1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 */ 11 12 /* 13 * This file implements UBIFS initialization and VFS superblock operations. Some 14 * initialization stuff which is rather large and complex is placed at 15 * corresponding subsystems, but most of it is here. 16 */ 17 18 #ifndef __UBOOT__ 19 #include <linux/init.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/kthread.h> 24 #include <linux/parser.h> 25 #include <linux/seq_file.h> 26 #include <linux/mount.h> 27 #include <linux/math64.h> 28 #include <linux/writeback.h> 29 #else 30 31 #include <linux/compat.h> 32 #include <linux/stat.h> 33 #include <linux/err.h> 34 #include "ubifs.h" 35 #include <ubi_uboot.h> 36 #include <mtd/ubi-user.h> 37 38 struct dentry; 39 struct file; 40 struct iattr; 41 struct kstat; 42 struct vfsmount; 43 44 #define INODE_LOCKED_MAX 64 45 46 struct super_block *ubifs_sb; 47 LIST_HEAD(super_blocks); 48 49 static struct inode *inodes_locked_down[INODE_LOCKED_MAX]; 50 51 int set_anon_super(struct super_block *s, void *data) 52 { 53 return 0; 54 } 55 56 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 57 { 58 struct inode *inode; 59 60 inode = (struct inode *)malloc(sizeof(struct ubifs_inode)); 61 if (inode) { 62 inode->i_ino = ino; 63 inode->i_sb = sb; 64 list_add(&inode->i_sb_list, &sb->s_inodes); 65 inode->i_state = I_LOCK | I_NEW; 66 } 67 68 return inode; 69 } 70 71 void iget_failed(struct inode *inode) 72 { 73 } 74 75 int ubifs_iput(struct inode *inode) 76 { 77 list_del_init(&inode->i_sb_list); 78 79 free(inode); 80 return 0; 81 } 82 83 /* 84 * Lock (save) inode in inode array for readback after recovery 85 */ 86 void iput(struct inode *inode) 87 { 88 int i; 89 struct inode *ino; 90 91 /* 92 * Search end of list 93 */ 94 for (i = 0; i < INODE_LOCKED_MAX; i++) { 95 if (inodes_locked_down[i] == NULL) 96 break; 97 } 98 99 if (i >= INODE_LOCKED_MAX) { 100 ubifs_err("Error, can't lock (save) more inodes while recovery!!!"); 101 return; 102 } 103 104 /* 105 * Allocate and use new inode 106 */ 107 ino = (struct inode *)malloc(sizeof(struct ubifs_inode)); 108 memcpy(ino, inode, sizeof(struct ubifs_inode)); 109 110 /* 111 * Finally save inode in array 112 */ 113 inodes_locked_down[i] = ino; 114 } 115 116 /* from fs/inode.c */ 117 /** 118 * clear_nlink - directly zero an inode's link count 119 * @inode: inode 120 * 121 * This is a low-level filesystem helper to replace any 122 * direct filesystem manipulation of i_nlink. See 123 * drop_nlink() for why we care about i_nlink hitting zero. 124 */ 125 void clear_nlink(struct inode *inode) 126 { 127 if (inode->i_nlink) { 128 inode->__i_nlink = 0; 129 atomic_long_inc(&inode->i_sb->s_remove_count); 130 } 131 } 132 EXPORT_SYMBOL(clear_nlink); 133 134 /** 135 * set_nlink - directly set an inode's link count 136 * @inode: inode 137 * @nlink: new nlink (should be non-zero) 138 * 139 * This is a low-level filesystem helper to replace any 140 * direct filesystem manipulation of i_nlink. 141 */ 142 void set_nlink(struct inode *inode, unsigned int nlink) 143 { 144 if (!nlink) { 145 clear_nlink(inode); 146 } else { 147 /* Yes, some filesystems do change nlink from zero to one */ 148 if (inode->i_nlink == 0) 149 atomic_long_dec(&inode->i_sb->s_remove_count); 150 151 inode->__i_nlink = nlink; 152 } 153 } 154 EXPORT_SYMBOL(set_nlink); 155 156 /* from include/linux/fs.h */ 157 static inline void i_uid_write(struct inode *inode, uid_t uid) 158 { 159 inode->i_uid.val = uid; 160 } 161 162 static inline void i_gid_write(struct inode *inode, gid_t gid) 163 { 164 inode->i_gid.val = gid; 165 } 166 167 void unlock_new_inode(struct inode *inode) 168 { 169 return; 170 } 171 #endif 172 173 /* 174 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 175 * allocating too much. 176 */ 177 #define UBIFS_KMALLOC_OK (128*1024) 178 179 /* Slab cache for UBIFS inodes */ 180 struct kmem_cache *ubifs_inode_slab; 181 182 #ifndef __UBOOT__ 183 /* UBIFS TNC shrinker description */ 184 static struct shrinker ubifs_shrinker_info = { 185 .scan_objects = ubifs_shrink_scan, 186 .count_objects = ubifs_shrink_count, 187 .seeks = DEFAULT_SEEKS, 188 }; 189 #endif 190 191 /** 192 * validate_inode - validate inode. 193 * @c: UBIFS file-system description object 194 * @inode: the inode to validate 195 * 196 * This is a helper function for 'ubifs_iget()' which validates various fields 197 * of a newly built inode to make sure they contain sane values and prevent 198 * possible vulnerabilities. Returns zero if the inode is all right and 199 * a non-zero error code if not. 200 */ 201 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 202 { 203 int err; 204 const struct ubifs_inode *ui = ubifs_inode(inode); 205 206 if (inode->i_size > c->max_inode_sz) { 207 ubifs_err("inode is too large (%lld)", 208 (long long)inode->i_size); 209 return 1; 210 } 211 212 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 213 ubifs_err("unknown compression type %d", ui->compr_type); 214 return 2; 215 } 216 217 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 218 return 3; 219 220 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 221 return 4; 222 223 if (ui->xattr && !S_ISREG(inode->i_mode)) 224 return 5; 225 226 if (!ubifs_compr_present(ui->compr_type)) { 227 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in", 228 inode->i_ino, ubifs_compr_name(ui->compr_type)); 229 } 230 231 err = dbg_check_dir(c, inode); 232 return err; 233 } 234 235 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 236 { 237 int err; 238 union ubifs_key key; 239 struct ubifs_ino_node *ino; 240 struct ubifs_info *c = sb->s_fs_info; 241 struct inode *inode; 242 struct ubifs_inode *ui; 243 #ifdef __UBOOT__ 244 int i; 245 #endif 246 247 dbg_gen("inode %lu", inum); 248 249 #ifdef __UBOOT__ 250 /* 251 * U-Boot special handling of locked down inodes via recovery 252 * e.g. ubifs_recover_size() 253 */ 254 for (i = 0; i < INODE_LOCKED_MAX; i++) { 255 /* 256 * Exit on last entry (NULL), inode not found in list 257 */ 258 if (inodes_locked_down[i] == NULL) 259 break; 260 261 if (inodes_locked_down[i]->i_ino == inum) { 262 /* 263 * We found the locked down inode in our array, 264 * so just return this pointer instead of creating 265 * a new one. 266 */ 267 return inodes_locked_down[i]; 268 } 269 } 270 #endif 271 272 inode = iget_locked(sb, inum); 273 if (!inode) 274 return ERR_PTR(-ENOMEM); 275 if (!(inode->i_state & I_NEW)) 276 return inode; 277 ui = ubifs_inode(inode); 278 279 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 280 if (!ino) { 281 err = -ENOMEM; 282 goto out; 283 } 284 285 ino_key_init(c, &key, inode->i_ino); 286 287 err = ubifs_tnc_lookup(c, &key, ino); 288 if (err) 289 goto out_ino; 290 291 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 292 set_nlink(inode, le32_to_cpu(ino->nlink)); 293 i_uid_write(inode, le32_to_cpu(ino->uid)); 294 i_gid_write(inode, le32_to_cpu(ino->gid)); 295 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 296 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 297 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 298 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 299 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 300 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 301 inode->i_mode = le32_to_cpu(ino->mode); 302 inode->i_size = le64_to_cpu(ino->size); 303 304 ui->data_len = le32_to_cpu(ino->data_len); 305 ui->flags = le32_to_cpu(ino->flags); 306 ui->compr_type = le16_to_cpu(ino->compr_type); 307 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 308 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 309 ui->xattr_size = le32_to_cpu(ino->xattr_size); 310 ui->xattr_names = le32_to_cpu(ino->xattr_names); 311 ui->synced_i_size = ui->ui_size = inode->i_size; 312 313 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 314 315 err = validate_inode(c, inode); 316 if (err) 317 goto out_invalid; 318 319 #ifndef __UBOOT__ 320 /* Disable read-ahead */ 321 inode->i_mapping->backing_dev_info = &c->bdi; 322 323 switch (inode->i_mode & S_IFMT) { 324 case S_IFREG: 325 inode->i_mapping->a_ops = &ubifs_file_address_operations; 326 inode->i_op = &ubifs_file_inode_operations; 327 inode->i_fop = &ubifs_file_operations; 328 if (ui->xattr) { 329 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 330 if (!ui->data) { 331 err = -ENOMEM; 332 goto out_ino; 333 } 334 memcpy(ui->data, ino->data, ui->data_len); 335 ((char *)ui->data)[ui->data_len] = '\0'; 336 } else if (ui->data_len != 0) { 337 err = 10; 338 goto out_invalid; 339 } 340 break; 341 case S_IFDIR: 342 inode->i_op = &ubifs_dir_inode_operations; 343 inode->i_fop = &ubifs_dir_operations; 344 if (ui->data_len != 0) { 345 err = 11; 346 goto out_invalid; 347 } 348 break; 349 case S_IFLNK: 350 inode->i_op = &ubifs_symlink_inode_operations; 351 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 352 err = 12; 353 goto out_invalid; 354 } 355 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 356 if (!ui->data) { 357 err = -ENOMEM; 358 goto out_ino; 359 } 360 memcpy(ui->data, ino->data, ui->data_len); 361 ((char *)ui->data)[ui->data_len] = '\0'; 362 break; 363 case S_IFBLK: 364 case S_IFCHR: 365 { 366 dev_t rdev; 367 union ubifs_dev_desc *dev; 368 369 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 370 if (!ui->data) { 371 err = -ENOMEM; 372 goto out_ino; 373 } 374 375 dev = (union ubifs_dev_desc *)ino->data; 376 if (ui->data_len == sizeof(dev->new)) 377 rdev = new_decode_dev(le32_to_cpu(dev->new)); 378 else if (ui->data_len == sizeof(dev->huge)) 379 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 380 else { 381 err = 13; 382 goto out_invalid; 383 } 384 memcpy(ui->data, ino->data, ui->data_len); 385 inode->i_op = &ubifs_file_inode_operations; 386 init_special_inode(inode, inode->i_mode, rdev); 387 break; 388 } 389 case S_IFSOCK: 390 case S_IFIFO: 391 inode->i_op = &ubifs_file_inode_operations; 392 init_special_inode(inode, inode->i_mode, 0); 393 if (ui->data_len != 0) { 394 err = 14; 395 goto out_invalid; 396 } 397 break; 398 default: 399 err = 15; 400 goto out_invalid; 401 } 402 #else 403 if ((inode->i_mode & S_IFMT) == S_IFLNK) { 404 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 405 err = 12; 406 goto out_invalid; 407 } 408 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 409 if (!ui->data) { 410 err = -ENOMEM; 411 goto out_ino; 412 } 413 memcpy(ui->data, ino->data, ui->data_len); 414 ((char *)ui->data)[ui->data_len] = '\0'; 415 } 416 #endif 417 418 kfree(ino); 419 #ifndef __UBOOT__ 420 ubifs_set_inode_flags(inode); 421 #endif 422 unlock_new_inode(inode); 423 return inode; 424 425 out_invalid: 426 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 427 ubifs_dump_node(c, ino); 428 ubifs_dump_inode(c, inode); 429 err = -EINVAL; 430 out_ino: 431 kfree(ino); 432 out: 433 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 434 iget_failed(inode); 435 return ERR_PTR(err); 436 } 437 438 static struct inode *ubifs_alloc_inode(struct super_block *sb) 439 { 440 struct ubifs_inode *ui; 441 442 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 443 if (!ui) 444 return NULL; 445 446 memset((void *)ui + sizeof(struct inode), 0, 447 sizeof(struct ubifs_inode) - sizeof(struct inode)); 448 mutex_init(&ui->ui_mutex); 449 spin_lock_init(&ui->ui_lock); 450 return &ui->vfs_inode; 451 }; 452 453 #ifndef __UBOOT__ 454 static void ubifs_i_callback(struct rcu_head *head) 455 { 456 struct inode *inode = container_of(head, struct inode, i_rcu); 457 struct ubifs_inode *ui = ubifs_inode(inode); 458 kmem_cache_free(ubifs_inode_slab, ui); 459 } 460 461 static void ubifs_destroy_inode(struct inode *inode) 462 { 463 struct ubifs_inode *ui = ubifs_inode(inode); 464 465 kfree(ui->data); 466 call_rcu(&inode->i_rcu, ubifs_i_callback); 467 } 468 469 /* 470 * Note, Linux write-back code calls this without 'i_mutex'. 471 */ 472 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 473 { 474 int err = 0; 475 struct ubifs_info *c = inode->i_sb->s_fs_info; 476 struct ubifs_inode *ui = ubifs_inode(inode); 477 478 ubifs_assert(!ui->xattr); 479 if (is_bad_inode(inode)) 480 return 0; 481 482 mutex_lock(&ui->ui_mutex); 483 /* 484 * Due to races between write-back forced by budgeting 485 * (see 'sync_some_inodes()') and background write-back, the inode may 486 * have already been synchronized, do not do this again. This might 487 * also happen if it was synchronized in an VFS operation, e.g. 488 * 'ubifs_link()'. 489 */ 490 if (!ui->dirty) { 491 mutex_unlock(&ui->ui_mutex); 492 return 0; 493 } 494 495 /* 496 * As an optimization, do not write orphan inodes to the media just 497 * because this is not needed. 498 */ 499 dbg_gen("inode %lu, mode %#x, nlink %u", 500 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 501 if (inode->i_nlink) { 502 err = ubifs_jnl_write_inode(c, inode); 503 if (err) 504 ubifs_err("can't write inode %lu, error %d", 505 inode->i_ino, err); 506 else 507 err = dbg_check_inode_size(c, inode, ui->ui_size); 508 } 509 510 ui->dirty = 0; 511 mutex_unlock(&ui->ui_mutex); 512 ubifs_release_dirty_inode_budget(c, ui); 513 return err; 514 } 515 516 static void ubifs_evict_inode(struct inode *inode) 517 { 518 int err; 519 struct ubifs_info *c = inode->i_sb->s_fs_info; 520 struct ubifs_inode *ui = ubifs_inode(inode); 521 522 if (ui->xattr) 523 /* 524 * Extended attribute inode deletions are fully handled in 525 * 'ubifs_removexattr()'. These inodes are special and have 526 * limited usage, so there is nothing to do here. 527 */ 528 goto out; 529 530 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 531 ubifs_assert(!atomic_read(&inode->i_count)); 532 533 truncate_inode_pages_final(&inode->i_data); 534 535 if (inode->i_nlink) 536 goto done; 537 538 if (is_bad_inode(inode)) 539 goto out; 540 541 ui->ui_size = inode->i_size = 0; 542 err = ubifs_jnl_delete_inode(c, inode); 543 if (err) 544 /* 545 * Worst case we have a lost orphan inode wasting space, so a 546 * simple error message is OK here. 547 */ 548 ubifs_err("can't delete inode %lu, error %d", 549 inode->i_ino, err); 550 551 out: 552 if (ui->dirty) 553 ubifs_release_dirty_inode_budget(c, ui); 554 else { 555 /* We've deleted something - clean the "no space" flags */ 556 c->bi.nospace = c->bi.nospace_rp = 0; 557 smp_wmb(); 558 } 559 done: 560 clear_inode(inode); 561 } 562 #endif 563 564 static void ubifs_dirty_inode(struct inode *inode, int flags) 565 { 566 struct ubifs_inode *ui = ubifs_inode(inode); 567 568 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 569 if (!ui->dirty) { 570 ui->dirty = 1; 571 dbg_gen("inode %lu", inode->i_ino); 572 } 573 } 574 575 #ifndef __UBOOT__ 576 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 577 { 578 struct ubifs_info *c = dentry->d_sb->s_fs_info; 579 unsigned long long free; 580 __le32 *uuid = (__le32 *)c->uuid; 581 582 free = ubifs_get_free_space(c); 583 dbg_gen("free space %lld bytes (%lld blocks)", 584 free, free >> UBIFS_BLOCK_SHIFT); 585 586 buf->f_type = UBIFS_SUPER_MAGIC; 587 buf->f_bsize = UBIFS_BLOCK_SIZE; 588 buf->f_blocks = c->block_cnt; 589 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 590 if (free > c->report_rp_size) 591 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 592 else 593 buf->f_bavail = 0; 594 buf->f_files = 0; 595 buf->f_ffree = 0; 596 buf->f_namelen = UBIFS_MAX_NLEN; 597 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 598 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 599 ubifs_assert(buf->f_bfree <= c->block_cnt); 600 return 0; 601 } 602 603 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 604 { 605 struct ubifs_info *c = root->d_sb->s_fs_info; 606 607 if (c->mount_opts.unmount_mode == 2) 608 seq_printf(s, ",fast_unmount"); 609 else if (c->mount_opts.unmount_mode == 1) 610 seq_printf(s, ",norm_unmount"); 611 612 if (c->mount_opts.bulk_read == 2) 613 seq_printf(s, ",bulk_read"); 614 else if (c->mount_opts.bulk_read == 1) 615 seq_printf(s, ",no_bulk_read"); 616 617 if (c->mount_opts.chk_data_crc == 2) 618 seq_printf(s, ",chk_data_crc"); 619 else if (c->mount_opts.chk_data_crc == 1) 620 seq_printf(s, ",no_chk_data_crc"); 621 622 if (c->mount_opts.override_compr) { 623 seq_printf(s, ",compr=%s", 624 ubifs_compr_name(c->mount_opts.compr_type)); 625 } 626 627 return 0; 628 } 629 630 static int ubifs_sync_fs(struct super_block *sb, int wait) 631 { 632 int i, err; 633 struct ubifs_info *c = sb->s_fs_info; 634 635 /* 636 * Zero @wait is just an advisory thing to help the file system shove 637 * lots of data into the queues, and there will be the second 638 * '->sync_fs()' call, with non-zero @wait. 639 */ 640 if (!wait) 641 return 0; 642 643 /* 644 * Synchronize write buffers, because 'ubifs_run_commit()' does not 645 * do this if it waits for an already running commit. 646 */ 647 for (i = 0; i < c->jhead_cnt; i++) { 648 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 649 if (err) 650 return err; 651 } 652 653 /* 654 * Strictly speaking, it is not necessary to commit the journal here, 655 * synchronizing write-buffers would be enough. But committing makes 656 * UBIFS free space predictions much more accurate, so we want to let 657 * the user be able to get more accurate results of 'statfs()' after 658 * they synchronize the file system. 659 */ 660 err = ubifs_run_commit(c); 661 if (err) 662 return err; 663 664 return ubi_sync(c->vi.ubi_num); 665 } 666 #endif 667 668 /** 669 * init_constants_early - initialize UBIFS constants. 670 * @c: UBIFS file-system description object 671 * 672 * This function initialize UBIFS constants which do not need the superblock to 673 * be read. It also checks that the UBI volume satisfies basic UBIFS 674 * requirements. Returns zero in case of success and a negative error code in 675 * case of failure. 676 */ 677 static int init_constants_early(struct ubifs_info *c) 678 { 679 if (c->vi.corrupted) { 680 ubifs_warn("UBI volume is corrupted - read-only mode"); 681 c->ro_media = 1; 682 } 683 684 if (c->di.ro_mode) { 685 ubifs_msg("read-only UBI device"); 686 c->ro_media = 1; 687 } 688 689 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 690 ubifs_msg("static UBI volume - read-only mode"); 691 c->ro_media = 1; 692 } 693 694 c->leb_cnt = c->vi.size; 695 c->leb_size = c->vi.usable_leb_size; 696 c->leb_start = c->di.leb_start; 697 c->half_leb_size = c->leb_size / 2; 698 c->min_io_size = c->di.min_io_size; 699 c->min_io_shift = fls(c->min_io_size) - 1; 700 c->max_write_size = c->di.max_write_size; 701 c->max_write_shift = fls(c->max_write_size) - 1; 702 703 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 704 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 705 c->leb_size, UBIFS_MIN_LEB_SZ); 706 return -EINVAL; 707 } 708 709 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 710 ubifs_err("too few LEBs (%d), min. is %d", 711 c->leb_cnt, UBIFS_MIN_LEB_CNT); 712 return -EINVAL; 713 } 714 715 if (!is_power_of_2(c->min_io_size)) { 716 ubifs_err("bad min. I/O size %d", c->min_io_size); 717 return -EINVAL; 718 } 719 720 /* 721 * Maximum write size has to be greater or equivalent to min. I/O 722 * size, and be multiple of min. I/O size. 723 */ 724 if (c->max_write_size < c->min_io_size || 725 c->max_write_size % c->min_io_size || 726 !is_power_of_2(c->max_write_size)) { 727 ubifs_err("bad write buffer size %d for %d min. I/O unit", 728 c->max_write_size, c->min_io_size); 729 return -EINVAL; 730 } 731 732 /* 733 * UBIFS aligns all node to 8-byte boundary, so to make function in 734 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 735 * less than 8. 736 */ 737 if (c->min_io_size < 8) { 738 c->min_io_size = 8; 739 c->min_io_shift = 3; 740 if (c->max_write_size < c->min_io_size) { 741 c->max_write_size = c->min_io_size; 742 c->max_write_shift = c->min_io_shift; 743 } 744 } 745 746 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 747 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 748 749 /* 750 * Initialize node length ranges which are mostly needed for node 751 * length validation. 752 */ 753 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 754 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 755 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 756 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 757 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 758 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 759 760 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 761 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 762 c->ranges[UBIFS_ORPH_NODE].min_len = 763 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 764 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 765 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 766 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 767 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 768 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 769 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 770 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 771 /* 772 * Minimum indexing node size is amended later when superblock is 773 * read and the key length is known. 774 */ 775 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 776 /* 777 * Maximum indexing node size is amended later when superblock is 778 * read and the fanout is known. 779 */ 780 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 781 782 /* 783 * Initialize dead and dark LEB space watermarks. See gc.c for comments 784 * about these values. 785 */ 786 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 787 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 788 789 /* 790 * Calculate how many bytes would be wasted at the end of LEB if it was 791 * fully filled with data nodes of maximum size. This is used in 792 * calculations when reporting free space. 793 */ 794 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 795 796 /* Buffer size for bulk-reads */ 797 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 798 if (c->max_bu_buf_len > c->leb_size) 799 c->max_bu_buf_len = c->leb_size; 800 return 0; 801 } 802 803 /** 804 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 805 * @c: UBIFS file-system description object 806 * @lnum: LEB the write-buffer was synchronized to 807 * @free: how many free bytes left in this LEB 808 * @pad: how many bytes were padded 809 * 810 * This is a callback function which is called by the I/O unit when the 811 * write-buffer is synchronized. We need this to correctly maintain space 812 * accounting in bud logical eraseblocks. This function returns zero in case of 813 * success and a negative error code in case of failure. 814 * 815 * This function actually belongs to the journal, but we keep it here because 816 * we want to keep it static. 817 */ 818 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 819 { 820 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 821 } 822 823 /* 824 * init_constants_sb - initialize UBIFS constants. 825 * @c: UBIFS file-system description object 826 * 827 * This is a helper function which initializes various UBIFS constants after 828 * the superblock has been read. It also checks various UBIFS parameters and 829 * makes sure they are all right. Returns zero in case of success and a 830 * negative error code in case of failure. 831 */ 832 static int init_constants_sb(struct ubifs_info *c) 833 { 834 int tmp, err; 835 long long tmp64; 836 837 c->main_bytes = (long long)c->main_lebs * c->leb_size; 838 c->max_znode_sz = sizeof(struct ubifs_znode) + 839 c->fanout * sizeof(struct ubifs_zbranch); 840 841 tmp = ubifs_idx_node_sz(c, 1); 842 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 843 c->min_idx_node_sz = ALIGN(tmp, 8); 844 845 tmp = ubifs_idx_node_sz(c, c->fanout); 846 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 847 c->max_idx_node_sz = ALIGN(tmp, 8); 848 849 /* Make sure LEB size is large enough to fit full commit */ 850 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 851 tmp = ALIGN(tmp, c->min_io_size); 852 if (tmp > c->leb_size) { 853 ubifs_err("too small LEB size %d, at least %d needed", 854 c->leb_size, tmp); 855 return -EINVAL; 856 } 857 858 /* 859 * Make sure that the log is large enough to fit reference nodes for 860 * all buds plus one reserved LEB. 861 */ 862 tmp64 = c->max_bud_bytes + c->leb_size - 1; 863 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 864 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 865 tmp /= c->leb_size; 866 tmp += 1; 867 if (c->log_lebs < tmp) { 868 ubifs_err("too small log %d LEBs, required min. %d LEBs", 869 c->log_lebs, tmp); 870 return -EINVAL; 871 } 872 873 /* 874 * When budgeting we assume worst-case scenarios when the pages are not 875 * be compressed and direntries are of the maximum size. 876 * 877 * Note, data, which may be stored in inodes is budgeted separately, so 878 * it is not included into 'c->bi.inode_budget'. 879 */ 880 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 881 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 882 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 883 884 /* 885 * When the amount of flash space used by buds becomes 886 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 887 * The writers are unblocked when the commit is finished. To avoid 888 * writers to be blocked UBIFS initiates background commit in advance, 889 * when number of bud bytes becomes above the limit defined below. 890 */ 891 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 892 893 /* 894 * Ensure minimum journal size. All the bytes in the journal heads are 895 * considered to be used, when calculating the current journal usage. 896 * Consequently, if the journal is too small, UBIFS will treat it as 897 * always full. 898 */ 899 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 900 if (c->bg_bud_bytes < tmp64) 901 c->bg_bud_bytes = tmp64; 902 if (c->max_bud_bytes < tmp64 + c->leb_size) 903 c->max_bud_bytes = tmp64 + c->leb_size; 904 905 err = ubifs_calc_lpt_geom(c); 906 if (err) 907 return err; 908 909 /* Initialize effective LEB size used in budgeting calculations */ 910 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 911 return 0; 912 } 913 914 /* 915 * init_constants_master - initialize UBIFS constants. 916 * @c: UBIFS file-system description object 917 * 918 * This is a helper function which initializes various UBIFS constants after 919 * the master node has been read. It also checks various UBIFS parameters and 920 * makes sure they are all right. 921 */ 922 static void init_constants_master(struct ubifs_info *c) 923 { 924 long long tmp64; 925 926 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 927 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 928 929 /* 930 * Calculate total amount of FS blocks. This number is not used 931 * internally because it does not make much sense for UBIFS, but it is 932 * necessary to report something for the 'statfs()' call. 933 * 934 * Subtract the LEB reserved for GC, the LEB which is reserved for 935 * deletions, minimum LEBs for the index, and assume only one journal 936 * head is available. 937 */ 938 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 939 tmp64 *= (long long)c->leb_size - c->leb_overhead; 940 tmp64 = ubifs_reported_space(c, tmp64); 941 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 942 } 943 944 /** 945 * take_gc_lnum - reserve GC LEB. 946 * @c: UBIFS file-system description object 947 * 948 * This function ensures that the LEB reserved for garbage collection is marked 949 * as "taken" in lprops. We also have to set free space to LEB size and dirty 950 * space to zero, because lprops may contain out-of-date information if the 951 * file-system was un-mounted before it has been committed. This function 952 * returns zero in case of success and a negative error code in case of 953 * failure. 954 */ 955 static int take_gc_lnum(struct ubifs_info *c) 956 { 957 int err; 958 959 if (c->gc_lnum == -1) { 960 ubifs_err("no LEB for GC"); 961 return -EINVAL; 962 } 963 964 /* And we have to tell lprops that this LEB is taken */ 965 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 966 LPROPS_TAKEN, 0, 0); 967 return err; 968 } 969 970 /** 971 * alloc_wbufs - allocate write-buffers. 972 * @c: UBIFS file-system description object 973 * 974 * This helper function allocates and initializes UBIFS write-buffers. Returns 975 * zero in case of success and %-ENOMEM in case of failure. 976 */ 977 static int alloc_wbufs(struct ubifs_info *c) 978 { 979 int i, err; 980 981 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 982 GFP_KERNEL); 983 if (!c->jheads) 984 return -ENOMEM; 985 986 /* Initialize journal heads */ 987 for (i = 0; i < c->jhead_cnt; i++) { 988 INIT_LIST_HEAD(&c->jheads[i].buds_list); 989 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 990 if (err) 991 return err; 992 993 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 994 c->jheads[i].wbuf.jhead = i; 995 c->jheads[i].grouped = 1; 996 } 997 998 /* 999 * Garbage Collector head does not need to be synchronized by timer. 1000 * Also GC head nodes are not grouped. 1001 */ 1002 c->jheads[GCHD].wbuf.no_timer = 1; 1003 c->jheads[GCHD].grouped = 0; 1004 1005 return 0; 1006 } 1007 1008 /** 1009 * free_wbufs - free write-buffers. 1010 * @c: UBIFS file-system description object 1011 */ 1012 static void free_wbufs(struct ubifs_info *c) 1013 { 1014 int i; 1015 1016 if (c->jheads) { 1017 for (i = 0; i < c->jhead_cnt; i++) { 1018 kfree(c->jheads[i].wbuf.buf); 1019 kfree(c->jheads[i].wbuf.inodes); 1020 } 1021 kfree(c->jheads); 1022 c->jheads = NULL; 1023 } 1024 } 1025 1026 /** 1027 * free_orphans - free orphans. 1028 * @c: UBIFS file-system description object 1029 */ 1030 static void free_orphans(struct ubifs_info *c) 1031 { 1032 struct ubifs_orphan *orph; 1033 1034 while (c->orph_dnext) { 1035 orph = c->orph_dnext; 1036 c->orph_dnext = orph->dnext; 1037 list_del(&orph->list); 1038 kfree(orph); 1039 } 1040 1041 while (!list_empty(&c->orph_list)) { 1042 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 1043 list_del(&orph->list); 1044 kfree(orph); 1045 ubifs_err("orphan list not empty at unmount"); 1046 } 1047 1048 vfree(c->orph_buf); 1049 c->orph_buf = NULL; 1050 } 1051 1052 /** 1053 * free_buds - free per-bud objects. 1054 * @c: UBIFS file-system description object 1055 */ 1056 static void free_buds(struct ubifs_info *c) 1057 { 1058 struct ubifs_bud *bud, *n; 1059 1060 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 1061 kfree(bud); 1062 } 1063 1064 /** 1065 * check_volume_empty - check if the UBI volume is empty. 1066 * @c: UBIFS file-system description object 1067 * 1068 * This function checks if the UBIFS volume is empty by looking if its LEBs are 1069 * mapped or not. The result of checking is stored in the @c->empty variable. 1070 * Returns zero in case of success and a negative error code in case of 1071 * failure. 1072 */ 1073 static int check_volume_empty(struct ubifs_info *c) 1074 { 1075 int lnum, err; 1076 1077 c->empty = 1; 1078 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 1079 err = ubifs_is_mapped(c, lnum); 1080 if (unlikely(err < 0)) 1081 return err; 1082 if (err == 1) { 1083 c->empty = 0; 1084 break; 1085 } 1086 1087 cond_resched(); 1088 } 1089 1090 return 0; 1091 } 1092 1093 /* 1094 * UBIFS mount options. 1095 * 1096 * Opt_fast_unmount: do not run a journal commit before un-mounting 1097 * Opt_norm_unmount: run a journal commit before un-mounting 1098 * Opt_bulk_read: enable bulk-reads 1099 * Opt_no_bulk_read: disable bulk-reads 1100 * Opt_chk_data_crc: check CRCs when reading data nodes 1101 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 1102 * Opt_override_compr: override default compressor 1103 * Opt_err: just end of array marker 1104 */ 1105 enum { 1106 Opt_fast_unmount, 1107 Opt_norm_unmount, 1108 Opt_bulk_read, 1109 Opt_no_bulk_read, 1110 Opt_chk_data_crc, 1111 Opt_no_chk_data_crc, 1112 Opt_override_compr, 1113 Opt_err, 1114 }; 1115 1116 #ifndef __UBOOT__ 1117 static const match_table_t tokens = { 1118 {Opt_fast_unmount, "fast_unmount"}, 1119 {Opt_norm_unmount, "norm_unmount"}, 1120 {Opt_bulk_read, "bulk_read"}, 1121 {Opt_no_bulk_read, "no_bulk_read"}, 1122 {Opt_chk_data_crc, "chk_data_crc"}, 1123 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 1124 {Opt_override_compr, "compr=%s"}, 1125 {Opt_err, NULL}, 1126 }; 1127 1128 /** 1129 * parse_standard_option - parse a standard mount option. 1130 * @option: the option to parse 1131 * 1132 * Normally, standard mount options like "sync" are passed to file-systems as 1133 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 1134 * be present in the options string. This function tries to deal with this 1135 * situation and parse standard options. Returns 0 if the option was not 1136 * recognized, and the corresponding integer flag if it was. 1137 * 1138 * UBIFS is only interested in the "sync" option, so do not check for anything 1139 * else. 1140 */ 1141 static int parse_standard_option(const char *option) 1142 { 1143 ubifs_msg("parse %s", option); 1144 if (!strcmp(option, "sync")) 1145 return MS_SYNCHRONOUS; 1146 return 0; 1147 } 1148 1149 /** 1150 * ubifs_parse_options - parse mount parameters. 1151 * @c: UBIFS file-system description object 1152 * @options: parameters to parse 1153 * @is_remount: non-zero if this is FS re-mount 1154 * 1155 * This function parses UBIFS mount options and returns zero in case success 1156 * and a negative error code in case of failure. 1157 */ 1158 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1159 int is_remount) 1160 { 1161 char *p; 1162 substring_t args[MAX_OPT_ARGS]; 1163 1164 if (!options) 1165 return 0; 1166 1167 while ((p = strsep(&options, ","))) { 1168 int token; 1169 1170 if (!*p) 1171 continue; 1172 1173 token = match_token(p, tokens, args); 1174 switch (token) { 1175 /* 1176 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1177 * We accept them in order to be backward-compatible. But this 1178 * should be removed at some point. 1179 */ 1180 case Opt_fast_unmount: 1181 c->mount_opts.unmount_mode = 2; 1182 break; 1183 case Opt_norm_unmount: 1184 c->mount_opts.unmount_mode = 1; 1185 break; 1186 case Opt_bulk_read: 1187 c->mount_opts.bulk_read = 2; 1188 c->bulk_read = 1; 1189 break; 1190 case Opt_no_bulk_read: 1191 c->mount_opts.bulk_read = 1; 1192 c->bulk_read = 0; 1193 break; 1194 case Opt_chk_data_crc: 1195 c->mount_opts.chk_data_crc = 2; 1196 c->no_chk_data_crc = 0; 1197 break; 1198 case Opt_no_chk_data_crc: 1199 c->mount_opts.chk_data_crc = 1; 1200 c->no_chk_data_crc = 1; 1201 break; 1202 case Opt_override_compr: 1203 { 1204 char *name = match_strdup(&args[0]); 1205 1206 if (!name) 1207 return -ENOMEM; 1208 if (!strcmp(name, "none")) 1209 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1210 else if (!strcmp(name, "lzo")) 1211 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1212 else if (!strcmp(name, "zlib")) 1213 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1214 else { 1215 ubifs_err("unknown compressor \"%s\"", name); 1216 kfree(name); 1217 return -EINVAL; 1218 } 1219 kfree(name); 1220 c->mount_opts.override_compr = 1; 1221 c->default_compr = c->mount_opts.compr_type; 1222 break; 1223 } 1224 default: 1225 { 1226 unsigned long flag; 1227 struct super_block *sb = c->vfs_sb; 1228 1229 flag = parse_standard_option(p); 1230 if (!flag) { 1231 ubifs_err("unrecognized mount option \"%s\" or missing value", 1232 p); 1233 return -EINVAL; 1234 } 1235 sb->s_flags |= flag; 1236 break; 1237 } 1238 } 1239 } 1240 1241 return 0; 1242 } 1243 #endif 1244 1245 /** 1246 * destroy_journal - destroy journal data structures. 1247 * @c: UBIFS file-system description object 1248 * 1249 * This function destroys journal data structures including those that may have 1250 * been created by recovery functions. 1251 */ 1252 static void destroy_journal(struct ubifs_info *c) 1253 { 1254 while (!list_empty(&c->unclean_leb_list)) { 1255 struct ubifs_unclean_leb *ucleb; 1256 1257 ucleb = list_entry(c->unclean_leb_list.next, 1258 struct ubifs_unclean_leb, list); 1259 list_del(&ucleb->list); 1260 kfree(ucleb); 1261 } 1262 while (!list_empty(&c->old_buds)) { 1263 struct ubifs_bud *bud; 1264 1265 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1266 list_del(&bud->list); 1267 kfree(bud); 1268 } 1269 ubifs_destroy_idx_gc(c); 1270 ubifs_destroy_size_tree(c); 1271 ubifs_tnc_close(c); 1272 free_buds(c); 1273 } 1274 1275 /** 1276 * bu_init - initialize bulk-read information. 1277 * @c: UBIFS file-system description object 1278 */ 1279 static void bu_init(struct ubifs_info *c) 1280 { 1281 ubifs_assert(c->bulk_read == 1); 1282 1283 if (c->bu.buf) 1284 return; /* Already initialized */ 1285 1286 again: 1287 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1288 if (!c->bu.buf) { 1289 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1290 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1291 goto again; 1292 } 1293 1294 /* Just disable bulk-read */ 1295 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it", 1296 c->max_bu_buf_len); 1297 c->mount_opts.bulk_read = 1; 1298 c->bulk_read = 0; 1299 return; 1300 } 1301 } 1302 1303 #ifndef __UBOOT__ 1304 /** 1305 * check_free_space - check if there is enough free space to mount. 1306 * @c: UBIFS file-system description object 1307 * 1308 * This function makes sure UBIFS has enough free space to be mounted in 1309 * read/write mode. UBIFS must always have some free space to allow deletions. 1310 */ 1311 static int check_free_space(struct ubifs_info *c) 1312 { 1313 ubifs_assert(c->dark_wm > 0); 1314 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1315 ubifs_err("insufficient free space to mount in R/W mode"); 1316 ubifs_dump_budg(c, &c->bi); 1317 ubifs_dump_lprops(c); 1318 return -ENOSPC; 1319 } 1320 return 0; 1321 } 1322 #endif 1323 1324 /** 1325 * mount_ubifs - mount UBIFS file-system. 1326 * @c: UBIFS file-system description object 1327 * 1328 * This function mounts UBIFS file system. Returns zero in case of success and 1329 * a negative error code in case of failure. 1330 */ 1331 static int mount_ubifs(struct ubifs_info *c) 1332 { 1333 int err; 1334 long long x, y; 1335 size_t sz; 1336 1337 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1338 #ifdef __UBOOT__ 1339 if (!c->ro_mount) { 1340 printf("UBIFS: only ro mode in U-Boot allowed.\n"); 1341 return -EACCES; 1342 } 1343 #endif 1344 1345 err = init_constants_early(c); 1346 if (err) 1347 return err; 1348 1349 err = ubifs_debugging_init(c); 1350 if (err) 1351 return err; 1352 1353 err = check_volume_empty(c); 1354 if (err) 1355 goto out_free; 1356 1357 if (c->empty && (c->ro_mount || c->ro_media)) { 1358 /* 1359 * This UBI volume is empty, and read-only, or the file system 1360 * is mounted read-only - we cannot format it. 1361 */ 1362 ubifs_err("can't format empty UBI volume: read-only %s", 1363 c->ro_media ? "UBI volume" : "mount"); 1364 err = -EROFS; 1365 goto out_free; 1366 } 1367 1368 if (c->ro_media && !c->ro_mount) { 1369 ubifs_err("cannot mount read-write - read-only media"); 1370 err = -EROFS; 1371 goto out_free; 1372 } 1373 1374 /* 1375 * The requirement for the buffer is that it should fit indexing B-tree 1376 * height amount of integers. We assume the height if the TNC tree will 1377 * never exceed 64. 1378 */ 1379 err = -ENOMEM; 1380 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1381 if (!c->bottom_up_buf) 1382 goto out_free; 1383 1384 c->sbuf = vmalloc(c->leb_size); 1385 if (!c->sbuf) 1386 goto out_free; 1387 1388 #ifndef __UBOOT__ 1389 if (!c->ro_mount) { 1390 c->ileb_buf = vmalloc(c->leb_size); 1391 if (!c->ileb_buf) 1392 goto out_free; 1393 } 1394 #endif 1395 1396 if (c->bulk_read == 1) 1397 bu_init(c); 1398 1399 #ifndef __UBOOT__ 1400 if (!c->ro_mount) { 1401 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1402 GFP_KERNEL); 1403 if (!c->write_reserve_buf) 1404 goto out_free; 1405 } 1406 #endif 1407 1408 c->mounting = 1; 1409 1410 err = ubifs_read_superblock(c); 1411 if (err) 1412 goto out_free; 1413 1414 /* 1415 * Make sure the compressor which is set as default in the superblock 1416 * or overridden by mount options is actually compiled in. 1417 */ 1418 if (!ubifs_compr_present(c->default_compr)) { 1419 ubifs_err("'compressor \"%s\" is not compiled in", 1420 ubifs_compr_name(c->default_compr)); 1421 err = -ENOTSUPP; 1422 goto out_free; 1423 } 1424 1425 err = init_constants_sb(c); 1426 if (err) 1427 goto out_free; 1428 1429 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1430 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1431 c->cbuf = kmalloc(sz, GFP_NOFS); 1432 if (!c->cbuf) { 1433 err = -ENOMEM; 1434 goto out_free; 1435 } 1436 1437 err = alloc_wbufs(c); 1438 if (err) 1439 goto out_cbuf; 1440 1441 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1442 #ifndef __UBOOT__ 1443 if (!c->ro_mount) { 1444 /* Create background thread */ 1445 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1446 if (IS_ERR(c->bgt)) { 1447 err = PTR_ERR(c->bgt); 1448 c->bgt = NULL; 1449 ubifs_err("cannot spawn \"%s\", error %d", 1450 c->bgt_name, err); 1451 goto out_wbufs; 1452 } 1453 wake_up_process(c->bgt); 1454 } 1455 #endif 1456 1457 err = ubifs_read_master(c); 1458 if (err) 1459 goto out_master; 1460 1461 init_constants_master(c); 1462 1463 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1464 ubifs_msg("recovery needed"); 1465 c->need_recovery = 1; 1466 } 1467 1468 #ifndef __UBOOT__ 1469 if (c->need_recovery && !c->ro_mount) { 1470 err = ubifs_recover_inl_heads(c, c->sbuf); 1471 if (err) 1472 goto out_master; 1473 } 1474 #endif 1475 1476 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1477 if (err) 1478 goto out_master; 1479 1480 #ifndef __UBOOT__ 1481 if (!c->ro_mount && c->space_fixup) { 1482 err = ubifs_fixup_free_space(c); 1483 if (err) 1484 goto out_lpt; 1485 } 1486 1487 if (!c->ro_mount) { 1488 /* 1489 * Set the "dirty" flag so that if we reboot uncleanly we 1490 * will notice this immediately on the next mount. 1491 */ 1492 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1493 err = ubifs_write_master(c); 1494 if (err) 1495 goto out_lpt; 1496 } 1497 #endif 1498 1499 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1500 if (err) 1501 goto out_lpt; 1502 1503 err = ubifs_replay_journal(c); 1504 if (err) 1505 goto out_journal; 1506 1507 /* Calculate 'min_idx_lebs' after journal replay */ 1508 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1509 1510 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1511 if (err) 1512 goto out_orphans; 1513 1514 if (!c->ro_mount) { 1515 #ifndef __UBOOT__ 1516 int lnum; 1517 1518 err = check_free_space(c); 1519 if (err) 1520 goto out_orphans; 1521 1522 /* Check for enough log space */ 1523 lnum = c->lhead_lnum + 1; 1524 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1525 lnum = UBIFS_LOG_LNUM; 1526 if (lnum == c->ltail_lnum) { 1527 err = ubifs_consolidate_log(c); 1528 if (err) 1529 goto out_orphans; 1530 } 1531 1532 if (c->need_recovery) { 1533 err = ubifs_recover_size(c); 1534 if (err) 1535 goto out_orphans; 1536 err = ubifs_rcvry_gc_commit(c); 1537 if (err) 1538 goto out_orphans; 1539 } else { 1540 err = take_gc_lnum(c); 1541 if (err) 1542 goto out_orphans; 1543 1544 /* 1545 * GC LEB may contain garbage if there was an unclean 1546 * reboot, and it should be un-mapped. 1547 */ 1548 err = ubifs_leb_unmap(c, c->gc_lnum); 1549 if (err) 1550 goto out_orphans; 1551 } 1552 1553 err = dbg_check_lprops(c); 1554 if (err) 1555 goto out_orphans; 1556 #endif 1557 } else if (c->need_recovery) { 1558 err = ubifs_recover_size(c); 1559 if (err) 1560 goto out_orphans; 1561 } else { 1562 /* 1563 * Even if we mount read-only, we have to set space in GC LEB 1564 * to proper value because this affects UBIFS free space 1565 * reporting. We do not want to have a situation when 1566 * re-mounting from R/O to R/W changes amount of free space. 1567 */ 1568 err = take_gc_lnum(c); 1569 if (err) 1570 goto out_orphans; 1571 } 1572 1573 #ifndef __UBOOT__ 1574 spin_lock(&ubifs_infos_lock); 1575 list_add_tail(&c->infos_list, &ubifs_infos); 1576 spin_unlock(&ubifs_infos_lock); 1577 #endif 1578 1579 if (c->need_recovery) { 1580 if (c->ro_mount) 1581 ubifs_msg("recovery deferred"); 1582 else { 1583 c->need_recovery = 0; 1584 ubifs_msg("recovery completed"); 1585 /* 1586 * GC LEB has to be empty and taken at this point. But 1587 * the journal head LEBs may also be accounted as 1588 * "empty taken" if they are empty. 1589 */ 1590 ubifs_assert(c->lst.taken_empty_lebs > 0); 1591 } 1592 } else 1593 ubifs_assert(c->lst.taken_empty_lebs > 0); 1594 1595 err = dbg_check_filesystem(c); 1596 if (err) 1597 goto out_infos; 1598 1599 err = dbg_debugfs_init_fs(c); 1600 if (err) 1601 goto out_infos; 1602 1603 c->mounting = 0; 1604 1605 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s", 1606 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1607 c->ro_mount ? ", R/O mode" : ""); 1608 x = (long long)c->main_lebs * c->leb_size; 1609 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1610 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1611 c->leb_size, c->leb_size >> 10, c->min_io_size, 1612 c->max_write_size); 1613 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1614 x, x >> 20, c->main_lebs, 1615 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1616 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1617 c->report_rp_size, c->report_rp_size >> 10); 1618 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1619 c->fmt_version, c->ro_compat_version, 1620 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1621 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1622 1623 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1624 dbg_gen("data journal heads: %d", 1625 c->jhead_cnt - NONDATA_JHEADS_CNT); 1626 dbg_gen("log LEBs: %d (%d - %d)", 1627 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1628 dbg_gen("LPT area LEBs: %d (%d - %d)", 1629 c->lpt_lebs, c->lpt_first, c->lpt_last); 1630 dbg_gen("orphan area LEBs: %d (%d - %d)", 1631 c->orph_lebs, c->orph_first, c->orph_last); 1632 dbg_gen("main area LEBs: %d (%d - %d)", 1633 c->main_lebs, c->main_first, c->leb_cnt - 1); 1634 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1635 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1636 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1637 c->bi.old_idx_sz >> 20); 1638 dbg_gen("key hash type: %d", c->key_hash_type); 1639 dbg_gen("tree fanout: %d", c->fanout); 1640 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1641 dbg_gen("max. znode size %d", c->max_znode_sz); 1642 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1643 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1644 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1645 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1646 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1647 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1648 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1649 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1650 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1651 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1652 dbg_gen("dead watermark: %d", c->dead_wm); 1653 dbg_gen("dark watermark: %d", c->dark_wm); 1654 dbg_gen("LEB overhead: %d", c->leb_overhead); 1655 x = (long long)c->main_lebs * c->dark_wm; 1656 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1657 x, x >> 10, x >> 20); 1658 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1659 c->max_bud_bytes, c->max_bud_bytes >> 10, 1660 c->max_bud_bytes >> 20); 1661 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1662 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1663 c->bg_bud_bytes >> 20); 1664 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1665 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1666 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1667 dbg_gen("commit number: %llu", c->cmt_no); 1668 1669 return 0; 1670 1671 out_infos: 1672 spin_lock(&ubifs_infos_lock); 1673 list_del(&c->infos_list); 1674 spin_unlock(&ubifs_infos_lock); 1675 out_orphans: 1676 free_orphans(c); 1677 out_journal: 1678 destroy_journal(c); 1679 out_lpt: 1680 ubifs_lpt_free(c, 0); 1681 out_master: 1682 kfree(c->mst_node); 1683 kfree(c->rcvrd_mst_node); 1684 if (c->bgt) 1685 kthread_stop(c->bgt); 1686 #ifndef __UBOOT__ 1687 out_wbufs: 1688 #endif 1689 free_wbufs(c); 1690 out_cbuf: 1691 kfree(c->cbuf); 1692 out_free: 1693 kfree(c->write_reserve_buf); 1694 kfree(c->bu.buf); 1695 vfree(c->ileb_buf); 1696 vfree(c->sbuf); 1697 kfree(c->bottom_up_buf); 1698 ubifs_debugging_exit(c); 1699 return err; 1700 } 1701 1702 /** 1703 * ubifs_umount - un-mount UBIFS file-system. 1704 * @c: UBIFS file-system description object 1705 * 1706 * Note, this function is called to free allocated resourced when un-mounting, 1707 * as well as free resources when an error occurred while we were half way 1708 * through mounting (error path cleanup function). So it has to make sure the 1709 * resource was actually allocated before freeing it. 1710 */ 1711 #ifndef __UBOOT__ 1712 static void ubifs_umount(struct ubifs_info *c) 1713 #else 1714 void ubifs_umount(struct ubifs_info *c) 1715 #endif 1716 { 1717 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1718 c->vi.vol_id); 1719 1720 dbg_debugfs_exit_fs(c); 1721 spin_lock(&ubifs_infos_lock); 1722 list_del(&c->infos_list); 1723 spin_unlock(&ubifs_infos_lock); 1724 1725 #ifndef __UBOOT__ 1726 if (c->bgt) 1727 kthread_stop(c->bgt); 1728 1729 destroy_journal(c); 1730 #endif 1731 free_wbufs(c); 1732 free_orphans(c); 1733 ubifs_lpt_free(c, 0); 1734 1735 kfree(c->cbuf); 1736 kfree(c->rcvrd_mst_node); 1737 kfree(c->mst_node); 1738 kfree(c->write_reserve_buf); 1739 kfree(c->bu.buf); 1740 vfree(c->ileb_buf); 1741 vfree(c->sbuf); 1742 kfree(c->bottom_up_buf); 1743 ubifs_debugging_exit(c); 1744 #ifdef __UBOOT__ 1745 /* Finally free U-Boot's global copy of superblock */ 1746 if (ubifs_sb != NULL) { 1747 free(ubifs_sb->s_fs_info); 1748 free(ubifs_sb); 1749 } 1750 #endif 1751 } 1752 1753 #ifndef __UBOOT__ 1754 /** 1755 * ubifs_remount_rw - re-mount in read-write mode. 1756 * @c: UBIFS file-system description object 1757 * 1758 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1759 * mode. This function allocates the needed resources and re-mounts UBIFS in 1760 * read-write mode. 1761 */ 1762 static int ubifs_remount_rw(struct ubifs_info *c) 1763 { 1764 int err, lnum; 1765 1766 if (c->rw_incompat) { 1767 ubifs_err("the file-system is not R/W-compatible"); 1768 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1769 c->fmt_version, c->ro_compat_version, 1770 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1771 return -EROFS; 1772 } 1773 1774 mutex_lock(&c->umount_mutex); 1775 dbg_save_space_info(c); 1776 c->remounting_rw = 1; 1777 c->ro_mount = 0; 1778 1779 if (c->space_fixup) { 1780 err = ubifs_fixup_free_space(c); 1781 if (err) 1782 goto out; 1783 } 1784 1785 err = check_free_space(c); 1786 if (err) 1787 goto out; 1788 1789 if (c->old_leb_cnt != c->leb_cnt) { 1790 struct ubifs_sb_node *sup; 1791 1792 sup = ubifs_read_sb_node(c); 1793 if (IS_ERR(sup)) { 1794 err = PTR_ERR(sup); 1795 goto out; 1796 } 1797 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1798 err = ubifs_write_sb_node(c, sup); 1799 kfree(sup); 1800 if (err) 1801 goto out; 1802 } 1803 1804 if (c->need_recovery) { 1805 ubifs_msg("completing deferred recovery"); 1806 err = ubifs_write_rcvrd_mst_node(c); 1807 if (err) 1808 goto out; 1809 err = ubifs_recover_size(c); 1810 if (err) 1811 goto out; 1812 err = ubifs_clean_lebs(c, c->sbuf); 1813 if (err) 1814 goto out; 1815 err = ubifs_recover_inl_heads(c, c->sbuf); 1816 if (err) 1817 goto out; 1818 } else { 1819 /* A readonly mount is not allowed to have orphans */ 1820 ubifs_assert(c->tot_orphans == 0); 1821 err = ubifs_clear_orphans(c); 1822 if (err) 1823 goto out; 1824 } 1825 1826 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1827 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1828 err = ubifs_write_master(c); 1829 if (err) 1830 goto out; 1831 } 1832 1833 c->ileb_buf = vmalloc(c->leb_size); 1834 if (!c->ileb_buf) { 1835 err = -ENOMEM; 1836 goto out; 1837 } 1838 1839 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1840 if (!c->write_reserve_buf) { 1841 err = -ENOMEM; 1842 goto out; 1843 } 1844 1845 err = ubifs_lpt_init(c, 0, 1); 1846 if (err) 1847 goto out; 1848 1849 /* Create background thread */ 1850 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1851 if (IS_ERR(c->bgt)) { 1852 err = PTR_ERR(c->bgt); 1853 c->bgt = NULL; 1854 ubifs_err("cannot spawn \"%s\", error %d", 1855 c->bgt_name, err); 1856 goto out; 1857 } 1858 wake_up_process(c->bgt); 1859 1860 c->orph_buf = vmalloc(c->leb_size); 1861 if (!c->orph_buf) { 1862 err = -ENOMEM; 1863 goto out; 1864 } 1865 1866 /* Check for enough log space */ 1867 lnum = c->lhead_lnum + 1; 1868 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1869 lnum = UBIFS_LOG_LNUM; 1870 if (lnum == c->ltail_lnum) { 1871 err = ubifs_consolidate_log(c); 1872 if (err) 1873 goto out; 1874 } 1875 1876 if (c->need_recovery) 1877 err = ubifs_rcvry_gc_commit(c); 1878 else 1879 err = ubifs_leb_unmap(c, c->gc_lnum); 1880 if (err) 1881 goto out; 1882 1883 dbg_gen("re-mounted read-write"); 1884 c->remounting_rw = 0; 1885 1886 if (c->need_recovery) { 1887 c->need_recovery = 0; 1888 ubifs_msg("deferred recovery completed"); 1889 } else { 1890 /* 1891 * Do not run the debugging space check if the were doing 1892 * recovery, because when we saved the information we had the 1893 * file-system in a state where the TNC and lprops has been 1894 * modified in memory, but all the I/O operations (including a 1895 * commit) were deferred. So the file-system was in 1896 * "non-committed" state. Now the file-system is in committed 1897 * state, and of course the amount of free space will change 1898 * because, for example, the old index size was imprecise. 1899 */ 1900 err = dbg_check_space_info(c); 1901 } 1902 1903 mutex_unlock(&c->umount_mutex); 1904 return err; 1905 1906 out: 1907 c->ro_mount = 1; 1908 vfree(c->orph_buf); 1909 c->orph_buf = NULL; 1910 if (c->bgt) { 1911 kthread_stop(c->bgt); 1912 c->bgt = NULL; 1913 } 1914 free_wbufs(c); 1915 kfree(c->write_reserve_buf); 1916 c->write_reserve_buf = NULL; 1917 vfree(c->ileb_buf); 1918 c->ileb_buf = NULL; 1919 ubifs_lpt_free(c, 1); 1920 c->remounting_rw = 0; 1921 mutex_unlock(&c->umount_mutex); 1922 return err; 1923 } 1924 1925 /** 1926 * ubifs_remount_ro - re-mount in read-only mode. 1927 * @c: UBIFS file-system description object 1928 * 1929 * We assume VFS has stopped writing. Possibly the background thread could be 1930 * running a commit, however kthread_stop will wait in that case. 1931 */ 1932 static void ubifs_remount_ro(struct ubifs_info *c) 1933 { 1934 int i, err; 1935 1936 ubifs_assert(!c->need_recovery); 1937 ubifs_assert(!c->ro_mount); 1938 1939 mutex_lock(&c->umount_mutex); 1940 if (c->bgt) { 1941 kthread_stop(c->bgt); 1942 c->bgt = NULL; 1943 } 1944 1945 dbg_save_space_info(c); 1946 1947 for (i = 0; i < c->jhead_cnt; i++) 1948 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1949 1950 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1951 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1952 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1953 err = ubifs_write_master(c); 1954 if (err) 1955 ubifs_ro_mode(c, err); 1956 1957 vfree(c->orph_buf); 1958 c->orph_buf = NULL; 1959 kfree(c->write_reserve_buf); 1960 c->write_reserve_buf = NULL; 1961 vfree(c->ileb_buf); 1962 c->ileb_buf = NULL; 1963 ubifs_lpt_free(c, 1); 1964 c->ro_mount = 1; 1965 err = dbg_check_space_info(c); 1966 if (err) 1967 ubifs_ro_mode(c, err); 1968 mutex_unlock(&c->umount_mutex); 1969 } 1970 1971 static void ubifs_put_super(struct super_block *sb) 1972 { 1973 int i; 1974 struct ubifs_info *c = sb->s_fs_info; 1975 1976 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1977 c->vi.vol_id); 1978 1979 /* 1980 * The following asserts are only valid if there has not been a failure 1981 * of the media. For example, there will be dirty inodes if we failed 1982 * to write them back because of I/O errors. 1983 */ 1984 if (!c->ro_error) { 1985 ubifs_assert(c->bi.idx_growth == 0); 1986 ubifs_assert(c->bi.dd_growth == 0); 1987 ubifs_assert(c->bi.data_growth == 0); 1988 } 1989 1990 /* 1991 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1992 * and file system un-mount. Namely, it prevents the shrinker from 1993 * picking this superblock for shrinking - it will be just skipped if 1994 * the mutex is locked. 1995 */ 1996 mutex_lock(&c->umount_mutex); 1997 if (!c->ro_mount) { 1998 /* 1999 * First of all kill the background thread to make sure it does 2000 * not interfere with un-mounting and freeing resources. 2001 */ 2002 if (c->bgt) { 2003 kthread_stop(c->bgt); 2004 c->bgt = NULL; 2005 } 2006 2007 /* 2008 * On fatal errors c->ro_error is set to 1, in which case we do 2009 * not write the master node. 2010 */ 2011 if (!c->ro_error) { 2012 int err; 2013 2014 /* Synchronize write-buffers */ 2015 for (i = 0; i < c->jhead_cnt; i++) 2016 ubifs_wbuf_sync(&c->jheads[i].wbuf); 2017 2018 /* 2019 * We are being cleanly unmounted which means the 2020 * orphans were killed - indicate this in the master 2021 * node. Also save the reserved GC LEB number. 2022 */ 2023 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 2024 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 2025 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 2026 err = ubifs_write_master(c); 2027 if (err) 2028 /* 2029 * Recovery will attempt to fix the master area 2030 * next mount, so we just print a message and 2031 * continue to unmount normally. 2032 */ 2033 ubifs_err("failed to write master node, error %d", 2034 err); 2035 } else { 2036 #ifndef __UBOOT__ 2037 for (i = 0; i < c->jhead_cnt; i++) 2038 /* Make sure write-buffer timers are canceled */ 2039 hrtimer_cancel(&c->jheads[i].wbuf.timer); 2040 #endif 2041 } 2042 } 2043 2044 ubifs_umount(c); 2045 #ifndef __UBOOT__ 2046 bdi_destroy(&c->bdi); 2047 #endif 2048 ubi_close_volume(c->ubi); 2049 mutex_unlock(&c->umount_mutex); 2050 } 2051 #endif 2052 2053 #ifndef __UBOOT__ 2054 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 2055 { 2056 int err; 2057 struct ubifs_info *c = sb->s_fs_info; 2058 2059 sync_filesystem(sb); 2060 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 2061 2062 err = ubifs_parse_options(c, data, 1); 2063 if (err) { 2064 ubifs_err("invalid or unknown remount parameter"); 2065 return err; 2066 } 2067 2068 if (c->ro_mount && !(*flags & MS_RDONLY)) { 2069 if (c->ro_error) { 2070 ubifs_msg("cannot re-mount R/W due to prior errors"); 2071 return -EROFS; 2072 } 2073 if (c->ro_media) { 2074 ubifs_msg("cannot re-mount R/W - UBI volume is R/O"); 2075 return -EROFS; 2076 } 2077 err = ubifs_remount_rw(c); 2078 if (err) 2079 return err; 2080 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 2081 if (c->ro_error) { 2082 ubifs_msg("cannot re-mount R/O due to prior errors"); 2083 return -EROFS; 2084 } 2085 ubifs_remount_ro(c); 2086 } 2087 2088 if (c->bulk_read == 1) 2089 bu_init(c); 2090 else { 2091 dbg_gen("disable bulk-read"); 2092 kfree(c->bu.buf); 2093 c->bu.buf = NULL; 2094 } 2095 2096 ubifs_assert(c->lst.taken_empty_lebs > 0); 2097 return 0; 2098 } 2099 #endif 2100 2101 const struct super_operations ubifs_super_operations = { 2102 .alloc_inode = ubifs_alloc_inode, 2103 #ifndef __UBOOT__ 2104 .destroy_inode = ubifs_destroy_inode, 2105 .put_super = ubifs_put_super, 2106 .write_inode = ubifs_write_inode, 2107 .evict_inode = ubifs_evict_inode, 2108 .statfs = ubifs_statfs, 2109 #endif 2110 .dirty_inode = ubifs_dirty_inode, 2111 #ifndef __UBOOT__ 2112 .remount_fs = ubifs_remount_fs, 2113 .show_options = ubifs_show_options, 2114 .sync_fs = ubifs_sync_fs, 2115 #endif 2116 }; 2117 2118 /** 2119 * open_ubi - parse UBI device name string and open the UBI device. 2120 * @name: UBI volume name 2121 * @mode: UBI volume open mode 2122 * 2123 * The primary method of mounting UBIFS is by specifying the UBI volume 2124 * character device node path. However, UBIFS may also be mounted withoug any 2125 * character device node using one of the following methods: 2126 * 2127 * o ubiX_Y - mount UBI device number X, volume Y; 2128 * o ubiY - mount UBI device number 0, volume Y; 2129 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2130 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2131 * 2132 * Alternative '!' separator may be used instead of ':' (because some shells 2133 * like busybox may interpret ':' as an NFS host name separator). This function 2134 * returns UBI volume description object in case of success and a negative 2135 * error code in case of failure. 2136 */ 2137 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2138 { 2139 #ifndef __UBOOT__ 2140 struct ubi_volume_desc *ubi; 2141 #endif 2142 int dev, vol; 2143 char *endptr; 2144 2145 #ifndef __UBOOT__ 2146 /* First, try to open using the device node path method */ 2147 ubi = ubi_open_volume_path(name, mode); 2148 if (!IS_ERR(ubi)) 2149 return ubi; 2150 #endif 2151 2152 /* Try the "nodev" method */ 2153 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2154 return ERR_PTR(-EINVAL); 2155 2156 /* ubi:NAME method */ 2157 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2158 return ubi_open_volume_nm(0, name + 4, mode); 2159 2160 if (!isdigit(name[3])) 2161 return ERR_PTR(-EINVAL); 2162 2163 dev = simple_strtoul(name + 3, &endptr, 0); 2164 2165 /* ubiY method */ 2166 if (*endptr == '\0') 2167 return ubi_open_volume(0, dev, mode); 2168 2169 /* ubiX_Y method */ 2170 if (*endptr == '_' && isdigit(endptr[1])) { 2171 vol = simple_strtoul(endptr + 1, &endptr, 0); 2172 if (*endptr != '\0') 2173 return ERR_PTR(-EINVAL); 2174 return ubi_open_volume(dev, vol, mode); 2175 } 2176 2177 /* ubiX:NAME method */ 2178 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2179 return ubi_open_volume_nm(dev, ++endptr, mode); 2180 2181 return ERR_PTR(-EINVAL); 2182 } 2183 2184 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2185 { 2186 struct ubifs_info *c; 2187 2188 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2189 if (c) { 2190 spin_lock_init(&c->cnt_lock); 2191 spin_lock_init(&c->cs_lock); 2192 spin_lock_init(&c->buds_lock); 2193 spin_lock_init(&c->space_lock); 2194 spin_lock_init(&c->orphan_lock); 2195 init_rwsem(&c->commit_sem); 2196 mutex_init(&c->lp_mutex); 2197 mutex_init(&c->tnc_mutex); 2198 mutex_init(&c->log_mutex); 2199 mutex_init(&c->mst_mutex); 2200 mutex_init(&c->umount_mutex); 2201 mutex_init(&c->bu_mutex); 2202 mutex_init(&c->write_reserve_mutex); 2203 init_waitqueue_head(&c->cmt_wq); 2204 c->buds = RB_ROOT; 2205 c->old_idx = RB_ROOT; 2206 c->size_tree = RB_ROOT; 2207 c->orph_tree = RB_ROOT; 2208 INIT_LIST_HEAD(&c->infos_list); 2209 INIT_LIST_HEAD(&c->idx_gc); 2210 INIT_LIST_HEAD(&c->replay_list); 2211 INIT_LIST_HEAD(&c->replay_buds); 2212 INIT_LIST_HEAD(&c->uncat_list); 2213 INIT_LIST_HEAD(&c->empty_list); 2214 INIT_LIST_HEAD(&c->freeable_list); 2215 INIT_LIST_HEAD(&c->frdi_idx_list); 2216 INIT_LIST_HEAD(&c->unclean_leb_list); 2217 INIT_LIST_HEAD(&c->old_buds); 2218 INIT_LIST_HEAD(&c->orph_list); 2219 INIT_LIST_HEAD(&c->orph_new); 2220 c->no_chk_data_crc = 1; 2221 2222 c->highest_inum = UBIFS_FIRST_INO; 2223 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2224 2225 ubi_get_volume_info(ubi, &c->vi); 2226 ubi_get_device_info(c->vi.ubi_num, &c->di); 2227 } 2228 return c; 2229 } 2230 2231 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2232 { 2233 struct ubifs_info *c = sb->s_fs_info; 2234 struct inode *root; 2235 int err; 2236 2237 c->vfs_sb = sb; 2238 #ifndef __UBOOT__ 2239 /* Re-open the UBI device in read-write mode */ 2240 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2241 #else 2242 /* U-Boot read only mode */ 2243 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY); 2244 #endif 2245 2246 if (IS_ERR(c->ubi)) { 2247 err = PTR_ERR(c->ubi); 2248 goto out; 2249 } 2250 2251 #ifndef __UBOOT__ 2252 /* 2253 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2254 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2255 * which means the user would have to wait not just for their own I/O 2256 * but the read-ahead I/O as well i.e. completely pointless. 2257 * 2258 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2259 */ 2260 co>bdi.name = "ubifs", 2261 c->bdi.capabilities = BDI_CAP_MAP_COPY; 2262 err = bdi_init(&c->bdi); 2263 if (err) 2264 goto out_close; 2265 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2266 c->vi.ubi_num, c->vi.vol_id); 2267 if (err) 2268 goto out_bdi; 2269 2270 err = ubifs_parse_options(c, data, 0); 2271 if (err) 2272 goto out_bdi; 2273 2274 sb->s_bdi = &c->bdi; 2275 #endif 2276 sb->s_fs_info = c; 2277 sb->s_magic = UBIFS_SUPER_MAGIC; 2278 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2279 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2280 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2281 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2282 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2283 sb->s_op = &ubifs_super_operations; 2284 2285 mutex_lock(&c->umount_mutex); 2286 err = mount_ubifs(c); 2287 if (err) { 2288 ubifs_assert(err < 0); 2289 goto out_unlock; 2290 } 2291 2292 /* Read the root inode */ 2293 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2294 if (IS_ERR(root)) { 2295 err = PTR_ERR(root); 2296 goto out_umount; 2297 } 2298 2299 #ifndef __UBOOT__ 2300 sb->s_root = d_make_root(root); 2301 if (!sb->s_root) { 2302 err = -ENOMEM; 2303 goto out_umount; 2304 } 2305 #else 2306 sb->s_root = NULL; 2307 #endif 2308 2309 mutex_unlock(&c->umount_mutex); 2310 return 0; 2311 2312 out_umount: 2313 ubifs_umount(c); 2314 out_unlock: 2315 mutex_unlock(&c->umount_mutex); 2316 #ifndef __UBOOT__ 2317 out_bdi: 2318 bdi_destroy(&c->bdi); 2319 out_close: 2320 #endif 2321 ubi_close_volume(c->ubi); 2322 out: 2323 return err; 2324 } 2325 2326 static int sb_test(struct super_block *sb, void *data) 2327 { 2328 struct ubifs_info *c1 = data; 2329 struct ubifs_info *c = sb->s_fs_info; 2330 2331 return c->vi.cdev == c1->vi.cdev; 2332 } 2333 2334 static int sb_set(struct super_block *sb, void *data) 2335 { 2336 sb->s_fs_info = data; 2337 return set_anon_super(sb, NULL); 2338 } 2339 2340 static struct super_block *alloc_super(struct file_system_type *type, int flags) 2341 { 2342 struct super_block *s; 2343 int err; 2344 2345 s = kzalloc(sizeof(struct super_block), GFP_USER); 2346 if (!s) { 2347 err = -ENOMEM; 2348 return ERR_PTR(err); 2349 } 2350 2351 INIT_HLIST_NODE(&s->s_instances); 2352 INIT_LIST_HEAD(&s->s_inodes); 2353 s->s_time_gran = 1000000000; 2354 s->s_flags = flags; 2355 2356 return s; 2357 } 2358 2359 /** 2360 * sget - find or create a superblock 2361 * @type: filesystem type superblock should belong to 2362 * @test: comparison callback 2363 * @set: setup callback 2364 * @flags: mount flags 2365 * @data: argument to each of them 2366 */ 2367 struct super_block *sget(struct file_system_type *type, 2368 int (*test)(struct super_block *,void *), 2369 int (*set)(struct super_block *,void *), 2370 int flags, 2371 void *data) 2372 { 2373 struct super_block *s = NULL; 2374 #ifndef __UBOOT__ 2375 struct super_block *old; 2376 #endif 2377 int err; 2378 2379 #ifndef __UBOOT__ 2380 retry: 2381 spin_lock(&sb_lock); 2382 if (test) { 2383 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 2384 if (!test(old, data)) 2385 continue; 2386 if (!grab_super(old)) 2387 goto retry; 2388 if (s) { 2389 up_write(&s->s_umount); 2390 destroy_super(s); 2391 s = NULL; 2392 } 2393 return old; 2394 } 2395 } 2396 #endif 2397 if (!s) { 2398 spin_unlock(&sb_lock); 2399 s = alloc_super(type, flags); 2400 if (!s) 2401 return ERR_PTR(-ENOMEM); 2402 #ifndef __UBOOT__ 2403 goto retry; 2404 #endif 2405 } 2406 2407 err = set(s, data); 2408 if (err) { 2409 #ifndef __UBOOT__ 2410 spin_unlock(&sb_lock); 2411 up_write(&s->s_umount); 2412 destroy_super(s); 2413 #endif 2414 return ERR_PTR(err); 2415 } 2416 s->s_type = type; 2417 #ifndef __UBOOT__ 2418 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 2419 #else 2420 strncpy(s->s_id, type->name, sizeof(s->s_id)); 2421 #endif 2422 list_add_tail(&s->s_list, &super_blocks); 2423 hlist_add_head(&s->s_instances, &type->fs_supers); 2424 #ifndef __UBOOT__ 2425 spin_unlock(&sb_lock); 2426 get_filesystem(type); 2427 register_shrinker(&s->s_shrink); 2428 #endif 2429 return s; 2430 } 2431 2432 EXPORT_SYMBOL(sget); 2433 2434 2435 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2436 const char *name, void *data) 2437 { 2438 struct ubi_volume_desc *ubi; 2439 struct ubifs_info *c; 2440 struct super_block *sb; 2441 int err; 2442 2443 dbg_gen("name %s, flags %#x", name, flags); 2444 2445 /* 2446 * Get UBI device number and volume ID. Mount it read-only so far 2447 * because this might be a new mount point, and UBI allows only one 2448 * read-write user at a time. 2449 */ 2450 ubi = open_ubi(name, UBI_READONLY); 2451 if (IS_ERR(ubi)) { 2452 ubifs_err("cannot open \"%s\", error %d", 2453 name, (int)PTR_ERR(ubi)); 2454 return ERR_CAST(ubi); 2455 } 2456 2457 c = alloc_ubifs_info(ubi); 2458 if (!c) { 2459 err = -ENOMEM; 2460 goto out_close; 2461 } 2462 2463 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2464 2465 sb = sget(fs_type, sb_test, sb_set, flags, c); 2466 if (IS_ERR(sb)) { 2467 err = PTR_ERR(sb); 2468 kfree(c); 2469 goto out_close; 2470 } 2471 2472 if (sb->s_root) { 2473 struct ubifs_info *c1 = sb->s_fs_info; 2474 kfree(c); 2475 /* A new mount point for already mounted UBIFS */ 2476 dbg_gen("this ubi volume is already mounted"); 2477 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2478 err = -EBUSY; 2479 goto out_deact; 2480 } 2481 } else { 2482 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2483 if (err) 2484 goto out_deact; 2485 /* We do not support atime */ 2486 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2487 } 2488 2489 /* 'fill_super()' opens ubi again so we must close it here */ 2490 ubi_close_volume(ubi); 2491 2492 #ifdef __UBOOT__ 2493 ubifs_sb = sb; 2494 return 0; 2495 #else 2496 return dget(sb->s_root); 2497 #endif 2498 2499 out_deact: 2500 #ifndef __UBOOT__ 2501 deactivate_locked_super(sb); 2502 #endif 2503 out_close: 2504 ubi_close_volume(ubi); 2505 return ERR_PTR(err); 2506 } 2507 2508 static void kill_ubifs_super(struct super_block *s) 2509 { 2510 struct ubifs_info *c = s->s_fs_info; 2511 #ifndef __UBOOT__ 2512 kill_anon_super(s); 2513 #endif 2514 kfree(c); 2515 } 2516 2517 static struct file_system_type ubifs_fs_type = { 2518 .name = "ubifs", 2519 .owner = THIS_MODULE, 2520 .mount = ubifs_mount, 2521 .kill_sb = kill_ubifs_super, 2522 }; 2523 #ifndef __UBOOT__ 2524 MODULE_ALIAS_FS("ubifs"); 2525 2526 /* 2527 * Inode slab cache constructor. 2528 */ 2529 static void inode_slab_ctor(void *obj) 2530 { 2531 struct ubifs_inode *ui = obj; 2532 inode_init_once(&ui->vfs_inode); 2533 } 2534 2535 static int __init ubifs_init(void) 2536 #else 2537 int ubifs_init(void) 2538 #endif 2539 { 2540 int err; 2541 2542 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2543 2544 /* Make sure node sizes are 8-byte aligned */ 2545 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2546 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2547 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2548 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2549 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2550 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2551 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2552 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2553 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2554 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2555 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2556 2557 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2558 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2559 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2560 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2561 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2562 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2563 2564 /* Check min. node size */ 2565 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2566 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2567 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2568 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2569 2570 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2571 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2572 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2573 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2574 2575 /* Defined node sizes */ 2576 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2577 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2578 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2579 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2580 2581 /* 2582 * We use 2 bit wide bit-fields to store compression type, which should 2583 * be amended if more compressors are added. The bit-fields are: 2584 * @compr_type in 'struct ubifs_inode', @default_compr in 2585 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2586 */ 2587 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2588 2589 /* 2590 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2591 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2592 */ 2593 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2594 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2595 (unsigned int)PAGE_CACHE_SIZE); 2596 return -EINVAL; 2597 } 2598 2599 #ifndef __UBOOT__ 2600 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2601 sizeof(struct ubifs_inode), 0, 2602 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2603 &inode_slab_ctor); 2604 if (!ubifs_inode_slab) 2605 return -ENOMEM; 2606 2607 register_shrinker(&ubifs_shrinker_info); 2608 #endif 2609 2610 err = ubifs_compressors_init(); 2611 if (err) 2612 goto out_shrinker; 2613 2614 #ifndef __UBOOT__ 2615 err = dbg_debugfs_init(); 2616 if (err) 2617 goto out_compr; 2618 2619 err = register_filesystem(&ubifs_fs_type); 2620 if (err) { 2621 ubifs_err("cannot register file system, error %d", err); 2622 goto out_dbg; 2623 } 2624 #endif 2625 return 0; 2626 2627 #ifndef __UBOOT__ 2628 out_dbg: 2629 dbg_debugfs_exit(); 2630 out_compr: 2631 ubifs_compressors_exit(); 2632 #endif 2633 out_shrinker: 2634 #ifndef __UBOOT__ 2635 unregister_shrinker(&ubifs_shrinker_info); 2636 #endif 2637 kmem_cache_destroy(ubifs_inode_slab); 2638 return err; 2639 } 2640 /* late_initcall to let compressors initialize first */ 2641 late_initcall(ubifs_init); 2642 2643 #ifndef __UBOOT__ 2644 static void __exit ubifs_exit(void) 2645 { 2646 ubifs_assert(list_empty(&ubifs_infos)); 2647 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2648 2649 dbg_debugfs_exit(); 2650 ubifs_compressors_exit(); 2651 unregister_shrinker(&ubifs_shrinker_info); 2652 2653 /* 2654 * Make sure all delayed rcu free inodes are flushed before we 2655 * destroy cache. 2656 */ 2657 rcu_barrier(); 2658 kmem_cache_destroy(ubifs_inode_slab); 2659 unregister_filesystem(&ubifs_fs_type); 2660 } 2661 module_exit(ubifs_exit); 2662 2663 MODULE_LICENSE("GPL"); 2664 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2665 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2666 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2667 #else 2668 int uboot_ubifs_mount(char *vol_name) 2669 { 2670 struct dentry *ret; 2671 int flags; 2672 2673 /* 2674 * First unmount if allready mounted 2675 */ 2676 if (ubifs_sb) 2677 ubifs_umount(ubifs_sb->s_fs_info); 2678 2679 /* 2680 * Mount in read-only mode 2681 */ 2682 flags = MS_RDONLY; 2683 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL); 2684 if (IS_ERR(ret)) { 2685 printf("Error reading superblock on volume '%s' " \ 2686 "errno=%d!\n", vol_name, (int)PTR_ERR(ret)); 2687 return -1; 2688 } 2689 2690 return 0; 2691 } 2692 #endif 2693