xref: /openbmc/u-boot/fs/ubifs/super.c (revision f3488bb3)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11 
12 /*
13  * This file implements UBIFS initialization and VFS superblock operations. Some
14  * initialization stuff which is rather large and complex is placed at
15  * corresponding subsystems, but most of it is here.
16  */
17 
18 #ifndef __UBOOT__
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/kthread.h>
24 #include <linux/parser.h>
25 #include <linux/seq_file.h>
26 #include <linux/mount.h>
27 #include <linux/math64.h>
28 #include <linux/writeback.h>
29 #else
30 
31 #include <linux/compat.h>
32 #include <linux/stat.h>
33 #include <linux/err.h>
34 #include "ubifs.h"
35 #include <ubi_uboot.h>
36 #include <mtd/ubi-user.h>
37 
38 struct dentry;
39 struct file;
40 struct iattr;
41 struct kstat;
42 struct vfsmount;
43 
44 #define INODE_LOCKED_MAX	64
45 
46 struct super_block *ubifs_sb;
47 LIST_HEAD(super_blocks);
48 
49 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
50 
51 int set_anon_super(struct super_block *s, void *data)
52 {
53 	return 0;
54 }
55 
56 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
57 {
58 	struct inode *inode;
59 
60 	inode = (struct inode *)malloc_cache_aligned(
61 			sizeof(struct ubifs_inode));
62 	if (inode) {
63 		inode->i_ino = ino;
64 		inode->i_sb = sb;
65 		list_add(&inode->i_sb_list, &sb->s_inodes);
66 		inode->i_state = I_LOCK | I_NEW;
67 	}
68 
69 	return inode;
70 }
71 
72 void iget_failed(struct inode *inode)
73 {
74 }
75 
76 int ubifs_iput(struct inode *inode)
77 {
78 	list_del_init(&inode->i_sb_list);
79 
80 	free(inode);
81 	return 0;
82 }
83 
84 /*
85  * Lock (save) inode in inode array for readback after recovery
86  */
87 void iput(struct inode *inode)
88 {
89 	int i;
90 	struct inode *ino;
91 
92 	/*
93 	 * Search end of list
94 	 */
95 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
96 		if (inodes_locked_down[i] == NULL)
97 			break;
98 	}
99 
100 	if (i >= INODE_LOCKED_MAX) {
101 		ubifs_err("Error, can't lock (save) more inodes while recovery!!!");
102 		return;
103 	}
104 
105 	/*
106 	 * Allocate and use new inode
107 	 */
108 	ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
109 	memcpy(ino, inode, sizeof(struct ubifs_inode));
110 
111 	/*
112 	 * Finally save inode in array
113 	 */
114 	inodes_locked_down[i] = ino;
115 }
116 
117 /* from fs/inode.c */
118 /**
119  * clear_nlink - directly zero an inode's link count
120  * @inode: inode
121  *
122  * This is a low-level filesystem helper to replace any
123  * direct filesystem manipulation of i_nlink.  See
124  * drop_nlink() for why we care about i_nlink hitting zero.
125  */
126 void clear_nlink(struct inode *inode)
127 {
128 	if (inode->i_nlink) {
129 		inode->__i_nlink = 0;
130 		atomic_long_inc(&inode->i_sb->s_remove_count);
131 	}
132 }
133 EXPORT_SYMBOL(clear_nlink);
134 
135 /**
136  * set_nlink - directly set an inode's link count
137  * @inode: inode
138  * @nlink: new nlink (should be non-zero)
139  *
140  * This is a low-level filesystem helper to replace any
141  * direct filesystem manipulation of i_nlink.
142  */
143 void set_nlink(struct inode *inode, unsigned int nlink)
144 {
145 	if (!nlink) {
146 		clear_nlink(inode);
147 	} else {
148 		/* Yes, some filesystems do change nlink from zero to one */
149 		if (inode->i_nlink == 0)
150 			atomic_long_dec(&inode->i_sb->s_remove_count);
151 
152 		inode->__i_nlink = nlink;
153 	}
154 }
155 EXPORT_SYMBOL(set_nlink);
156 
157 /* from include/linux/fs.h */
158 static inline void i_uid_write(struct inode *inode, uid_t uid)
159 {
160 	inode->i_uid.val = uid;
161 }
162 
163 static inline void i_gid_write(struct inode *inode, gid_t gid)
164 {
165 	inode->i_gid.val = gid;
166 }
167 
168 void unlock_new_inode(struct inode *inode)
169 {
170 	return;
171 }
172 #endif
173 
174 /*
175  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
176  * allocating too much.
177  */
178 #define UBIFS_KMALLOC_OK (128*1024)
179 
180 /* Slab cache for UBIFS inodes */
181 struct kmem_cache *ubifs_inode_slab;
182 
183 #ifndef __UBOOT__
184 /* UBIFS TNC shrinker description */
185 static struct shrinker ubifs_shrinker_info = {
186 	.scan_objects = ubifs_shrink_scan,
187 	.count_objects = ubifs_shrink_count,
188 	.seeks = DEFAULT_SEEKS,
189 };
190 #endif
191 
192 /**
193  * validate_inode - validate inode.
194  * @c: UBIFS file-system description object
195  * @inode: the inode to validate
196  *
197  * This is a helper function for 'ubifs_iget()' which validates various fields
198  * of a newly built inode to make sure they contain sane values and prevent
199  * possible vulnerabilities. Returns zero if the inode is all right and
200  * a non-zero error code if not.
201  */
202 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
203 {
204 	int err;
205 	const struct ubifs_inode *ui = ubifs_inode(inode);
206 
207 	if (inode->i_size > c->max_inode_sz) {
208 		ubifs_err("inode is too large (%lld)",
209 			  (long long)inode->i_size);
210 		return 1;
211 	}
212 
213 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
214 		ubifs_err("unknown compression type %d", ui->compr_type);
215 		return 2;
216 	}
217 
218 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
219 		return 3;
220 
221 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
222 		return 4;
223 
224 	if (ui->xattr && !S_ISREG(inode->i_mode))
225 		return 5;
226 
227 	if (!ubifs_compr_present(ui->compr_type)) {
228 		ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
229 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
230 	}
231 
232 	err = dbg_check_dir(c, inode);
233 	return err;
234 }
235 
236 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
237 {
238 	int err;
239 	union ubifs_key key;
240 	struct ubifs_ino_node *ino;
241 	struct ubifs_info *c = sb->s_fs_info;
242 	struct inode *inode;
243 	struct ubifs_inode *ui;
244 #ifdef __UBOOT__
245 	int i;
246 #endif
247 
248 	dbg_gen("inode %lu", inum);
249 
250 #ifdef __UBOOT__
251 	/*
252 	 * U-Boot special handling of locked down inodes via recovery
253 	 * e.g. ubifs_recover_size()
254 	 */
255 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
256 		/*
257 		 * Exit on last entry (NULL), inode not found in list
258 		 */
259 		if (inodes_locked_down[i] == NULL)
260 			break;
261 
262 		if (inodes_locked_down[i]->i_ino == inum) {
263 			/*
264 			 * We found the locked down inode in our array,
265 			 * so just return this pointer instead of creating
266 			 * a new one.
267 			 */
268 			return inodes_locked_down[i];
269 		}
270 	}
271 #endif
272 
273 	inode = iget_locked(sb, inum);
274 	if (!inode)
275 		return ERR_PTR(-ENOMEM);
276 	if (!(inode->i_state & I_NEW))
277 		return inode;
278 	ui = ubifs_inode(inode);
279 
280 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
281 	if (!ino) {
282 		err = -ENOMEM;
283 		goto out;
284 	}
285 
286 	ino_key_init(c, &key, inode->i_ino);
287 
288 	err = ubifs_tnc_lookup(c, &key, ino);
289 	if (err)
290 		goto out_ino;
291 
292 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
293 	set_nlink(inode, le32_to_cpu(ino->nlink));
294 	i_uid_write(inode, le32_to_cpu(ino->uid));
295 	i_gid_write(inode, le32_to_cpu(ino->gid));
296 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
297 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
298 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
299 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
300 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
301 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
302 	inode->i_mode = le32_to_cpu(ino->mode);
303 	inode->i_size = le64_to_cpu(ino->size);
304 
305 	ui->data_len    = le32_to_cpu(ino->data_len);
306 	ui->flags       = le32_to_cpu(ino->flags);
307 	ui->compr_type  = le16_to_cpu(ino->compr_type);
308 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
309 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
310 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
311 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
312 	ui->synced_i_size = ui->ui_size = inode->i_size;
313 
314 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
315 
316 	err = validate_inode(c, inode);
317 	if (err)
318 		goto out_invalid;
319 
320 #ifndef __UBOOT__
321 	/* Disable read-ahead */
322 	inode->i_mapping->backing_dev_info = &c->bdi;
323 
324 	switch (inode->i_mode & S_IFMT) {
325 	case S_IFREG:
326 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
327 		inode->i_op = &ubifs_file_inode_operations;
328 		inode->i_fop = &ubifs_file_operations;
329 		if (ui->xattr) {
330 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
331 			if (!ui->data) {
332 				err = -ENOMEM;
333 				goto out_ino;
334 			}
335 			memcpy(ui->data, ino->data, ui->data_len);
336 			((char *)ui->data)[ui->data_len] = '\0';
337 		} else if (ui->data_len != 0) {
338 			err = 10;
339 			goto out_invalid;
340 		}
341 		break;
342 	case S_IFDIR:
343 		inode->i_op  = &ubifs_dir_inode_operations;
344 		inode->i_fop = &ubifs_dir_operations;
345 		if (ui->data_len != 0) {
346 			err = 11;
347 			goto out_invalid;
348 		}
349 		break;
350 	case S_IFLNK:
351 		inode->i_op = &ubifs_symlink_inode_operations;
352 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
353 			err = 12;
354 			goto out_invalid;
355 		}
356 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
357 		if (!ui->data) {
358 			err = -ENOMEM;
359 			goto out_ino;
360 		}
361 		memcpy(ui->data, ino->data, ui->data_len);
362 		((char *)ui->data)[ui->data_len] = '\0';
363 		break;
364 	case S_IFBLK:
365 	case S_IFCHR:
366 	{
367 		dev_t rdev;
368 		union ubifs_dev_desc *dev;
369 
370 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
371 		if (!ui->data) {
372 			err = -ENOMEM;
373 			goto out_ino;
374 		}
375 
376 		dev = (union ubifs_dev_desc *)ino->data;
377 		if (ui->data_len == sizeof(dev->new))
378 			rdev = new_decode_dev(le32_to_cpu(dev->new));
379 		else if (ui->data_len == sizeof(dev->huge))
380 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
381 		else {
382 			err = 13;
383 			goto out_invalid;
384 		}
385 		memcpy(ui->data, ino->data, ui->data_len);
386 		inode->i_op = &ubifs_file_inode_operations;
387 		init_special_inode(inode, inode->i_mode, rdev);
388 		break;
389 	}
390 	case S_IFSOCK:
391 	case S_IFIFO:
392 		inode->i_op = &ubifs_file_inode_operations;
393 		init_special_inode(inode, inode->i_mode, 0);
394 		if (ui->data_len != 0) {
395 			err = 14;
396 			goto out_invalid;
397 		}
398 		break;
399 	default:
400 		err = 15;
401 		goto out_invalid;
402 	}
403 #else
404 	if ((inode->i_mode & S_IFMT) == S_IFLNK) {
405 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
406 			err = 12;
407 			goto out_invalid;
408 		}
409 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
410 		if (!ui->data) {
411 			err = -ENOMEM;
412 			goto out_ino;
413 		}
414 		memcpy(ui->data, ino->data, ui->data_len);
415 		((char *)ui->data)[ui->data_len] = '\0';
416 	}
417 #endif
418 
419 	kfree(ino);
420 #ifndef __UBOOT__
421 	ubifs_set_inode_flags(inode);
422 #endif
423 	unlock_new_inode(inode);
424 	return inode;
425 
426 out_invalid:
427 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
428 	ubifs_dump_node(c, ino);
429 	ubifs_dump_inode(c, inode);
430 	err = -EINVAL;
431 out_ino:
432 	kfree(ino);
433 out:
434 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
435 	iget_failed(inode);
436 	return ERR_PTR(err);
437 }
438 
439 static struct inode *ubifs_alloc_inode(struct super_block *sb)
440 {
441 	struct ubifs_inode *ui;
442 
443 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
444 	if (!ui)
445 		return NULL;
446 
447 	memset((void *)ui + sizeof(struct inode), 0,
448 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
449 	mutex_init(&ui->ui_mutex);
450 	spin_lock_init(&ui->ui_lock);
451 	return &ui->vfs_inode;
452 };
453 
454 #ifndef __UBOOT__
455 static void ubifs_i_callback(struct rcu_head *head)
456 {
457 	struct inode *inode = container_of(head, struct inode, i_rcu);
458 	struct ubifs_inode *ui = ubifs_inode(inode);
459 	kmem_cache_free(ubifs_inode_slab, ui);
460 }
461 
462 static void ubifs_destroy_inode(struct inode *inode)
463 {
464 	struct ubifs_inode *ui = ubifs_inode(inode);
465 
466 	kfree(ui->data);
467 	call_rcu(&inode->i_rcu, ubifs_i_callback);
468 }
469 
470 /*
471  * Note, Linux write-back code calls this without 'i_mutex'.
472  */
473 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
474 {
475 	int err = 0;
476 	struct ubifs_info *c = inode->i_sb->s_fs_info;
477 	struct ubifs_inode *ui = ubifs_inode(inode);
478 
479 	ubifs_assert(!ui->xattr);
480 	if (is_bad_inode(inode))
481 		return 0;
482 
483 	mutex_lock(&ui->ui_mutex);
484 	/*
485 	 * Due to races between write-back forced by budgeting
486 	 * (see 'sync_some_inodes()') and background write-back, the inode may
487 	 * have already been synchronized, do not do this again. This might
488 	 * also happen if it was synchronized in an VFS operation, e.g.
489 	 * 'ubifs_link()'.
490 	 */
491 	if (!ui->dirty) {
492 		mutex_unlock(&ui->ui_mutex);
493 		return 0;
494 	}
495 
496 	/*
497 	 * As an optimization, do not write orphan inodes to the media just
498 	 * because this is not needed.
499 	 */
500 	dbg_gen("inode %lu, mode %#x, nlink %u",
501 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
502 	if (inode->i_nlink) {
503 		err = ubifs_jnl_write_inode(c, inode);
504 		if (err)
505 			ubifs_err("can't write inode %lu, error %d",
506 				  inode->i_ino, err);
507 		else
508 			err = dbg_check_inode_size(c, inode, ui->ui_size);
509 	}
510 
511 	ui->dirty = 0;
512 	mutex_unlock(&ui->ui_mutex);
513 	ubifs_release_dirty_inode_budget(c, ui);
514 	return err;
515 }
516 
517 static void ubifs_evict_inode(struct inode *inode)
518 {
519 	int err;
520 	struct ubifs_info *c = inode->i_sb->s_fs_info;
521 	struct ubifs_inode *ui = ubifs_inode(inode);
522 
523 	if (ui->xattr)
524 		/*
525 		 * Extended attribute inode deletions are fully handled in
526 		 * 'ubifs_removexattr()'. These inodes are special and have
527 		 * limited usage, so there is nothing to do here.
528 		 */
529 		goto out;
530 
531 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
532 	ubifs_assert(!atomic_read(&inode->i_count));
533 
534 	truncate_inode_pages_final(&inode->i_data);
535 
536 	if (inode->i_nlink)
537 		goto done;
538 
539 	if (is_bad_inode(inode))
540 		goto out;
541 
542 	ui->ui_size = inode->i_size = 0;
543 	err = ubifs_jnl_delete_inode(c, inode);
544 	if (err)
545 		/*
546 		 * Worst case we have a lost orphan inode wasting space, so a
547 		 * simple error message is OK here.
548 		 */
549 		ubifs_err("can't delete inode %lu, error %d",
550 			  inode->i_ino, err);
551 
552 out:
553 	if (ui->dirty)
554 		ubifs_release_dirty_inode_budget(c, ui);
555 	else {
556 		/* We've deleted something - clean the "no space" flags */
557 		c->bi.nospace = c->bi.nospace_rp = 0;
558 		smp_wmb();
559 	}
560 done:
561 	clear_inode(inode);
562 }
563 #endif
564 
565 static void ubifs_dirty_inode(struct inode *inode, int flags)
566 {
567 	struct ubifs_inode *ui = ubifs_inode(inode);
568 
569 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
570 	if (!ui->dirty) {
571 		ui->dirty = 1;
572 		dbg_gen("inode %lu",  inode->i_ino);
573 	}
574 }
575 
576 #ifndef __UBOOT__
577 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
578 {
579 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
580 	unsigned long long free;
581 	__le32 *uuid = (__le32 *)c->uuid;
582 
583 	free = ubifs_get_free_space(c);
584 	dbg_gen("free space %lld bytes (%lld blocks)",
585 		free, free >> UBIFS_BLOCK_SHIFT);
586 
587 	buf->f_type = UBIFS_SUPER_MAGIC;
588 	buf->f_bsize = UBIFS_BLOCK_SIZE;
589 	buf->f_blocks = c->block_cnt;
590 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
591 	if (free > c->report_rp_size)
592 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
593 	else
594 		buf->f_bavail = 0;
595 	buf->f_files = 0;
596 	buf->f_ffree = 0;
597 	buf->f_namelen = UBIFS_MAX_NLEN;
598 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
599 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
600 	ubifs_assert(buf->f_bfree <= c->block_cnt);
601 	return 0;
602 }
603 
604 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
605 {
606 	struct ubifs_info *c = root->d_sb->s_fs_info;
607 
608 	if (c->mount_opts.unmount_mode == 2)
609 		seq_printf(s, ",fast_unmount");
610 	else if (c->mount_opts.unmount_mode == 1)
611 		seq_printf(s, ",norm_unmount");
612 
613 	if (c->mount_opts.bulk_read == 2)
614 		seq_printf(s, ",bulk_read");
615 	else if (c->mount_opts.bulk_read == 1)
616 		seq_printf(s, ",no_bulk_read");
617 
618 	if (c->mount_opts.chk_data_crc == 2)
619 		seq_printf(s, ",chk_data_crc");
620 	else if (c->mount_opts.chk_data_crc == 1)
621 		seq_printf(s, ",no_chk_data_crc");
622 
623 	if (c->mount_opts.override_compr) {
624 		seq_printf(s, ",compr=%s",
625 			   ubifs_compr_name(c->mount_opts.compr_type));
626 	}
627 
628 	return 0;
629 }
630 
631 static int ubifs_sync_fs(struct super_block *sb, int wait)
632 {
633 	int i, err;
634 	struct ubifs_info *c = sb->s_fs_info;
635 
636 	/*
637 	 * Zero @wait is just an advisory thing to help the file system shove
638 	 * lots of data into the queues, and there will be the second
639 	 * '->sync_fs()' call, with non-zero @wait.
640 	 */
641 	if (!wait)
642 		return 0;
643 
644 	/*
645 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
646 	 * do this if it waits for an already running commit.
647 	 */
648 	for (i = 0; i < c->jhead_cnt; i++) {
649 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
650 		if (err)
651 			return err;
652 	}
653 
654 	/*
655 	 * Strictly speaking, it is not necessary to commit the journal here,
656 	 * synchronizing write-buffers would be enough. But committing makes
657 	 * UBIFS free space predictions much more accurate, so we want to let
658 	 * the user be able to get more accurate results of 'statfs()' after
659 	 * they synchronize the file system.
660 	 */
661 	err = ubifs_run_commit(c);
662 	if (err)
663 		return err;
664 
665 	return ubi_sync(c->vi.ubi_num);
666 }
667 #endif
668 
669 /**
670  * init_constants_early - initialize UBIFS constants.
671  * @c: UBIFS file-system description object
672  *
673  * This function initialize UBIFS constants which do not need the superblock to
674  * be read. It also checks that the UBI volume satisfies basic UBIFS
675  * requirements. Returns zero in case of success and a negative error code in
676  * case of failure.
677  */
678 static int init_constants_early(struct ubifs_info *c)
679 {
680 	if (c->vi.corrupted) {
681 		ubifs_warn("UBI volume is corrupted - read-only mode");
682 		c->ro_media = 1;
683 	}
684 
685 	if (c->di.ro_mode) {
686 		ubifs_msg("read-only UBI device");
687 		c->ro_media = 1;
688 	}
689 
690 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
691 		ubifs_msg("static UBI volume - read-only mode");
692 		c->ro_media = 1;
693 	}
694 
695 	c->leb_cnt = c->vi.size;
696 	c->leb_size = c->vi.usable_leb_size;
697 	c->leb_start = c->di.leb_start;
698 	c->half_leb_size = c->leb_size / 2;
699 	c->min_io_size = c->di.min_io_size;
700 	c->min_io_shift = fls(c->min_io_size) - 1;
701 	c->max_write_size = c->di.max_write_size;
702 	c->max_write_shift = fls(c->max_write_size) - 1;
703 
704 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
705 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
706 			  c->leb_size, UBIFS_MIN_LEB_SZ);
707 		return -EINVAL;
708 	}
709 
710 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
711 		ubifs_err("too few LEBs (%d), min. is %d",
712 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
713 		return -EINVAL;
714 	}
715 
716 	if (!is_power_of_2(c->min_io_size)) {
717 		ubifs_err("bad min. I/O size %d", c->min_io_size);
718 		return -EINVAL;
719 	}
720 
721 	/*
722 	 * Maximum write size has to be greater or equivalent to min. I/O
723 	 * size, and be multiple of min. I/O size.
724 	 */
725 	if (c->max_write_size < c->min_io_size ||
726 	    c->max_write_size % c->min_io_size ||
727 	    !is_power_of_2(c->max_write_size)) {
728 		ubifs_err("bad write buffer size %d for %d min. I/O unit",
729 			  c->max_write_size, c->min_io_size);
730 		return -EINVAL;
731 	}
732 
733 	/*
734 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
735 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
736 	 * less than 8.
737 	 */
738 	if (c->min_io_size < 8) {
739 		c->min_io_size = 8;
740 		c->min_io_shift = 3;
741 		if (c->max_write_size < c->min_io_size) {
742 			c->max_write_size = c->min_io_size;
743 			c->max_write_shift = c->min_io_shift;
744 		}
745 	}
746 
747 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
748 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
749 
750 	/*
751 	 * Initialize node length ranges which are mostly needed for node
752 	 * length validation.
753 	 */
754 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
755 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
756 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
757 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
758 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
759 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
760 
761 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
762 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
763 	c->ranges[UBIFS_ORPH_NODE].min_len =
764 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
765 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
766 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
767 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
768 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
769 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
770 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
771 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
772 	/*
773 	 * Minimum indexing node size is amended later when superblock is
774 	 * read and the key length is known.
775 	 */
776 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
777 	/*
778 	 * Maximum indexing node size is amended later when superblock is
779 	 * read and the fanout is known.
780 	 */
781 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
782 
783 	/*
784 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
785 	 * about these values.
786 	 */
787 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
788 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
789 
790 	/*
791 	 * Calculate how many bytes would be wasted at the end of LEB if it was
792 	 * fully filled with data nodes of maximum size. This is used in
793 	 * calculations when reporting free space.
794 	 */
795 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
796 
797 	/* Buffer size for bulk-reads */
798 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
799 	if (c->max_bu_buf_len > c->leb_size)
800 		c->max_bu_buf_len = c->leb_size;
801 	return 0;
802 }
803 
804 /**
805  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
806  * @c: UBIFS file-system description object
807  * @lnum: LEB the write-buffer was synchronized to
808  * @free: how many free bytes left in this LEB
809  * @pad: how many bytes were padded
810  *
811  * This is a callback function which is called by the I/O unit when the
812  * write-buffer is synchronized. We need this to correctly maintain space
813  * accounting in bud logical eraseblocks. This function returns zero in case of
814  * success and a negative error code in case of failure.
815  *
816  * This function actually belongs to the journal, but we keep it here because
817  * we want to keep it static.
818  */
819 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
820 {
821 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
822 }
823 
824 /*
825  * init_constants_sb - initialize UBIFS constants.
826  * @c: UBIFS file-system description object
827  *
828  * This is a helper function which initializes various UBIFS constants after
829  * the superblock has been read. It also checks various UBIFS parameters and
830  * makes sure they are all right. Returns zero in case of success and a
831  * negative error code in case of failure.
832  */
833 static int init_constants_sb(struct ubifs_info *c)
834 {
835 	int tmp, err;
836 	long long tmp64;
837 
838 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
839 	c->max_znode_sz = sizeof(struct ubifs_znode) +
840 				c->fanout * sizeof(struct ubifs_zbranch);
841 
842 	tmp = ubifs_idx_node_sz(c, 1);
843 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
844 	c->min_idx_node_sz = ALIGN(tmp, 8);
845 
846 	tmp = ubifs_idx_node_sz(c, c->fanout);
847 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
848 	c->max_idx_node_sz = ALIGN(tmp, 8);
849 
850 	/* Make sure LEB size is large enough to fit full commit */
851 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
852 	tmp = ALIGN(tmp, c->min_io_size);
853 	if (tmp > c->leb_size) {
854 		ubifs_err("too small LEB size %d, at least %d needed",
855 			  c->leb_size, tmp);
856 		return -EINVAL;
857 	}
858 
859 	/*
860 	 * Make sure that the log is large enough to fit reference nodes for
861 	 * all buds plus one reserved LEB.
862 	 */
863 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
864 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
865 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
866 	tmp /= c->leb_size;
867 	tmp += 1;
868 	if (c->log_lebs < tmp) {
869 		ubifs_err("too small log %d LEBs, required min. %d LEBs",
870 			  c->log_lebs, tmp);
871 		return -EINVAL;
872 	}
873 
874 	/*
875 	 * When budgeting we assume worst-case scenarios when the pages are not
876 	 * be compressed and direntries are of the maximum size.
877 	 *
878 	 * Note, data, which may be stored in inodes is budgeted separately, so
879 	 * it is not included into 'c->bi.inode_budget'.
880 	 */
881 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
882 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
883 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
884 
885 	/*
886 	 * When the amount of flash space used by buds becomes
887 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
888 	 * The writers are unblocked when the commit is finished. To avoid
889 	 * writers to be blocked UBIFS initiates background commit in advance,
890 	 * when number of bud bytes becomes above the limit defined below.
891 	 */
892 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
893 
894 	/*
895 	 * Ensure minimum journal size. All the bytes in the journal heads are
896 	 * considered to be used, when calculating the current journal usage.
897 	 * Consequently, if the journal is too small, UBIFS will treat it as
898 	 * always full.
899 	 */
900 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
901 	if (c->bg_bud_bytes < tmp64)
902 		c->bg_bud_bytes = tmp64;
903 	if (c->max_bud_bytes < tmp64 + c->leb_size)
904 		c->max_bud_bytes = tmp64 + c->leb_size;
905 
906 	err = ubifs_calc_lpt_geom(c);
907 	if (err)
908 		return err;
909 
910 	/* Initialize effective LEB size used in budgeting calculations */
911 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
912 	return 0;
913 }
914 
915 /*
916  * init_constants_master - initialize UBIFS constants.
917  * @c: UBIFS file-system description object
918  *
919  * This is a helper function which initializes various UBIFS constants after
920  * the master node has been read. It also checks various UBIFS parameters and
921  * makes sure they are all right.
922  */
923 static void init_constants_master(struct ubifs_info *c)
924 {
925 	long long tmp64;
926 
927 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
928 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
929 
930 	/*
931 	 * Calculate total amount of FS blocks. This number is not used
932 	 * internally because it does not make much sense for UBIFS, but it is
933 	 * necessary to report something for the 'statfs()' call.
934 	 *
935 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
936 	 * deletions, minimum LEBs for the index, and assume only one journal
937 	 * head is available.
938 	 */
939 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
940 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
941 	tmp64 = ubifs_reported_space(c, tmp64);
942 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
943 }
944 
945 /**
946  * take_gc_lnum - reserve GC LEB.
947  * @c: UBIFS file-system description object
948  *
949  * This function ensures that the LEB reserved for garbage collection is marked
950  * as "taken" in lprops. We also have to set free space to LEB size and dirty
951  * space to zero, because lprops may contain out-of-date information if the
952  * file-system was un-mounted before it has been committed. This function
953  * returns zero in case of success and a negative error code in case of
954  * failure.
955  */
956 static int take_gc_lnum(struct ubifs_info *c)
957 {
958 	int err;
959 
960 	if (c->gc_lnum == -1) {
961 		ubifs_err("no LEB for GC");
962 		return -EINVAL;
963 	}
964 
965 	/* And we have to tell lprops that this LEB is taken */
966 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
967 				  LPROPS_TAKEN, 0, 0);
968 	return err;
969 }
970 
971 /**
972  * alloc_wbufs - allocate write-buffers.
973  * @c: UBIFS file-system description object
974  *
975  * This helper function allocates and initializes UBIFS write-buffers. Returns
976  * zero in case of success and %-ENOMEM in case of failure.
977  */
978 static int alloc_wbufs(struct ubifs_info *c)
979 {
980 	int i, err;
981 
982 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
983 			   GFP_KERNEL);
984 	if (!c->jheads)
985 		return -ENOMEM;
986 
987 	/* Initialize journal heads */
988 	for (i = 0; i < c->jhead_cnt; i++) {
989 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
990 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
991 		if (err)
992 			return err;
993 
994 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
995 		c->jheads[i].wbuf.jhead = i;
996 		c->jheads[i].grouped = 1;
997 	}
998 
999 	/*
1000 	 * Garbage Collector head does not need to be synchronized by timer.
1001 	 * Also GC head nodes are not grouped.
1002 	 */
1003 	c->jheads[GCHD].wbuf.no_timer = 1;
1004 	c->jheads[GCHD].grouped = 0;
1005 
1006 	return 0;
1007 }
1008 
1009 /**
1010  * free_wbufs - free write-buffers.
1011  * @c: UBIFS file-system description object
1012  */
1013 static void free_wbufs(struct ubifs_info *c)
1014 {
1015 	int i;
1016 
1017 	if (c->jheads) {
1018 		for (i = 0; i < c->jhead_cnt; i++) {
1019 			kfree(c->jheads[i].wbuf.buf);
1020 			kfree(c->jheads[i].wbuf.inodes);
1021 		}
1022 		kfree(c->jheads);
1023 		c->jheads = NULL;
1024 	}
1025 }
1026 
1027 /**
1028  * free_orphans - free orphans.
1029  * @c: UBIFS file-system description object
1030  */
1031 static void free_orphans(struct ubifs_info *c)
1032 {
1033 	struct ubifs_orphan *orph;
1034 
1035 	while (c->orph_dnext) {
1036 		orph = c->orph_dnext;
1037 		c->orph_dnext = orph->dnext;
1038 		list_del(&orph->list);
1039 		kfree(orph);
1040 	}
1041 
1042 	while (!list_empty(&c->orph_list)) {
1043 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1044 		list_del(&orph->list);
1045 		kfree(orph);
1046 		ubifs_err("orphan list not empty at unmount");
1047 	}
1048 
1049 	vfree(c->orph_buf);
1050 	c->orph_buf = NULL;
1051 }
1052 
1053 /**
1054  * free_buds - free per-bud objects.
1055  * @c: UBIFS file-system description object
1056  */
1057 static void free_buds(struct ubifs_info *c)
1058 {
1059 	struct ubifs_bud *bud, *n;
1060 
1061 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1062 		kfree(bud);
1063 }
1064 
1065 /**
1066  * check_volume_empty - check if the UBI volume is empty.
1067  * @c: UBIFS file-system description object
1068  *
1069  * This function checks if the UBIFS volume is empty by looking if its LEBs are
1070  * mapped or not. The result of checking is stored in the @c->empty variable.
1071  * Returns zero in case of success and a negative error code in case of
1072  * failure.
1073  */
1074 static int check_volume_empty(struct ubifs_info *c)
1075 {
1076 	int lnum, err;
1077 
1078 	c->empty = 1;
1079 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1080 		err = ubifs_is_mapped(c, lnum);
1081 		if (unlikely(err < 0))
1082 			return err;
1083 		if (err == 1) {
1084 			c->empty = 0;
1085 			break;
1086 		}
1087 
1088 		cond_resched();
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * UBIFS mount options.
1096  *
1097  * Opt_fast_unmount: do not run a journal commit before un-mounting
1098  * Opt_norm_unmount: run a journal commit before un-mounting
1099  * Opt_bulk_read: enable bulk-reads
1100  * Opt_no_bulk_read: disable bulk-reads
1101  * Opt_chk_data_crc: check CRCs when reading data nodes
1102  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1103  * Opt_override_compr: override default compressor
1104  * Opt_err: just end of array marker
1105  */
1106 enum {
1107 	Opt_fast_unmount,
1108 	Opt_norm_unmount,
1109 	Opt_bulk_read,
1110 	Opt_no_bulk_read,
1111 	Opt_chk_data_crc,
1112 	Opt_no_chk_data_crc,
1113 	Opt_override_compr,
1114 	Opt_err,
1115 };
1116 
1117 #ifndef __UBOOT__
1118 static const match_table_t tokens = {
1119 	{Opt_fast_unmount, "fast_unmount"},
1120 	{Opt_norm_unmount, "norm_unmount"},
1121 	{Opt_bulk_read, "bulk_read"},
1122 	{Opt_no_bulk_read, "no_bulk_read"},
1123 	{Opt_chk_data_crc, "chk_data_crc"},
1124 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
1125 	{Opt_override_compr, "compr=%s"},
1126 	{Opt_err, NULL},
1127 };
1128 
1129 /**
1130  * parse_standard_option - parse a standard mount option.
1131  * @option: the option to parse
1132  *
1133  * Normally, standard mount options like "sync" are passed to file-systems as
1134  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1135  * be present in the options string. This function tries to deal with this
1136  * situation and parse standard options. Returns 0 if the option was not
1137  * recognized, and the corresponding integer flag if it was.
1138  *
1139  * UBIFS is only interested in the "sync" option, so do not check for anything
1140  * else.
1141  */
1142 static int parse_standard_option(const char *option)
1143 {
1144 	ubifs_msg("parse %s", option);
1145 	if (!strcmp(option, "sync"))
1146 		return MS_SYNCHRONOUS;
1147 	return 0;
1148 }
1149 
1150 /**
1151  * ubifs_parse_options - parse mount parameters.
1152  * @c: UBIFS file-system description object
1153  * @options: parameters to parse
1154  * @is_remount: non-zero if this is FS re-mount
1155  *
1156  * This function parses UBIFS mount options and returns zero in case success
1157  * and a negative error code in case of failure.
1158  */
1159 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1160 			       int is_remount)
1161 {
1162 	char *p;
1163 	substring_t args[MAX_OPT_ARGS];
1164 
1165 	if (!options)
1166 		return 0;
1167 
1168 	while ((p = strsep(&options, ","))) {
1169 		int token;
1170 
1171 		if (!*p)
1172 			continue;
1173 
1174 		token = match_token(p, tokens, args);
1175 		switch (token) {
1176 		/*
1177 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1178 		 * We accept them in order to be backward-compatible. But this
1179 		 * should be removed at some point.
1180 		 */
1181 		case Opt_fast_unmount:
1182 			c->mount_opts.unmount_mode = 2;
1183 			break;
1184 		case Opt_norm_unmount:
1185 			c->mount_opts.unmount_mode = 1;
1186 			break;
1187 		case Opt_bulk_read:
1188 			c->mount_opts.bulk_read = 2;
1189 			c->bulk_read = 1;
1190 			break;
1191 		case Opt_no_bulk_read:
1192 			c->mount_opts.bulk_read = 1;
1193 			c->bulk_read = 0;
1194 			break;
1195 		case Opt_chk_data_crc:
1196 			c->mount_opts.chk_data_crc = 2;
1197 			c->no_chk_data_crc = 0;
1198 			break;
1199 		case Opt_no_chk_data_crc:
1200 			c->mount_opts.chk_data_crc = 1;
1201 			c->no_chk_data_crc = 1;
1202 			break;
1203 		case Opt_override_compr:
1204 		{
1205 			char *name = match_strdup(&args[0]);
1206 
1207 			if (!name)
1208 				return -ENOMEM;
1209 			if (!strcmp(name, "none"))
1210 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1211 			else if (!strcmp(name, "lzo"))
1212 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1213 			else if (!strcmp(name, "zlib"))
1214 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1215 			else {
1216 				ubifs_err("unknown compressor \"%s\"", name);
1217 				kfree(name);
1218 				return -EINVAL;
1219 			}
1220 			kfree(name);
1221 			c->mount_opts.override_compr = 1;
1222 			c->default_compr = c->mount_opts.compr_type;
1223 			break;
1224 		}
1225 		default:
1226 		{
1227 			unsigned long flag;
1228 			struct super_block *sb = c->vfs_sb;
1229 
1230 			flag = parse_standard_option(p);
1231 			if (!flag) {
1232 				ubifs_err("unrecognized mount option \"%s\" or missing value",
1233 					  p);
1234 				return -EINVAL;
1235 			}
1236 			sb->s_flags |= flag;
1237 			break;
1238 		}
1239 		}
1240 	}
1241 
1242 	return 0;
1243 }
1244 #endif
1245 
1246 /**
1247  * destroy_journal - destroy journal data structures.
1248  * @c: UBIFS file-system description object
1249  *
1250  * This function destroys journal data structures including those that may have
1251  * been created by recovery functions.
1252  */
1253 static void destroy_journal(struct ubifs_info *c)
1254 {
1255 	while (!list_empty(&c->unclean_leb_list)) {
1256 		struct ubifs_unclean_leb *ucleb;
1257 
1258 		ucleb = list_entry(c->unclean_leb_list.next,
1259 				   struct ubifs_unclean_leb, list);
1260 		list_del(&ucleb->list);
1261 		kfree(ucleb);
1262 	}
1263 	while (!list_empty(&c->old_buds)) {
1264 		struct ubifs_bud *bud;
1265 
1266 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1267 		list_del(&bud->list);
1268 		kfree(bud);
1269 	}
1270 	ubifs_destroy_idx_gc(c);
1271 	ubifs_destroy_size_tree(c);
1272 	ubifs_tnc_close(c);
1273 	free_buds(c);
1274 }
1275 
1276 /**
1277  * bu_init - initialize bulk-read information.
1278  * @c: UBIFS file-system description object
1279  */
1280 static void bu_init(struct ubifs_info *c)
1281 {
1282 	ubifs_assert(c->bulk_read == 1);
1283 
1284 	if (c->bu.buf)
1285 		return; /* Already initialized */
1286 
1287 again:
1288 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1289 	if (!c->bu.buf) {
1290 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1291 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1292 			goto again;
1293 		}
1294 
1295 		/* Just disable bulk-read */
1296 		ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1297 			   c->max_bu_buf_len);
1298 		c->mount_opts.bulk_read = 1;
1299 		c->bulk_read = 0;
1300 		return;
1301 	}
1302 }
1303 
1304 #ifndef __UBOOT__
1305 /**
1306  * check_free_space - check if there is enough free space to mount.
1307  * @c: UBIFS file-system description object
1308  *
1309  * This function makes sure UBIFS has enough free space to be mounted in
1310  * read/write mode. UBIFS must always have some free space to allow deletions.
1311  */
1312 static int check_free_space(struct ubifs_info *c)
1313 {
1314 	ubifs_assert(c->dark_wm > 0);
1315 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1316 		ubifs_err("insufficient free space to mount in R/W mode");
1317 		ubifs_dump_budg(c, &c->bi);
1318 		ubifs_dump_lprops(c);
1319 		return -ENOSPC;
1320 	}
1321 	return 0;
1322 }
1323 #endif
1324 
1325 /**
1326  * mount_ubifs - mount UBIFS file-system.
1327  * @c: UBIFS file-system description object
1328  *
1329  * This function mounts UBIFS file system. Returns zero in case of success and
1330  * a negative error code in case of failure.
1331  */
1332 static int mount_ubifs(struct ubifs_info *c)
1333 {
1334 	int err;
1335 	long long x, y;
1336 	size_t sz;
1337 
1338 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1339 #ifdef __UBOOT__
1340 	if (!c->ro_mount) {
1341 		printf("UBIFS: only ro mode in U-Boot allowed.\n");
1342 		return -EACCES;
1343 	}
1344 #endif
1345 
1346 	err = init_constants_early(c);
1347 	if (err)
1348 		return err;
1349 
1350 	err = ubifs_debugging_init(c);
1351 	if (err)
1352 		return err;
1353 
1354 	err = check_volume_empty(c);
1355 	if (err)
1356 		goto out_free;
1357 
1358 	if (c->empty && (c->ro_mount || c->ro_media)) {
1359 		/*
1360 		 * This UBI volume is empty, and read-only, or the file system
1361 		 * is mounted read-only - we cannot format it.
1362 		 */
1363 		ubifs_err("can't format empty UBI volume: read-only %s",
1364 			  c->ro_media ? "UBI volume" : "mount");
1365 		err = -EROFS;
1366 		goto out_free;
1367 	}
1368 
1369 	if (c->ro_media && !c->ro_mount) {
1370 		ubifs_err("cannot mount read-write - read-only media");
1371 		err = -EROFS;
1372 		goto out_free;
1373 	}
1374 
1375 	/*
1376 	 * The requirement for the buffer is that it should fit indexing B-tree
1377 	 * height amount of integers. We assume the height if the TNC tree will
1378 	 * never exceed 64.
1379 	 */
1380 	err = -ENOMEM;
1381 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1382 	if (!c->bottom_up_buf)
1383 		goto out_free;
1384 
1385 	c->sbuf = vmalloc(c->leb_size);
1386 	if (!c->sbuf)
1387 		goto out_free;
1388 
1389 #ifndef __UBOOT__
1390 	if (!c->ro_mount) {
1391 		c->ileb_buf = vmalloc(c->leb_size);
1392 		if (!c->ileb_buf)
1393 			goto out_free;
1394 	}
1395 #endif
1396 
1397 	if (c->bulk_read == 1)
1398 		bu_init(c);
1399 
1400 #ifndef __UBOOT__
1401 	if (!c->ro_mount) {
1402 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1403 					       GFP_KERNEL);
1404 		if (!c->write_reserve_buf)
1405 			goto out_free;
1406 	}
1407 #endif
1408 
1409 	c->mounting = 1;
1410 
1411 	err = ubifs_read_superblock(c);
1412 	if (err)
1413 		goto out_free;
1414 
1415 	/*
1416 	 * Make sure the compressor which is set as default in the superblock
1417 	 * or overridden by mount options is actually compiled in.
1418 	 */
1419 	if (!ubifs_compr_present(c->default_compr)) {
1420 		ubifs_err("'compressor \"%s\" is not compiled in",
1421 			  ubifs_compr_name(c->default_compr));
1422 		err = -ENOTSUPP;
1423 		goto out_free;
1424 	}
1425 
1426 	err = init_constants_sb(c);
1427 	if (err)
1428 		goto out_free;
1429 
1430 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1431 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1432 	c->cbuf = kmalloc(sz, GFP_NOFS);
1433 	if (!c->cbuf) {
1434 		err = -ENOMEM;
1435 		goto out_free;
1436 	}
1437 
1438 	err = alloc_wbufs(c);
1439 	if (err)
1440 		goto out_cbuf;
1441 
1442 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1443 #ifndef __UBOOT__
1444 	if (!c->ro_mount) {
1445 		/* Create background thread */
1446 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1447 		if (IS_ERR(c->bgt)) {
1448 			err = PTR_ERR(c->bgt);
1449 			c->bgt = NULL;
1450 			ubifs_err("cannot spawn \"%s\", error %d",
1451 				  c->bgt_name, err);
1452 			goto out_wbufs;
1453 		}
1454 		wake_up_process(c->bgt);
1455 	}
1456 #endif
1457 
1458 	err = ubifs_read_master(c);
1459 	if (err)
1460 		goto out_master;
1461 
1462 	init_constants_master(c);
1463 
1464 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1465 		ubifs_msg("recovery needed");
1466 		c->need_recovery = 1;
1467 	}
1468 
1469 #ifndef __UBOOT__
1470 	if (c->need_recovery && !c->ro_mount) {
1471 		err = ubifs_recover_inl_heads(c, c->sbuf);
1472 		if (err)
1473 			goto out_master;
1474 	}
1475 #endif
1476 
1477 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1478 	if (err)
1479 		goto out_master;
1480 
1481 #ifndef __UBOOT__
1482 	if (!c->ro_mount && c->space_fixup) {
1483 		err = ubifs_fixup_free_space(c);
1484 		if (err)
1485 			goto out_lpt;
1486 	}
1487 
1488 	if (!c->ro_mount) {
1489 		/*
1490 		 * Set the "dirty" flag so that if we reboot uncleanly we
1491 		 * will notice this immediately on the next mount.
1492 		 */
1493 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1494 		err = ubifs_write_master(c);
1495 		if (err)
1496 			goto out_lpt;
1497 	}
1498 #endif
1499 
1500 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1501 	if (err)
1502 		goto out_lpt;
1503 
1504 	err = ubifs_replay_journal(c);
1505 	if (err)
1506 		goto out_journal;
1507 
1508 	/* Calculate 'min_idx_lebs' after journal replay */
1509 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1510 
1511 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1512 	if (err)
1513 		goto out_orphans;
1514 
1515 	if (!c->ro_mount) {
1516 #ifndef __UBOOT__
1517 		int lnum;
1518 
1519 		err = check_free_space(c);
1520 		if (err)
1521 			goto out_orphans;
1522 
1523 		/* Check for enough log space */
1524 		lnum = c->lhead_lnum + 1;
1525 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1526 			lnum = UBIFS_LOG_LNUM;
1527 		if (lnum == c->ltail_lnum) {
1528 			err = ubifs_consolidate_log(c);
1529 			if (err)
1530 				goto out_orphans;
1531 		}
1532 
1533 		if (c->need_recovery) {
1534 			err = ubifs_recover_size(c);
1535 			if (err)
1536 				goto out_orphans;
1537 			err = ubifs_rcvry_gc_commit(c);
1538 			if (err)
1539 				goto out_orphans;
1540 		} else {
1541 			err = take_gc_lnum(c);
1542 			if (err)
1543 				goto out_orphans;
1544 
1545 			/*
1546 			 * GC LEB may contain garbage if there was an unclean
1547 			 * reboot, and it should be un-mapped.
1548 			 */
1549 			err = ubifs_leb_unmap(c, c->gc_lnum);
1550 			if (err)
1551 				goto out_orphans;
1552 		}
1553 
1554 		err = dbg_check_lprops(c);
1555 		if (err)
1556 			goto out_orphans;
1557 #endif
1558 	} else if (c->need_recovery) {
1559 		err = ubifs_recover_size(c);
1560 		if (err)
1561 			goto out_orphans;
1562 	} else {
1563 		/*
1564 		 * Even if we mount read-only, we have to set space in GC LEB
1565 		 * to proper value because this affects UBIFS free space
1566 		 * reporting. We do not want to have a situation when
1567 		 * re-mounting from R/O to R/W changes amount of free space.
1568 		 */
1569 		err = take_gc_lnum(c);
1570 		if (err)
1571 			goto out_orphans;
1572 	}
1573 
1574 #ifndef __UBOOT__
1575 	spin_lock(&ubifs_infos_lock);
1576 	list_add_tail(&c->infos_list, &ubifs_infos);
1577 	spin_unlock(&ubifs_infos_lock);
1578 #endif
1579 
1580 	if (c->need_recovery) {
1581 		if (c->ro_mount)
1582 			ubifs_msg("recovery deferred");
1583 		else {
1584 			c->need_recovery = 0;
1585 			ubifs_msg("recovery completed");
1586 			/*
1587 			 * GC LEB has to be empty and taken at this point. But
1588 			 * the journal head LEBs may also be accounted as
1589 			 * "empty taken" if they are empty.
1590 			 */
1591 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1592 		}
1593 	} else
1594 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1595 
1596 	err = dbg_check_filesystem(c);
1597 	if (err)
1598 		goto out_infos;
1599 
1600 	err = dbg_debugfs_init_fs(c);
1601 	if (err)
1602 		goto out_infos;
1603 
1604 	c->mounting = 0;
1605 
1606 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1607 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1608 		  c->ro_mount ? ", R/O mode" : "");
1609 	x = (long long)c->main_lebs * c->leb_size;
1610 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1611 	ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1612 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1613 		  c->max_write_size);
1614 	ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1615 		  x, x >> 20, c->main_lebs,
1616 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1617 	ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1618 		  c->report_rp_size, c->report_rp_size >> 10);
1619 	ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1620 		  c->fmt_version, c->ro_compat_version,
1621 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1622 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1623 
1624 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1625 	dbg_gen("data journal heads:  %d",
1626 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1627 	dbg_gen("log LEBs:            %d (%d - %d)",
1628 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1629 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1630 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1631 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1632 		c->orph_lebs, c->orph_first, c->orph_last);
1633 	dbg_gen("main area LEBs:      %d (%d - %d)",
1634 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1635 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1636 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1637 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1638 		c->bi.old_idx_sz >> 20);
1639 	dbg_gen("key hash type:       %d", c->key_hash_type);
1640 	dbg_gen("tree fanout:         %d", c->fanout);
1641 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1642 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1643 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1644 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1645 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1646 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1647 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1648 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1649 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1650 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1651 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1652 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1653 	dbg_gen("dead watermark:      %d", c->dead_wm);
1654 	dbg_gen("dark watermark:      %d", c->dark_wm);
1655 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1656 	x = (long long)c->main_lebs * c->dark_wm;
1657 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1658 		x, x >> 10, x >> 20);
1659 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1660 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1661 		c->max_bud_bytes >> 20);
1662 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1663 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1664 		c->bg_bud_bytes >> 20);
1665 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1666 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1667 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1668 	dbg_gen("commit number:       %llu", c->cmt_no);
1669 
1670 	return 0;
1671 
1672 out_infos:
1673 	spin_lock(&ubifs_infos_lock);
1674 	list_del(&c->infos_list);
1675 	spin_unlock(&ubifs_infos_lock);
1676 out_orphans:
1677 	free_orphans(c);
1678 out_journal:
1679 	destroy_journal(c);
1680 out_lpt:
1681 	ubifs_lpt_free(c, 0);
1682 out_master:
1683 	kfree(c->mst_node);
1684 	kfree(c->rcvrd_mst_node);
1685 	if (c->bgt)
1686 		kthread_stop(c->bgt);
1687 #ifndef __UBOOT__
1688 out_wbufs:
1689 #endif
1690 	free_wbufs(c);
1691 out_cbuf:
1692 	kfree(c->cbuf);
1693 out_free:
1694 	kfree(c->write_reserve_buf);
1695 	kfree(c->bu.buf);
1696 	vfree(c->ileb_buf);
1697 	vfree(c->sbuf);
1698 	kfree(c->bottom_up_buf);
1699 	ubifs_debugging_exit(c);
1700 	return err;
1701 }
1702 
1703 /**
1704  * ubifs_umount - un-mount UBIFS file-system.
1705  * @c: UBIFS file-system description object
1706  *
1707  * Note, this function is called to free allocated resourced when un-mounting,
1708  * as well as free resources when an error occurred while we were half way
1709  * through mounting (error path cleanup function). So it has to make sure the
1710  * resource was actually allocated before freeing it.
1711  */
1712 #ifndef __UBOOT__
1713 static void ubifs_umount(struct ubifs_info *c)
1714 #else
1715 void ubifs_umount(struct ubifs_info *c)
1716 #endif
1717 {
1718 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1719 		c->vi.vol_id);
1720 
1721 	dbg_debugfs_exit_fs(c);
1722 	spin_lock(&ubifs_infos_lock);
1723 	list_del(&c->infos_list);
1724 	spin_unlock(&ubifs_infos_lock);
1725 
1726 #ifndef __UBOOT__
1727 	if (c->bgt)
1728 		kthread_stop(c->bgt);
1729 
1730 	destroy_journal(c);
1731 #endif
1732 	free_wbufs(c);
1733 	free_orphans(c);
1734 	ubifs_lpt_free(c, 0);
1735 
1736 	kfree(c->cbuf);
1737 	kfree(c->rcvrd_mst_node);
1738 	kfree(c->mst_node);
1739 	kfree(c->write_reserve_buf);
1740 	kfree(c->bu.buf);
1741 	vfree(c->ileb_buf);
1742 	vfree(c->sbuf);
1743 	kfree(c->bottom_up_buf);
1744 	ubifs_debugging_exit(c);
1745 #ifdef __UBOOT__
1746 	/* Finally free U-Boot's global copy of superblock */
1747 	if (ubifs_sb != NULL) {
1748 		free(ubifs_sb->s_fs_info);
1749 		free(ubifs_sb);
1750 	}
1751 #endif
1752 }
1753 
1754 #ifndef __UBOOT__
1755 /**
1756  * ubifs_remount_rw - re-mount in read-write mode.
1757  * @c: UBIFS file-system description object
1758  *
1759  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1760  * mode. This function allocates the needed resources and re-mounts UBIFS in
1761  * read-write mode.
1762  */
1763 static int ubifs_remount_rw(struct ubifs_info *c)
1764 {
1765 	int err, lnum;
1766 
1767 	if (c->rw_incompat) {
1768 		ubifs_err("the file-system is not R/W-compatible");
1769 		ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1770 			  c->fmt_version, c->ro_compat_version,
1771 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1772 		return -EROFS;
1773 	}
1774 
1775 	mutex_lock(&c->umount_mutex);
1776 	dbg_save_space_info(c);
1777 	c->remounting_rw = 1;
1778 	c->ro_mount = 0;
1779 
1780 	if (c->space_fixup) {
1781 		err = ubifs_fixup_free_space(c);
1782 		if (err)
1783 			goto out;
1784 	}
1785 
1786 	err = check_free_space(c);
1787 	if (err)
1788 		goto out;
1789 
1790 	if (c->old_leb_cnt != c->leb_cnt) {
1791 		struct ubifs_sb_node *sup;
1792 
1793 		sup = ubifs_read_sb_node(c);
1794 		if (IS_ERR(sup)) {
1795 			err = PTR_ERR(sup);
1796 			goto out;
1797 		}
1798 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1799 		err = ubifs_write_sb_node(c, sup);
1800 		kfree(sup);
1801 		if (err)
1802 			goto out;
1803 	}
1804 
1805 	if (c->need_recovery) {
1806 		ubifs_msg("completing deferred recovery");
1807 		err = ubifs_write_rcvrd_mst_node(c);
1808 		if (err)
1809 			goto out;
1810 		err = ubifs_recover_size(c);
1811 		if (err)
1812 			goto out;
1813 		err = ubifs_clean_lebs(c, c->sbuf);
1814 		if (err)
1815 			goto out;
1816 		err = ubifs_recover_inl_heads(c, c->sbuf);
1817 		if (err)
1818 			goto out;
1819 	} else {
1820 		/* A readonly mount is not allowed to have orphans */
1821 		ubifs_assert(c->tot_orphans == 0);
1822 		err = ubifs_clear_orphans(c);
1823 		if (err)
1824 			goto out;
1825 	}
1826 
1827 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1828 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1829 		err = ubifs_write_master(c);
1830 		if (err)
1831 			goto out;
1832 	}
1833 
1834 	c->ileb_buf = vmalloc(c->leb_size);
1835 	if (!c->ileb_buf) {
1836 		err = -ENOMEM;
1837 		goto out;
1838 	}
1839 
1840 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1841 	if (!c->write_reserve_buf) {
1842 		err = -ENOMEM;
1843 		goto out;
1844 	}
1845 
1846 	err = ubifs_lpt_init(c, 0, 1);
1847 	if (err)
1848 		goto out;
1849 
1850 	/* Create background thread */
1851 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1852 	if (IS_ERR(c->bgt)) {
1853 		err = PTR_ERR(c->bgt);
1854 		c->bgt = NULL;
1855 		ubifs_err("cannot spawn \"%s\", error %d",
1856 			  c->bgt_name, err);
1857 		goto out;
1858 	}
1859 	wake_up_process(c->bgt);
1860 
1861 	c->orph_buf = vmalloc(c->leb_size);
1862 	if (!c->orph_buf) {
1863 		err = -ENOMEM;
1864 		goto out;
1865 	}
1866 
1867 	/* Check for enough log space */
1868 	lnum = c->lhead_lnum + 1;
1869 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1870 		lnum = UBIFS_LOG_LNUM;
1871 	if (lnum == c->ltail_lnum) {
1872 		err = ubifs_consolidate_log(c);
1873 		if (err)
1874 			goto out;
1875 	}
1876 
1877 	if (c->need_recovery)
1878 		err = ubifs_rcvry_gc_commit(c);
1879 	else
1880 		err = ubifs_leb_unmap(c, c->gc_lnum);
1881 	if (err)
1882 		goto out;
1883 
1884 	dbg_gen("re-mounted read-write");
1885 	c->remounting_rw = 0;
1886 
1887 	if (c->need_recovery) {
1888 		c->need_recovery = 0;
1889 		ubifs_msg("deferred recovery completed");
1890 	} else {
1891 		/*
1892 		 * Do not run the debugging space check if the were doing
1893 		 * recovery, because when we saved the information we had the
1894 		 * file-system in a state where the TNC and lprops has been
1895 		 * modified in memory, but all the I/O operations (including a
1896 		 * commit) were deferred. So the file-system was in
1897 		 * "non-committed" state. Now the file-system is in committed
1898 		 * state, and of course the amount of free space will change
1899 		 * because, for example, the old index size was imprecise.
1900 		 */
1901 		err = dbg_check_space_info(c);
1902 	}
1903 
1904 	mutex_unlock(&c->umount_mutex);
1905 	return err;
1906 
1907 out:
1908 	c->ro_mount = 1;
1909 	vfree(c->orph_buf);
1910 	c->orph_buf = NULL;
1911 	if (c->bgt) {
1912 		kthread_stop(c->bgt);
1913 		c->bgt = NULL;
1914 	}
1915 	free_wbufs(c);
1916 	kfree(c->write_reserve_buf);
1917 	c->write_reserve_buf = NULL;
1918 	vfree(c->ileb_buf);
1919 	c->ileb_buf = NULL;
1920 	ubifs_lpt_free(c, 1);
1921 	c->remounting_rw = 0;
1922 	mutex_unlock(&c->umount_mutex);
1923 	return err;
1924 }
1925 
1926 /**
1927  * ubifs_remount_ro - re-mount in read-only mode.
1928  * @c: UBIFS file-system description object
1929  *
1930  * We assume VFS has stopped writing. Possibly the background thread could be
1931  * running a commit, however kthread_stop will wait in that case.
1932  */
1933 static void ubifs_remount_ro(struct ubifs_info *c)
1934 {
1935 	int i, err;
1936 
1937 	ubifs_assert(!c->need_recovery);
1938 	ubifs_assert(!c->ro_mount);
1939 
1940 	mutex_lock(&c->umount_mutex);
1941 	if (c->bgt) {
1942 		kthread_stop(c->bgt);
1943 		c->bgt = NULL;
1944 	}
1945 
1946 	dbg_save_space_info(c);
1947 
1948 	for (i = 0; i < c->jhead_cnt; i++)
1949 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1950 
1951 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1952 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1953 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1954 	err = ubifs_write_master(c);
1955 	if (err)
1956 		ubifs_ro_mode(c, err);
1957 
1958 	vfree(c->orph_buf);
1959 	c->orph_buf = NULL;
1960 	kfree(c->write_reserve_buf);
1961 	c->write_reserve_buf = NULL;
1962 	vfree(c->ileb_buf);
1963 	c->ileb_buf = NULL;
1964 	ubifs_lpt_free(c, 1);
1965 	c->ro_mount = 1;
1966 	err = dbg_check_space_info(c);
1967 	if (err)
1968 		ubifs_ro_mode(c, err);
1969 	mutex_unlock(&c->umount_mutex);
1970 }
1971 
1972 static void ubifs_put_super(struct super_block *sb)
1973 {
1974 	int i;
1975 	struct ubifs_info *c = sb->s_fs_info;
1976 
1977 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1978 		  c->vi.vol_id);
1979 
1980 	/*
1981 	 * The following asserts are only valid if there has not been a failure
1982 	 * of the media. For example, there will be dirty inodes if we failed
1983 	 * to write them back because of I/O errors.
1984 	 */
1985 	if (!c->ro_error) {
1986 		ubifs_assert(c->bi.idx_growth == 0);
1987 		ubifs_assert(c->bi.dd_growth == 0);
1988 		ubifs_assert(c->bi.data_growth == 0);
1989 	}
1990 
1991 	/*
1992 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1993 	 * and file system un-mount. Namely, it prevents the shrinker from
1994 	 * picking this superblock for shrinking - it will be just skipped if
1995 	 * the mutex is locked.
1996 	 */
1997 	mutex_lock(&c->umount_mutex);
1998 	if (!c->ro_mount) {
1999 		/*
2000 		 * First of all kill the background thread to make sure it does
2001 		 * not interfere with un-mounting and freeing resources.
2002 		 */
2003 		if (c->bgt) {
2004 			kthread_stop(c->bgt);
2005 			c->bgt = NULL;
2006 		}
2007 
2008 		/*
2009 		 * On fatal errors c->ro_error is set to 1, in which case we do
2010 		 * not write the master node.
2011 		 */
2012 		if (!c->ro_error) {
2013 			int err;
2014 
2015 			/* Synchronize write-buffers */
2016 			for (i = 0; i < c->jhead_cnt; i++)
2017 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
2018 
2019 			/*
2020 			 * We are being cleanly unmounted which means the
2021 			 * orphans were killed - indicate this in the master
2022 			 * node. Also save the reserved GC LEB number.
2023 			 */
2024 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2025 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2026 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2027 			err = ubifs_write_master(c);
2028 			if (err)
2029 				/*
2030 				 * Recovery will attempt to fix the master area
2031 				 * next mount, so we just print a message and
2032 				 * continue to unmount normally.
2033 				 */
2034 				ubifs_err("failed to write master node, error %d",
2035 					  err);
2036 		} else {
2037 #ifndef __UBOOT__
2038 			for (i = 0; i < c->jhead_cnt; i++)
2039 				/* Make sure write-buffer timers are canceled */
2040 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
2041 #endif
2042 		}
2043 	}
2044 
2045 	ubifs_umount(c);
2046 #ifndef __UBOOT__
2047 	bdi_destroy(&c->bdi);
2048 #endif
2049 	ubi_close_volume(c->ubi);
2050 	mutex_unlock(&c->umount_mutex);
2051 }
2052 #endif
2053 
2054 #ifndef __UBOOT__
2055 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2056 {
2057 	int err;
2058 	struct ubifs_info *c = sb->s_fs_info;
2059 
2060 	sync_filesystem(sb);
2061 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2062 
2063 	err = ubifs_parse_options(c, data, 1);
2064 	if (err) {
2065 		ubifs_err("invalid or unknown remount parameter");
2066 		return err;
2067 	}
2068 
2069 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
2070 		if (c->ro_error) {
2071 			ubifs_msg("cannot re-mount R/W due to prior errors");
2072 			return -EROFS;
2073 		}
2074 		if (c->ro_media) {
2075 			ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
2076 			return -EROFS;
2077 		}
2078 		err = ubifs_remount_rw(c);
2079 		if (err)
2080 			return err;
2081 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2082 		if (c->ro_error) {
2083 			ubifs_msg("cannot re-mount R/O due to prior errors");
2084 			return -EROFS;
2085 		}
2086 		ubifs_remount_ro(c);
2087 	}
2088 
2089 	if (c->bulk_read == 1)
2090 		bu_init(c);
2091 	else {
2092 		dbg_gen("disable bulk-read");
2093 		kfree(c->bu.buf);
2094 		c->bu.buf = NULL;
2095 	}
2096 
2097 	ubifs_assert(c->lst.taken_empty_lebs > 0);
2098 	return 0;
2099 }
2100 #endif
2101 
2102 const struct super_operations ubifs_super_operations = {
2103 	.alloc_inode   = ubifs_alloc_inode,
2104 #ifndef __UBOOT__
2105 	.destroy_inode = ubifs_destroy_inode,
2106 	.put_super     = ubifs_put_super,
2107 	.write_inode   = ubifs_write_inode,
2108 	.evict_inode   = ubifs_evict_inode,
2109 	.statfs        = ubifs_statfs,
2110 #endif
2111 	.dirty_inode   = ubifs_dirty_inode,
2112 #ifndef __UBOOT__
2113 	.remount_fs    = ubifs_remount_fs,
2114 	.show_options  = ubifs_show_options,
2115 	.sync_fs       = ubifs_sync_fs,
2116 #endif
2117 };
2118 
2119 /**
2120  * open_ubi - parse UBI device name string and open the UBI device.
2121  * @name: UBI volume name
2122  * @mode: UBI volume open mode
2123  *
2124  * The primary method of mounting UBIFS is by specifying the UBI volume
2125  * character device node path. However, UBIFS may also be mounted withoug any
2126  * character device node using one of the following methods:
2127  *
2128  * o ubiX_Y    - mount UBI device number X, volume Y;
2129  * o ubiY      - mount UBI device number 0, volume Y;
2130  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2131  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2132  *
2133  * Alternative '!' separator may be used instead of ':' (because some shells
2134  * like busybox may interpret ':' as an NFS host name separator). This function
2135  * returns UBI volume description object in case of success and a negative
2136  * error code in case of failure.
2137  */
2138 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2139 {
2140 #ifndef __UBOOT__
2141 	struct ubi_volume_desc *ubi;
2142 #endif
2143 	int dev, vol;
2144 	char *endptr;
2145 
2146 #ifndef __UBOOT__
2147 	/* First, try to open using the device node path method */
2148 	ubi = ubi_open_volume_path(name, mode);
2149 	if (!IS_ERR(ubi))
2150 		return ubi;
2151 #endif
2152 
2153 	/* Try the "nodev" method */
2154 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2155 		return ERR_PTR(-EINVAL);
2156 
2157 	/* ubi:NAME method */
2158 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2159 		return ubi_open_volume_nm(0, name + 4, mode);
2160 
2161 	if (!isdigit(name[3]))
2162 		return ERR_PTR(-EINVAL);
2163 
2164 	dev = simple_strtoul(name + 3, &endptr, 0);
2165 
2166 	/* ubiY method */
2167 	if (*endptr == '\0')
2168 		return ubi_open_volume(0, dev, mode);
2169 
2170 	/* ubiX_Y method */
2171 	if (*endptr == '_' && isdigit(endptr[1])) {
2172 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2173 		if (*endptr != '\0')
2174 			return ERR_PTR(-EINVAL);
2175 		return ubi_open_volume(dev, vol, mode);
2176 	}
2177 
2178 	/* ubiX:NAME method */
2179 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2180 		return ubi_open_volume_nm(dev, ++endptr, mode);
2181 
2182 	return ERR_PTR(-EINVAL);
2183 }
2184 
2185 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2186 {
2187 	struct ubifs_info *c;
2188 
2189 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2190 	if (c) {
2191 		spin_lock_init(&c->cnt_lock);
2192 		spin_lock_init(&c->cs_lock);
2193 		spin_lock_init(&c->buds_lock);
2194 		spin_lock_init(&c->space_lock);
2195 		spin_lock_init(&c->orphan_lock);
2196 		init_rwsem(&c->commit_sem);
2197 		mutex_init(&c->lp_mutex);
2198 		mutex_init(&c->tnc_mutex);
2199 		mutex_init(&c->log_mutex);
2200 		mutex_init(&c->mst_mutex);
2201 		mutex_init(&c->umount_mutex);
2202 		mutex_init(&c->bu_mutex);
2203 		mutex_init(&c->write_reserve_mutex);
2204 		init_waitqueue_head(&c->cmt_wq);
2205 		c->buds = RB_ROOT;
2206 		c->old_idx = RB_ROOT;
2207 		c->size_tree = RB_ROOT;
2208 		c->orph_tree = RB_ROOT;
2209 		INIT_LIST_HEAD(&c->infos_list);
2210 		INIT_LIST_HEAD(&c->idx_gc);
2211 		INIT_LIST_HEAD(&c->replay_list);
2212 		INIT_LIST_HEAD(&c->replay_buds);
2213 		INIT_LIST_HEAD(&c->uncat_list);
2214 		INIT_LIST_HEAD(&c->empty_list);
2215 		INIT_LIST_HEAD(&c->freeable_list);
2216 		INIT_LIST_HEAD(&c->frdi_idx_list);
2217 		INIT_LIST_HEAD(&c->unclean_leb_list);
2218 		INIT_LIST_HEAD(&c->old_buds);
2219 		INIT_LIST_HEAD(&c->orph_list);
2220 		INIT_LIST_HEAD(&c->orph_new);
2221 		c->no_chk_data_crc = 1;
2222 
2223 		c->highest_inum = UBIFS_FIRST_INO;
2224 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2225 
2226 		ubi_get_volume_info(ubi, &c->vi);
2227 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2228 	}
2229 	return c;
2230 }
2231 
2232 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2233 {
2234 	struct ubifs_info *c = sb->s_fs_info;
2235 	struct inode *root;
2236 	int err;
2237 
2238 	c->vfs_sb = sb;
2239 #ifndef __UBOOT__
2240 	/* Re-open the UBI device in read-write mode */
2241 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2242 #else
2243 	/* U-Boot read only mode */
2244 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2245 #endif
2246 
2247 	if (IS_ERR(c->ubi)) {
2248 		err = PTR_ERR(c->ubi);
2249 		goto out;
2250 	}
2251 
2252 #ifndef __UBOOT__
2253 	/*
2254 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2255 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2256 	 * which means the user would have to wait not just for their own I/O
2257 	 * but the read-ahead I/O as well i.e. completely pointless.
2258 	 *
2259 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2260 	 */
2261 	co>bdi.name = "ubifs",
2262 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
2263 	err  = bdi_init(&c->bdi);
2264 	if (err)
2265 		goto out_close;
2266 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2267 			   c->vi.ubi_num, c->vi.vol_id);
2268 	if (err)
2269 		goto out_bdi;
2270 
2271 	err = ubifs_parse_options(c, data, 0);
2272 	if (err)
2273 		goto out_bdi;
2274 
2275 	sb->s_bdi = &c->bdi;
2276 #endif
2277 	sb->s_fs_info = c;
2278 	sb->s_magic = UBIFS_SUPER_MAGIC;
2279 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2280 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2281 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2282 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2283 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2284 	sb->s_op = &ubifs_super_operations;
2285 
2286 	mutex_lock(&c->umount_mutex);
2287 	err = mount_ubifs(c);
2288 	if (err) {
2289 		ubifs_assert(err < 0);
2290 		goto out_unlock;
2291 	}
2292 
2293 	/* Read the root inode */
2294 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2295 	if (IS_ERR(root)) {
2296 		err = PTR_ERR(root);
2297 		goto out_umount;
2298 	}
2299 
2300 #ifndef __UBOOT__
2301 	sb->s_root = d_make_root(root);
2302 	if (!sb->s_root) {
2303 		err = -ENOMEM;
2304 		goto out_umount;
2305 	}
2306 #else
2307 	sb->s_root = NULL;
2308 #endif
2309 
2310 	mutex_unlock(&c->umount_mutex);
2311 	return 0;
2312 
2313 out_umount:
2314 	ubifs_umount(c);
2315 out_unlock:
2316 	mutex_unlock(&c->umount_mutex);
2317 #ifndef __UBOOT__
2318 out_bdi:
2319 	bdi_destroy(&c->bdi);
2320 out_close:
2321 #endif
2322 	ubi_close_volume(c->ubi);
2323 out:
2324 	return err;
2325 }
2326 
2327 static int sb_test(struct super_block *sb, void *data)
2328 {
2329 	struct ubifs_info *c1 = data;
2330 	struct ubifs_info *c = sb->s_fs_info;
2331 
2332 	return c->vi.cdev == c1->vi.cdev;
2333 }
2334 
2335 static int sb_set(struct super_block *sb, void *data)
2336 {
2337 	sb->s_fs_info = data;
2338 	return set_anon_super(sb, NULL);
2339 }
2340 
2341 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2342 {
2343 	struct super_block *s;
2344 	int err;
2345 
2346 	s = kzalloc(sizeof(struct super_block),  GFP_USER);
2347 	if (!s) {
2348 		err = -ENOMEM;
2349 		return ERR_PTR(err);
2350 	}
2351 
2352 	INIT_HLIST_NODE(&s->s_instances);
2353 	INIT_LIST_HEAD(&s->s_inodes);
2354 	s->s_time_gran = 1000000000;
2355 	s->s_flags = flags;
2356 
2357 	return s;
2358 }
2359 
2360 /**
2361  *	sget	-	find or create a superblock
2362  *	@type:	filesystem type superblock should belong to
2363  *	@test:	comparison callback
2364  *	@set:	setup callback
2365  *	@flags:	mount flags
2366  *	@data:	argument to each of them
2367  */
2368 struct super_block *sget(struct file_system_type *type,
2369 			int (*test)(struct super_block *,void *),
2370 			int (*set)(struct super_block *,void *),
2371 			int flags,
2372 			void *data)
2373 {
2374 	struct super_block *s = NULL;
2375 #ifndef __UBOOT__
2376 	struct super_block *old;
2377 #endif
2378 	int err;
2379 
2380 #ifndef __UBOOT__
2381 retry:
2382 	spin_lock(&sb_lock);
2383 	if (test) {
2384 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2385 			if (!test(old, data))
2386 				continue;
2387 			if (!grab_super(old))
2388 				goto retry;
2389 			if (s) {
2390 				up_write(&s->s_umount);
2391 				destroy_super(s);
2392 				s = NULL;
2393 			}
2394 			return old;
2395 		}
2396 	}
2397 #endif
2398 	if (!s) {
2399 		spin_unlock(&sb_lock);
2400 		s = alloc_super(type, flags);
2401 		if (!s)
2402 			return ERR_PTR(-ENOMEM);
2403 #ifndef __UBOOT__
2404 		goto retry;
2405 #endif
2406 	}
2407 
2408 	err = set(s, data);
2409 	if (err) {
2410 #ifndef __UBOOT__
2411 		spin_unlock(&sb_lock);
2412 		up_write(&s->s_umount);
2413 		destroy_super(s);
2414 #endif
2415 		return ERR_PTR(err);
2416 	}
2417 	s->s_type = type;
2418 #ifndef __UBOOT__
2419 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
2420 #else
2421 	strncpy(s->s_id, type->name, sizeof(s->s_id));
2422 #endif
2423 	list_add_tail(&s->s_list, &super_blocks);
2424 	hlist_add_head(&s->s_instances, &type->fs_supers);
2425 #ifndef __UBOOT__
2426 	spin_unlock(&sb_lock);
2427 	get_filesystem(type);
2428 	register_shrinker(&s->s_shrink);
2429 #endif
2430 	return s;
2431 }
2432 
2433 EXPORT_SYMBOL(sget);
2434 
2435 
2436 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2437 			const char *name, void *data)
2438 {
2439 	struct ubi_volume_desc *ubi;
2440 	struct ubifs_info *c;
2441 	struct super_block *sb;
2442 	int err;
2443 
2444 	dbg_gen("name %s, flags %#x", name, flags);
2445 
2446 	/*
2447 	 * Get UBI device number and volume ID. Mount it read-only so far
2448 	 * because this might be a new mount point, and UBI allows only one
2449 	 * read-write user at a time.
2450 	 */
2451 	ubi = open_ubi(name, UBI_READONLY);
2452 	if (IS_ERR(ubi)) {
2453 		ubifs_err("cannot open \"%s\", error %d",
2454 			  name, (int)PTR_ERR(ubi));
2455 		return ERR_CAST(ubi);
2456 	}
2457 
2458 	c = alloc_ubifs_info(ubi);
2459 	if (!c) {
2460 		err = -ENOMEM;
2461 		goto out_close;
2462 	}
2463 
2464 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2465 
2466 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2467 	if (IS_ERR(sb)) {
2468 		err = PTR_ERR(sb);
2469 		kfree(c);
2470 		goto out_close;
2471 	}
2472 
2473 	if (sb->s_root) {
2474 		struct ubifs_info *c1 = sb->s_fs_info;
2475 		kfree(c);
2476 		/* A new mount point for already mounted UBIFS */
2477 		dbg_gen("this ubi volume is already mounted");
2478 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2479 			err = -EBUSY;
2480 			goto out_deact;
2481 		}
2482 	} else {
2483 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2484 		if (err)
2485 			goto out_deact;
2486 		/* We do not support atime */
2487 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2488 	}
2489 
2490 	/* 'fill_super()' opens ubi again so we must close it here */
2491 	ubi_close_volume(ubi);
2492 
2493 #ifdef __UBOOT__
2494 	ubifs_sb = sb;
2495 	return 0;
2496 #else
2497 	return dget(sb->s_root);
2498 #endif
2499 
2500 out_deact:
2501 #ifndef __UBOOT__
2502 	deactivate_locked_super(sb);
2503 #endif
2504 out_close:
2505 	ubi_close_volume(ubi);
2506 	return ERR_PTR(err);
2507 }
2508 
2509 static void kill_ubifs_super(struct super_block *s)
2510 {
2511 	struct ubifs_info *c = s->s_fs_info;
2512 #ifndef __UBOOT__
2513 	kill_anon_super(s);
2514 #endif
2515 	kfree(c);
2516 }
2517 
2518 static struct file_system_type ubifs_fs_type = {
2519 	.name    = "ubifs",
2520 	.owner   = THIS_MODULE,
2521 	.mount   = ubifs_mount,
2522 	.kill_sb = kill_ubifs_super,
2523 };
2524 #ifndef __UBOOT__
2525 MODULE_ALIAS_FS("ubifs");
2526 
2527 /*
2528  * Inode slab cache constructor.
2529  */
2530 static void inode_slab_ctor(void *obj)
2531 {
2532 	struct ubifs_inode *ui = obj;
2533 	inode_init_once(&ui->vfs_inode);
2534 }
2535 
2536 static int __init ubifs_init(void)
2537 #else
2538 int ubifs_init(void)
2539 #endif
2540 {
2541 	int err;
2542 
2543 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2544 
2545 	/* Make sure node sizes are 8-byte aligned */
2546 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2547 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2548 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2549 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2550 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2551 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2552 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2553 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2554 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2555 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2556 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2557 
2558 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2559 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2560 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2561 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2562 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2563 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2564 
2565 	/* Check min. node size */
2566 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2567 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2568 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2569 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2570 
2571 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2572 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2573 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2574 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2575 
2576 	/* Defined node sizes */
2577 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2578 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2579 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2580 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2581 
2582 	/*
2583 	 * We use 2 bit wide bit-fields to store compression type, which should
2584 	 * be amended if more compressors are added. The bit-fields are:
2585 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2586 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2587 	 */
2588 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2589 
2590 	/*
2591 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2592 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2593 	 */
2594 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2595 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2596 			  (unsigned int)PAGE_CACHE_SIZE);
2597 		return -EINVAL;
2598 	}
2599 
2600 #ifndef __UBOOT__
2601 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2602 				sizeof(struct ubifs_inode), 0,
2603 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2604 				&inode_slab_ctor);
2605 	if (!ubifs_inode_slab)
2606 		return -ENOMEM;
2607 
2608 	register_shrinker(&ubifs_shrinker_info);
2609 #endif
2610 
2611 	err = ubifs_compressors_init();
2612 	if (err)
2613 		goto out_shrinker;
2614 
2615 #ifndef __UBOOT__
2616 	err = dbg_debugfs_init();
2617 	if (err)
2618 		goto out_compr;
2619 
2620 	err = register_filesystem(&ubifs_fs_type);
2621 	if (err) {
2622 		ubifs_err("cannot register file system, error %d", err);
2623 		goto out_dbg;
2624 	}
2625 #endif
2626 	return 0;
2627 
2628 #ifndef __UBOOT__
2629 out_dbg:
2630 	dbg_debugfs_exit();
2631 out_compr:
2632 	ubifs_compressors_exit();
2633 #endif
2634 out_shrinker:
2635 #ifndef __UBOOT__
2636 	unregister_shrinker(&ubifs_shrinker_info);
2637 #endif
2638 	kmem_cache_destroy(ubifs_inode_slab);
2639 	return err;
2640 }
2641 /* late_initcall to let compressors initialize first */
2642 late_initcall(ubifs_init);
2643 
2644 #ifndef __UBOOT__
2645 static void __exit ubifs_exit(void)
2646 {
2647 	ubifs_assert(list_empty(&ubifs_infos));
2648 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2649 
2650 	dbg_debugfs_exit();
2651 	ubifs_compressors_exit();
2652 	unregister_shrinker(&ubifs_shrinker_info);
2653 
2654 	/*
2655 	 * Make sure all delayed rcu free inodes are flushed before we
2656 	 * destroy cache.
2657 	 */
2658 	rcu_barrier();
2659 	kmem_cache_destroy(ubifs_inode_slab);
2660 	unregister_filesystem(&ubifs_fs_type);
2661 }
2662 module_exit(ubifs_exit);
2663 
2664 MODULE_LICENSE("GPL");
2665 MODULE_VERSION(__stringify(UBIFS_VERSION));
2666 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2667 MODULE_DESCRIPTION("UBIFS - UBI File System");
2668 #else
2669 int uboot_ubifs_mount(char *vol_name)
2670 {
2671 	struct dentry *ret;
2672 	int flags;
2673 
2674 	/*
2675 	 * First unmount if allready mounted
2676 	 */
2677 	if (ubifs_sb)
2678 		ubifs_umount(ubifs_sb->s_fs_info);
2679 
2680 	/*
2681 	 * Mount in read-only mode
2682 	 */
2683 	flags = MS_RDONLY;
2684 	ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2685 	if (IS_ERR(ret)) {
2686 		printf("Error reading superblock on volume '%s' " \
2687 			"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2688 		return -1;
2689 	}
2690 
2691 	return 0;
2692 }
2693 #endif
2694