1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Adrian Hunter 9 * Artem Bityutskiy (Битюцкий Артём) 10 */ 11 12 /* 13 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 14 * the UBIFS B-tree. 15 * 16 * At the moment the locking rules of the TNC tree are quite simple and 17 * straightforward. We just have a mutex and lock it when we traverse the 18 * tree. If a znode is not in memory, we read it from flash while still having 19 * the mutex locked. 20 */ 21 22 #define __UBOOT__ 23 #ifndef __UBOOT__ 24 #include <linux/crc32.h> 25 #include <linux/slab.h> 26 #else 27 #include <linux/compat.h> 28 #include <linux/err.h> 29 #include <linux/stat.h> 30 #endif 31 #include "ubifs.h" 32 33 /* 34 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 35 * @NAME_LESS: name corresponding to the first argument is less than second 36 * @NAME_MATCHES: names match 37 * @NAME_GREATER: name corresponding to the second argument is greater than 38 * first 39 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 40 * 41 * These constants were introduce to improve readability. 42 */ 43 enum { 44 NAME_LESS = 0, 45 NAME_MATCHES = 1, 46 NAME_GREATER = 2, 47 NOT_ON_MEDIA = 3, 48 }; 49 50 /** 51 * insert_old_idx - record an index node obsoleted since the last commit start. 52 * @c: UBIFS file-system description object 53 * @lnum: LEB number of obsoleted index node 54 * @offs: offset of obsoleted index node 55 * 56 * Returns %0 on success, and a negative error code on failure. 57 * 58 * For recovery, there must always be a complete intact version of the index on 59 * flash at all times. That is called the "old index". It is the index as at the 60 * time of the last successful commit. Many of the index nodes in the old index 61 * may be dirty, but they must not be erased until the next successful commit 62 * (at which point that index becomes the old index). 63 * 64 * That means that the garbage collection and the in-the-gaps method of 65 * committing must be able to determine if an index node is in the old index. 66 * Most of the old index nodes can be found by looking up the TNC using the 67 * 'lookup_znode()' function. However, some of the old index nodes may have 68 * been deleted from the current index or may have been changed so much that 69 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 70 * That is what this function does. The RB-tree is ordered by LEB number and 71 * offset because they uniquely identify the old index node. 72 */ 73 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 74 { 75 struct ubifs_old_idx *old_idx, *o; 76 struct rb_node **p, *parent = NULL; 77 78 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 79 if (unlikely(!old_idx)) 80 return -ENOMEM; 81 old_idx->lnum = lnum; 82 old_idx->offs = offs; 83 84 p = &c->old_idx.rb_node; 85 while (*p) { 86 parent = *p; 87 o = rb_entry(parent, struct ubifs_old_idx, rb); 88 if (lnum < o->lnum) 89 p = &(*p)->rb_left; 90 else if (lnum > o->lnum) 91 p = &(*p)->rb_right; 92 else if (offs < o->offs) 93 p = &(*p)->rb_left; 94 else if (offs > o->offs) 95 p = &(*p)->rb_right; 96 else { 97 ubifs_err("old idx added twice!"); 98 kfree(old_idx); 99 return 0; 100 } 101 } 102 rb_link_node(&old_idx->rb, parent, p); 103 rb_insert_color(&old_idx->rb, &c->old_idx); 104 return 0; 105 } 106 107 /** 108 * insert_old_idx_znode - record a znode obsoleted since last commit start. 109 * @c: UBIFS file-system description object 110 * @znode: znode of obsoleted index node 111 * 112 * Returns %0 on success, and a negative error code on failure. 113 */ 114 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 115 { 116 if (znode->parent) { 117 struct ubifs_zbranch *zbr; 118 119 zbr = &znode->parent->zbranch[znode->iip]; 120 if (zbr->len) 121 return insert_old_idx(c, zbr->lnum, zbr->offs); 122 } else 123 if (c->zroot.len) 124 return insert_old_idx(c, c->zroot.lnum, 125 c->zroot.offs); 126 return 0; 127 } 128 129 /** 130 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 131 * @c: UBIFS file-system description object 132 * @znode: znode of obsoleted index node 133 * 134 * Returns %0 on success, and a negative error code on failure. 135 */ 136 static int ins_clr_old_idx_znode(struct ubifs_info *c, 137 struct ubifs_znode *znode) 138 { 139 int err; 140 141 if (znode->parent) { 142 struct ubifs_zbranch *zbr; 143 144 zbr = &znode->parent->zbranch[znode->iip]; 145 if (zbr->len) { 146 err = insert_old_idx(c, zbr->lnum, zbr->offs); 147 if (err) 148 return err; 149 zbr->lnum = 0; 150 zbr->offs = 0; 151 zbr->len = 0; 152 } 153 } else 154 if (c->zroot.len) { 155 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 156 if (err) 157 return err; 158 c->zroot.lnum = 0; 159 c->zroot.offs = 0; 160 c->zroot.len = 0; 161 } 162 return 0; 163 } 164 165 /** 166 * destroy_old_idx - destroy the old_idx RB-tree. 167 * @c: UBIFS file-system description object 168 * 169 * During start commit, the old_idx RB-tree is used to avoid overwriting index 170 * nodes that were in the index last commit but have since been deleted. This 171 * is necessary for recovery i.e. the old index must be kept intact until the 172 * new index is successfully written. The old-idx RB-tree is used for the 173 * in-the-gaps method of writing index nodes and is destroyed every commit. 174 */ 175 void destroy_old_idx(struct ubifs_info *c) 176 { 177 struct ubifs_old_idx *old_idx, *n; 178 179 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 180 kfree(old_idx); 181 182 c->old_idx = RB_ROOT; 183 } 184 185 /** 186 * copy_znode - copy a dirty znode. 187 * @c: UBIFS file-system description object 188 * @znode: znode to copy 189 * 190 * A dirty znode being committed may not be changed, so it is copied. 191 */ 192 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 193 struct ubifs_znode *znode) 194 { 195 struct ubifs_znode *zn; 196 197 zn = kmalloc(c->max_znode_sz, GFP_NOFS); 198 if (unlikely(!zn)) 199 return ERR_PTR(-ENOMEM); 200 201 memcpy(zn, znode, c->max_znode_sz); 202 zn->cnext = NULL; 203 __set_bit(DIRTY_ZNODE, &zn->flags); 204 __clear_bit(COW_ZNODE, &zn->flags); 205 206 ubifs_assert(!ubifs_zn_obsolete(znode)); 207 __set_bit(OBSOLETE_ZNODE, &znode->flags); 208 209 if (znode->level != 0) { 210 int i; 211 const int n = zn->child_cnt; 212 213 /* The children now have new parent */ 214 for (i = 0; i < n; i++) { 215 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 216 217 if (zbr->znode) 218 zbr->znode->parent = zn; 219 } 220 } 221 222 atomic_long_inc(&c->dirty_zn_cnt); 223 return zn; 224 } 225 226 /** 227 * add_idx_dirt - add dirt due to a dirty znode. 228 * @c: UBIFS file-system description object 229 * @lnum: LEB number of index node 230 * @dirt: size of index node 231 * 232 * This function updates lprops dirty space and the new size of the index. 233 */ 234 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 235 { 236 c->calc_idx_sz -= ALIGN(dirt, 8); 237 return ubifs_add_dirt(c, lnum, dirt); 238 } 239 240 /** 241 * dirty_cow_znode - ensure a znode is not being committed. 242 * @c: UBIFS file-system description object 243 * @zbr: branch of znode to check 244 * 245 * Returns dirtied znode on success or negative error code on failure. 246 */ 247 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 248 struct ubifs_zbranch *zbr) 249 { 250 struct ubifs_znode *znode = zbr->znode; 251 struct ubifs_znode *zn; 252 int err; 253 254 if (!ubifs_zn_cow(znode)) { 255 /* znode is not being committed */ 256 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 257 atomic_long_inc(&c->dirty_zn_cnt); 258 atomic_long_dec(&c->clean_zn_cnt); 259 atomic_long_dec(&ubifs_clean_zn_cnt); 260 err = add_idx_dirt(c, zbr->lnum, zbr->len); 261 if (unlikely(err)) 262 return ERR_PTR(err); 263 } 264 return znode; 265 } 266 267 zn = copy_znode(c, znode); 268 if (IS_ERR(zn)) 269 return zn; 270 271 if (zbr->len) { 272 err = insert_old_idx(c, zbr->lnum, zbr->offs); 273 if (unlikely(err)) 274 return ERR_PTR(err); 275 err = add_idx_dirt(c, zbr->lnum, zbr->len); 276 } else 277 err = 0; 278 279 zbr->znode = zn; 280 zbr->lnum = 0; 281 zbr->offs = 0; 282 zbr->len = 0; 283 284 if (unlikely(err)) 285 return ERR_PTR(err); 286 return zn; 287 } 288 289 /** 290 * lnc_add - add a leaf node to the leaf node cache. 291 * @c: UBIFS file-system description object 292 * @zbr: zbranch of leaf node 293 * @node: leaf node 294 * 295 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 296 * purpose of the leaf node cache is to save re-reading the same leaf node over 297 * and over again. Most things are cached by VFS, however the file system must 298 * cache directory entries for readdir and for resolving hash collisions. The 299 * present implementation of the leaf node cache is extremely simple, and 300 * allows for error returns that are not used but that may be needed if a more 301 * complex implementation is created. 302 * 303 * Note, this function does not add the @node object to LNC directly, but 304 * allocates a copy of the object and adds the copy to LNC. The reason for this 305 * is that @node has been allocated outside of the TNC subsystem and will be 306 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 307 * may be changed at any time, e.g. freed by the shrinker. 308 */ 309 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 310 const void *node) 311 { 312 int err; 313 void *lnc_node; 314 const struct ubifs_dent_node *dent = node; 315 316 ubifs_assert(!zbr->leaf); 317 ubifs_assert(zbr->len != 0); 318 ubifs_assert(is_hash_key(c, &zbr->key)); 319 320 err = ubifs_validate_entry(c, dent); 321 if (err) { 322 dump_stack(); 323 ubifs_dump_node(c, dent); 324 return err; 325 } 326 327 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 328 if (!lnc_node) 329 /* We don't have to have the cache, so no error */ 330 return 0; 331 332 zbr->leaf = lnc_node; 333 return 0; 334 } 335 336 /** 337 * lnc_add_directly - add a leaf node to the leaf-node-cache. 338 * @c: UBIFS file-system description object 339 * @zbr: zbranch of leaf node 340 * @node: leaf node 341 * 342 * This function is similar to 'lnc_add()', but it does not create a copy of 343 * @node but inserts @node to TNC directly. 344 */ 345 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 346 void *node) 347 { 348 int err; 349 350 ubifs_assert(!zbr->leaf); 351 ubifs_assert(zbr->len != 0); 352 353 err = ubifs_validate_entry(c, node); 354 if (err) { 355 dump_stack(); 356 ubifs_dump_node(c, node); 357 return err; 358 } 359 360 zbr->leaf = node; 361 return 0; 362 } 363 364 /** 365 * lnc_free - remove a leaf node from the leaf node cache. 366 * @zbr: zbranch of leaf node 367 * @node: leaf node 368 */ 369 static void lnc_free(struct ubifs_zbranch *zbr) 370 { 371 if (!zbr->leaf) 372 return; 373 kfree(zbr->leaf); 374 zbr->leaf = NULL; 375 } 376 377 /** 378 * tnc_read_node_nm - read a "hashed" leaf node. 379 * @c: UBIFS file-system description object 380 * @zbr: key and position of the node 381 * @node: node is returned here 382 * 383 * This function reads a "hashed" node defined by @zbr from the leaf node cache 384 * (in it is there) or from the hash media, in which case the node is also 385 * added to LNC. Returns zero in case of success or a negative negative error 386 * code in case of failure. 387 */ 388 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, 389 void *node) 390 { 391 int err; 392 393 ubifs_assert(is_hash_key(c, &zbr->key)); 394 395 if (zbr->leaf) { 396 /* Read from the leaf node cache */ 397 ubifs_assert(zbr->len != 0); 398 memcpy(node, zbr->leaf, zbr->len); 399 return 0; 400 } 401 402 err = ubifs_tnc_read_node(c, zbr, node); 403 if (err) 404 return err; 405 406 /* Add the node to the leaf node cache */ 407 err = lnc_add(c, zbr, node); 408 return err; 409 } 410 411 /** 412 * try_read_node - read a node if it is a node. 413 * @c: UBIFS file-system description object 414 * @buf: buffer to read to 415 * @type: node type 416 * @len: node length (not aligned) 417 * @lnum: LEB number of node to read 418 * @offs: offset of node to read 419 * 420 * This function tries to read a node of known type and length, checks it and 421 * stores it in @buf. This function returns %1 if a node is present and %0 if 422 * a node is not present. A negative error code is returned for I/O errors. 423 * This function performs that same function as ubifs_read_node except that 424 * it does not require that there is actually a node present and instead 425 * the return code indicates if a node was read. 426 * 427 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 428 * is true (it is controlled by corresponding mount option). However, if 429 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 430 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 431 * because during mounting or re-mounting from R/O mode to R/W mode we may read 432 * journal nodes (when replying the journal or doing the recovery) and the 433 * journal nodes may potentially be corrupted, so checking is required. 434 */ 435 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 436 int len, int lnum, int offs) 437 { 438 int err, node_len; 439 struct ubifs_ch *ch = buf; 440 uint32_t crc, node_crc; 441 442 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 443 444 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 445 if (err) { 446 ubifs_err("cannot read node type %d from LEB %d:%d, error %d", 447 type, lnum, offs, err); 448 return err; 449 } 450 451 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 452 return 0; 453 454 if (ch->node_type != type) 455 return 0; 456 457 node_len = le32_to_cpu(ch->len); 458 if (node_len != len) 459 return 0; 460 461 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && 462 !c->remounting_rw) 463 return 1; 464 465 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 466 node_crc = le32_to_cpu(ch->crc); 467 if (crc != node_crc) 468 return 0; 469 470 return 1; 471 } 472 473 /** 474 * fallible_read_node - try to read a leaf node. 475 * @c: UBIFS file-system description object 476 * @key: key of node to read 477 * @zbr: position of node 478 * @node: node returned 479 * 480 * This function tries to read a node and returns %1 if the node is read, %0 481 * if the node is not present, and a negative error code in the case of error. 482 */ 483 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 484 struct ubifs_zbranch *zbr, void *node) 485 { 486 int ret; 487 488 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 489 490 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 491 zbr->offs); 492 if (ret == 1) { 493 union ubifs_key node_key; 494 struct ubifs_dent_node *dent = node; 495 496 /* All nodes have key in the same place */ 497 key_read(c, &dent->key, &node_key); 498 if (keys_cmp(c, key, &node_key) != 0) 499 ret = 0; 500 } 501 if (ret == 0 && c->replaying) 502 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 503 zbr->lnum, zbr->offs, zbr->len); 504 return ret; 505 } 506 507 /** 508 * matches_name - determine if a direntry or xattr entry matches a given name. 509 * @c: UBIFS file-system description object 510 * @zbr: zbranch of dent 511 * @nm: name to match 512 * 513 * This function checks if xentry/direntry referred by zbranch @zbr matches name 514 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 515 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 516 * of failure, a negative error code is returned. 517 */ 518 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 519 const struct qstr *nm) 520 { 521 struct ubifs_dent_node *dent; 522 int nlen, err; 523 524 /* If possible, match against the dent in the leaf node cache */ 525 if (!zbr->leaf) { 526 dent = kmalloc(zbr->len, GFP_NOFS); 527 if (!dent) 528 return -ENOMEM; 529 530 err = ubifs_tnc_read_node(c, zbr, dent); 531 if (err) 532 goto out_free; 533 534 /* Add the node to the leaf node cache */ 535 err = lnc_add_directly(c, zbr, dent); 536 if (err) 537 goto out_free; 538 } else 539 dent = zbr->leaf; 540 541 nlen = le16_to_cpu(dent->nlen); 542 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 543 if (err == 0) { 544 if (nlen == nm->len) 545 return NAME_MATCHES; 546 else if (nlen < nm->len) 547 return NAME_LESS; 548 else 549 return NAME_GREATER; 550 } else if (err < 0) 551 return NAME_LESS; 552 else 553 return NAME_GREATER; 554 555 out_free: 556 kfree(dent); 557 return err; 558 } 559 560 /** 561 * get_znode - get a TNC znode that may not be loaded yet. 562 * @c: UBIFS file-system description object 563 * @znode: parent znode 564 * @n: znode branch slot number 565 * 566 * This function returns the znode or a negative error code. 567 */ 568 static struct ubifs_znode *get_znode(struct ubifs_info *c, 569 struct ubifs_znode *znode, int n) 570 { 571 struct ubifs_zbranch *zbr; 572 573 zbr = &znode->zbranch[n]; 574 if (zbr->znode) 575 znode = zbr->znode; 576 else 577 znode = ubifs_load_znode(c, zbr, znode, n); 578 return znode; 579 } 580 581 /** 582 * tnc_next - find next TNC entry. 583 * @c: UBIFS file-system description object 584 * @zn: znode is passed and returned here 585 * @n: znode branch slot number is passed and returned here 586 * 587 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 588 * no next entry, or a negative error code otherwise. 589 */ 590 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 591 { 592 struct ubifs_znode *znode = *zn; 593 int nn = *n; 594 595 nn += 1; 596 if (nn < znode->child_cnt) { 597 *n = nn; 598 return 0; 599 } 600 while (1) { 601 struct ubifs_znode *zp; 602 603 zp = znode->parent; 604 if (!zp) 605 return -ENOENT; 606 nn = znode->iip + 1; 607 znode = zp; 608 if (nn < znode->child_cnt) { 609 znode = get_znode(c, znode, nn); 610 if (IS_ERR(znode)) 611 return PTR_ERR(znode); 612 while (znode->level != 0) { 613 znode = get_znode(c, znode, 0); 614 if (IS_ERR(znode)) 615 return PTR_ERR(znode); 616 } 617 nn = 0; 618 break; 619 } 620 } 621 *zn = znode; 622 *n = nn; 623 return 0; 624 } 625 626 /** 627 * tnc_prev - find previous TNC entry. 628 * @c: UBIFS file-system description object 629 * @zn: znode is returned here 630 * @n: znode branch slot number is passed and returned here 631 * 632 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 633 * there is no next entry, or a negative error code otherwise. 634 */ 635 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 636 { 637 struct ubifs_znode *znode = *zn; 638 int nn = *n; 639 640 if (nn > 0) { 641 *n = nn - 1; 642 return 0; 643 } 644 while (1) { 645 struct ubifs_znode *zp; 646 647 zp = znode->parent; 648 if (!zp) 649 return -ENOENT; 650 nn = znode->iip - 1; 651 znode = zp; 652 if (nn >= 0) { 653 znode = get_znode(c, znode, nn); 654 if (IS_ERR(znode)) 655 return PTR_ERR(znode); 656 while (znode->level != 0) { 657 nn = znode->child_cnt - 1; 658 znode = get_znode(c, znode, nn); 659 if (IS_ERR(znode)) 660 return PTR_ERR(znode); 661 } 662 nn = znode->child_cnt - 1; 663 break; 664 } 665 } 666 *zn = znode; 667 *n = nn; 668 return 0; 669 } 670 671 /** 672 * resolve_collision - resolve a collision. 673 * @c: UBIFS file-system description object 674 * @key: key of a directory or extended attribute entry 675 * @zn: znode is returned here 676 * @n: zbranch number is passed and returned here 677 * @nm: name of the entry 678 * 679 * This function is called for "hashed" keys to make sure that the found key 680 * really corresponds to the looked up node (directory or extended attribute 681 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 682 * %0 is returned if @nm is not found and @zn and @n are set to the previous 683 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 684 * This means that @n may be set to %-1 if the leftmost key in @zn is the 685 * previous one. A negative error code is returned on failures. 686 */ 687 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 688 struct ubifs_znode **zn, int *n, 689 const struct qstr *nm) 690 { 691 int err; 692 693 err = matches_name(c, &(*zn)->zbranch[*n], nm); 694 if (unlikely(err < 0)) 695 return err; 696 if (err == NAME_MATCHES) 697 return 1; 698 699 if (err == NAME_GREATER) { 700 /* Look left */ 701 while (1) { 702 err = tnc_prev(c, zn, n); 703 if (err == -ENOENT) { 704 ubifs_assert(*n == 0); 705 *n = -1; 706 return 0; 707 } 708 if (err < 0) 709 return err; 710 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 711 /* 712 * We have found the branch after which we would 713 * like to insert, but inserting in this znode 714 * may still be wrong. Consider the following 3 715 * znodes, in the case where we are resolving a 716 * collision with Key2. 717 * 718 * znode zp 719 * ---------------------- 720 * level 1 | Key0 | Key1 | 721 * ----------------------- 722 * | | 723 * znode za | | znode zb 724 * ------------ ------------ 725 * level 0 | Key0 | | Key2 | 726 * ------------ ------------ 727 * 728 * The lookup finds Key2 in znode zb. Lets say 729 * there is no match and the name is greater so 730 * we look left. When we find Key0, we end up 731 * here. If we return now, we will insert into 732 * znode za at slot n = 1. But that is invalid 733 * according to the parent's keys. Key2 must 734 * be inserted into znode zb. 735 * 736 * Note, this problem is not relevant for the 737 * case when we go right, because 738 * 'tnc_insert()' would correct the parent key. 739 */ 740 if (*n == (*zn)->child_cnt - 1) { 741 err = tnc_next(c, zn, n); 742 if (err) { 743 /* Should be impossible */ 744 ubifs_assert(0); 745 if (err == -ENOENT) 746 err = -EINVAL; 747 return err; 748 } 749 ubifs_assert(*n == 0); 750 *n = -1; 751 } 752 return 0; 753 } 754 err = matches_name(c, &(*zn)->zbranch[*n], nm); 755 if (err < 0) 756 return err; 757 if (err == NAME_LESS) 758 return 0; 759 if (err == NAME_MATCHES) 760 return 1; 761 ubifs_assert(err == NAME_GREATER); 762 } 763 } else { 764 int nn = *n; 765 struct ubifs_znode *znode = *zn; 766 767 /* Look right */ 768 while (1) { 769 err = tnc_next(c, &znode, &nn); 770 if (err == -ENOENT) 771 return 0; 772 if (err < 0) 773 return err; 774 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 775 return 0; 776 err = matches_name(c, &znode->zbranch[nn], nm); 777 if (err < 0) 778 return err; 779 if (err == NAME_GREATER) 780 return 0; 781 *zn = znode; 782 *n = nn; 783 if (err == NAME_MATCHES) 784 return 1; 785 ubifs_assert(err == NAME_LESS); 786 } 787 } 788 } 789 790 /** 791 * fallible_matches_name - determine if a dent matches a given name. 792 * @c: UBIFS file-system description object 793 * @zbr: zbranch of dent 794 * @nm: name to match 795 * 796 * This is a "fallible" version of 'matches_name()' function which does not 797 * panic if the direntry/xentry referred by @zbr does not exist on the media. 798 * 799 * This function checks if xentry/direntry referred by zbranch @zbr matches name 800 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 801 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 802 * if xentry/direntry referred by @zbr does not exist on the media. A negative 803 * error code is returned in case of failure. 804 */ 805 static int fallible_matches_name(struct ubifs_info *c, 806 struct ubifs_zbranch *zbr, 807 const struct qstr *nm) 808 { 809 struct ubifs_dent_node *dent; 810 int nlen, err; 811 812 /* If possible, match against the dent in the leaf node cache */ 813 if (!zbr->leaf) { 814 dent = kmalloc(zbr->len, GFP_NOFS); 815 if (!dent) 816 return -ENOMEM; 817 818 err = fallible_read_node(c, &zbr->key, zbr, dent); 819 if (err < 0) 820 goto out_free; 821 if (err == 0) { 822 /* The node was not present */ 823 err = NOT_ON_MEDIA; 824 goto out_free; 825 } 826 ubifs_assert(err == 1); 827 828 err = lnc_add_directly(c, zbr, dent); 829 if (err) 830 goto out_free; 831 } else 832 dent = zbr->leaf; 833 834 nlen = le16_to_cpu(dent->nlen); 835 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 836 if (err == 0) { 837 if (nlen == nm->len) 838 return NAME_MATCHES; 839 else if (nlen < nm->len) 840 return NAME_LESS; 841 else 842 return NAME_GREATER; 843 } else if (err < 0) 844 return NAME_LESS; 845 else 846 return NAME_GREATER; 847 848 out_free: 849 kfree(dent); 850 return err; 851 } 852 853 /** 854 * fallible_resolve_collision - resolve a collision even if nodes are missing. 855 * @c: UBIFS file-system description object 856 * @key: key 857 * @zn: znode is returned here 858 * @n: branch number is passed and returned here 859 * @nm: name of directory entry 860 * @adding: indicates caller is adding a key to the TNC 861 * 862 * This is a "fallible" version of the 'resolve_collision()' function which 863 * does not panic if one of the nodes referred to by TNC does not exist on the 864 * media. This may happen when replaying the journal if a deleted node was 865 * Garbage-collected and the commit was not done. A branch that refers to a node 866 * that is not present is called a dangling branch. The following are the return 867 * codes for this function: 868 * o if @nm was found, %1 is returned and @zn and @n are set to the found 869 * branch; 870 * o if we are @adding and @nm was not found, %0 is returned; 871 * o if we are not @adding and @nm was not found, but a dangling branch was 872 * found, then %1 is returned and @zn and @n are set to the dangling branch; 873 * o a negative error code is returned in case of failure. 874 */ 875 static int fallible_resolve_collision(struct ubifs_info *c, 876 const union ubifs_key *key, 877 struct ubifs_znode **zn, int *n, 878 const struct qstr *nm, int adding) 879 { 880 struct ubifs_znode *o_znode = NULL, *znode = *zn; 881 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 882 883 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 884 if (unlikely(cmp < 0)) 885 return cmp; 886 if (cmp == NAME_MATCHES) 887 return 1; 888 if (cmp == NOT_ON_MEDIA) { 889 o_znode = znode; 890 o_n = nn; 891 /* 892 * We are unlucky and hit a dangling branch straight away. 893 * Now we do not really know where to go to find the needed 894 * branch - to the left or to the right. Well, let's try left. 895 */ 896 unsure = 1; 897 } else if (!adding) 898 unsure = 1; /* Remove a dangling branch wherever it is */ 899 900 if (cmp == NAME_GREATER || unsure) { 901 /* Look left */ 902 while (1) { 903 err = tnc_prev(c, zn, n); 904 if (err == -ENOENT) { 905 ubifs_assert(*n == 0); 906 *n = -1; 907 break; 908 } 909 if (err < 0) 910 return err; 911 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 912 /* See comments in 'resolve_collision()' */ 913 if (*n == (*zn)->child_cnt - 1) { 914 err = tnc_next(c, zn, n); 915 if (err) { 916 /* Should be impossible */ 917 ubifs_assert(0); 918 if (err == -ENOENT) 919 err = -EINVAL; 920 return err; 921 } 922 ubifs_assert(*n == 0); 923 *n = -1; 924 } 925 break; 926 } 927 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 928 if (err < 0) 929 return err; 930 if (err == NAME_MATCHES) 931 return 1; 932 if (err == NOT_ON_MEDIA) { 933 o_znode = *zn; 934 o_n = *n; 935 continue; 936 } 937 if (!adding) 938 continue; 939 if (err == NAME_LESS) 940 break; 941 else 942 unsure = 0; 943 } 944 } 945 946 if (cmp == NAME_LESS || unsure) { 947 /* Look right */ 948 *zn = znode; 949 *n = nn; 950 while (1) { 951 err = tnc_next(c, &znode, &nn); 952 if (err == -ENOENT) 953 break; 954 if (err < 0) 955 return err; 956 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 957 break; 958 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 959 if (err < 0) 960 return err; 961 if (err == NAME_GREATER) 962 break; 963 *zn = znode; 964 *n = nn; 965 if (err == NAME_MATCHES) 966 return 1; 967 if (err == NOT_ON_MEDIA) { 968 o_znode = znode; 969 o_n = nn; 970 } 971 } 972 } 973 974 /* Never match a dangling branch when adding */ 975 if (adding || !o_znode) 976 return 0; 977 978 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 979 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 980 o_znode->zbranch[o_n].len); 981 *zn = o_znode; 982 *n = o_n; 983 return 1; 984 } 985 986 /** 987 * matches_position - determine if a zbranch matches a given position. 988 * @zbr: zbranch of dent 989 * @lnum: LEB number of dent to match 990 * @offs: offset of dent to match 991 * 992 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 993 */ 994 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 995 { 996 if (zbr->lnum == lnum && zbr->offs == offs) 997 return 1; 998 else 999 return 0; 1000 } 1001 1002 /** 1003 * resolve_collision_directly - resolve a collision directly. 1004 * @c: UBIFS file-system description object 1005 * @key: key of directory entry 1006 * @zn: znode is passed and returned here 1007 * @n: zbranch number is passed and returned here 1008 * @lnum: LEB number of dent node to match 1009 * @offs: offset of dent node to match 1010 * 1011 * This function is used for "hashed" keys to make sure the found directory or 1012 * extended attribute entry node is what was looked for. It is used when the 1013 * flash address of the right node is known (@lnum:@offs) which makes it much 1014 * easier to resolve collisions (no need to read entries and match full 1015 * names). This function returns %1 and sets @zn and @n if the collision is 1016 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1017 * previous directory entry. Otherwise a negative error code is returned. 1018 */ 1019 static int resolve_collision_directly(struct ubifs_info *c, 1020 const union ubifs_key *key, 1021 struct ubifs_znode **zn, int *n, 1022 int lnum, int offs) 1023 { 1024 struct ubifs_znode *znode; 1025 int nn, err; 1026 1027 znode = *zn; 1028 nn = *n; 1029 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1030 return 1; 1031 1032 /* Look left */ 1033 while (1) { 1034 err = tnc_prev(c, &znode, &nn); 1035 if (err == -ENOENT) 1036 break; 1037 if (err < 0) 1038 return err; 1039 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1040 break; 1041 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1042 *zn = znode; 1043 *n = nn; 1044 return 1; 1045 } 1046 } 1047 1048 /* Look right */ 1049 znode = *zn; 1050 nn = *n; 1051 while (1) { 1052 err = tnc_next(c, &znode, &nn); 1053 if (err == -ENOENT) 1054 return 0; 1055 if (err < 0) 1056 return err; 1057 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1058 return 0; 1059 *zn = znode; 1060 *n = nn; 1061 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1062 return 1; 1063 } 1064 } 1065 1066 /** 1067 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1068 * @c: UBIFS file-system description object 1069 * @znode: znode to dirty 1070 * 1071 * If we do not have a unique key that resides in a znode, then we cannot 1072 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1073 * This function records the path back to the last dirty ancestor, and then 1074 * dirties the znodes on that path. 1075 */ 1076 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1077 struct ubifs_znode *znode) 1078 { 1079 struct ubifs_znode *zp; 1080 int *path = c->bottom_up_buf, p = 0; 1081 1082 ubifs_assert(c->zroot.znode); 1083 ubifs_assert(znode); 1084 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1085 kfree(c->bottom_up_buf); 1086 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), 1087 GFP_NOFS); 1088 if (!c->bottom_up_buf) 1089 return ERR_PTR(-ENOMEM); 1090 path = c->bottom_up_buf; 1091 } 1092 if (c->zroot.znode->level) { 1093 /* Go up until parent is dirty */ 1094 while (1) { 1095 int n; 1096 1097 zp = znode->parent; 1098 if (!zp) 1099 break; 1100 n = znode->iip; 1101 ubifs_assert(p < c->zroot.znode->level); 1102 path[p++] = n; 1103 if (!zp->cnext && ubifs_zn_dirty(znode)) 1104 break; 1105 znode = zp; 1106 } 1107 } 1108 1109 /* Come back down, dirtying as we go */ 1110 while (1) { 1111 struct ubifs_zbranch *zbr; 1112 1113 zp = znode->parent; 1114 if (zp) { 1115 ubifs_assert(path[p - 1] >= 0); 1116 ubifs_assert(path[p - 1] < zp->child_cnt); 1117 zbr = &zp->zbranch[path[--p]]; 1118 znode = dirty_cow_znode(c, zbr); 1119 } else { 1120 ubifs_assert(znode == c->zroot.znode); 1121 znode = dirty_cow_znode(c, &c->zroot); 1122 } 1123 if (IS_ERR(znode) || !p) 1124 break; 1125 ubifs_assert(path[p - 1] >= 0); 1126 ubifs_assert(path[p - 1] < znode->child_cnt); 1127 znode = znode->zbranch[path[p - 1]].znode; 1128 } 1129 1130 return znode; 1131 } 1132 1133 /** 1134 * ubifs_lookup_level0 - search for zero-level znode. 1135 * @c: UBIFS file-system description object 1136 * @key: key to lookup 1137 * @zn: znode is returned here 1138 * @n: znode branch slot number is returned here 1139 * 1140 * This function looks up the TNC tree and search for zero-level znode which 1141 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1142 * cases: 1143 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1144 * is returned and slot number of the matched branch is stored in @n; 1145 * o not exact match, which means that zero-level znode does not contain 1146 * @key, then %0 is returned and slot number of the closest branch is stored 1147 * in @n; 1148 * o @key is so small that it is even less than the lowest key of the 1149 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1150 * 1151 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1152 * function reads corresponding indexing nodes and inserts them to TNC. In 1153 * case of failure, a negative error code is returned. 1154 */ 1155 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1156 struct ubifs_znode **zn, int *n) 1157 { 1158 int err, exact; 1159 struct ubifs_znode *znode; 1160 unsigned long time = get_seconds(); 1161 1162 dbg_tnck(key, "search key "); 1163 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 1164 1165 znode = c->zroot.znode; 1166 if (unlikely(!znode)) { 1167 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1168 if (IS_ERR(znode)) 1169 return PTR_ERR(znode); 1170 } 1171 1172 znode->time = time; 1173 1174 while (1) { 1175 struct ubifs_zbranch *zbr; 1176 1177 exact = ubifs_search_zbranch(c, znode, key, n); 1178 1179 if (znode->level == 0) 1180 break; 1181 1182 if (*n < 0) 1183 *n = 0; 1184 zbr = &znode->zbranch[*n]; 1185 1186 if (zbr->znode) { 1187 znode->time = time; 1188 znode = zbr->znode; 1189 continue; 1190 } 1191 1192 /* znode is not in TNC cache, load it from the media */ 1193 znode = ubifs_load_znode(c, zbr, znode, *n); 1194 if (IS_ERR(znode)) 1195 return PTR_ERR(znode); 1196 } 1197 1198 *zn = znode; 1199 if (exact || !is_hash_key(c, key) || *n != -1) { 1200 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1201 return exact; 1202 } 1203 1204 /* 1205 * Here is a tricky place. We have not found the key and this is a 1206 * "hashed" key, which may collide. The rest of the code deals with 1207 * situations like this: 1208 * 1209 * | 3 | 5 | 1210 * / \ 1211 * | 3 | 5 | | 6 | 7 | (x) 1212 * 1213 * Or more a complex example: 1214 * 1215 * | 1 | 5 | 1216 * / \ 1217 * | 1 | 3 | | 5 | 8 | 1218 * \ / 1219 * | 5 | 5 | | 6 | 7 | (x) 1220 * 1221 * In the examples, if we are looking for key "5", we may reach nodes 1222 * marked with "(x)". In this case what we have do is to look at the 1223 * left and see if there is "5" key there. If there is, we have to 1224 * return it. 1225 * 1226 * Note, this whole situation is possible because we allow to have 1227 * elements which are equivalent to the next key in the parent in the 1228 * children of current znode. For example, this happens if we split a 1229 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1230 * like this: 1231 * | 3 | 5 | 1232 * / \ 1233 * | 3 | 5 | | 5 | 6 | 7 | 1234 * ^ 1235 * And this becomes what is at the first "picture" after key "5" marked 1236 * with "^" is removed. What could be done is we could prohibit 1237 * splitting in the middle of the colliding sequence. Also, when 1238 * removing the leftmost key, we would have to correct the key of the 1239 * parent node, which would introduce additional complications. Namely, 1240 * if we changed the leftmost key of the parent znode, the garbage 1241 * collector would be unable to find it (GC is doing this when GC'ing 1242 * indexing LEBs). Although we already have an additional RB-tree where 1243 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1244 * after the commit. But anyway, this does not look easy to implement 1245 * so we did not try this. 1246 */ 1247 err = tnc_prev(c, &znode, n); 1248 if (err == -ENOENT) { 1249 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1250 *n = -1; 1251 return 0; 1252 } 1253 if (unlikely(err < 0)) 1254 return err; 1255 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1256 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1257 *n = -1; 1258 return 0; 1259 } 1260 1261 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1262 *zn = znode; 1263 return 1; 1264 } 1265 1266 /** 1267 * lookup_level0_dirty - search for zero-level znode dirtying. 1268 * @c: UBIFS file-system description object 1269 * @key: key to lookup 1270 * @zn: znode is returned here 1271 * @n: znode branch slot number is returned here 1272 * 1273 * This function looks up the TNC tree and search for zero-level znode which 1274 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1275 * cases: 1276 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1277 * is returned and slot number of the matched branch is stored in @n; 1278 * o not exact match, which means that zero-level znode does not contain @key 1279 * then %0 is returned and slot number of the closed branch is stored in 1280 * @n; 1281 * o @key is so small that it is even less than the lowest key of the 1282 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1283 * 1284 * Additionally all znodes in the path from the root to the located zero-level 1285 * znode are marked as dirty. 1286 * 1287 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1288 * function reads corresponding indexing nodes and inserts them to TNC. In 1289 * case of failure, a negative error code is returned. 1290 */ 1291 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1292 struct ubifs_znode **zn, int *n) 1293 { 1294 int err, exact; 1295 struct ubifs_znode *znode; 1296 unsigned long time = get_seconds(); 1297 1298 dbg_tnck(key, "search and dirty key "); 1299 1300 znode = c->zroot.znode; 1301 if (unlikely(!znode)) { 1302 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1303 if (IS_ERR(znode)) 1304 return PTR_ERR(znode); 1305 } 1306 1307 znode = dirty_cow_znode(c, &c->zroot); 1308 if (IS_ERR(znode)) 1309 return PTR_ERR(znode); 1310 1311 znode->time = time; 1312 1313 while (1) { 1314 struct ubifs_zbranch *zbr; 1315 1316 exact = ubifs_search_zbranch(c, znode, key, n); 1317 1318 if (znode->level == 0) 1319 break; 1320 1321 if (*n < 0) 1322 *n = 0; 1323 zbr = &znode->zbranch[*n]; 1324 1325 if (zbr->znode) { 1326 znode->time = time; 1327 znode = dirty_cow_znode(c, zbr); 1328 if (IS_ERR(znode)) 1329 return PTR_ERR(znode); 1330 continue; 1331 } 1332 1333 /* znode is not in TNC cache, load it from the media */ 1334 znode = ubifs_load_znode(c, zbr, znode, *n); 1335 if (IS_ERR(znode)) 1336 return PTR_ERR(znode); 1337 znode = dirty_cow_znode(c, zbr); 1338 if (IS_ERR(znode)) 1339 return PTR_ERR(znode); 1340 } 1341 1342 *zn = znode; 1343 if (exact || !is_hash_key(c, key) || *n != -1) { 1344 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1345 return exact; 1346 } 1347 1348 /* 1349 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1350 * code. 1351 */ 1352 err = tnc_prev(c, &znode, n); 1353 if (err == -ENOENT) { 1354 *n = -1; 1355 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1356 return 0; 1357 } 1358 if (unlikely(err < 0)) 1359 return err; 1360 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1361 *n = -1; 1362 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1363 return 0; 1364 } 1365 1366 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1367 znode = dirty_cow_bottom_up(c, znode); 1368 if (IS_ERR(znode)) 1369 return PTR_ERR(znode); 1370 } 1371 1372 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1373 *zn = znode; 1374 return 1; 1375 } 1376 1377 /** 1378 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1379 * @c: UBIFS file-system description object 1380 * @lnum: LEB number 1381 * @gc_seq1: garbage collection sequence number 1382 * 1383 * This function determines if @lnum may have been garbage collected since 1384 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1385 * %0 is returned. 1386 */ 1387 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1388 { 1389 #ifndef __UBOOT__ 1390 int gc_seq2, gced_lnum; 1391 1392 gced_lnum = c->gced_lnum; 1393 smp_rmb(); 1394 gc_seq2 = c->gc_seq; 1395 /* Same seq means no GC */ 1396 if (gc_seq1 == gc_seq2) 1397 return 0; 1398 /* Different by more than 1 means we don't know */ 1399 if (gc_seq1 + 1 != gc_seq2) 1400 return 1; 1401 /* 1402 * We have seen the sequence number has increased by 1. Now we need to 1403 * be sure we read the right LEB number, so read it again. 1404 */ 1405 smp_rmb(); 1406 if (gced_lnum != c->gced_lnum) 1407 return 1; 1408 /* Finally we can check lnum */ 1409 if (gced_lnum == lnum) 1410 return 1; 1411 #else 1412 /* No garbage collection in the read-only U-Boot implementation */ 1413 #endif 1414 return 0; 1415 } 1416 1417 /** 1418 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1419 * @c: UBIFS file-system description object 1420 * @key: node key to lookup 1421 * @node: the node is returned here 1422 * @lnum: LEB number is returned here 1423 * @offs: offset is returned here 1424 * 1425 * This function looks up and reads node with key @key. The caller has to make 1426 * sure the @node buffer is large enough to fit the node. Returns zero in case 1427 * of success, %-ENOENT if the node was not found, and a negative error code in 1428 * case of failure. The node location can be returned in @lnum and @offs. 1429 */ 1430 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1431 void *node, int *lnum, int *offs) 1432 { 1433 int found, n, err, safely = 0, gc_seq1; 1434 struct ubifs_znode *znode; 1435 struct ubifs_zbranch zbr, *zt; 1436 1437 again: 1438 mutex_lock(&c->tnc_mutex); 1439 found = ubifs_lookup_level0(c, key, &znode, &n); 1440 if (!found) { 1441 err = -ENOENT; 1442 goto out; 1443 } else if (found < 0) { 1444 err = found; 1445 goto out; 1446 } 1447 zt = &znode->zbranch[n]; 1448 if (lnum) { 1449 *lnum = zt->lnum; 1450 *offs = zt->offs; 1451 } 1452 if (is_hash_key(c, key)) { 1453 /* 1454 * In this case the leaf node cache gets used, so we pass the 1455 * address of the zbranch and keep the mutex locked 1456 */ 1457 err = tnc_read_node_nm(c, zt, node); 1458 goto out; 1459 } 1460 if (safely) { 1461 err = ubifs_tnc_read_node(c, zt, node); 1462 goto out; 1463 } 1464 /* Drop the TNC mutex prematurely and race with garbage collection */ 1465 zbr = znode->zbranch[n]; 1466 gc_seq1 = c->gc_seq; 1467 mutex_unlock(&c->tnc_mutex); 1468 1469 if (ubifs_get_wbuf(c, zbr.lnum)) { 1470 /* We do not GC journal heads */ 1471 err = ubifs_tnc_read_node(c, &zbr, node); 1472 return err; 1473 } 1474 1475 err = fallible_read_node(c, key, &zbr, node); 1476 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1477 /* 1478 * The node may have been GC'ed out from under us so try again 1479 * while keeping the TNC mutex locked. 1480 */ 1481 safely = 1; 1482 goto again; 1483 } 1484 return 0; 1485 1486 out: 1487 mutex_unlock(&c->tnc_mutex); 1488 return err; 1489 } 1490 1491 /** 1492 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1493 * @c: UBIFS file-system description object 1494 * @bu: bulk-read parameters and results 1495 * 1496 * Lookup consecutive data node keys for the same inode that reside 1497 * consecutively in the same LEB. This function returns zero in case of success 1498 * and a negative error code in case of failure. 1499 * 1500 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1501 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1502 * maximum possible amount of nodes for bulk-read. 1503 */ 1504 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1505 { 1506 int n, err = 0, lnum = -1, uninitialized_var(offs); 1507 int uninitialized_var(len); 1508 unsigned int block = key_block(c, &bu->key); 1509 struct ubifs_znode *znode; 1510 1511 bu->cnt = 0; 1512 bu->blk_cnt = 0; 1513 bu->eof = 0; 1514 1515 mutex_lock(&c->tnc_mutex); 1516 /* Find first key */ 1517 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1518 if (err < 0) 1519 goto out; 1520 if (err) { 1521 /* Key found */ 1522 len = znode->zbranch[n].len; 1523 /* The buffer must be big enough for at least 1 node */ 1524 if (len > bu->buf_len) { 1525 err = -EINVAL; 1526 goto out; 1527 } 1528 /* Add this key */ 1529 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1530 bu->blk_cnt += 1; 1531 lnum = znode->zbranch[n].lnum; 1532 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1533 } 1534 while (1) { 1535 struct ubifs_zbranch *zbr; 1536 union ubifs_key *key; 1537 unsigned int next_block; 1538 1539 /* Find next key */ 1540 err = tnc_next(c, &znode, &n); 1541 if (err) 1542 goto out; 1543 zbr = &znode->zbranch[n]; 1544 key = &zbr->key; 1545 /* See if there is another data key for this file */ 1546 if (key_inum(c, key) != key_inum(c, &bu->key) || 1547 key_type(c, key) != UBIFS_DATA_KEY) { 1548 err = -ENOENT; 1549 goto out; 1550 } 1551 if (lnum < 0) { 1552 /* First key found */ 1553 lnum = zbr->lnum; 1554 offs = ALIGN(zbr->offs + zbr->len, 8); 1555 len = zbr->len; 1556 if (len > bu->buf_len) { 1557 err = -EINVAL; 1558 goto out; 1559 } 1560 } else { 1561 /* 1562 * The data nodes must be in consecutive positions in 1563 * the same LEB. 1564 */ 1565 if (zbr->lnum != lnum || zbr->offs != offs) 1566 goto out; 1567 offs += ALIGN(zbr->len, 8); 1568 len = ALIGN(len, 8) + zbr->len; 1569 /* Must not exceed buffer length */ 1570 if (len > bu->buf_len) 1571 goto out; 1572 } 1573 /* Allow for holes */ 1574 next_block = key_block(c, key); 1575 bu->blk_cnt += (next_block - block - 1); 1576 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1577 goto out; 1578 block = next_block; 1579 /* Add this key */ 1580 bu->zbranch[bu->cnt++] = *zbr; 1581 bu->blk_cnt += 1; 1582 /* See if we have room for more */ 1583 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1584 goto out; 1585 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1586 goto out; 1587 } 1588 out: 1589 if (err == -ENOENT) { 1590 bu->eof = 1; 1591 err = 0; 1592 } 1593 bu->gc_seq = c->gc_seq; 1594 mutex_unlock(&c->tnc_mutex); 1595 if (err) 1596 return err; 1597 /* 1598 * An enormous hole could cause bulk-read to encompass too many 1599 * page cache pages, so limit the number here. 1600 */ 1601 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1602 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1603 /* 1604 * Ensure that bulk-read covers a whole number of page cache 1605 * pages. 1606 */ 1607 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1608 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1609 return 0; 1610 if (bu->eof) { 1611 /* At the end of file we can round up */ 1612 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1613 return 0; 1614 } 1615 /* Exclude data nodes that do not make up a whole page cache page */ 1616 block = key_block(c, &bu->key) + bu->blk_cnt; 1617 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1618 while (bu->cnt) { 1619 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1620 break; 1621 bu->cnt -= 1; 1622 } 1623 return 0; 1624 } 1625 1626 /** 1627 * read_wbuf - bulk-read from a LEB with a wbuf. 1628 * @wbuf: wbuf that may overlap the read 1629 * @buf: buffer into which to read 1630 * @len: read length 1631 * @lnum: LEB number from which to read 1632 * @offs: offset from which to read 1633 * 1634 * This functions returns %0 on success or a negative error code on failure. 1635 */ 1636 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1637 int offs) 1638 { 1639 const struct ubifs_info *c = wbuf->c; 1640 int rlen, overlap; 1641 1642 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1643 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1644 ubifs_assert(!(offs & 7) && offs < c->leb_size); 1645 ubifs_assert(offs + len <= c->leb_size); 1646 1647 spin_lock(&wbuf->lock); 1648 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1649 if (!overlap) { 1650 /* We may safely unlock the write-buffer and read the data */ 1651 spin_unlock(&wbuf->lock); 1652 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1653 } 1654 1655 /* Don't read under wbuf */ 1656 rlen = wbuf->offs - offs; 1657 if (rlen < 0) 1658 rlen = 0; 1659 1660 /* Copy the rest from the write-buffer */ 1661 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1662 spin_unlock(&wbuf->lock); 1663 1664 if (rlen > 0) 1665 /* Read everything that goes before write-buffer */ 1666 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1667 1668 return 0; 1669 } 1670 1671 /** 1672 * validate_data_node - validate data nodes for bulk-read. 1673 * @c: UBIFS file-system description object 1674 * @buf: buffer containing data node to validate 1675 * @zbr: zbranch of data node to validate 1676 * 1677 * This functions returns %0 on success or a negative error code on failure. 1678 */ 1679 static int validate_data_node(struct ubifs_info *c, void *buf, 1680 struct ubifs_zbranch *zbr) 1681 { 1682 union ubifs_key key1; 1683 struct ubifs_ch *ch = buf; 1684 int err, len; 1685 1686 if (ch->node_type != UBIFS_DATA_NODE) { 1687 ubifs_err("bad node type (%d but expected %d)", 1688 ch->node_type, UBIFS_DATA_NODE); 1689 goto out_err; 1690 } 1691 1692 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1693 if (err) { 1694 ubifs_err("expected node type %d", UBIFS_DATA_NODE); 1695 goto out; 1696 } 1697 1698 len = le32_to_cpu(ch->len); 1699 if (len != zbr->len) { 1700 ubifs_err("bad node length %d, expected %d", len, zbr->len); 1701 goto out_err; 1702 } 1703 1704 /* Make sure the key of the read node is correct */ 1705 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1706 if (!keys_eq(c, &zbr->key, &key1)) { 1707 ubifs_err("bad key in node at LEB %d:%d", 1708 zbr->lnum, zbr->offs); 1709 dbg_tnck(&zbr->key, "looked for key "); 1710 dbg_tnck(&key1, "found node's key "); 1711 goto out_err; 1712 } 1713 1714 return 0; 1715 1716 out_err: 1717 err = -EINVAL; 1718 out: 1719 ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1720 ubifs_dump_node(c, buf); 1721 dump_stack(); 1722 return err; 1723 } 1724 1725 /** 1726 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1727 * @c: UBIFS file-system description object 1728 * @bu: bulk-read parameters and results 1729 * 1730 * This functions reads and validates the data nodes that were identified by the 1731 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1732 * -EAGAIN to indicate a race with GC, or another negative error code on 1733 * failure. 1734 */ 1735 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1736 { 1737 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1738 struct ubifs_wbuf *wbuf; 1739 void *buf; 1740 1741 len = bu->zbranch[bu->cnt - 1].offs; 1742 len += bu->zbranch[bu->cnt - 1].len - offs; 1743 if (len > bu->buf_len) { 1744 ubifs_err("buffer too small %d vs %d", bu->buf_len, len); 1745 return -EINVAL; 1746 } 1747 1748 /* Do the read */ 1749 wbuf = ubifs_get_wbuf(c, lnum); 1750 if (wbuf) 1751 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1752 else 1753 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1754 1755 /* Check for a race with GC */ 1756 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1757 return -EAGAIN; 1758 1759 if (err && err != -EBADMSG) { 1760 ubifs_err("failed to read from LEB %d:%d, error %d", 1761 lnum, offs, err); 1762 dump_stack(); 1763 dbg_tnck(&bu->key, "key "); 1764 return err; 1765 } 1766 1767 /* Validate the nodes read */ 1768 buf = bu->buf; 1769 for (i = 0; i < bu->cnt; i++) { 1770 err = validate_data_node(c, buf, &bu->zbranch[i]); 1771 if (err) 1772 return err; 1773 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1774 } 1775 1776 return 0; 1777 } 1778 1779 /** 1780 * do_lookup_nm- look up a "hashed" node. 1781 * @c: UBIFS file-system description object 1782 * @key: node key to lookup 1783 * @node: the node is returned here 1784 * @nm: node name 1785 * 1786 * This function look up and reads a node which contains name hash in the key. 1787 * Since the hash may have collisions, there may be many nodes with the same 1788 * key, so we have to sequentially look to all of them until the needed one is 1789 * found. This function returns zero in case of success, %-ENOENT if the node 1790 * was not found, and a negative error code in case of failure. 1791 */ 1792 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1793 void *node, const struct qstr *nm) 1794 { 1795 int found, n, err; 1796 struct ubifs_znode *znode; 1797 1798 dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name); 1799 mutex_lock(&c->tnc_mutex); 1800 found = ubifs_lookup_level0(c, key, &znode, &n); 1801 if (!found) { 1802 err = -ENOENT; 1803 goto out_unlock; 1804 } else if (found < 0) { 1805 err = found; 1806 goto out_unlock; 1807 } 1808 1809 ubifs_assert(n >= 0); 1810 1811 err = resolve_collision(c, key, &znode, &n, nm); 1812 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1813 if (unlikely(err < 0)) 1814 goto out_unlock; 1815 if (err == 0) { 1816 err = -ENOENT; 1817 goto out_unlock; 1818 } 1819 1820 err = tnc_read_node_nm(c, &znode->zbranch[n], node); 1821 1822 out_unlock: 1823 mutex_unlock(&c->tnc_mutex); 1824 return err; 1825 } 1826 1827 /** 1828 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1829 * @c: UBIFS file-system description object 1830 * @key: node key to lookup 1831 * @node: the node is returned here 1832 * @nm: node name 1833 * 1834 * This function look up and reads a node which contains name hash in the key. 1835 * Since the hash may have collisions, there may be many nodes with the same 1836 * key, so we have to sequentially look to all of them until the needed one is 1837 * found. This function returns zero in case of success, %-ENOENT if the node 1838 * was not found, and a negative error code in case of failure. 1839 */ 1840 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1841 void *node, const struct qstr *nm) 1842 { 1843 int err, len; 1844 const struct ubifs_dent_node *dent = node; 1845 1846 /* 1847 * We assume that in most of the cases there are no name collisions and 1848 * 'ubifs_tnc_lookup()' returns us the right direntry. 1849 */ 1850 err = ubifs_tnc_lookup(c, key, node); 1851 if (err) 1852 return err; 1853 1854 len = le16_to_cpu(dent->nlen); 1855 if (nm->len == len && !memcmp(dent->name, nm->name, len)) 1856 return 0; 1857 1858 /* 1859 * Unluckily, there are hash collisions and we have to iterate over 1860 * them look at each direntry with colliding name hash sequentially. 1861 */ 1862 return do_lookup_nm(c, key, node, nm); 1863 } 1864 1865 /** 1866 * correct_parent_keys - correct parent znodes' keys. 1867 * @c: UBIFS file-system description object 1868 * @znode: znode to correct parent znodes for 1869 * 1870 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1871 * zbranch changes, keys of parent znodes have to be corrected. This helper 1872 * function is called in such situations and corrects the keys if needed. 1873 */ 1874 static void correct_parent_keys(const struct ubifs_info *c, 1875 struct ubifs_znode *znode) 1876 { 1877 union ubifs_key *key, *key1; 1878 1879 ubifs_assert(znode->parent); 1880 ubifs_assert(znode->iip == 0); 1881 1882 key = &znode->zbranch[0].key; 1883 key1 = &znode->parent->zbranch[0].key; 1884 1885 while (keys_cmp(c, key, key1) < 0) { 1886 key_copy(c, key, key1); 1887 znode = znode->parent; 1888 znode->alt = 1; 1889 if (!znode->parent || znode->iip) 1890 break; 1891 key1 = &znode->parent->zbranch[0].key; 1892 } 1893 } 1894 1895 /** 1896 * insert_zbranch - insert a zbranch into a znode. 1897 * @znode: znode into which to insert 1898 * @zbr: zbranch to insert 1899 * @n: slot number to insert to 1900 * 1901 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 1902 * znode's array of zbranches and keeps zbranches consolidated, so when a new 1903 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 1904 * slot, zbranches starting from @n have to be moved right. 1905 */ 1906 static void insert_zbranch(struct ubifs_znode *znode, 1907 const struct ubifs_zbranch *zbr, int n) 1908 { 1909 int i; 1910 1911 ubifs_assert(ubifs_zn_dirty(znode)); 1912 1913 if (znode->level) { 1914 for (i = znode->child_cnt; i > n; i--) { 1915 znode->zbranch[i] = znode->zbranch[i - 1]; 1916 if (znode->zbranch[i].znode) 1917 znode->zbranch[i].znode->iip = i; 1918 } 1919 if (zbr->znode) 1920 zbr->znode->iip = n; 1921 } else 1922 for (i = znode->child_cnt; i > n; i--) 1923 znode->zbranch[i] = znode->zbranch[i - 1]; 1924 1925 znode->zbranch[n] = *zbr; 1926 znode->child_cnt += 1; 1927 1928 /* 1929 * After inserting at slot zero, the lower bound of the key range of 1930 * this znode may have changed. If this znode is subsequently split 1931 * then the upper bound of the key range may change, and furthermore 1932 * it could change to be lower than the original lower bound. If that 1933 * happens, then it will no longer be possible to find this znode in the 1934 * TNC using the key from the index node on flash. That is bad because 1935 * if it is not found, we will assume it is obsolete and may overwrite 1936 * it. Then if there is an unclean unmount, we will start using the 1937 * old index which will be broken. 1938 * 1939 * So we first mark znodes that have insertions at slot zero, and then 1940 * if they are split we add their lnum/offs to the old_idx tree. 1941 */ 1942 if (n == 0) 1943 znode->alt = 1; 1944 } 1945 1946 /** 1947 * tnc_insert - insert a node into TNC. 1948 * @c: UBIFS file-system description object 1949 * @znode: znode to insert into 1950 * @zbr: branch to insert 1951 * @n: slot number to insert new zbranch to 1952 * 1953 * This function inserts a new node described by @zbr into znode @znode. If 1954 * znode does not have a free slot for new zbranch, it is split. Parent znodes 1955 * are splat as well if needed. Returns zero in case of success or a negative 1956 * error code in case of failure. 1957 */ 1958 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 1959 struct ubifs_zbranch *zbr, int n) 1960 { 1961 struct ubifs_znode *zn, *zi, *zp; 1962 int i, keep, move, appending = 0; 1963 union ubifs_key *key = &zbr->key, *key1; 1964 1965 ubifs_assert(n >= 0 && n <= c->fanout); 1966 1967 /* Implement naive insert for now */ 1968 again: 1969 zp = znode->parent; 1970 if (znode->child_cnt < c->fanout) { 1971 ubifs_assert(n != c->fanout); 1972 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 1973 1974 insert_zbranch(znode, zbr, n); 1975 1976 /* Ensure parent's key is correct */ 1977 if (n == 0 && zp && znode->iip == 0) 1978 correct_parent_keys(c, znode); 1979 1980 return 0; 1981 } 1982 1983 /* 1984 * Unfortunately, @znode does not have more empty slots and we have to 1985 * split it. 1986 */ 1987 dbg_tnck(key, "splitting level %d, key ", znode->level); 1988 1989 if (znode->alt) 1990 /* 1991 * We can no longer be sure of finding this znode by key, so we 1992 * record it in the old_idx tree. 1993 */ 1994 ins_clr_old_idx_znode(c, znode); 1995 1996 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 1997 if (!zn) 1998 return -ENOMEM; 1999 zn->parent = zp; 2000 zn->level = znode->level; 2001 2002 /* Decide where to split */ 2003 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2004 /* Try not to split consecutive data keys */ 2005 if (n == c->fanout) { 2006 key1 = &znode->zbranch[n - 1].key; 2007 if (key_inum(c, key1) == key_inum(c, key) && 2008 key_type(c, key1) == UBIFS_DATA_KEY) 2009 appending = 1; 2010 } else 2011 goto check_split; 2012 } else if (appending && n != c->fanout) { 2013 /* Try not to split consecutive data keys */ 2014 appending = 0; 2015 check_split: 2016 if (n >= (c->fanout + 1) / 2) { 2017 key1 = &znode->zbranch[0].key; 2018 if (key_inum(c, key1) == key_inum(c, key) && 2019 key_type(c, key1) == UBIFS_DATA_KEY) { 2020 key1 = &znode->zbranch[n].key; 2021 if (key_inum(c, key1) != key_inum(c, key) || 2022 key_type(c, key1) != UBIFS_DATA_KEY) { 2023 keep = n; 2024 move = c->fanout - keep; 2025 zi = znode; 2026 goto do_split; 2027 } 2028 } 2029 } 2030 } 2031 2032 if (appending) { 2033 keep = c->fanout; 2034 move = 0; 2035 } else { 2036 keep = (c->fanout + 1) / 2; 2037 move = c->fanout - keep; 2038 } 2039 2040 /* 2041 * Although we don't at present, we could look at the neighbors and see 2042 * if we can move some zbranches there. 2043 */ 2044 2045 if (n < keep) { 2046 /* Insert into existing znode */ 2047 zi = znode; 2048 move += 1; 2049 keep -= 1; 2050 } else { 2051 /* Insert into new znode */ 2052 zi = zn; 2053 n -= keep; 2054 /* Re-parent */ 2055 if (zn->level != 0) 2056 zbr->znode->parent = zn; 2057 } 2058 2059 do_split: 2060 2061 __set_bit(DIRTY_ZNODE, &zn->flags); 2062 atomic_long_inc(&c->dirty_zn_cnt); 2063 2064 zn->child_cnt = move; 2065 znode->child_cnt = keep; 2066 2067 dbg_tnc("moving %d, keeping %d", move, keep); 2068 2069 /* Move zbranch */ 2070 for (i = 0; i < move; i++) { 2071 zn->zbranch[i] = znode->zbranch[keep + i]; 2072 /* Re-parent */ 2073 if (zn->level != 0) 2074 if (zn->zbranch[i].znode) { 2075 zn->zbranch[i].znode->parent = zn; 2076 zn->zbranch[i].znode->iip = i; 2077 } 2078 } 2079 2080 /* Insert new key and branch */ 2081 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2082 2083 insert_zbranch(zi, zbr, n); 2084 2085 /* Insert new znode (produced by spitting) into the parent */ 2086 if (zp) { 2087 if (n == 0 && zi == znode && znode->iip == 0) 2088 correct_parent_keys(c, znode); 2089 2090 /* Locate insertion point */ 2091 n = znode->iip + 1; 2092 2093 /* Tail recursion */ 2094 zbr->key = zn->zbranch[0].key; 2095 zbr->znode = zn; 2096 zbr->lnum = 0; 2097 zbr->offs = 0; 2098 zbr->len = 0; 2099 znode = zp; 2100 2101 goto again; 2102 } 2103 2104 /* We have to split root znode */ 2105 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2106 2107 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2108 if (!zi) 2109 return -ENOMEM; 2110 2111 zi->child_cnt = 2; 2112 zi->level = znode->level + 1; 2113 2114 __set_bit(DIRTY_ZNODE, &zi->flags); 2115 atomic_long_inc(&c->dirty_zn_cnt); 2116 2117 zi->zbranch[0].key = znode->zbranch[0].key; 2118 zi->zbranch[0].znode = znode; 2119 zi->zbranch[0].lnum = c->zroot.lnum; 2120 zi->zbranch[0].offs = c->zroot.offs; 2121 zi->zbranch[0].len = c->zroot.len; 2122 zi->zbranch[1].key = zn->zbranch[0].key; 2123 zi->zbranch[1].znode = zn; 2124 2125 c->zroot.lnum = 0; 2126 c->zroot.offs = 0; 2127 c->zroot.len = 0; 2128 c->zroot.znode = zi; 2129 2130 zn->parent = zi; 2131 zn->iip = 1; 2132 znode->parent = zi; 2133 znode->iip = 0; 2134 2135 return 0; 2136 } 2137 2138 /** 2139 * ubifs_tnc_add - add a node to TNC. 2140 * @c: UBIFS file-system description object 2141 * @key: key to add 2142 * @lnum: LEB number of node 2143 * @offs: node offset 2144 * @len: node length 2145 * 2146 * This function adds a node with key @key to TNC. The node may be new or it may 2147 * obsolete some existing one. Returns %0 on success or negative error code on 2148 * failure. 2149 */ 2150 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2151 int offs, int len) 2152 { 2153 int found, n, err = 0; 2154 struct ubifs_znode *znode; 2155 2156 mutex_lock(&c->tnc_mutex); 2157 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2158 found = lookup_level0_dirty(c, key, &znode, &n); 2159 if (!found) { 2160 struct ubifs_zbranch zbr; 2161 2162 zbr.znode = NULL; 2163 zbr.lnum = lnum; 2164 zbr.offs = offs; 2165 zbr.len = len; 2166 key_copy(c, key, &zbr.key); 2167 err = tnc_insert(c, znode, &zbr, n + 1); 2168 } else if (found == 1) { 2169 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2170 2171 lnc_free(zbr); 2172 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2173 zbr->lnum = lnum; 2174 zbr->offs = offs; 2175 zbr->len = len; 2176 } else 2177 err = found; 2178 if (!err) 2179 err = dbg_check_tnc(c, 0); 2180 mutex_unlock(&c->tnc_mutex); 2181 2182 return err; 2183 } 2184 2185 /** 2186 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2187 * @c: UBIFS file-system description object 2188 * @key: key to add 2189 * @old_lnum: LEB number of old node 2190 * @old_offs: old node offset 2191 * @lnum: LEB number of node 2192 * @offs: node offset 2193 * @len: node length 2194 * 2195 * This function replaces a node with key @key in the TNC only if the old node 2196 * is found. This function is called by garbage collection when node are moved. 2197 * Returns %0 on success or negative error code on failure. 2198 */ 2199 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2200 int old_lnum, int old_offs, int lnum, int offs, int len) 2201 { 2202 int found, n, err = 0; 2203 struct ubifs_znode *znode; 2204 2205 mutex_lock(&c->tnc_mutex); 2206 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2207 old_offs, lnum, offs, len); 2208 found = lookup_level0_dirty(c, key, &znode, &n); 2209 if (found < 0) { 2210 err = found; 2211 goto out_unlock; 2212 } 2213 2214 if (found == 1) { 2215 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2216 2217 found = 0; 2218 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2219 lnc_free(zbr); 2220 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2221 if (err) 2222 goto out_unlock; 2223 zbr->lnum = lnum; 2224 zbr->offs = offs; 2225 zbr->len = len; 2226 found = 1; 2227 } else if (is_hash_key(c, key)) { 2228 found = resolve_collision_directly(c, key, &znode, &n, 2229 old_lnum, old_offs); 2230 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2231 found, znode, n, old_lnum, old_offs); 2232 if (found < 0) { 2233 err = found; 2234 goto out_unlock; 2235 } 2236 2237 if (found) { 2238 /* Ensure the znode is dirtied */ 2239 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2240 znode = dirty_cow_bottom_up(c, znode); 2241 if (IS_ERR(znode)) { 2242 err = PTR_ERR(znode); 2243 goto out_unlock; 2244 } 2245 } 2246 zbr = &znode->zbranch[n]; 2247 lnc_free(zbr); 2248 err = ubifs_add_dirt(c, zbr->lnum, 2249 zbr->len); 2250 if (err) 2251 goto out_unlock; 2252 zbr->lnum = lnum; 2253 zbr->offs = offs; 2254 zbr->len = len; 2255 } 2256 } 2257 } 2258 2259 if (!found) 2260 err = ubifs_add_dirt(c, lnum, len); 2261 2262 if (!err) 2263 err = dbg_check_tnc(c, 0); 2264 2265 out_unlock: 2266 mutex_unlock(&c->tnc_mutex); 2267 return err; 2268 } 2269 2270 /** 2271 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2272 * @c: UBIFS file-system description object 2273 * @key: key to add 2274 * @lnum: LEB number of node 2275 * @offs: node offset 2276 * @len: node length 2277 * @nm: node name 2278 * 2279 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2280 * may have collisions, like directory entry keys. 2281 */ 2282 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2283 int lnum, int offs, int len, const struct qstr *nm) 2284 { 2285 int found, n, err = 0; 2286 struct ubifs_znode *znode; 2287 2288 mutex_lock(&c->tnc_mutex); 2289 dbg_tnck(key, "LEB %d:%d, name '%.*s', key ", 2290 lnum, offs, nm->len, nm->name); 2291 found = lookup_level0_dirty(c, key, &znode, &n); 2292 if (found < 0) { 2293 err = found; 2294 goto out_unlock; 2295 } 2296 2297 if (found == 1) { 2298 if (c->replaying) 2299 found = fallible_resolve_collision(c, key, &znode, &n, 2300 nm, 1); 2301 else 2302 found = resolve_collision(c, key, &znode, &n, nm); 2303 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2304 if (found < 0) { 2305 err = found; 2306 goto out_unlock; 2307 } 2308 2309 /* Ensure the znode is dirtied */ 2310 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2311 znode = dirty_cow_bottom_up(c, znode); 2312 if (IS_ERR(znode)) { 2313 err = PTR_ERR(znode); 2314 goto out_unlock; 2315 } 2316 } 2317 2318 if (found == 1) { 2319 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2320 2321 lnc_free(zbr); 2322 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2323 zbr->lnum = lnum; 2324 zbr->offs = offs; 2325 zbr->len = len; 2326 goto out_unlock; 2327 } 2328 } 2329 2330 if (!found) { 2331 struct ubifs_zbranch zbr; 2332 2333 zbr.znode = NULL; 2334 zbr.lnum = lnum; 2335 zbr.offs = offs; 2336 zbr.len = len; 2337 key_copy(c, key, &zbr.key); 2338 err = tnc_insert(c, znode, &zbr, n + 1); 2339 if (err) 2340 goto out_unlock; 2341 if (c->replaying) { 2342 /* 2343 * We did not find it in the index so there may be a 2344 * dangling branch still in the index. So we remove it 2345 * by passing 'ubifs_tnc_remove_nm()' the same key but 2346 * an unmatchable name. 2347 */ 2348 struct qstr noname = { .name = "" }; 2349 2350 err = dbg_check_tnc(c, 0); 2351 mutex_unlock(&c->tnc_mutex); 2352 if (err) 2353 return err; 2354 return ubifs_tnc_remove_nm(c, key, &noname); 2355 } 2356 } 2357 2358 out_unlock: 2359 if (!err) 2360 err = dbg_check_tnc(c, 0); 2361 mutex_unlock(&c->tnc_mutex); 2362 return err; 2363 } 2364 2365 /** 2366 * tnc_delete - delete a znode form TNC. 2367 * @c: UBIFS file-system description object 2368 * @znode: znode to delete from 2369 * @n: zbranch slot number to delete 2370 * 2371 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2372 * case of success and a negative error code in case of failure. 2373 */ 2374 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2375 { 2376 struct ubifs_zbranch *zbr; 2377 struct ubifs_znode *zp; 2378 int i, err; 2379 2380 /* Delete without merge for now */ 2381 ubifs_assert(znode->level == 0); 2382 ubifs_assert(n >= 0 && n < c->fanout); 2383 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2384 2385 zbr = &znode->zbranch[n]; 2386 lnc_free(zbr); 2387 2388 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2389 if (err) { 2390 ubifs_dump_znode(c, znode); 2391 return err; 2392 } 2393 2394 /* We do not "gap" zbranch slots */ 2395 for (i = n; i < znode->child_cnt - 1; i++) 2396 znode->zbranch[i] = znode->zbranch[i + 1]; 2397 znode->child_cnt -= 1; 2398 2399 if (znode->child_cnt > 0) 2400 return 0; 2401 2402 /* 2403 * This was the last zbranch, we have to delete this znode from the 2404 * parent. 2405 */ 2406 2407 do { 2408 ubifs_assert(!ubifs_zn_obsolete(znode)); 2409 ubifs_assert(ubifs_zn_dirty(znode)); 2410 2411 zp = znode->parent; 2412 n = znode->iip; 2413 2414 atomic_long_dec(&c->dirty_zn_cnt); 2415 2416 err = insert_old_idx_znode(c, znode); 2417 if (err) 2418 return err; 2419 2420 if (znode->cnext) { 2421 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2422 atomic_long_inc(&c->clean_zn_cnt); 2423 atomic_long_inc(&ubifs_clean_zn_cnt); 2424 } else 2425 kfree(znode); 2426 znode = zp; 2427 } while (znode->child_cnt == 1); /* while removing last child */ 2428 2429 /* Remove from znode, entry n - 1 */ 2430 znode->child_cnt -= 1; 2431 ubifs_assert(znode->level != 0); 2432 for (i = n; i < znode->child_cnt; i++) { 2433 znode->zbranch[i] = znode->zbranch[i + 1]; 2434 if (znode->zbranch[i].znode) 2435 znode->zbranch[i].znode->iip = i; 2436 } 2437 2438 /* 2439 * If this is the root and it has only 1 child then 2440 * collapse the tree. 2441 */ 2442 if (!znode->parent) { 2443 while (znode->child_cnt == 1 && znode->level != 0) { 2444 zp = znode; 2445 zbr = &znode->zbranch[0]; 2446 znode = get_znode(c, znode, 0); 2447 if (IS_ERR(znode)) 2448 return PTR_ERR(znode); 2449 znode = dirty_cow_znode(c, zbr); 2450 if (IS_ERR(znode)) 2451 return PTR_ERR(znode); 2452 znode->parent = NULL; 2453 znode->iip = 0; 2454 if (c->zroot.len) { 2455 err = insert_old_idx(c, c->zroot.lnum, 2456 c->zroot.offs); 2457 if (err) 2458 return err; 2459 } 2460 c->zroot.lnum = zbr->lnum; 2461 c->zroot.offs = zbr->offs; 2462 c->zroot.len = zbr->len; 2463 c->zroot.znode = znode; 2464 ubifs_assert(!ubifs_zn_obsolete(zp)); 2465 ubifs_assert(ubifs_zn_dirty(zp)); 2466 atomic_long_dec(&c->dirty_zn_cnt); 2467 2468 if (zp->cnext) { 2469 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2470 atomic_long_inc(&c->clean_zn_cnt); 2471 atomic_long_inc(&ubifs_clean_zn_cnt); 2472 } else 2473 kfree(zp); 2474 } 2475 } 2476 2477 return 0; 2478 } 2479 2480 /** 2481 * ubifs_tnc_remove - remove an index entry of a node. 2482 * @c: UBIFS file-system description object 2483 * @key: key of node 2484 * 2485 * Returns %0 on success or negative error code on failure. 2486 */ 2487 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2488 { 2489 int found, n, err = 0; 2490 struct ubifs_znode *znode; 2491 2492 mutex_lock(&c->tnc_mutex); 2493 dbg_tnck(key, "key "); 2494 found = lookup_level0_dirty(c, key, &znode, &n); 2495 if (found < 0) { 2496 err = found; 2497 goto out_unlock; 2498 } 2499 if (found == 1) 2500 err = tnc_delete(c, znode, n); 2501 if (!err) 2502 err = dbg_check_tnc(c, 0); 2503 2504 out_unlock: 2505 mutex_unlock(&c->tnc_mutex); 2506 return err; 2507 } 2508 2509 /** 2510 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2511 * @c: UBIFS file-system description object 2512 * @key: key of node 2513 * @nm: directory entry name 2514 * 2515 * Returns %0 on success or negative error code on failure. 2516 */ 2517 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2518 const struct qstr *nm) 2519 { 2520 int n, err; 2521 struct ubifs_znode *znode; 2522 2523 mutex_lock(&c->tnc_mutex); 2524 dbg_tnck(key, "%.*s, key ", nm->len, nm->name); 2525 err = lookup_level0_dirty(c, key, &znode, &n); 2526 if (err < 0) 2527 goto out_unlock; 2528 2529 if (err) { 2530 if (c->replaying) 2531 err = fallible_resolve_collision(c, key, &znode, &n, 2532 nm, 0); 2533 else 2534 err = resolve_collision(c, key, &znode, &n, nm); 2535 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2536 if (err < 0) 2537 goto out_unlock; 2538 if (err) { 2539 /* Ensure the znode is dirtied */ 2540 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2541 znode = dirty_cow_bottom_up(c, znode); 2542 if (IS_ERR(znode)) { 2543 err = PTR_ERR(znode); 2544 goto out_unlock; 2545 } 2546 } 2547 err = tnc_delete(c, znode, n); 2548 } 2549 } 2550 2551 out_unlock: 2552 if (!err) 2553 err = dbg_check_tnc(c, 0); 2554 mutex_unlock(&c->tnc_mutex); 2555 return err; 2556 } 2557 2558 /** 2559 * key_in_range - determine if a key falls within a range of keys. 2560 * @c: UBIFS file-system description object 2561 * @key: key to check 2562 * @from_key: lowest key in range 2563 * @to_key: highest key in range 2564 * 2565 * This function returns %1 if the key is in range and %0 otherwise. 2566 */ 2567 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2568 union ubifs_key *from_key, union ubifs_key *to_key) 2569 { 2570 if (keys_cmp(c, key, from_key) < 0) 2571 return 0; 2572 if (keys_cmp(c, key, to_key) > 0) 2573 return 0; 2574 return 1; 2575 } 2576 2577 /** 2578 * ubifs_tnc_remove_range - remove index entries in range. 2579 * @c: UBIFS file-system description object 2580 * @from_key: lowest key to remove 2581 * @to_key: highest key to remove 2582 * 2583 * This function removes index entries starting at @from_key and ending at 2584 * @to_key. This function returns zero in case of success and a negative error 2585 * code in case of failure. 2586 */ 2587 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2588 union ubifs_key *to_key) 2589 { 2590 int i, n, k, err = 0; 2591 struct ubifs_znode *znode; 2592 union ubifs_key *key; 2593 2594 mutex_lock(&c->tnc_mutex); 2595 while (1) { 2596 /* Find first level 0 znode that contains keys to remove */ 2597 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2598 if (err < 0) 2599 goto out_unlock; 2600 2601 if (err) 2602 key = from_key; 2603 else { 2604 err = tnc_next(c, &znode, &n); 2605 if (err == -ENOENT) { 2606 err = 0; 2607 goto out_unlock; 2608 } 2609 if (err < 0) 2610 goto out_unlock; 2611 key = &znode->zbranch[n].key; 2612 if (!key_in_range(c, key, from_key, to_key)) { 2613 err = 0; 2614 goto out_unlock; 2615 } 2616 } 2617 2618 /* Ensure the znode is dirtied */ 2619 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2620 znode = dirty_cow_bottom_up(c, znode); 2621 if (IS_ERR(znode)) { 2622 err = PTR_ERR(znode); 2623 goto out_unlock; 2624 } 2625 } 2626 2627 /* Remove all keys in range except the first */ 2628 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2629 key = &znode->zbranch[i].key; 2630 if (!key_in_range(c, key, from_key, to_key)) 2631 break; 2632 lnc_free(&znode->zbranch[i]); 2633 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2634 znode->zbranch[i].len); 2635 if (err) { 2636 ubifs_dump_znode(c, znode); 2637 goto out_unlock; 2638 } 2639 dbg_tnck(key, "removing key "); 2640 } 2641 if (k) { 2642 for (i = n + 1 + k; i < znode->child_cnt; i++) 2643 znode->zbranch[i - k] = znode->zbranch[i]; 2644 znode->child_cnt -= k; 2645 } 2646 2647 /* Now delete the first */ 2648 err = tnc_delete(c, znode, n); 2649 if (err) 2650 goto out_unlock; 2651 } 2652 2653 out_unlock: 2654 if (!err) 2655 err = dbg_check_tnc(c, 0); 2656 mutex_unlock(&c->tnc_mutex); 2657 return err; 2658 } 2659 2660 /** 2661 * ubifs_tnc_remove_ino - remove an inode from TNC. 2662 * @c: UBIFS file-system description object 2663 * @inum: inode number to remove 2664 * 2665 * This function remove inode @inum and all the extended attributes associated 2666 * with the anode from TNC and returns zero in case of success or a negative 2667 * error code in case of failure. 2668 */ 2669 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2670 { 2671 union ubifs_key key1, key2; 2672 struct ubifs_dent_node *xent, *pxent = NULL; 2673 struct qstr nm = { .name = NULL }; 2674 2675 dbg_tnc("ino %lu", (unsigned long)inum); 2676 2677 /* 2678 * Walk all extended attribute entries and remove them together with 2679 * corresponding extended attribute inodes. 2680 */ 2681 lowest_xent_key(c, &key1, inum); 2682 while (1) { 2683 ino_t xattr_inum; 2684 int err; 2685 2686 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2687 if (IS_ERR(xent)) { 2688 err = PTR_ERR(xent); 2689 if (err == -ENOENT) 2690 break; 2691 return err; 2692 } 2693 2694 xattr_inum = le64_to_cpu(xent->inum); 2695 dbg_tnc("xent '%s', ino %lu", xent->name, 2696 (unsigned long)xattr_inum); 2697 2698 nm.name = xent->name; 2699 nm.len = le16_to_cpu(xent->nlen); 2700 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2701 if (err) { 2702 kfree(xent); 2703 return err; 2704 } 2705 2706 lowest_ino_key(c, &key1, xattr_inum); 2707 highest_ino_key(c, &key2, xattr_inum); 2708 err = ubifs_tnc_remove_range(c, &key1, &key2); 2709 if (err) { 2710 kfree(xent); 2711 return err; 2712 } 2713 2714 kfree(pxent); 2715 pxent = xent; 2716 key_read(c, &xent->key, &key1); 2717 } 2718 2719 kfree(pxent); 2720 lowest_ino_key(c, &key1, inum); 2721 highest_ino_key(c, &key2, inum); 2722 2723 return ubifs_tnc_remove_range(c, &key1, &key2); 2724 } 2725 2726 /** 2727 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2728 * @c: UBIFS file-system description object 2729 * @key: key of last entry 2730 * @nm: name of last entry found or %NULL 2731 * 2732 * This function finds and reads the next directory or extended attribute entry 2733 * after the given key (@key) if there is one. @nm is used to resolve 2734 * collisions. 2735 * 2736 * If the name of the current entry is not known and only the key is known, 2737 * @nm->name has to be %NULL. In this case the semantics of this function is a 2738 * little bit different and it returns the entry corresponding to this key, not 2739 * the next one. If the key was not found, the closest "right" entry is 2740 * returned. 2741 * 2742 * If the fist entry has to be found, @key has to contain the lowest possible 2743 * key value for this inode and @name has to be %NULL. 2744 * 2745 * This function returns the found directory or extended attribute entry node 2746 * in case of success, %-ENOENT is returned if no entry was found, and a 2747 * negative error code is returned in case of failure. 2748 */ 2749 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2750 union ubifs_key *key, 2751 const struct qstr *nm) 2752 { 2753 int n, err, type = key_type(c, key); 2754 struct ubifs_znode *znode; 2755 struct ubifs_dent_node *dent; 2756 struct ubifs_zbranch *zbr; 2757 union ubifs_key *dkey; 2758 2759 dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)"); 2760 ubifs_assert(is_hash_key(c, key)); 2761 2762 mutex_lock(&c->tnc_mutex); 2763 err = ubifs_lookup_level0(c, key, &znode, &n); 2764 if (unlikely(err < 0)) 2765 goto out_unlock; 2766 2767 if (nm->name) { 2768 if (err) { 2769 /* Handle collisions */ 2770 err = resolve_collision(c, key, &znode, &n, nm); 2771 dbg_tnc("rc returned %d, znode %p, n %d", 2772 err, znode, n); 2773 if (unlikely(err < 0)) 2774 goto out_unlock; 2775 } 2776 2777 /* Now find next entry */ 2778 err = tnc_next(c, &znode, &n); 2779 if (unlikely(err)) 2780 goto out_unlock; 2781 } else { 2782 /* 2783 * The full name of the entry was not given, in which case the 2784 * behavior of this function is a little different and it 2785 * returns current entry, not the next one. 2786 */ 2787 if (!err) { 2788 /* 2789 * However, the given key does not exist in the TNC 2790 * tree and @znode/@n variables contain the closest 2791 * "preceding" element. Switch to the next one. 2792 */ 2793 err = tnc_next(c, &znode, &n); 2794 if (err) 2795 goto out_unlock; 2796 } 2797 } 2798 2799 zbr = &znode->zbranch[n]; 2800 dent = kmalloc(zbr->len, GFP_NOFS); 2801 if (unlikely(!dent)) { 2802 err = -ENOMEM; 2803 goto out_unlock; 2804 } 2805 2806 /* 2807 * The above 'tnc_next()' call could lead us to the next inode, check 2808 * this. 2809 */ 2810 dkey = &zbr->key; 2811 if (key_inum(c, dkey) != key_inum(c, key) || 2812 key_type(c, dkey) != type) { 2813 err = -ENOENT; 2814 goto out_free; 2815 } 2816 2817 err = tnc_read_node_nm(c, zbr, dent); 2818 if (unlikely(err)) 2819 goto out_free; 2820 2821 mutex_unlock(&c->tnc_mutex); 2822 return dent; 2823 2824 out_free: 2825 kfree(dent); 2826 out_unlock: 2827 mutex_unlock(&c->tnc_mutex); 2828 return ERR_PTR(err); 2829 } 2830 2831 #ifndef __UBOOT__ 2832 /** 2833 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 2834 * @c: UBIFS file-system description object 2835 * 2836 * Destroy left-over obsolete znodes from a failed commit. 2837 */ 2838 static void tnc_destroy_cnext(struct ubifs_info *c) 2839 { 2840 struct ubifs_znode *cnext; 2841 2842 if (!c->cnext) 2843 return; 2844 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 2845 cnext = c->cnext; 2846 do { 2847 struct ubifs_znode *znode = cnext; 2848 2849 cnext = cnext->cnext; 2850 if (ubifs_zn_obsolete(znode)) 2851 kfree(znode); 2852 } while (cnext && cnext != c->cnext); 2853 } 2854 2855 /** 2856 * ubifs_tnc_close - close TNC subsystem and free all related resources. 2857 * @c: UBIFS file-system description object 2858 */ 2859 void ubifs_tnc_close(struct ubifs_info *c) 2860 { 2861 tnc_destroy_cnext(c); 2862 if (c->zroot.znode) { 2863 long n; 2864 2865 ubifs_destroy_tnc_subtree(c->zroot.znode); 2866 n = atomic_long_read(&c->clean_zn_cnt); 2867 atomic_long_sub(n, &ubifs_clean_zn_cnt); 2868 } 2869 kfree(c->gap_lebs); 2870 kfree(c->ilebs); 2871 destroy_old_idx(c); 2872 } 2873 #endif 2874 2875 /** 2876 * left_znode - get the znode to the left. 2877 * @c: UBIFS file-system description object 2878 * @znode: znode 2879 * 2880 * This function returns a pointer to the znode to the left of @znode or NULL if 2881 * there is not one. A negative error code is returned on failure. 2882 */ 2883 static struct ubifs_znode *left_znode(struct ubifs_info *c, 2884 struct ubifs_znode *znode) 2885 { 2886 int level = znode->level; 2887 2888 while (1) { 2889 int n = znode->iip - 1; 2890 2891 /* Go up until we can go left */ 2892 znode = znode->parent; 2893 if (!znode) 2894 return NULL; 2895 if (n >= 0) { 2896 /* Now go down the rightmost branch to 'level' */ 2897 znode = get_znode(c, znode, n); 2898 if (IS_ERR(znode)) 2899 return znode; 2900 while (znode->level != level) { 2901 n = znode->child_cnt - 1; 2902 znode = get_znode(c, znode, n); 2903 if (IS_ERR(znode)) 2904 return znode; 2905 } 2906 break; 2907 } 2908 } 2909 return znode; 2910 } 2911 2912 /** 2913 * right_znode - get the znode to the right. 2914 * @c: UBIFS file-system description object 2915 * @znode: znode 2916 * 2917 * This function returns a pointer to the znode to the right of @znode or NULL 2918 * if there is not one. A negative error code is returned on failure. 2919 */ 2920 static struct ubifs_znode *right_znode(struct ubifs_info *c, 2921 struct ubifs_znode *znode) 2922 { 2923 int level = znode->level; 2924 2925 while (1) { 2926 int n = znode->iip + 1; 2927 2928 /* Go up until we can go right */ 2929 znode = znode->parent; 2930 if (!znode) 2931 return NULL; 2932 if (n < znode->child_cnt) { 2933 /* Now go down the leftmost branch to 'level' */ 2934 znode = get_znode(c, znode, n); 2935 if (IS_ERR(znode)) 2936 return znode; 2937 while (znode->level != level) { 2938 znode = get_znode(c, znode, 0); 2939 if (IS_ERR(znode)) 2940 return znode; 2941 } 2942 break; 2943 } 2944 } 2945 return znode; 2946 } 2947 2948 /** 2949 * lookup_znode - find a particular indexing node from TNC. 2950 * @c: UBIFS file-system description object 2951 * @key: index node key to lookup 2952 * @level: index node level 2953 * @lnum: index node LEB number 2954 * @offs: index node offset 2955 * 2956 * This function searches an indexing node by its first key @key and its 2957 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 2958 * nodes it traverses to TNC. This function is called for indexing nodes which 2959 * were found on the media by scanning, for example when garbage-collecting or 2960 * when doing in-the-gaps commit. This means that the indexing node which is 2961 * looked for does not have to have exactly the same leftmost key @key, because 2962 * the leftmost key may have been changed, in which case TNC will contain a 2963 * dirty znode which still refers the same @lnum:@offs. This function is clever 2964 * enough to recognize such indexing nodes. 2965 * 2966 * Note, if a znode was deleted or changed too much, then this function will 2967 * not find it. For situations like this UBIFS has the old index RB-tree 2968 * (indexed by @lnum:@offs). 2969 * 2970 * This function returns a pointer to the znode found or %NULL if it is not 2971 * found. A negative error code is returned on failure. 2972 */ 2973 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 2974 union ubifs_key *key, int level, 2975 int lnum, int offs) 2976 { 2977 struct ubifs_znode *znode, *zn; 2978 int n, nn; 2979 2980 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 2981 2982 /* 2983 * The arguments have probably been read off flash, so don't assume 2984 * they are valid. 2985 */ 2986 if (level < 0) 2987 return ERR_PTR(-EINVAL); 2988 2989 /* Get the root znode */ 2990 znode = c->zroot.znode; 2991 if (!znode) { 2992 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 2993 if (IS_ERR(znode)) 2994 return znode; 2995 } 2996 /* Check if it is the one we are looking for */ 2997 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 2998 return znode; 2999 /* Descend to the parent level i.e. (level + 1) */ 3000 if (level >= znode->level) 3001 return NULL; 3002 while (1) { 3003 ubifs_search_zbranch(c, znode, key, &n); 3004 if (n < 0) { 3005 /* 3006 * We reached a znode where the leftmost key is greater 3007 * than the key we are searching for. This is the same 3008 * situation as the one described in a huge comment at 3009 * the end of the 'ubifs_lookup_level0()' function. And 3010 * for exactly the same reasons we have to try to look 3011 * left before giving up. 3012 */ 3013 znode = left_znode(c, znode); 3014 if (!znode) 3015 return NULL; 3016 if (IS_ERR(znode)) 3017 return znode; 3018 ubifs_search_zbranch(c, znode, key, &n); 3019 ubifs_assert(n >= 0); 3020 } 3021 if (znode->level == level + 1) 3022 break; 3023 znode = get_znode(c, znode, n); 3024 if (IS_ERR(znode)) 3025 return znode; 3026 } 3027 /* Check if the child is the one we are looking for */ 3028 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3029 return get_znode(c, znode, n); 3030 /* If the key is unique, there is nowhere else to look */ 3031 if (!is_hash_key(c, key)) 3032 return NULL; 3033 /* 3034 * The key is not unique and so may be also in the znodes to either 3035 * side. 3036 */ 3037 zn = znode; 3038 nn = n; 3039 /* Look left */ 3040 while (1) { 3041 /* Move one branch to the left */ 3042 if (n) 3043 n -= 1; 3044 else { 3045 znode = left_znode(c, znode); 3046 if (!znode) 3047 break; 3048 if (IS_ERR(znode)) 3049 return znode; 3050 n = znode->child_cnt - 1; 3051 } 3052 /* Check it */ 3053 if (znode->zbranch[n].lnum == lnum && 3054 znode->zbranch[n].offs == offs) 3055 return get_znode(c, znode, n); 3056 /* Stop if the key is less than the one we are looking for */ 3057 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3058 break; 3059 } 3060 /* Back to the middle */ 3061 znode = zn; 3062 n = nn; 3063 /* Look right */ 3064 while (1) { 3065 /* Move one branch to the right */ 3066 if (++n >= znode->child_cnt) { 3067 znode = right_znode(c, znode); 3068 if (!znode) 3069 break; 3070 if (IS_ERR(znode)) 3071 return znode; 3072 n = 0; 3073 } 3074 /* Check it */ 3075 if (znode->zbranch[n].lnum == lnum && 3076 znode->zbranch[n].offs == offs) 3077 return get_znode(c, znode, n); 3078 /* Stop if the key is greater than the one we are looking for */ 3079 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3080 break; 3081 } 3082 return NULL; 3083 } 3084 3085 /** 3086 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3087 * @c: UBIFS file-system description object 3088 * @key: key of index node 3089 * @level: index node level 3090 * @lnum: LEB number of index node 3091 * @offs: offset of index node 3092 * 3093 * This function returns %0 if the index node is not referred to in the TNC, %1 3094 * if the index node is referred to in the TNC and the corresponding znode is 3095 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3096 * znode is clean, and a negative error code in case of failure. 3097 * 3098 * Note, the @key argument has to be the key of the first child. Also note, 3099 * this function relies on the fact that 0:0 is never a valid LEB number and 3100 * offset for a main-area node. 3101 */ 3102 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3103 int lnum, int offs) 3104 { 3105 struct ubifs_znode *znode; 3106 3107 znode = lookup_znode(c, key, level, lnum, offs); 3108 if (!znode) 3109 return 0; 3110 if (IS_ERR(znode)) 3111 return PTR_ERR(znode); 3112 3113 return ubifs_zn_dirty(znode) ? 1 : 2; 3114 } 3115 3116 /** 3117 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3118 * @c: UBIFS file-system description object 3119 * @key: node key 3120 * @lnum: node LEB number 3121 * @offs: node offset 3122 * 3123 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3124 * not, and a negative error code in case of failure. 3125 * 3126 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3127 * and offset for a main-area node. 3128 */ 3129 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3130 int lnum, int offs) 3131 { 3132 struct ubifs_zbranch *zbr; 3133 struct ubifs_znode *znode, *zn; 3134 int n, found, err, nn; 3135 const int unique = !is_hash_key(c, key); 3136 3137 found = ubifs_lookup_level0(c, key, &znode, &n); 3138 if (found < 0) 3139 return found; /* Error code */ 3140 if (!found) 3141 return 0; 3142 zbr = &znode->zbranch[n]; 3143 if (lnum == zbr->lnum && offs == zbr->offs) 3144 return 1; /* Found it */ 3145 if (unique) 3146 return 0; 3147 /* 3148 * Because the key is not unique, we have to look left 3149 * and right as well 3150 */ 3151 zn = znode; 3152 nn = n; 3153 /* Look left */ 3154 while (1) { 3155 err = tnc_prev(c, &znode, &n); 3156 if (err == -ENOENT) 3157 break; 3158 if (err) 3159 return err; 3160 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3161 break; 3162 zbr = &znode->zbranch[n]; 3163 if (lnum == zbr->lnum && offs == zbr->offs) 3164 return 1; /* Found it */ 3165 } 3166 /* Look right */ 3167 znode = zn; 3168 n = nn; 3169 while (1) { 3170 err = tnc_next(c, &znode, &n); 3171 if (err) { 3172 if (err == -ENOENT) 3173 return 0; 3174 return err; 3175 } 3176 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3177 break; 3178 zbr = &znode->zbranch[n]; 3179 if (lnum == zbr->lnum && offs == zbr->offs) 3180 return 1; /* Found it */ 3181 } 3182 return 0; 3183 } 3184 3185 /** 3186 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3187 * @c: UBIFS file-system description object 3188 * @key: node key 3189 * @level: index node level (if it is an index node) 3190 * @lnum: node LEB number 3191 * @offs: node offset 3192 * @is_idx: non-zero if the node is an index node 3193 * 3194 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3195 * negative error code in case of failure. For index nodes, @key has to be the 3196 * key of the first child. An index node is considered to be in the TNC only if 3197 * the corresponding znode is clean or has not been loaded. 3198 */ 3199 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3200 int lnum, int offs, int is_idx) 3201 { 3202 int err; 3203 3204 mutex_lock(&c->tnc_mutex); 3205 if (is_idx) { 3206 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3207 if (err < 0) 3208 goto out_unlock; 3209 if (err == 1) 3210 /* The index node was found but it was dirty */ 3211 err = 0; 3212 else if (err == 2) 3213 /* The index node was found and it was clean */ 3214 err = 1; 3215 else 3216 BUG_ON(err != 0); 3217 } else 3218 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3219 3220 out_unlock: 3221 mutex_unlock(&c->tnc_mutex); 3222 return err; 3223 } 3224 3225 /** 3226 * ubifs_dirty_idx_node - dirty an index node. 3227 * @c: UBIFS file-system description object 3228 * @key: index node key 3229 * @level: index node level 3230 * @lnum: index node LEB number 3231 * @offs: index node offset 3232 * 3233 * This function loads and dirties an index node so that it can be garbage 3234 * collected. The @key argument has to be the key of the first child. This 3235 * function relies on the fact that 0:0 is never a valid LEB number and offset 3236 * for a main-area node. Returns %0 on success and a negative error code on 3237 * failure. 3238 */ 3239 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3240 int lnum, int offs) 3241 { 3242 struct ubifs_znode *znode; 3243 int err = 0; 3244 3245 mutex_lock(&c->tnc_mutex); 3246 znode = lookup_znode(c, key, level, lnum, offs); 3247 if (!znode) 3248 goto out_unlock; 3249 if (IS_ERR(znode)) { 3250 err = PTR_ERR(znode); 3251 goto out_unlock; 3252 } 3253 znode = dirty_cow_bottom_up(c, znode); 3254 if (IS_ERR(znode)) { 3255 err = PTR_ERR(znode); 3256 goto out_unlock; 3257 } 3258 3259 out_unlock: 3260 mutex_unlock(&c->tnc_mutex); 3261 return err; 3262 } 3263 3264 /** 3265 * dbg_check_inode_size - check if inode size is correct. 3266 * @c: UBIFS file-system description object 3267 * @inum: inode number 3268 * @size: inode size 3269 * 3270 * This function makes sure that the inode size (@size) is correct and it does 3271 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3272 * if it has a data page beyond @size, and other negative error code in case of 3273 * other errors. 3274 */ 3275 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3276 loff_t size) 3277 { 3278 int err, n; 3279 union ubifs_key from_key, to_key, *key; 3280 struct ubifs_znode *znode; 3281 unsigned int block; 3282 3283 if (!S_ISREG(inode->i_mode)) 3284 return 0; 3285 if (!dbg_is_chk_gen(c)) 3286 return 0; 3287 3288 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3289 data_key_init(c, &from_key, inode->i_ino, block); 3290 highest_data_key(c, &to_key, inode->i_ino); 3291 3292 mutex_lock(&c->tnc_mutex); 3293 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3294 if (err < 0) 3295 goto out_unlock; 3296 3297 if (err) { 3298 err = -EINVAL; 3299 key = &from_key; 3300 goto out_dump; 3301 } 3302 3303 err = tnc_next(c, &znode, &n); 3304 if (err == -ENOENT) { 3305 err = 0; 3306 goto out_unlock; 3307 } 3308 if (err < 0) 3309 goto out_unlock; 3310 3311 ubifs_assert(err == 0); 3312 key = &znode->zbranch[n].key; 3313 if (!key_in_range(c, key, &from_key, &to_key)) 3314 goto out_unlock; 3315 3316 out_dump: 3317 block = key_block(c, key); 3318 ubifs_err("inode %lu has size %lld, but there are data at offset %lld", 3319 (unsigned long)inode->i_ino, size, 3320 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3321 mutex_unlock(&c->tnc_mutex); 3322 ubifs_dump_inode(c, inode); 3323 dump_stack(); 3324 return -EINVAL; 3325 3326 out_unlock: 3327 mutex_unlock(&c->tnc_mutex); 3328 return err; 3329 } 3330