
2837  */
2838 static void tnc_destroy_cnext(struct ubifs_info *c)
2839 {
2840 	struct ubifs_znode *cnext;
2841 
2842 	if (!c->cnext)
2843 		return;
2844 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2845 	cnext = c->cnext;
2846 	do {
2847 		struct ubifs_znode *znode = cnext;
2848 
2849 		cnext = cnext->cnext;
2850 		if (ubifs_zn_obsolete(znode))
2851 			kfree(znode);
2852 	} while (cnext && cnext != c->cnext);
2853 }
2854 
2855 /**
2856  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2857  * @c: UBIFS file-system description object
2858  */
2859 void ubifs_tnc_close(struct ubifs_info *c)
2860 {
2861 	tnc_destroy_cnext(c);
2862 	if (c->zroot.znode) {
2863 		long n;
2864 
2865 		ubifs_destroy_tnc_subtree(c->zroot.znode);
2866 		n = atomic_long_read(&c->clean_zn_cnt);
2867 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
2868 	}
2869 	kfree(c->gap_lebs);
2870 	kfree(c->ilebs);
2871 	destroy_old_idx(c);
2872 }
2873 #endif
2874 
2875 /**
2876  * left_znode - get the znode to the left.
2877  * @c: UBIFS file-system description object
2878  * @znode: znode
2879  *
2880  * This function returns a pointer to the znode to the left of @znode or NULL if
2881  * there is not one. A negative error code is returned on failure.
2882  */
2883 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2884 				      struct ubifs_znode *znode)
2885 {
2886 	int level = znode->level;
2887 
2888 	while (1) {
2889 		int n = znode->iip - 1;
2890 
2891 		/* Go up until we can go left */
2892 		znode = znode->parent;
2893 		if (!znode)
2894 			return NULL;
2895 		if (n >= 0) {
2896 			/* Now go down the rightmost branch to 'level' */
2897 			znode = get_znode(c, znode, n);
2898 			if (IS_ERR(znode))
2899 				return znode;
2900 			while (znode->level != level) {
2901 				n = znode->child_cnt - 1;
2902 				znode = get_znode(c, znode, n);
2903 				if (IS_ERR(znode))
2904 					return znode;
2905 			}
2906 			break;
2907 		}
2908 	}
2909 	return znode;
2910 }
2911 
2912 /**
2913  * right_znode - get the znode to the right.
2914  * @c: UBIFS file-system description object
2915  * @znode: znode
2916  *
2917  * This function returns a pointer to the znode to the right of @znode or NULL
2918  * if there is not one. A negative error code is returned on failure.
2919  */
2920 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2921 				       struct ubifs_znode *znode)
2922 {
2923 	int level = znode->level;
2924 
2925 	while (1) {
2926 		int n = znode->iip + 1;
2927 
2928 		/* Go up until we can go right */
2929 		znode = znode->parent;
2930 		if (!znode)
2931 			return NULL;
2932 		if (n < znode->child_cnt) {
2933 			/* Now go down the leftmost branch to 'level' */
2934 			znode = get_znode(c, znode, n);
2935 			if (IS_ERR(znode))
2936 				return znode;
2937 			while (znode->level != level) {
2938 				znode = get_znode(c, znode, 0);
2939 				if (IS_ERR(znode))
2940 					return znode;
2941 			}
2942 			break;
2943 		}
2944 	}
2945 	return znode;
2946 }
2947 
2948 /**
2949  * lookup_znode - find a particular indexing node from TNC.
2950  * @c: UBIFS file-system description object
2951  * @key: index node key to lookup
2952  * @level: index node level
2953  * @lnum: index node LEB number
2954  * @offs: index node offset
2955  *
2956  * This function searches an indexing node by its first key @key and its
2957  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2958  * nodes it traverses to TNC. This function is called for indexing nodes which
2959  * were found on the media by scanning, for example when garbage-collecting or
2960  * when doing in-the-gaps commit. This means that the indexing node which is
2961  * looked for does not have to have exactly the same leftmost key @key, because
2962  * the leftmost key may have been changed, in which case TNC will contain a
2963  * dirty znode which still refers the same @lnum:@offs. This function is clever
2964  * enough to recognize such indexing nodes.
2965  *
2966  * Note, if a znode was deleted or changed too much, then this function will
2967  * not find it. For situations like this UBIFS has the old index RB-tree
2968  * (indexed by @lnum:@offs).
2969  *
2970  * This function returns a pointer to the znode found or %NULL if it is not
2971  * found. A negative error code is returned on failure.
2972  */
2973 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2974 					union ubifs_key *key, int level,
2975 					int lnum, int offs)
2976 {
2977 	struct ubifs_znode *znode, *zn;
2978 	int n, nn;
2979 
2980 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2981 
2982 	/*
2983 	 * The arguments have probably been read off flash, so don't assume
2984 	 * they are valid.
2985 	 */
2986 	if (level < 0)
2987 		return ERR_PTR(-EINVAL);
2988 
2989 	/* Get the root znode */
2990 	znode = c->zroot.znode;
2991 	if (!znode) {
2992 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2993 		if (IS_ERR(znode))
2994 			return znode;
2995 	}
2996 	/* Check if it is the one we are looking for */
2997 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2998 		return znode;
2999 	/* Descend to the parent level i.e. (level + 1) */
3000 	if (level >= znode->level)
3001 		return NULL;
3002 	while (1) {
3003 		ubifs_search_zbranch(c, znode, key, &n);
3004 		if (n < 0) {
3005 			/*
3006 			 * We reached a znode where the leftmost key is greater
3007 			 * than the key we are searching for. This is the same
3008 			 * situation as the one described in a huge comment at
3009 			 * the end of the 'ubifs_lookup_level0()' function. And
3010 			 * for exactly the same reasons we have to try to look
3011 			 * left before giving up.
3012 			 */
3013 			znode = left_znode(c, znode);
3014 			if (!znode)
3015 				return NULL;
3016 			if (IS_ERR(znode))
3017 				return znode;
3018 			ubifs_search_zbranch(c, znode, key, &n);
3019 			ubifs_assert(n >= 0);
3020 		}
3021 		if (znode->level == level + 1)
3022 			break;
3023 		znode = get_znode(c, znode, n);
3024 		if (IS_ERR(znode))
3025 			return znode;
3026 	}
3027 	/* Check if the child is the one we are looking for */
3028 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3029 		return get_znode(c, znode, n);
3030 	/* If the key is unique, there is nowhere else to look */
3031 	if (!is_hash_key(c, key))
3032 		return NULL;
3033 	/*
3034 	 * The key is not unique and so may be also in the znodes to either
3035 	 * side.
3036 	 */
3037 	zn = znode;
3038 	nn = n;
3039 	/* Look left */
3040 	while (1) {
3041 		/* Move one branch to the left */
3042 		if (n)
3043 			n -= 1;
3044 		else {
3045 			znode = left_znode(c, znode);
3046 			if (!znode)
3047 				break;
3048 			if (IS_ERR(znode))
3049 				return znode;
3050 			n = znode->child_cnt - 1;
3051 		}
3052 		/* Check it */
3053 		if (znode->zbranch[n].lnum == lnum &&
3054 		    znode->zbranch[n].offs == offs)
3055 			return get_znode(c, znode, n);
3056 		/* Stop if the key is less than the one we are looking for */
3057 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3058 			break;
3059 	}
3060 	/* Back to the middle */
3061 	znode = zn;
3062 	n = nn;
3063 	/* Look right */
3064 	while (1) {
3065 		/* Move one branch to the right */
3066 		if (++n >= znode->child_cnt) {
3067 			znode = right_znode(c, znode);
3068 			if (!znode)
3069 				break;
3070 			if (IS_ERR(znode))
3071 				return znode;
3072 			n = 0;
3073 		}
3074 		/* Check it */
3075 		if (znode->zbranch[n].lnum == lnum &&
3076 		    znode->zbranch[n].offs == offs)
3077 			return get_znode(c, znode, n);
3078 		/* Stop if the key is greater than the one we are looking for */
3079 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3080 			break;
3081 	}
3082 	return NULL;
3083 }
3084 
3085 /**
3086  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3087  * @c: UBIFS file-system description object
3088  * @key: key of index node
3089  * @level: index node level
3090  * @lnum: LEB number of index node
3091  * @offs: offset of index node
3092  *
3093  * This function returns %0 if the index node is not referred to in the TNC, %1
3094  * if the index node is referred to in the TNC and the corresponding znode is
3095  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3096  * znode is clean, and a negative error code in case of failure.
3097  *
3098  * Note, the @key argument has to be the key of the first child. Also note,
3099  * this function relies on the fact that 0:0 is never a valid LEB number and
3100  * offset for a main-area node.
3101  */
3102 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3103 		       int lnum, int offs)
3104 {
3105 	struct ubifs_znode *znode;
3106 
3107 	znode = lookup_znode(c, key, level, lnum, offs);
3108 	if (!znode)
3109 		return 0;
3110 	if (IS_ERR(znode))
3111 		return PTR_ERR(znode);
3112 
3113 	return ubifs_zn_dirty(znode) ? 1 : 2;
3114 }
3115 
3116 /**
3117  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3118  * @c: UBIFS file-system description object
3119  * @key: node key
3120  * @lnum: node LEB number
3121  * @offs: node offset
3122  *
3123  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3124  * not, and a negative error code in case of failure.
3125  *
3126  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3127  * and offset for a main-area node.
3128  */
3129 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3130 			       int lnum, int offs)
3131 {
3132 	struct ubifs_zbranch *zbr;
3133 	struct ubifs_znode *znode, *zn;
3134 	int n, found, err, nn;
3135 	const int unique = !is_hash_key(c, key);
3136 
3137 	found = ubifs_lookup_level0(c, key, &znode, &n);
3138 	if (found < 0)
3139 		return found; /* Error code */
3140 	if (!found)
3141 		return 0;
3142 	zbr = &znode->zbranch[n];
3143 	if (lnum == zbr->lnum && offs == zbr->offs)
3144 		return 1; /* Found it */
3145 	if (unique)
3146 		return 0;
3147 	/*
3148 	 * Because the key is not unique, we have to look left
3149 	 * and right as well
3150 	 */
3151 	zn = znode;
3152 	nn = n;
3153 	/* Look left */
3154 	while (1) {
3155 		err = tnc_prev(c, &znode, &n);
3156 		if (err == -ENOENT)
3157 			break;
3158 		if (err)
3159 			return err;
3160 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3161 			break;
3162 		zbr = &znode->zbranch[n];
3163 		if (lnum == zbr->lnum && offs == zbr->offs)
3164 			return 1; /* Found it */
3165 	}
3166 	/* Look right */
3167 	znode = zn;
3168 	n = nn;
3169 	while (1) {
3170 		err = tnc_next(c, &znode, &n);
3171 		if (err) {
3172 			if (err == -ENOENT)
3173 				return 0;
3174 			return err;
3175 		}
3176 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3177 			break;
3178 		zbr = &znode->zbranch[n];
3179 		if (lnum == zbr->lnum && offs == zbr->offs)
3180 			return 1; /* Found it */
3181 	}
3182 	return 0;
3183 }
3184 
3185 /**
3186  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3187  * @c: UBIFS file-system description object
3188  * @key: node key
3189  * @level: index node level (if it is an index node)
3190  * @lnum: node LEB number
3191  * @offs: node offset
3192  * @is_idx: non-zero if the node is an index node
3193  *
3194  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3195  * negative error code in case of failure. For index nodes, @key has to be the
3196  * key of the first child. An index node is considered to be in the TNC only if
3197  * the corresponding znode is clean or has not been loaded.
3198  */
3199 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3200 		       int lnum, int offs, int is_idx)
3201 {
3202 	int err;
3203 
3204 	mutex_lock(&c->tnc_mutex);
3205 	if (is_idx) {
3206 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3207 		if (err < 0)
3208 			goto out_unlock;
3209 		if (err == 1)
3210 			/* The index node was found but it was dirty */
3211 			err = 0;
3212 		else if (err == 2)
3213 			/* The index node was found and it was clean */
3214 			err = 1;
3215 		else
3216 			BUG_ON(err != 0);
3217 	} else
3218 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3219 
3220 out_unlock:
3221 	mutex_unlock(&c->tnc_mutex);
3222 	return err;
3223 }
3224 
3225 /**
3226  * ubifs_dirty_idx_node - dirty an index node.
3227  * @c: UBIFS file-system description object
3228  * @key: index node key
3229  * @level: index node level
3230  * @lnum: index node LEB number
3231  * @offs: index node offset
3232  *
3233  * This function loads and dirties an index node so that it can be garbage
3234  * collected. The @key argument has to be the key of the first child. This
3235  * function relies on the fact that 0:0 is never a valid LEB number and offset
3236  * for a main-area node. Returns %0 on success and a negative error code on
3237  * failure.
3238  */
3239 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3240 			 int lnum, int offs)
3241 {
3242 	struct ubifs_znode *znode;
3243 	int err = 0;
3244 
3245 	mutex_lock(&c->tnc_mutex);
3246 	znode = lookup_znode(c, key, level, lnum, offs);
3247 	if (!znode)
3248 		goto out_unlock;
3249 	if (IS_ERR(znode)) {
3250 		err = PTR_ERR(znode);
3251 		goto out_unlock;
3252 	}
3253 	znode = dirty_cow_bottom_up(c, znode);
3254 	if (IS_ERR(znode)) {
3255 		err = PTR_ERR(znode);
3256 		goto out_unlock;
3257 	}
3258 
3259 out_unlock:
3260 	mutex_unlock(&c->tnc_mutex);
3261 	return err;
3262 }
3263 
3264 /**
3265  * dbg_check_inode_size - check if inode size is correct.
3266  * @c: UBIFS file-system description object
3267  * @inum: inode number
3268  * @size: inode size
3269  *
3270  * This function makes sure that the inode size (@size) is correct and it does
3271  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3272  * if it has a data page beyond @size, and other negative error code in case of
3273  * other errors.
3274  */
3275 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3276 			 loff_t size)
3277 {
3278 	int err, n;
3279 	union ubifs_key from_key, to_key, *key;
3280 	struct ubifs_znode *znode;
3281 	unsigned int block;
3282 
3283 	if (!S_ISREG(inode->i_mode))
3284 		return 0;
3285 	if (!dbg_is_chk_gen(c))
3286 		return 0;
3287 
3288 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3289 	data_key_init(c, &from_key, inode->i_ino, block);
3290 	highest_data_key(c, &to_key, inode->i_ino);
3291 
3292 	mutex_lock(&c->tnc_mutex);
3293 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3294 	if (err < 0)
3295 		goto out_unlock;
3296 
3297 	if (err) {
3298 		err = -EINVAL;
3299 		key = &from_key;
3300 		goto out_dump;
3301 	}
3302 
3303 	err = tnc_next(c, &znode, &n);
3304 	if (err == -ENOENT) {
3305 		err = 0;
3306 		goto out_unlock;
3307 	}
3308 	if (err < 0)
3309 		goto out_unlock;
3310 
3311 	ubifs_assert(err == 0);
3312 	key = &znode->zbranch[n].key;
3313 	if (!key_in_range(c, key, &from_key, &to_key))
3314 		goto out_unlock;
3315 
3316 out_dump:
3317 	block = key_block(c, key);
3318 	ubifs_err("inode %lu has size %lld, but there are data at offset %lld",
3319 		  (unsigned long)inode->i_ino, size,
3320 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3321 	mutex_unlock(&c->tnc_mutex);
3322 	ubifs_dump_inode(c, inode);
3323 	dump_stack();
3324 	return -EINVAL;
3325 
3326 out_unlock:
3327 	mutex_unlock(&c->tnc_mutex);
3328 	return err;
3329 }
3330