1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 */ 11 12 /* 13 * This file implements UBIFS initialization and VFS superblock operations. Some 14 * initialization stuff which is rather large and complex is placed at 15 * corresponding subsystems, but most of it is here. 16 */ 17 18 #ifndef __UBOOT__ 19 #include <linux/init.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/kthread.h> 24 #include <linux/parser.h> 25 #include <linux/seq_file.h> 26 #include <linux/mount.h> 27 #include <linux/math64.h> 28 #include <linux/writeback.h> 29 #else 30 31 #include <linux/compat.h> 32 #include <linux/stat.h> 33 #include <linux/err.h> 34 #include "ubifs.h" 35 #include <ubi_uboot.h> 36 #include <mtd/ubi-user.h> 37 38 struct dentry; 39 struct file; 40 struct iattr; 41 struct kstat; 42 struct vfsmount; 43 44 #define INODE_LOCKED_MAX 64 45 46 struct super_block *ubifs_sb; 47 LIST_HEAD(super_blocks); 48 49 static struct inode *inodes_locked_down[INODE_LOCKED_MAX]; 50 51 int set_anon_super(struct super_block *s, void *data) 52 { 53 return 0; 54 } 55 56 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 57 { 58 struct inode *inode; 59 60 inode = (struct inode *)malloc_cache_aligned( 61 sizeof(struct ubifs_inode)); 62 if (inode) { 63 inode->i_ino = ino; 64 inode->i_sb = sb; 65 list_add(&inode->i_sb_list, &sb->s_inodes); 66 inode->i_state = I_LOCK | I_NEW; 67 } 68 69 return inode; 70 } 71 72 void iget_failed(struct inode *inode) 73 { 74 } 75 76 int ubifs_iput(struct inode *inode) 77 { 78 list_del_init(&inode->i_sb_list); 79 80 free(inode); 81 return 0; 82 } 83 84 /* 85 * Lock (save) inode in inode array for readback after recovery 86 */ 87 void iput(struct inode *inode) 88 { 89 int i; 90 struct inode *ino; 91 92 /* 93 * Search end of list 94 */ 95 for (i = 0; i < INODE_LOCKED_MAX; i++) { 96 if (inodes_locked_down[i] == NULL) 97 break; 98 } 99 100 if (i >= INODE_LOCKED_MAX) { 101 ubifs_err("Error, can't lock (save) more inodes while recovery!!!"); 102 return; 103 } 104 105 /* 106 * Allocate and use new inode 107 */ 108 ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode)); 109 memcpy(ino, inode, sizeof(struct ubifs_inode)); 110 111 /* 112 * Finally save inode in array 113 */ 114 inodes_locked_down[i] = ino; 115 } 116 117 /* from fs/inode.c */ 118 /** 119 * clear_nlink - directly zero an inode's link count 120 * @inode: inode 121 * 122 * This is a low-level filesystem helper to replace any 123 * direct filesystem manipulation of i_nlink. See 124 * drop_nlink() for why we care about i_nlink hitting zero. 125 */ 126 void clear_nlink(struct inode *inode) 127 { 128 if (inode->i_nlink) { 129 inode->__i_nlink = 0; 130 atomic_long_inc(&inode->i_sb->s_remove_count); 131 } 132 } 133 EXPORT_SYMBOL(clear_nlink); 134 135 /** 136 * set_nlink - directly set an inode's link count 137 * @inode: inode 138 * @nlink: new nlink (should be non-zero) 139 * 140 * This is a low-level filesystem helper to replace any 141 * direct filesystem manipulation of i_nlink. 142 */ 143 void set_nlink(struct inode *inode, unsigned int nlink) 144 { 145 if (!nlink) { 146 clear_nlink(inode); 147 } else { 148 /* Yes, some filesystems do change nlink from zero to one */ 149 if (inode->i_nlink == 0) 150 atomic_long_dec(&inode->i_sb->s_remove_count); 151 152 inode->__i_nlink = nlink; 153 } 154 } 155 EXPORT_SYMBOL(set_nlink); 156 157 /* from include/linux/fs.h */ 158 static inline void i_uid_write(struct inode *inode, uid_t uid) 159 { 160 inode->i_uid.val = uid; 161 } 162 163 static inline void i_gid_write(struct inode *inode, gid_t gid) 164 { 165 inode->i_gid.val = gid; 166 } 167 168 void unlock_new_inode(struct inode *inode) 169 { 170 return; 171 } 172 #endif 173 174 /* 175 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 176 * allocating too much. 177 */ 178 #define UBIFS_KMALLOC_OK (128*1024) 179 180 /* Slab cache for UBIFS inodes */ 181 struct kmem_cache *ubifs_inode_slab; 182 183 #ifndef __UBOOT__ 184 /* UBIFS TNC shrinker description */ 185 static struct shrinker ubifs_shrinker_info = { 186 .scan_objects = ubifs_shrink_scan, 187 .count_objects = ubifs_shrink_count, 188 .seeks = DEFAULT_SEEKS, 189 }; 190 #endif 191 192 /** 193 * validate_inode - validate inode. 194 * @c: UBIFS file-system description object 195 * @inode: the inode to validate 196 * 197 * This is a helper function for 'ubifs_iget()' which validates various fields 198 * of a newly built inode to make sure they contain sane values and prevent 199 * possible vulnerabilities. Returns zero if the inode is all right and 200 * a non-zero error code if not. 201 */ 202 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 203 { 204 int err; 205 const struct ubifs_inode *ui = ubifs_inode(inode); 206 207 if (inode->i_size > c->max_inode_sz) { 208 ubifs_err("inode is too large (%lld)", 209 (long long)inode->i_size); 210 return 1; 211 } 212 213 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 214 ubifs_err("unknown compression type %d", ui->compr_type); 215 return 2; 216 } 217 218 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 219 return 3; 220 221 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 222 return 4; 223 224 if (ui->xattr && !S_ISREG(inode->i_mode)) 225 return 5; 226 227 if (!ubifs_compr_present(ui->compr_type)) { 228 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in", 229 inode->i_ino, ubifs_compr_name(ui->compr_type)); 230 } 231 232 err = dbg_check_dir(c, inode); 233 return err; 234 } 235 236 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 237 { 238 int err; 239 union ubifs_key key; 240 struct ubifs_ino_node *ino; 241 struct ubifs_info *c = sb->s_fs_info; 242 struct inode *inode; 243 struct ubifs_inode *ui; 244 #ifdef __UBOOT__ 245 int i; 246 #endif 247 248 dbg_gen("inode %lu", inum); 249 250 #ifdef __UBOOT__ 251 /* 252 * U-Boot special handling of locked down inodes via recovery 253 * e.g. ubifs_recover_size() 254 */ 255 for (i = 0; i < INODE_LOCKED_MAX; i++) { 256 /* 257 * Exit on last entry (NULL), inode not found in list 258 */ 259 if (inodes_locked_down[i] == NULL) 260 break; 261 262 if (inodes_locked_down[i]->i_ino == inum) { 263 /* 264 * We found the locked down inode in our array, 265 * so just return this pointer instead of creating 266 * a new one. 267 */ 268 return inodes_locked_down[i]; 269 } 270 } 271 #endif 272 273 inode = iget_locked(sb, inum); 274 if (!inode) 275 return ERR_PTR(-ENOMEM); 276 if (!(inode->i_state & I_NEW)) 277 return inode; 278 ui = ubifs_inode(inode); 279 280 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 281 if (!ino) { 282 err = -ENOMEM; 283 goto out; 284 } 285 286 ino_key_init(c, &key, inode->i_ino); 287 288 err = ubifs_tnc_lookup(c, &key, ino); 289 if (err) 290 goto out_ino; 291 292 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 293 set_nlink(inode, le32_to_cpu(ino->nlink)); 294 i_uid_write(inode, le32_to_cpu(ino->uid)); 295 i_gid_write(inode, le32_to_cpu(ino->gid)); 296 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 297 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 298 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 299 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 300 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 301 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 302 inode->i_mode = le32_to_cpu(ino->mode); 303 inode->i_size = le64_to_cpu(ino->size); 304 305 ui->data_len = le32_to_cpu(ino->data_len); 306 ui->flags = le32_to_cpu(ino->flags); 307 ui->compr_type = le16_to_cpu(ino->compr_type); 308 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 309 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 310 ui->xattr_size = le32_to_cpu(ino->xattr_size); 311 ui->xattr_names = le32_to_cpu(ino->xattr_names); 312 ui->synced_i_size = ui->ui_size = inode->i_size; 313 314 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 315 316 err = validate_inode(c, inode); 317 if (err) 318 goto out_invalid; 319 320 #ifndef __UBOOT__ 321 /* Disable read-ahead */ 322 inode->i_mapping->backing_dev_info = &c->bdi; 323 324 switch (inode->i_mode & S_IFMT) { 325 case S_IFREG: 326 inode->i_mapping->a_ops = &ubifs_file_address_operations; 327 inode->i_op = &ubifs_file_inode_operations; 328 inode->i_fop = &ubifs_file_operations; 329 if (ui->xattr) { 330 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 331 if (!ui->data) { 332 err = -ENOMEM; 333 goto out_ino; 334 } 335 memcpy(ui->data, ino->data, ui->data_len); 336 ((char *)ui->data)[ui->data_len] = '\0'; 337 } else if (ui->data_len != 0) { 338 err = 10; 339 goto out_invalid; 340 } 341 break; 342 case S_IFDIR: 343 inode->i_op = &ubifs_dir_inode_operations; 344 inode->i_fop = &ubifs_dir_operations; 345 if (ui->data_len != 0) { 346 err = 11; 347 goto out_invalid; 348 } 349 break; 350 case S_IFLNK: 351 inode->i_op = &ubifs_symlink_inode_operations; 352 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 353 err = 12; 354 goto out_invalid; 355 } 356 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 357 if (!ui->data) { 358 err = -ENOMEM; 359 goto out_ino; 360 } 361 memcpy(ui->data, ino->data, ui->data_len); 362 ((char *)ui->data)[ui->data_len] = '\0'; 363 break; 364 case S_IFBLK: 365 case S_IFCHR: 366 { 367 dev_t rdev; 368 union ubifs_dev_desc *dev; 369 370 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 371 if (!ui->data) { 372 err = -ENOMEM; 373 goto out_ino; 374 } 375 376 dev = (union ubifs_dev_desc *)ino->data; 377 if (ui->data_len == sizeof(dev->new)) 378 rdev = new_decode_dev(le32_to_cpu(dev->new)); 379 else if (ui->data_len == sizeof(dev->huge)) 380 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 381 else { 382 err = 13; 383 goto out_invalid; 384 } 385 memcpy(ui->data, ino->data, ui->data_len); 386 inode->i_op = &ubifs_file_inode_operations; 387 init_special_inode(inode, inode->i_mode, rdev); 388 break; 389 } 390 case S_IFSOCK: 391 case S_IFIFO: 392 inode->i_op = &ubifs_file_inode_operations; 393 init_special_inode(inode, inode->i_mode, 0); 394 if (ui->data_len != 0) { 395 err = 14; 396 goto out_invalid; 397 } 398 break; 399 default: 400 err = 15; 401 goto out_invalid; 402 } 403 #else 404 if ((inode->i_mode & S_IFMT) == S_IFLNK) { 405 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 406 err = 12; 407 goto out_invalid; 408 } 409 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 410 if (!ui->data) { 411 err = -ENOMEM; 412 goto out_ino; 413 } 414 memcpy(ui->data, ino->data, ui->data_len); 415 ((char *)ui->data)[ui->data_len] = '\0'; 416 } 417 #endif 418 419 kfree(ino); 420 #ifndef __UBOOT__ 421 ubifs_set_inode_flags(inode); 422 #endif 423 unlock_new_inode(inode); 424 return inode; 425 426 out_invalid: 427 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 428 ubifs_dump_node(c, ino); 429 ubifs_dump_inode(c, inode); 430 err = -EINVAL; 431 out_ino: 432 kfree(ino); 433 out: 434 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 435 iget_failed(inode); 436 return ERR_PTR(err); 437 } 438 439 static struct inode *ubifs_alloc_inode(struct super_block *sb) 440 { 441 struct ubifs_inode *ui; 442 443 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 444 if (!ui) 445 return NULL; 446 447 memset((void *)ui + sizeof(struct inode), 0, 448 sizeof(struct ubifs_inode) - sizeof(struct inode)); 449 mutex_init(&ui->ui_mutex); 450 spin_lock_init(&ui->ui_lock); 451 return &ui->vfs_inode; 452 }; 453 454 #ifndef __UBOOT__ 455 static void ubifs_i_callback(struct rcu_head *head) 456 { 457 struct inode *inode = container_of(head, struct inode, i_rcu); 458 struct ubifs_inode *ui = ubifs_inode(inode); 459 kmem_cache_free(ubifs_inode_slab, ui); 460 } 461 462 static void ubifs_destroy_inode(struct inode *inode) 463 { 464 struct ubifs_inode *ui = ubifs_inode(inode); 465 466 kfree(ui->data); 467 call_rcu(&inode->i_rcu, ubifs_i_callback); 468 } 469 470 /* 471 * Note, Linux write-back code calls this without 'i_mutex'. 472 */ 473 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 474 { 475 int err = 0; 476 struct ubifs_info *c = inode->i_sb->s_fs_info; 477 struct ubifs_inode *ui = ubifs_inode(inode); 478 479 ubifs_assert(!ui->xattr); 480 if (is_bad_inode(inode)) 481 return 0; 482 483 mutex_lock(&ui->ui_mutex); 484 /* 485 * Due to races between write-back forced by budgeting 486 * (see 'sync_some_inodes()') and background write-back, the inode may 487 * have already been synchronized, do not do this again. This might 488 * also happen if it was synchronized in an VFS operation, e.g. 489 * 'ubifs_link()'. 490 */ 491 if (!ui->dirty) { 492 mutex_unlock(&ui->ui_mutex); 493 return 0; 494 } 495 496 /* 497 * As an optimization, do not write orphan inodes to the media just 498 * because this is not needed. 499 */ 500 dbg_gen("inode %lu, mode %#x, nlink %u", 501 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 502 if (inode->i_nlink) { 503 err = ubifs_jnl_write_inode(c, inode); 504 if (err) 505 ubifs_err("can't write inode %lu, error %d", 506 inode->i_ino, err); 507 else 508 err = dbg_check_inode_size(c, inode, ui->ui_size); 509 } 510 511 ui->dirty = 0; 512 mutex_unlock(&ui->ui_mutex); 513 ubifs_release_dirty_inode_budget(c, ui); 514 return err; 515 } 516 517 static void ubifs_evict_inode(struct inode *inode) 518 { 519 int err; 520 struct ubifs_info *c = inode->i_sb->s_fs_info; 521 struct ubifs_inode *ui = ubifs_inode(inode); 522 523 if (ui->xattr) 524 /* 525 * Extended attribute inode deletions are fully handled in 526 * 'ubifs_removexattr()'. These inodes are special and have 527 * limited usage, so there is nothing to do here. 528 */ 529 goto out; 530 531 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 532 ubifs_assert(!atomic_read(&inode->i_count)); 533 534 truncate_inode_pages_final(&inode->i_data); 535 536 if (inode->i_nlink) 537 goto done; 538 539 if (is_bad_inode(inode)) 540 goto out; 541 542 ui->ui_size = inode->i_size = 0; 543 err = ubifs_jnl_delete_inode(c, inode); 544 if (err) 545 /* 546 * Worst case we have a lost orphan inode wasting space, so a 547 * simple error message is OK here. 548 */ 549 ubifs_err("can't delete inode %lu, error %d", 550 inode->i_ino, err); 551 552 out: 553 if (ui->dirty) 554 ubifs_release_dirty_inode_budget(c, ui); 555 else { 556 /* We've deleted something - clean the "no space" flags */ 557 c->bi.nospace = c->bi.nospace_rp = 0; 558 smp_wmb(); 559 } 560 done: 561 clear_inode(inode); 562 } 563 #endif 564 565 static void ubifs_dirty_inode(struct inode *inode, int flags) 566 { 567 struct ubifs_inode *ui = ubifs_inode(inode); 568 569 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 570 if (!ui->dirty) { 571 ui->dirty = 1; 572 dbg_gen("inode %lu", inode->i_ino); 573 } 574 } 575 576 #ifndef __UBOOT__ 577 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 578 { 579 struct ubifs_info *c = dentry->d_sb->s_fs_info; 580 unsigned long long free; 581 __le32 *uuid = (__le32 *)c->uuid; 582 583 free = ubifs_get_free_space(c); 584 dbg_gen("free space %lld bytes (%lld blocks)", 585 free, free >> UBIFS_BLOCK_SHIFT); 586 587 buf->f_type = UBIFS_SUPER_MAGIC; 588 buf->f_bsize = UBIFS_BLOCK_SIZE; 589 buf->f_blocks = c->block_cnt; 590 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 591 if (free > c->report_rp_size) 592 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 593 else 594 buf->f_bavail = 0; 595 buf->f_files = 0; 596 buf->f_ffree = 0; 597 buf->f_namelen = UBIFS_MAX_NLEN; 598 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 599 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 600 ubifs_assert(buf->f_bfree <= c->block_cnt); 601 return 0; 602 } 603 604 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 605 { 606 struct ubifs_info *c = root->d_sb->s_fs_info; 607 608 if (c->mount_opts.unmount_mode == 2) 609 seq_printf(s, ",fast_unmount"); 610 else if (c->mount_opts.unmount_mode == 1) 611 seq_printf(s, ",norm_unmount"); 612 613 if (c->mount_opts.bulk_read == 2) 614 seq_printf(s, ",bulk_read"); 615 else if (c->mount_opts.bulk_read == 1) 616 seq_printf(s, ",no_bulk_read"); 617 618 if (c->mount_opts.chk_data_crc == 2) 619 seq_printf(s, ",chk_data_crc"); 620 else if (c->mount_opts.chk_data_crc == 1) 621 seq_printf(s, ",no_chk_data_crc"); 622 623 if (c->mount_opts.override_compr) { 624 seq_printf(s, ",compr=%s", 625 ubifs_compr_name(c->mount_opts.compr_type)); 626 } 627 628 return 0; 629 } 630 631 static int ubifs_sync_fs(struct super_block *sb, int wait) 632 { 633 int i, err; 634 struct ubifs_info *c = sb->s_fs_info; 635 636 /* 637 * Zero @wait is just an advisory thing to help the file system shove 638 * lots of data into the queues, and there will be the second 639 * '->sync_fs()' call, with non-zero @wait. 640 */ 641 if (!wait) 642 return 0; 643 644 /* 645 * Synchronize write buffers, because 'ubifs_run_commit()' does not 646 * do this if it waits for an already running commit. 647 */ 648 for (i = 0; i < c->jhead_cnt; i++) { 649 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 650 if (err) 651 return err; 652 } 653 654 /* 655 * Strictly speaking, it is not necessary to commit the journal here, 656 * synchronizing write-buffers would be enough. But committing makes 657 * UBIFS free space predictions much more accurate, so we want to let 658 * the user be able to get more accurate results of 'statfs()' after 659 * they synchronize the file system. 660 */ 661 err = ubifs_run_commit(c); 662 if (err) 663 return err; 664 665 return ubi_sync(c->vi.ubi_num); 666 } 667 #endif 668 669 /** 670 * init_constants_early - initialize UBIFS constants. 671 * @c: UBIFS file-system description object 672 * 673 * This function initialize UBIFS constants which do not need the superblock to 674 * be read. It also checks that the UBI volume satisfies basic UBIFS 675 * requirements. Returns zero in case of success and a negative error code in 676 * case of failure. 677 */ 678 static int init_constants_early(struct ubifs_info *c) 679 { 680 if (c->vi.corrupted) { 681 ubifs_warn("UBI volume is corrupted - read-only mode"); 682 c->ro_media = 1; 683 } 684 685 if (c->di.ro_mode) { 686 ubifs_msg("read-only UBI device"); 687 c->ro_media = 1; 688 } 689 690 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 691 ubifs_msg("static UBI volume - read-only mode"); 692 c->ro_media = 1; 693 } 694 695 c->leb_cnt = c->vi.size; 696 c->leb_size = c->vi.usable_leb_size; 697 c->leb_start = c->di.leb_start; 698 c->half_leb_size = c->leb_size / 2; 699 c->min_io_size = c->di.min_io_size; 700 c->min_io_shift = fls(c->min_io_size) - 1; 701 c->max_write_size = c->di.max_write_size; 702 c->max_write_shift = fls(c->max_write_size) - 1; 703 704 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 705 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 706 c->leb_size, UBIFS_MIN_LEB_SZ); 707 return -EINVAL; 708 } 709 710 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 711 ubifs_err("too few LEBs (%d), min. is %d", 712 c->leb_cnt, UBIFS_MIN_LEB_CNT); 713 return -EINVAL; 714 } 715 716 if (!is_power_of_2(c->min_io_size)) { 717 ubifs_err("bad min. I/O size %d", c->min_io_size); 718 return -EINVAL; 719 } 720 721 /* 722 * Maximum write size has to be greater or equivalent to min. I/O 723 * size, and be multiple of min. I/O size. 724 */ 725 if (c->max_write_size < c->min_io_size || 726 c->max_write_size % c->min_io_size || 727 !is_power_of_2(c->max_write_size)) { 728 ubifs_err("bad write buffer size %d for %d min. I/O unit", 729 c->max_write_size, c->min_io_size); 730 return -EINVAL; 731 } 732 733 /* 734 * UBIFS aligns all node to 8-byte boundary, so to make function in 735 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 736 * less than 8. 737 */ 738 if (c->min_io_size < 8) { 739 c->min_io_size = 8; 740 c->min_io_shift = 3; 741 if (c->max_write_size < c->min_io_size) { 742 c->max_write_size = c->min_io_size; 743 c->max_write_shift = c->min_io_shift; 744 } 745 } 746 747 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 748 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 749 750 /* 751 * Initialize node length ranges which are mostly needed for node 752 * length validation. 753 */ 754 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 755 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 756 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 757 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 758 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 759 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 760 761 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 762 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 763 c->ranges[UBIFS_ORPH_NODE].min_len = 764 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 765 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 766 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 767 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 768 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 769 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 770 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 771 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 772 /* 773 * Minimum indexing node size is amended later when superblock is 774 * read and the key length is known. 775 */ 776 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 777 /* 778 * Maximum indexing node size is amended later when superblock is 779 * read and the fanout is known. 780 */ 781 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 782 783 /* 784 * Initialize dead and dark LEB space watermarks. See gc.c for comments 785 * about these values. 786 */ 787 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 788 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 789 790 /* 791 * Calculate how many bytes would be wasted at the end of LEB if it was 792 * fully filled with data nodes of maximum size. This is used in 793 * calculations when reporting free space. 794 */ 795 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 796 797 /* Buffer size for bulk-reads */ 798 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 799 if (c->max_bu_buf_len > c->leb_size) 800 c->max_bu_buf_len = c->leb_size; 801 return 0; 802 } 803 804 /** 805 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 806 * @c: UBIFS file-system description object 807 * @lnum: LEB the write-buffer was synchronized to 808 * @free: how many free bytes left in this LEB 809 * @pad: how many bytes were padded 810 * 811 * This is a callback function which is called by the I/O unit when the 812 * write-buffer is synchronized. We need this to correctly maintain space 813 * accounting in bud logical eraseblocks. This function returns zero in case of 814 * success and a negative error code in case of failure. 815 * 816 * This function actually belongs to the journal, but we keep it here because 817 * we want to keep it static. 818 */ 819 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 820 { 821 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 822 } 823 824 /* 825 * init_constants_sb - initialize UBIFS constants. 826 * @c: UBIFS file-system description object 827 * 828 * This is a helper function which initializes various UBIFS constants after 829 * the superblock has been read. It also checks various UBIFS parameters and 830 * makes sure they are all right. Returns zero in case of success and a 831 * negative error code in case of failure. 832 */ 833 static int init_constants_sb(struct ubifs_info *c) 834 { 835 int tmp, err; 836 long long tmp64; 837 838 c->main_bytes = (long long)c->main_lebs * c->leb_size; 839 c->max_znode_sz = sizeof(struct ubifs_znode) + 840 c->fanout * sizeof(struct ubifs_zbranch); 841 842 tmp = ubifs_idx_node_sz(c, 1); 843 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 844 c->min_idx_node_sz = ALIGN(tmp, 8); 845 846 tmp = ubifs_idx_node_sz(c, c->fanout); 847 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 848 c->max_idx_node_sz = ALIGN(tmp, 8); 849 850 /* Make sure LEB size is large enough to fit full commit */ 851 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 852 tmp = ALIGN(tmp, c->min_io_size); 853 if (tmp > c->leb_size) { 854 ubifs_err("too small LEB size %d, at least %d needed", 855 c->leb_size, tmp); 856 return -EINVAL; 857 } 858 859 /* 860 * Make sure that the log is large enough to fit reference nodes for 861 * all buds plus one reserved LEB. 862 */ 863 tmp64 = c->max_bud_bytes + c->leb_size - 1; 864 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 865 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 866 tmp /= c->leb_size; 867 tmp += 1; 868 if (c->log_lebs < tmp) { 869 ubifs_err("too small log %d LEBs, required min. %d LEBs", 870 c->log_lebs, tmp); 871 return -EINVAL; 872 } 873 874 /* 875 * When budgeting we assume worst-case scenarios when the pages are not 876 * be compressed and direntries are of the maximum size. 877 * 878 * Note, data, which may be stored in inodes is budgeted separately, so 879 * it is not included into 'c->bi.inode_budget'. 880 */ 881 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 882 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 883 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 884 885 /* 886 * When the amount of flash space used by buds becomes 887 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 888 * The writers are unblocked when the commit is finished. To avoid 889 * writers to be blocked UBIFS initiates background commit in advance, 890 * when number of bud bytes becomes above the limit defined below. 891 */ 892 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 893 894 /* 895 * Ensure minimum journal size. All the bytes in the journal heads are 896 * considered to be used, when calculating the current journal usage. 897 * Consequently, if the journal is too small, UBIFS will treat it as 898 * always full. 899 */ 900 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 901 if (c->bg_bud_bytes < tmp64) 902 c->bg_bud_bytes = tmp64; 903 if (c->max_bud_bytes < tmp64 + c->leb_size) 904 c->max_bud_bytes = tmp64 + c->leb_size; 905 906 err = ubifs_calc_lpt_geom(c); 907 if (err) 908 return err; 909 910 /* Initialize effective LEB size used in budgeting calculations */ 911 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 912 return 0; 913 } 914 915 /* 916 * init_constants_master - initialize UBIFS constants. 917 * @c: UBIFS file-system description object 918 * 919 * This is a helper function which initializes various UBIFS constants after 920 * the master node has been read. It also checks various UBIFS parameters and 921 * makes sure they are all right. 922 */ 923 static void init_constants_master(struct ubifs_info *c) 924 { 925 long long tmp64; 926 927 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 928 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 929 930 /* 931 * Calculate total amount of FS blocks. This number is not used 932 * internally because it does not make much sense for UBIFS, but it is 933 * necessary to report something for the 'statfs()' call. 934 * 935 * Subtract the LEB reserved for GC, the LEB which is reserved for 936 * deletions, minimum LEBs for the index, and assume only one journal 937 * head is available. 938 */ 939 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 940 tmp64 *= (long long)c->leb_size - c->leb_overhead; 941 tmp64 = ubifs_reported_space(c, tmp64); 942 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 943 } 944 945 /** 946 * take_gc_lnum - reserve GC LEB. 947 * @c: UBIFS file-system description object 948 * 949 * This function ensures that the LEB reserved for garbage collection is marked 950 * as "taken" in lprops. We also have to set free space to LEB size and dirty 951 * space to zero, because lprops may contain out-of-date information if the 952 * file-system was un-mounted before it has been committed. This function 953 * returns zero in case of success and a negative error code in case of 954 * failure. 955 */ 956 static int take_gc_lnum(struct ubifs_info *c) 957 { 958 int err; 959 960 if (c->gc_lnum == -1) { 961 ubifs_err("no LEB for GC"); 962 return -EINVAL; 963 } 964 965 /* And we have to tell lprops that this LEB is taken */ 966 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 967 LPROPS_TAKEN, 0, 0); 968 return err; 969 } 970 971 /** 972 * alloc_wbufs - allocate write-buffers. 973 * @c: UBIFS file-system description object 974 * 975 * This helper function allocates and initializes UBIFS write-buffers. Returns 976 * zero in case of success and %-ENOMEM in case of failure. 977 */ 978 static int alloc_wbufs(struct ubifs_info *c) 979 { 980 int i, err; 981 982 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 983 GFP_KERNEL); 984 if (!c->jheads) 985 return -ENOMEM; 986 987 /* Initialize journal heads */ 988 for (i = 0; i < c->jhead_cnt; i++) { 989 INIT_LIST_HEAD(&c->jheads[i].buds_list); 990 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 991 if (err) 992 return err; 993 994 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 995 c->jheads[i].wbuf.jhead = i; 996 c->jheads[i].grouped = 1; 997 } 998 999 /* 1000 * Garbage Collector head does not need to be synchronized by timer. 1001 * Also GC head nodes are not grouped. 1002 */ 1003 c->jheads[GCHD].wbuf.no_timer = 1; 1004 c->jheads[GCHD].grouped = 0; 1005 1006 return 0; 1007 } 1008 1009 /** 1010 * free_wbufs - free write-buffers. 1011 * @c: UBIFS file-system description object 1012 */ 1013 static void free_wbufs(struct ubifs_info *c) 1014 { 1015 int i; 1016 1017 if (c->jheads) { 1018 for (i = 0; i < c->jhead_cnt; i++) { 1019 kfree(c->jheads[i].wbuf.buf); 1020 kfree(c->jheads[i].wbuf.inodes); 1021 } 1022 kfree(c->jheads); 1023 c->jheads = NULL; 1024 } 1025 } 1026 1027 /** 1028 * free_orphans - free orphans. 1029 * @c: UBIFS file-system description object 1030 */ 1031 static void free_orphans(struct ubifs_info *c) 1032 { 1033 struct ubifs_orphan *orph; 1034 1035 while (c->orph_dnext) { 1036 orph = c->orph_dnext; 1037 c->orph_dnext = orph->dnext; 1038 list_del(&orph->list); 1039 kfree(orph); 1040 } 1041 1042 while (!list_empty(&c->orph_list)) { 1043 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 1044 list_del(&orph->list); 1045 kfree(orph); 1046 ubifs_err("orphan list not empty at unmount"); 1047 } 1048 1049 vfree(c->orph_buf); 1050 c->orph_buf = NULL; 1051 } 1052 1053 /** 1054 * free_buds - free per-bud objects. 1055 * @c: UBIFS file-system description object 1056 */ 1057 static void free_buds(struct ubifs_info *c) 1058 { 1059 struct ubifs_bud *bud, *n; 1060 1061 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 1062 kfree(bud); 1063 } 1064 1065 /** 1066 * check_volume_empty - check if the UBI volume is empty. 1067 * @c: UBIFS file-system description object 1068 * 1069 * This function checks if the UBIFS volume is empty by looking if its LEBs are 1070 * mapped or not. The result of checking is stored in the @c->empty variable. 1071 * Returns zero in case of success and a negative error code in case of 1072 * failure. 1073 */ 1074 static int check_volume_empty(struct ubifs_info *c) 1075 { 1076 int lnum, err; 1077 1078 c->empty = 1; 1079 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 1080 err = ubifs_is_mapped(c, lnum); 1081 if (unlikely(err < 0)) 1082 return err; 1083 if (err == 1) { 1084 c->empty = 0; 1085 break; 1086 } 1087 1088 cond_resched(); 1089 } 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * UBIFS mount options. 1096 * 1097 * Opt_fast_unmount: do not run a journal commit before un-mounting 1098 * Opt_norm_unmount: run a journal commit before un-mounting 1099 * Opt_bulk_read: enable bulk-reads 1100 * Opt_no_bulk_read: disable bulk-reads 1101 * Opt_chk_data_crc: check CRCs when reading data nodes 1102 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 1103 * Opt_override_compr: override default compressor 1104 * Opt_err: just end of array marker 1105 */ 1106 enum { 1107 Opt_fast_unmount, 1108 Opt_norm_unmount, 1109 Opt_bulk_read, 1110 Opt_no_bulk_read, 1111 Opt_chk_data_crc, 1112 Opt_no_chk_data_crc, 1113 Opt_override_compr, 1114 Opt_err, 1115 }; 1116 1117 #ifndef __UBOOT__ 1118 static const match_table_t tokens = { 1119 {Opt_fast_unmount, "fast_unmount"}, 1120 {Opt_norm_unmount, "norm_unmount"}, 1121 {Opt_bulk_read, "bulk_read"}, 1122 {Opt_no_bulk_read, "no_bulk_read"}, 1123 {Opt_chk_data_crc, "chk_data_crc"}, 1124 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 1125 {Opt_override_compr, "compr=%s"}, 1126 {Opt_err, NULL}, 1127 }; 1128 1129 /** 1130 * parse_standard_option - parse a standard mount option. 1131 * @option: the option to parse 1132 * 1133 * Normally, standard mount options like "sync" are passed to file-systems as 1134 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 1135 * be present in the options string. This function tries to deal with this 1136 * situation and parse standard options. Returns 0 if the option was not 1137 * recognized, and the corresponding integer flag if it was. 1138 * 1139 * UBIFS is only interested in the "sync" option, so do not check for anything 1140 * else. 1141 */ 1142 static int parse_standard_option(const char *option) 1143 { 1144 ubifs_msg("parse %s", option); 1145 if (!strcmp(option, "sync")) 1146 return MS_SYNCHRONOUS; 1147 return 0; 1148 } 1149 1150 /** 1151 * ubifs_parse_options - parse mount parameters. 1152 * @c: UBIFS file-system description object 1153 * @options: parameters to parse 1154 * @is_remount: non-zero if this is FS re-mount 1155 * 1156 * This function parses UBIFS mount options and returns zero in case success 1157 * and a negative error code in case of failure. 1158 */ 1159 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1160 int is_remount) 1161 { 1162 char *p; 1163 substring_t args[MAX_OPT_ARGS]; 1164 1165 if (!options) 1166 return 0; 1167 1168 while ((p = strsep(&options, ","))) { 1169 int token; 1170 1171 if (!*p) 1172 continue; 1173 1174 token = match_token(p, tokens, args); 1175 switch (token) { 1176 /* 1177 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1178 * We accept them in order to be backward-compatible. But this 1179 * should be removed at some point. 1180 */ 1181 case Opt_fast_unmount: 1182 c->mount_opts.unmount_mode = 2; 1183 break; 1184 case Opt_norm_unmount: 1185 c->mount_opts.unmount_mode = 1; 1186 break; 1187 case Opt_bulk_read: 1188 c->mount_opts.bulk_read = 2; 1189 c->bulk_read = 1; 1190 break; 1191 case Opt_no_bulk_read: 1192 c->mount_opts.bulk_read = 1; 1193 c->bulk_read = 0; 1194 break; 1195 case Opt_chk_data_crc: 1196 c->mount_opts.chk_data_crc = 2; 1197 c->no_chk_data_crc = 0; 1198 break; 1199 case Opt_no_chk_data_crc: 1200 c->mount_opts.chk_data_crc = 1; 1201 c->no_chk_data_crc = 1; 1202 break; 1203 case Opt_override_compr: 1204 { 1205 char *name = match_strdup(&args[0]); 1206 1207 if (!name) 1208 return -ENOMEM; 1209 if (!strcmp(name, "none")) 1210 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1211 else if (!strcmp(name, "lzo")) 1212 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1213 else if (!strcmp(name, "zlib")) 1214 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1215 else { 1216 ubifs_err("unknown compressor \"%s\"", name); 1217 kfree(name); 1218 return -EINVAL; 1219 } 1220 kfree(name); 1221 c->mount_opts.override_compr = 1; 1222 c->default_compr = c->mount_opts.compr_type; 1223 break; 1224 } 1225 default: 1226 { 1227 unsigned long flag; 1228 struct super_block *sb = c->vfs_sb; 1229 1230 flag = parse_standard_option(p); 1231 if (!flag) { 1232 ubifs_err("unrecognized mount option \"%s\" or missing value", 1233 p); 1234 return -EINVAL; 1235 } 1236 sb->s_flags |= flag; 1237 break; 1238 } 1239 } 1240 } 1241 1242 return 0; 1243 } 1244 #endif 1245 1246 /** 1247 * destroy_journal - destroy journal data structures. 1248 * @c: UBIFS file-system description object 1249 * 1250 * This function destroys journal data structures including those that may have 1251 * been created by recovery functions. 1252 */ 1253 static void destroy_journal(struct ubifs_info *c) 1254 { 1255 while (!list_empty(&c->unclean_leb_list)) { 1256 struct ubifs_unclean_leb *ucleb; 1257 1258 ucleb = list_entry(c->unclean_leb_list.next, 1259 struct ubifs_unclean_leb, list); 1260 list_del(&ucleb->list); 1261 kfree(ucleb); 1262 } 1263 while (!list_empty(&c->old_buds)) { 1264 struct ubifs_bud *bud; 1265 1266 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1267 list_del(&bud->list); 1268 kfree(bud); 1269 } 1270 ubifs_destroy_idx_gc(c); 1271 ubifs_destroy_size_tree(c); 1272 ubifs_tnc_close(c); 1273 free_buds(c); 1274 } 1275 1276 /** 1277 * bu_init - initialize bulk-read information. 1278 * @c: UBIFS file-system description object 1279 */ 1280 static void bu_init(struct ubifs_info *c) 1281 { 1282 ubifs_assert(c->bulk_read == 1); 1283 1284 if (c->bu.buf) 1285 return; /* Already initialized */ 1286 1287 again: 1288 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1289 if (!c->bu.buf) { 1290 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1291 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1292 goto again; 1293 } 1294 1295 /* Just disable bulk-read */ 1296 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it", 1297 c->max_bu_buf_len); 1298 c->mount_opts.bulk_read = 1; 1299 c->bulk_read = 0; 1300 return; 1301 } 1302 } 1303 1304 #ifndef __UBOOT__ 1305 /** 1306 * check_free_space - check if there is enough free space to mount. 1307 * @c: UBIFS file-system description object 1308 * 1309 * This function makes sure UBIFS has enough free space to be mounted in 1310 * read/write mode. UBIFS must always have some free space to allow deletions. 1311 */ 1312 static int check_free_space(struct ubifs_info *c) 1313 { 1314 ubifs_assert(c->dark_wm > 0); 1315 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1316 ubifs_err("insufficient free space to mount in R/W mode"); 1317 ubifs_dump_budg(c, &c->bi); 1318 ubifs_dump_lprops(c); 1319 return -ENOSPC; 1320 } 1321 return 0; 1322 } 1323 #endif 1324 1325 /** 1326 * mount_ubifs - mount UBIFS file-system. 1327 * @c: UBIFS file-system description object 1328 * 1329 * This function mounts UBIFS file system. Returns zero in case of success and 1330 * a negative error code in case of failure. 1331 */ 1332 static int mount_ubifs(struct ubifs_info *c) 1333 { 1334 int err; 1335 long long x, y; 1336 size_t sz; 1337 1338 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1339 #ifdef __UBOOT__ 1340 if (!c->ro_mount) { 1341 printf("UBIFS: only ro mode in U-Boot allowed.\n"); 1342 return -EACCES; 1343 } 1344 #endif 1345 1346 err = init_constants_early(c); 1347 if (err) 1348 return err; 1349 1350 err = ubifs_debugging_init(c); 1351 if (err) 1352 return err; 1353 1354 err = check_volume_empty(c); 1355 if (err) 1356 goto out_free; 1357 1358 if (c->empty && (c->ro_mount || c->ro_media)) { 1359 /* 1360 * This UBI volume is empty, and read-only, or the file system 1361 * is mounted read-only - we cannot format it. 1362 */ 1363 ubifs_err("can't format empty UBI volume: read-only %s", 1364 c->ro_media ? "UBI volume" : "mount"); 1365 err = -EROFS; 1366 goto out_free; 1367 } 1368 1369 if (c->ro_media && !c->ro_mount) { 1370 ubifs_err("cannot mount read-write - read-only media"); 1371 err = -EROFS; 1372 goto out_free; 1373 } 1374 1375 /* 1376 * The requirement for the buffer is that it should fit indexing B-tree 1377 * height amount of integers. We assume the height if the TNC tree will 1378 * never exceed 64. 1379 */ 1380 err = -ENOMEM; 1381 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1382 if (!c->bottom_up_buf) 1383 goto out_free; 1384 1385 c->sbuf = vmalloc(c->leb_size); 1386 if (!c->sbuf) 1387 goto out_free; 1388 1389 #ifndef __UBOOT__ 1390 if (!c->ro_mount) { 1391 c->ileb_buf = vmalloc(c->leb_size); 1392 if (!c->ileb_buf) 1393 goto out_free; 1394 } 1395 #endif 1396 1397 if (c->bulk_read == 1) 1398 bu_init(c); 1399 1400 #ifndef __UBOOT__ 1401 if (!c->ro_mount) { 1402 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1403 GFP_KERNEL); 1404 if (!c->write_reserve_buf) 1405 goto out_free; 1406 } 1407 #endif 1408 1409 c->mounting = 1; 1410 1411 err = ubifs_read_superblock(c); 1412 if (err) 1413 goto out_free; 1414 1415 /* 1416 * Make sure the compressor which is set as default in the superblock 1417 * or overridden by mount options is actually compiled in. 1418 */ 1419 if (!ubifs_compr_present(c->default_compr)) { 1420 ubifs_err("'compressor \"%s\" is not compiled in", 1421 ubifs_compr_name(c->default_compr)); 1422 err = -ENOTSUPP; 1423 goto out_free; 1424 } 1425 1426 err = init_constants_sb(c); 1427 if (err) 1428 goto out_free; 1429 1430 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1431 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1432 c->cbuf = kmalloc(sz, GFP_NOFS); 1433 if (!c->cbuf) { 1434 err = -ENOMEM; 1435 goto out_free; 1436 } 1437 1438 err = alloc_wbufs(c); 1439 if (err) 1440 goto out_cbuf; 1441 1442 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1443 #ifndef __UBOOT__ 1444 if (!c->ro_mount) { 1445 /* Create background thread */ 1446 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1447 if (IS_ERR(c->bgt)) { 1448 err = PTR_ERR(c->bgt); 1449 c->bgt = NULL; 1450 ubifs_err("cannot spawn \"%s\", error %d", 1451 c->bgt_name, err); 1452 goto out_wbufs; 1453 } 1454 wake_up_process(c->bgt); 1455 } 1456 #endif 1457 1458 err = ubifs_read_master(c); 1459 if (err) 1460 goto out_master; 1461 1462 init_constants_master(c); 1463 1464 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1465 ubifs_msg("recovery needed"); 1466 c->need_recovery = 1; 1467 } 1468 1469 #ifndef __UBOOT__ 1470 if (c->need_recovery && !c->ro_mount) { 1471 err = ubifs_recover_inl_heads(c, c->sbuf); 1472 if (err) 1473 goto out_master; 1474 } 1475 #endif 1476 1477 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1478 if (err) 1479 goto out_master; 1480 1481 #ifndef __UBOOT__ 1482 if (!c->ro_mount && c->space_fixup) { 1483 err = ubifs_fixup_free_space(c); 1484 if (err) 1485 goto out_lpt; 1486 } 1487 1488 if (!c->ro_mount) { 1489 /* 1490 * Set the "dirty" flag so that if we reboot uncleanly we 1491 * will notice this immediately on the next mount. 1492 */ 1493 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1494 err = ubifs_write_master(c); 1495 if (err) 1496 goto out_lpt; 1497 } 1498 #endif 1499 1500 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1501 if (err) 1502 goto out_lpt; 1503 1504 err = ubifs_replay_journal(c); 1505 if (err) 1506 goto out_journal; 1507 1508 /* Calculate 'min_idx_lebs' after journal replay */ 1509 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1510 1511 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1512 if (err) 1513 goto out_orphans; 1514 1515 if (!c->ro_mount) { 1516 #ifndef __UBOOT__ 1517 int lnum; 1518 1519 err = check_free_space(c); 1520 if (err) 1521 goto out_orphans; 1522 1523 /* Check for enough log space */ 1524 lnum = c->lhead_lnum + 1; 1525 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1526 lnum = UBIFS_LOG_LNUM; 1527 if (lnum == c->ltail_lnum) { 1528 err = ubifs_consolidate_log(c); 1529 if (err) 1530 goto out_orphans; 1531 } 1532 1533 if (c->need_recovery) { 1534 err = ubifs_recover_size(c); 1535 if (err) 1536 goto out_orphans; 1537 err = ubifs_rcvry_gc_commit(c); 1538 if (err) 1539 goto out_orphans; 1540 } else { 1541 err = take_gc_lnum(c); 1542 if (err) 1543 goto out_orphans; 1544 1545 /* 1546 * GC LEB may contain garbage if there was an unclean 1547 * reboot, and it should be un-mapped. 1548 */ 1549 err = ubifs_leb_unmap(c, c->gc_lnum); 1550 if (err) 1551 goto out_orphans; 1552 } 1553 1554 err = dbg_check_lprops(c); 1555 if (err) 1556 goto out_orphans; 1557 #endif 1558 } else if (c->need_recovery) { 1559 err = ubifs_recover_size(c); 1560 if (err) 1561 goto out_orphans; 1562 } else { 1563 /* 1564 * Even if we mount read-only, we have to set space in GC LEB 1565 * to proper value because this affects UBIFS free space 1566 * reporting. We do not want to have a situation when 1567 * re-mounting from R/O to R/W changes amount of free space. 1568 */ 1569 err = take_gc_lnum(c); 1570 if (err) 1571 goto out_orphans; 1572 } 1573 1574 #ifndef __UBOOT__ 1575 spin_lock(&ubifs_infos_lock); 1576 list_add_tail(&c->infos_list, &ubifs_infos); 1577 spin_unlock(&ubifs_infos_lock); 1578 #endif 1579 1580 if (c->need_recovery) { 1581 if (c->ro_mount) 1582 ubifs_msg("recovery deferred"); 1583 else { 1584 c->need_recovery = 0; 1585 ubifs_msg("recovery completed"); 1586 /* 1587 * GC LEB has to be empty and taken at this point. But 1588 * the journal head LEBs may also be accounted as 1589 * "empty taken" if they are empty. 1590 */ 1591 ubifs_assert(c->lst.taken_empty_lebs > 0); 1592 } 1593 } else 1594 ubifs_assert(c->lst.taken_empty_lebs > 0); 1595 1596 err = dbg_check_filesystem(c); 1597 if (err) 1598 goto out_infos; 1599 1600 err = dbg_debugfs_init_fs(c); 1601 if (err) 1602 goto out_infos; 1603 1604 c->mounting = 0; 1605 1606 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s", 1607 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1608 c->ro_mount ? ", R/O mode" : ""); 1609 x = (long long)c->main_lebs * c->leb_size; 1610 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1611 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1612 c->leb_size, c->leb_size >> 10, c->min_io_size, 1613 c->max_write_size); 1614 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1615 x, x >> 20, c->main_lebs, 1616 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1617 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1618 c->report_rp_size, c->report_rp_size >> 10); 1619 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1620 c->fmt_version, c->ro_compat_version, 1621 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1622 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1623 1624 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1625 dbg_gen("data journal heads: %d", 1626 c->jhead_cnt - NONDATA_JHEADS_CNT); 1627 dbg_gen("log LEBs: %d (%d - %d)", 1628 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1629 dbg_gen("LPT area LEBs: %d (%d - %d)", 1630 c->lpt_lebs, c->lpt_first, c->lpt_last); 1631 dbg_gen("orphan area LEBs: %d (%d - %d)", 1632 c->orph_lebs, c->orph_first, c->orph_last); 1633 dbg_gen("main area LEBs: %d (%d - %d)", 1634 c->main_lebs, c->main_first, c->leb_cnt - 1); 1635 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1636 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1637 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1638 c->bi.old_idx_sz >> 20); 1639 dbg_gen("key hash type: %d", c->key_hash_type); 1640 dbg_gen("tree fanout: %d", c->fanout); 1641 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1642 dbg_gen("max. znode size %d", c->max_znode_sz); 1643 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1644 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1645 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1646 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1647 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1648 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1649 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1650 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1651 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1652 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1653 dbg_gen("dead watermark: %d", c->dead_wm); 1654 dbg_gen("dark watermark: %d", c->dark_wm); 1655 dbg_gen("LEB overhead: %d", c->leb_overhead); 1656 x = (long long)c->main_lebs * c->dark_wm; 1657 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1658 x, x >> 10, x >> 20); 1659 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1660 c->max_bud_bytes, c->max_bud_bytes >> 10, 1661 c->max_bud_bytes >> 20); 1662 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1663 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1664 c->bg_bud_bytes >> 20); 1665 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1666 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1667 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1668 dbg_gen("commit number: %llu", c->cmt_no); 1669 1670 return 0; 1671 1672 out_infos: 1673 spin_lock(&ubifs_infos_lock); 1674 list_del(&c->infos_list); 1675 spin_unlock(&ubifs_infos_lock); 1676 out_orphans: 1677 free_orphans(c); 1678 out_journal: 1679 destroy_journal(c); 1680 out_lpt: 1681 ubifs_lpt_free(c, 0); 1682 out_master: 1683 kfree(c->mst_node); 1684 kfree(c->rcvrd_mst_node); 1685 if (c->bgt) 1686 kthread_stop(c->bgt); 1687 #ifndef __UBOOT__ 1688 out_wbufs: 1689 #endif 1690 free_wbufs(c); 1691 out_cbuf: 1692 kfree(c->cbuf); 1693 out_free: 1694 kfree(c->write_reserve_buf); 1695 kfree(c->bu.buf); 1696 vfree(c->ileb_buf); 1697 vfree(c->sbuf); 1698 kfree(c->bottom_up_buf); 1699 ubifs_debugging_exit(c); 1700 return err; 1701 } 1702 1703 /** 1704 * ubifs_umount - un-mount UBIFS file-system. 1705 * @c: UBIFS file-system description object 1706 * 1707 * Note, this function is called to free allocated resourced when un-mounting, 1708 * as well as free resources when an error occurred while we were half way 1709 * through mounting (error path cleanup function). So it has to make sure the 1710 * resource was actually allocated before freeing it. 1711 */ 1712 #ifndef __UBOOT__ 1713 static void ubifs_umount(struct ubifs_info *c) 1714 #else 1715 void ubifs_umount(struct ubifs_info *c) 1716 #endif 1717 { 1718 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1719 c->vi.vol_id); 1720 1721 dbg_debugfs_exit_fs(c); 1722 spin_lock(&ubifs_infos_lock); 1723 list_del(&c->infos_list); 1724 spin_unlock(&ubifs_infos_lock); 1725 1726 #ifndef __UBOOT__ 1727 if (c->bgt) 1728 kthread_stop(c->bgt); 1729 1730 destroy_journal(c); 1731 #endif 1732 free_wbufs(c); 1733 free_orphans(c); 1734 ubifs_lpt_free(c, 0); 1735 1736 kfree(c->cbuf); 1737 kfree(c->rcvrd_mst_node); 1738 kfree(c->mst_node); 1739 kfree(c->write_reserve_buf); 1740 kfree(c->bu.buf); 1741 vfree(c->ileb_buf); 1742 vfree(c->sbuf); 1743 kfree(c->bottom_up_buf); 1744 ubifs_debugging_exit(c); 1745 #ifdef __UBOOT__ 1746 /* Finally free U-Boot's global copy of superblock */ 1747 if (ubifs_sb != NULL) { 1748 free(ubifs_sb->s_fs_info); 1749 free(ubifs_sb); 1750 } 1751 #endif 1752 } 1753 1754 #ifndef __UBOOT__ 1755 /** 1756 * ubifs_remount_rw - re-mount in read-write mode. 1757 * @c: UBIFS file-system description object 1758 * 1759 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1760 * mode. This function allocates the needed resources and re-mounts UBIFS in 1761 * read-write mode. 1762 */ 1763 static int ubifs_remount_rw(struct ubifs_info *c) 1764 { 1765 int err, lnum; 1766 1767 if (c->rw_incompat) { 1768 ubifs_err("the file-system is not R/W-compatible"); 1769 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1770 c->fmt_version, c->ro_compat_version, 1771 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1772 return -EROFS; 1773 } 1774 1775 mutex_lock(&c->umount_mutex); 1776 dbg_save_space_info(c); 1777 c->remounting_rw = 1; 1778 c->ro_mount = 0; 1779 1780 if (c->space_fixup) { 1781 err = ubifs_fixup_free_space(c); 1782 if (err) 1783 goto out; 1784 } 1785 1786 err = check_free_space(c); 1787 if (err) 1788 goto out; 1789 1790 if (c->old_leb_cnt != c->leb_cnt) { 1791 struct ubifs_sb_node *sup; 1792 1793 sup = ubifs_read_sb_node(c); 1794 if (IS_ERR(sup)) { 1795 err = PTR_ERR(sup); 1796 goto out; 1797 } 1798 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1799 err = ubifs_write_sb_node(c, sup); 1800 kfree(sup); 1801 if (err) 1802 goto out; 1803 } 1804 1805 if (c->need_recovery) { 1806 ubifs_msg("completing deferred recovery"); 1807 err = ubifs_write_rcvrd_mst_node(c); 1808 if (err) 1809 goto out; 1810 err = ubifs_recover_size(c); 1811 if (err) 1812 goto out; 1813 err = ubifs_clean_lebs(c, c->sbuf); 1814 if (err) 1815 goto out; 1816 err = ubifs_recover_inl_heads(c, c->sbuf); 1817 if (err) 1818 goto out; 1819 } else { 1820 /* A readonly mount is not allowed to have orphans */ 1821 ubifs_assert(c->tot_orphans == 0); 1822 err = ubifs_clear_orphans(c); 1823 if (err) 1824 goto out; 1825 } 1826 1827 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1828 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1829 err = ubifs_write_master(c); 1830 if (err) 1831 goto out; 1832 } 1833 1834 c->ileb_buf = vmalloc(c->leb_size); 1835 if (!c->ileb_buf) { 1836 err = -ENOMEM; 1837 goto out; 1838 } 1839 1840 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1841 if (!c->write_reserve_buf) { 1842 err = -ENOMEM; 1843 goto out; 1844 } 1845 1846 err = ubifs_lpt_init(c, 0, 1); 1847 if (err) 1848 goto out; 1849 1850 /* Create background thread */ 1851 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1852 if (IS_ERR(c->bgt)) { 1853 err = PTR_ERR(c->bgt); 1854 c->bgt = NULL; 1855 ubifs_err("cannot spawn \"%s\", error %d", 1856 c->bgt_name, err); 1857 goto out; 1858 } 1859 wake_up_process(c->bgt); 1860 1861 c->orph_buf = vmalloc(c->leb_size); 1862 if (!c->orph_buf) { 1863 err = -ENOMEM; 1864 goto out; 1865 } 1866 1867 /* Check for enough log space */ 1868 lnum = c->lhead_lnum + 1; 1869 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1870 lnum = UBIFS_LOG_LNUM; 1871 if (lnum == c->ltail_lnum) { 1872 err = ubifs_consolidate_log(c); 1873 if (err) 1874 goto out; 1875 } 1876 1877 if (c->need_recovery) 1878 err = ubifs_rcvry_gc_commit(c); 1879 else 1880 err = ubifs_leb_unmap(c, c->gc_lnum); 1881 if (err) 1882 goto out; 1883 1884 dbg_gen("re-mounted read-write"); 1885 c->remounting_rw = 0; 1886 1887 if (c->need_recovery) { 1888 c->need_recovery = 0; 1889 ubifs_msg("deferred recovery completed"); 1890 } else { 1891 /* 1892 * Do not run the debugging space check if the were doing 1893 * recovery, because when we saved the information we had the 1894 * file-system in a state where the TNC and lprops has been 1895 * modified in memory, but all the I/O operations (including a 1896 * commit) were deferred. So the file-system was in 1897 * "non-committed" state. Now the file-system is in committed 1898 * state, and of course the amount of free space will change 1899 * because, for example, the old index size was imprecise. 1900 */ 1901 err = dbg_check_space_info(c); 1902 } 1903 1904 mutex_unlock(&c->umount_mutex); 1905 return err; 1906 1907 out: 1908 c->ro_mount = 1; 1909 vfree(c->orph_buf); 1910 c->orph_buf = NULL; 1911 if (c->bgt) { 1912 kthread_stop(c->bgt); 1913 c->bgt = NULL; 1914 } 1915 free_wbufs(c); 1916 kfree(c->write_reserve_buf); 1917 c->write_reserve_buf = NULL; 1918 vfree(c->ileb_buf); 1919 c->ileb_buf = NULL; 1920 ubifs_lpt_free(c, 1); 1921 c->remounting_rw = 0; 1922 mutex_unlock(&c->umount_mutex); 1923 return err; 1924 } 1925 1926 /** 1927 * ubifs_remount_ro - re-mount in read-only mode. 1928 * @c: UBIFS file-system description object 1929 * 1930 * We assume VFS has stopped writing. Possibly the background thread could be 1931 * running a commit, however kthread_stop will wait in that case. 1932 */ 1933 static void ubifs_remount_ro(struct ubifs_info *c) 1934 { 1935 int i, err; 1936 1937 ubifs_assert(!c->need_recovery); 1938 ubifs_assert(!c->ro_mount); 1939 1940 mutex_lock(&c->umount_mutex); 1941 if (c->bgt) { 1942 kthread_stop(c->bgt); 1943 c->bgt = NULL; 1944 } 1945 1946 dbg_save_space_info(c); 1947 1948 for (i = 0; i < c->jhead_cnt; i++) 1949 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1950 1951 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1952 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1953 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1954 err = ubifs_write_master(c); 1955 if (err) 1956 ubifs_ro_mode(c, err); 1957 1958 vfree(c->orph_buf); 1959 c->orph_buf = NULL; 1960 kfree(c->write_reserve_buf); 1961 c->write_reserve_buf = NULL; 1962 vfree(c->ileb_buf); 1963 c->ileb_buf = NULL; 1964 ubifs_lpt_free(c, 1); 1965 c->ro_mount = 1; 1966 err = dbg_check_space_info(c); 1967 if (err) 1968 ubifs_ro_mode(c, err); 1969 mutex_unlock(&c->umount_mutex); 1970 } 1971 1972 static void ubifs_put_super(struct super_block *sb) 1973 { 1974 int i; 1975 struct ubifs_info *c = sb->s_fs_info; 1976 1977 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1978 c->vi.vol_id); 1979 1980 /* 1981 * The following asserts are only valid if there has not been a failure 1982 * of the media. For example, there will be dirty inodes if we failed 1983 * to write them back because of I/O errors. 1984 */ 1985 if (!c->ro_error) { 1986 ubifs_assert(c->bi.idx_growth == 0); 1987 ubifs_assert(c->bi.dd_growth == 0); 1988 ubifs_assert(c->bi.data_growth == 0); 1989 } 1990 1991 /* 1992 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1993 * and file system un-mount. Namely, it prevents the shrinker from 1994 * picking this superblock for shrinking - it will be just skipped if 1995 * the mutex is locked. 1996 */ 1997 mutex_lock(&c->umount_mutex); 1998 if (!c->ro_mount) { 1999 /* 2000 * First of all kill the background thread to make sure it does 2001 * not interfere with un-mounting and freeing resources. 2002 */ 2003 if (c->bgt) { 2004 kthread_stop(c->bgt); 2005 c->bgt = NULL; 2006 } 2007 2008 /* 2009 * On fatal errors c->ro_error is set to 1, in which case we do 2010 * not write the master node. 2011 */ 2012 if (!c->ro_error) { 2013 int err; 2014 2015 /* Synchronize write-buffers */ 2016 for (i = 0; i < c->jhead_cnt; i++) 2017 ubifs_wbuf_sync(&c->jheads[i].wbuf); 2018 2019 /* 2020 * We are being cleanly unmounted which means the 2021 * orphans were killed - indicate this in the master 2022 * node. Also save the reserved GC LEB number. 2023 */ 2024 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 2025 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 2026 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 2027 err = ubifs_write_master(c); 2028 if (err) 2029 /* 2030 * Recovery will attempt to fix the master area 2031 * next mount, so we just print a message and 2032 * continue to unmount normally. 2033 */ 2034 ubifs_err("failed to write master node, error %d", 2035 err); 2036 } else { 2037 #ifndef __UBOOT__ 2038 for (i = 0; i < c->jhead_cnt; i++) 2039 /* Make sure write-buffer timers are canceled */ 2040 hrtimer_cancel(&c->jheads[i].wbuf.timer); 2041 #endif 2042 } 2043 } 2044 2045 ubifs_umount(c); 2046 #ifndef __UBOOT__ 2047 bdi_destroy(&c->bdi); 2048 #endif 2049 ubi_close_volume(c->ubi); 2050 mutex_unlock(&c->umount_mutex); 2051 } 2052 #endif 2053 2054 #ifndef __UBOOT__ 2055 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 2056 { 2057 int err; 2058 struct ubifs_info *c = sb->s_fs_info; 2059 2060 sync_filesystem(sb); 2061 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 2062 2063 err = ubifs_parse_options(c, data, 1); 2064 if (err) { 2065 ubifs_err("invalid or unknown remount parameter"); 2066 return err; 2067 } 2068 2069 if (c->ro_mount && !(*flags & MS_RDONLY)) { 2070 if (c->ro_error) { 2071 ubifs_msg("cannot re-mount R/W due to prior errors"); 2072 return -EROFS; 2073 } 2074 if (c->ro_media) { 2075 ubifs_msg("cannot re-mount R/W - UBI volume is R/O"); 2076 return -EROFS; 2077 } 2078 err = ubifs_remount_rw(c); 2079 if (err) 2080 return err; 2081 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 2082 if (c->ro_error) { 2083 ubifs_msg("cannot re-mount R/O due to prior errors"); 2084 return -EROFS; 2085 } 2086 ubifs_remount_ro(c); 2087 } 2088 2089 if (c->bulk_read == 1) 2090 bu_init(c); 2091 else { 2092 dbg_gen("disable bulk-read"); 2093 kfree(c->bu.buf); 2094 c->bu.buf = NULL; 2095 } 2096 2097 ubifs_assert(c->lst.taken_empty_lebs > 0); 2098 return 0; 2099 } 2100 #endif 2101 2102 const struct super_operations ubifs_super_operations = { 2103 .alloc_inode = ubifs_alloc_inode, 2104 #ifndef __UBOOT__ 2105 .destroy_inode = ubifs_destroy_inode, 2106 .put_super = ubifs_put_super, 2107 .write_inode = ubifs_write_inode, 2108 .evict_inode = ubifs_evict_inode, 2109 .statfs = ubifs_statfs, 2110 #endif 2111 .dirty_inode = ubifs_dirty_inode, 2112 #ifndef __UBOOT__ 2113 .remount_fs = ubifs_remount_fs, 2114 .show_options = ubifs_show_options, 2115 .sync_fs = ubifs_sync_fs, 2116 #endif 2117 }; 2118 2119 /** 2120 * open_ubi - parse UBI device name string and open the UBI device. 2121 * @name: UBI volume name 2122 * @mode: UBI volume open mode 2123 * 2124 * The primary method of mounting UBIFS is by specifying the UBI volume 2125 * character device node path. However, UBIFS may also be mounted withoug any 2126 * character device node using one of the following methods: 2127 * 2128 * o ubiX_Y - mount UBI device number X, volume Y; 2129 * o ubiY - mount UBI device number 0, volume Y; 2130 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2131 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2132 * 2133 * Alternative '!' separator may be used instead of ':' (because some shells 2134 * like busybox may interpret ':' as an NFS host name separator). This function 2135 * returns UBI volume description object in case of success and a negative 2136 * error code in case of failure. 2137 */ 2138 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2139 { 2140 #ifndef __UBOOT__ 2141 struct ubi_volume_desc *ubi; 2142 #endif 2143 int dev, vol; 2144 char *endptr; 2145 2146 #ifndef __UBOOT__ 2147 /* First, try to open using the device node path method */ 2148 ubi = ubi_open_volume_path(name, mode); 2149 if (!IS_ERR(ubi)) 2150 return ubi; 2151 #endif 2152 2153 /* Try the "nodev" method */ 2154 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2155 return ERR_PTR(-EINVAL); 2156 2157 /* ubi:NAME method */ 2158 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2159 return ubi_open_volume_nm(0, name + 4, mode); 2160 2161 if (!isdigit(name[3])) 2162 return ERR_PTR(-EINVAL); 2163 2164 dev = simple_strtoul(name + 3, &endptr, 0); 2165 2166 /* ubiY method */ 2167 if (*endptr == '\0') 2168 return ubi_open_volume(0, dev, mode); 2169 2170 /* ubiX_Y method */ 2171 if (*endptr == '_' && isdigit(endptr[1])) { 2172 vol = simple_strtoul(endptr + 1, &endptr, 0); 2173 if (*endptr != '\0') 2174 return ERR_PTR(-EINVAL); 2175 return ubi_open_volume(dev, vol, mode); 2176 } 2177 2178 /* ubiX:NAME method */ 2179 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2180 return ubi_open_volume_nm(dev, ++endptr, mode); 2181 2182 return ERR_PTR(-EINVAL); 2183 } 2184 2185 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2186 { 2187 struct ubifs_info *c; 2188 2189 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2190 if (c) { 2191 spin_lock_init(&c->cnt_lock); 2192 spin_lock_init(&c->cs_lock); 2193 spin_lock_init(&c->buds_lock); 2194 spin_lock_init(&c->space_lock); 2195 spin_lock_init(&c->orphan_lock); 2196 init_rwsem(&c->commit_sem); 2197 mutex_init(&c->lp_mutex); 2198 mutex_init(&c->tnc_mutex); 2199 mutex_init(&c->log_mutex); 2200 mutex_init(&c->mst_mutex); 2201 mutex_init(&c->umount_mutex); 2202 mutex_init(&c->bu_mutex); 2203 mutex_init(&c->write_reserve_mutex); 2204 init_waitqueue_head(&c->cmt_wq); 2205 c->buds = RB_ROOT; 2206 c->old_idx = RB_ROOT; 2207 c->size_tree = RB_ROOT; 2208 c->orph_tree = RB_ROOT; 2209 INIT_LIST_HEAD(&c->infos_list); 2210 INIT_LIST_HEAD(&c->idx_gc); 2211 INIT_LIST_HEAD(&c->replay_list); 2212 INIT_LIST_HEAD(&c->replay_buds); 2213 INIT_LIST_HEAD(&c->uncat_list); 2214 INIT_LIST_HEAD(&c->empty_list); 2215 INIT_LIST_HEAD(&c->freeable_list); 2216 INIT_LIST_HEAD(&c->frdi_idx_list); 2217 INIT_LIST_HEAD(&c->unclean_leb_list); 2218 INIT_LIST_HEAD(&c->old_buds); 2219 INIT_LIST_HEAD(&c->orph_list); 2220 INIT_LIST_HEAD(&c->orph_new); 2221 c->no_chk_data_crc = 1; 2222 2223 c->highest_inum = UBIFS_FIRST_INO; 2224 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2225 2226 ubi_get_volume_info(ubi, &c->vi); 2227 ubi_get_device_info(c->vi.ubi_num, &c->di); 2228 } 2229 return c; 2230 } 2231 2232 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2233 { 2234 struct ubifs_info *c = sb->s_fs_info; 2235 struct inode *root; 2236 int err; 2237 2238 c->vfs_sb = sb; 2239 #ifndef __UBOOT__ 2240 /* Re-open the UBI device in read-write mode */ 2241 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2242 #else 2243 /* U-Boot read only mode */ 2244 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY); 2245 #endif 2246 2247 if (IS_ERR(c->ubi)) { 2248 err = PTR_ERR(c->ubi); 2249 goto out; 2250 } 2251 2252 #ifndef __UBOOT__ 2253 /* 2254 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2255 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2256 * which means the user would have to wait not just for their own I/O 2257 * but the read-ahead I/O as well i.e. completely pointless. 2258 * 2259 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2260 */ 2261 co>bdi.name = "ubifs", 2262 c->bdi.capabilities = BDI_CAP_MAP_COPY; 2263 err = bdi_init(&c->bdi); 2264 if (err) 2265 goto out_close; 2266 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2267 c->vi.ubi_num, c->vi.vol_id); 2268 if (err) 2269 goto out_bdi; 2270 2271 err = ubifs_parse_options(c, data, 0); 2272 if (err) 2273 goto out_bdi; 2274 2275 sb->s_bdi = &c->bdi; 2276 #endif 2277 sb->s_fs_info = c; 2278 sb->s_magic = UBIFS_SUPER_MAGIC; 2279 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2280 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2281 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2282 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2283 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2284 sb->s_op = &ubifs_super_operations; 2285 2286 mutex_lock(&c->umount_mutex); 2287 err = mount_ubifs(c); 2288 if (err) { 2289 ubifs_assert(err < 0); 2290 goto out_unlock; 2291 } 2292 2293 /* Read the root inode */ 2294 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2295 if (IS_ERR(root)) { 2296 err = PTR_ERR(root); 2297 goto out_umount; 2298 } 2299 2300 #ifndef __UBOOT__ 2301 sb->s_root = d_make_root(root); 2302 if (!sb->s_root) { 2303 err = -ENOMEM; 2304 goto out_umount; 2305 } 2306 #else 2307 sb->s_root = NULL; 2308 #endif 2309 2310 mutex_unlock(&c->umount_mutex); 2311 return 0; 2312 2313 out_umount: 2314 ubifs_umount(c); 2315 out_unlock: 2316 mutex_unlock(&c->umount_mutex); 2317 #ifndef __UBOOT__ 2318 out_bdi: 2319 bdi_destroy(&c->bdi); 2320 out_close: 2321 #endif 2322 ubi_close_volume(c->ubi); 2323 out: 2324 return err; 2325 } 2326 2327 static int sb_test(struct super_block *sb, void *data) 2328 { 2329 struct ubifs_info *c1 = data; 2330 struct ubifs_info *c = sb->s_fs_info; 2331 2332 return c->vi.cdev == c1->vi.cdev; 2333 } 2334 2335 static int sb_set(struct super_block *sb, void *data) 2336 { 2337 sb->s_fs_info = data; 2338 return set_anon_super(sb, NULL); 2339 } 2340 2341 static struct super_block *alloc_super(struct file_system_type *type, int flags) 2342 { 2343 struct super_block *s; 2344 int err; 2345 2346 s = kzalloc(sizeof(struct super_block), GFP_USER); 2347 if (!s) { 2348 err = -ENOMEM; 2349 return ERR_PTR(err); 2350 } 2351 2352 INIT_HLIST_NODE(&s->s_instances); 2353 INIT_LIST_HEAD(&s->s_inodes); 2354 s->s_time_gran = 1000000000; 2355 s->s_flags = flags; 2356 2357 return s; 2358 } 2359 2360 /** 2361 * sget - find or create a superblock 2362 * @type: filesystem type superblock should belong to 2363 * @test: comparison callback 2364 * @set: setup callback 2365 * @flags: mount flags 2366 * @data: argument to each of them 2367 */ 2368 struct super_block *sget(struct file_system_type *type, 2369 int (*test)(struct super_block *,void *), 2370 int (*set)(struct super_block *,void *), 2371 int flags, 2372 void *data) 2373 { 2374 struct super_block *s = NULL; 2375 #ifndef __UBOOT__ 2376 struct super_block *old; 2377 #endif 2378 int err; 2379 2380 #ifndef __UBOOT__ 2381 retry: 2382 spin_lock(&sb_lock); 2383 if (test) { 2384 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 2385 if (!test(old, data)) 2386 continue; 2387 if (!grab_super(old)) 2388 goto retry; 2389 if (s) { 2390 up_write(&s->s_umount); 2391 destroy_super(s); 2392 s = NULL; 2393 } 2394 return old; 2395 } 2396 } 2397 #endif 2398 if (!s) { 2399 spin_unlock(&sb_lock); 2400 s = alloc_super(type, flags); 2401 if (!s) 2402 return ERR_PTR(-ENOMEM); 2403 #ifndef __UBOOT__ 2404 goto retry; 2405 #endif 2406 } 2407 2408 err = set(s, data); 2409 if (err) { 2410 #ifndef __UBOOT__ 2411 spin_unlock(&sb_lock); 2412 up_write(&s->s_umount); 2413 destroy_super(s); 2414 #endif 2415 return ERR_PTR(err); 2416 } 2417 s->s_type = type; 2418 #ifndef __UBOOT__ 2419 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 2420 #else 2421 strncpy(s->s_id, type->name, sizeof(s->s_id)); 2422 #endif 2423 list_add_tail(&s->s_list, &super_blocks); 2424 hlist_add_head(&s->s_instances, &type->fs_supers); 2425 #ifndef __UBOOT__ 2426 spin_unlock(&sb_lock); 2427 get_filesystem(type); 2428 register_shrinker(&s->s_shrink); 2429 #endif 2430 return s; 2431 } 2432 2433 EXPORT_SYMBOL(sget); 2434 2435 2436 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2437 const char *name, void *data) 2438 { 2439 struct ubi_volume_desc *ubi; 2440 struct ubifs_info *c; 2441 struct super_block *sb; 2442 int err; 2443 2444 dbg_gen("name %s, flags %#x", name, flags); 2445 2446 /* 2447 * Get UBI device number and volume ID. Mount it read-only so far 2448 * because this might be a new mount point, and UBI allows only one 2449 * read-write user at a time. 2450 */ 2451 ubi = open_ubi(name, UBI_READONLY); 2452 if (IS_ERR(ubi)) { 2453 ubifs_err("cannot open \"%s\", error %d", 2454 name, (int)PTR_ERR(ubi)); 2455 return ERR_CAST(ubi); 2456 } 2457 2458 c = alloc_ubifs_info(ubi); 2459 if (!c) { 2460 err = -ENOMEM; 2461 goto out_close; 2462 } 2463 2464 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2465 2466 sb = sget(fs_type, sb_test, sb_set, flags, c); 2467 if (IS_ERR(sb)) { 2468 err = PTR_ERR(sb); 2469 kfree(c); 2470 goto out_close; 2471 } 2472 2473 if (sb->s_root) { 2474 struct ubifs_info *c1 = sb->s_fs_info; 2475 kfree(c); 2476 /* A new mount point for already mounted UBIFS */ 2477 dbg_gen("this ubi volume is already mounted"); 2478 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2479 err = -EBUSY; 2480 goto out_deact; 2481 } 2482 } else { 2483 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2484 if (err) 2485 goto out_deact; 2486 /* We do not support atime */ 2487 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2488 } 2489 2490 /* 'fill_super()' opens ubi again so we must close it here */ 2491 ubi_close_volume(ubi); 2492 2493 #ifdef __UBOOT__ 2494 ubifs_sb = sb; 2495 return 0; 2496 #else 2497 return dget(sb->s_root); 2498 #endif 2499 2500 out_deact: 2501 #ifndef __UBOOT__ 2502 deactivate_locked_super(sb); 2503 #endif 2504 out_close: 2505 ubi_close_volume(ubi); 2506 return ERR_PTR(err); 2507 } 2508 2509 static void kill_ubifs_super(struct super_block *s) 2510 { 2511 struct ubifs_info *c = s->s_fs_info; 2512 #ifndef __UBOOT__ 2513 kill_anon_super(s); 2514 #endif 2515 kfree(c); 2516 } 2517 2518 static struct file_system_type ubifs_fs_type = { 2519 .name = "ubifs", 2520 .owner = THIS_MODULE, 2521 .mount = ubifs_mount, 2522 .kill_sb = kill_ubifs_super, 2523 }; 2524 #ifndef __UBOOT__ 2525 MODULE_ALIAS_FS("ubifs"); 2526 2527 /* 2528 * Inode slab cache constructor. 2529 */ 2530 static void inode_slab_ctor(void *obj) 2531 { 2532 struct ubifs_inode *ui = obj; 2533 inode_init_once(&ui->vfs_inode); 2534 } 2535 2536 static int __init ubifs_init(void) 2537 #else 2538 int ubifs_init(void) 2539 #endif 2540 { 2541 int err; 2542 2543 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2544 2545 /* Make sure node sizes are 8-byte aligned */ 2546 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2547 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2548 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2549 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2550 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2551 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2552 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2553 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2554 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2555 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2556 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2557 2558 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2559 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2560 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2561 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2562 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2563 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2564 2565 /* Check min. node size */ 2566 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2567 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2568 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2569 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2570 2571 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2572 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2573 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2574 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2575 2576 /* Defined node sizes */ 2577 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2578 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2579 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2580 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2581 2582 /* 2583 * We use 2 bit wide bit-fields to store compression type, which should 2584 * be amended if more compressors are added. The bit-fields are: 2585 * @compr_type in 'struct ubifs_inode', @default_compr in 2586 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2587 */ 2588 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2589 2590 /* 2591 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2592 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2593 */ 2594 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2595 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2596 (unsigned int)PAGE_CACHE_SIZE); 2597 return -EINVAL; 2598 } 2599 2600 #ifndef __UBOOT__ 2601 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2602 sizeof(struct ubifs_inode), 0, 2603 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2604 &inode_slab_ctor); 2605 if (!ubifs_inode_slab) 2606 return -ENOMEM; 2607 2608 register_shrinker(&ubifs_shrinker_info); 2609 #endif 2610 2611 err = ubifs_compressors_init(); 2612 if (err) 2613 goto out_shrinker; 2614 2615 #ifndef __UBOOT__ 2616 err = dbg_debugfs_init(); 2617 if (err) 2618 goto out_compr; 2619 2620 err = register_filesystem(&ubifs_fs_type); 2621 if (err) { 2622 ubifs_err("cannot register file system, error %d", err); 2623 goto out_dbg; 2624 } 2625 #endif 2626 return 0; 2627 2628 #ifndef __UBOOT__ 2629 out_dbg: 2630 dbg_debugfs_exit(); 2631 out_compr: 2632 ubifs_compressors_exit(); 2633 #endif 2634 out_shrinker: 2635 #ifndef __UBOOT__ 2636 unregister_shrinker(&ubifs_shrinker_info); 2637 #endif 2638 kmem_cache_destroy(ubifs_inode_slab); 2639 return err; 2640 } 2641 /* late_initcall to let compressors initialize first */ 2642 late_initcall(ubifs_init); 2643 2644 #ifndef __UBOOT__ 2645 static void __exit ubifs_exit(void) 2646 { 2647 ubifs_assert(list_empty(&ubifs_infos)); 2648 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2649 2650 dbg_debugfs_exit(); 2651 ubifs_compressors_exit(); 2652 unregister_shrinker(&ubifs_shrinker_info); 2653 2654 /* 2655 * Make sure all delayed rcu free inodes are flushed before we 2656 * destroy cache. 2657 */ 2658 rcu_barrier(); 2659 kmem_cache_destroy(ubifs_inode_slab); 2660 unregister_filesystem(&ubifs_fs_type); 2661 } 2662 module_exit(ubifs_exit); 2663 2664 MODULE_LICENSE("GPL"); 2665 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2666 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2667 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2668 #else 2669 int uboot_ubifs_mount(char *vol_name) 2670 { 2671 struct dentry *ret; 2672 int flags; 2673 2674 /* 2675 * First unmount if allready mounted 2676 */ 2677 if (ubifs_sb) 2678 ubifs_umount(ubifs_sb->s_fs_info); 2679 2680 /* 2681 * Mount in read-only mode 2682 */ 2683 flags = MS_RDONLY; 2684 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL); 2685 if (IS_ERR(ret)) { 2686 printf("Error reading superblock on volume '%s' " \ 2687 "errno=%d!\n", vol_name, (int)PTR_ERR(ret)); 2688 return -1; 2689 } 2690 2691 return 0; 2692 } 2693 #endif 2694