1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 */ 11 12 /* 13 * This file implements UBIFS initialization and VFS superblock operations. Some 14 * initialization stuff which is rather large and complex is placed at 15 * corresponding subsystems, but most of it is here. 16 */ 17 18 #ifndef __UBOOT__ 19 #include <linux/init.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/kthread.h> 24 #include <linux/parser.h> 25 #include <linux/seq_file.h> 26 #include <linux/mount.h> 27 #include <linux/math64.h> 28 #include <linux/writeback.h> 29 #else 30 31 #include <common.h> 32 #include <malloc.h> 33 #include <memalign.h> 34 #include <linux/bug.h> 35 #include <linux/log2.h> 36 #include <linux/stat.h> 37 #include <linux/err.h> 38 #include "ubifs.h" 39 #include <ubi_uboot.h> 40 #include <mtd/ubi-user.h> 41 42 struct dentry; 43 struct file; 44 struct iattr; 45 struct kstat; 46 struct vfsmount; 47 48 #define INODE_LOCKED_MAX 64 49 50 struct super_block *ubifs_sb; 51 52 static struct inode *inodes_locked_down[INODE_LOCKED_MAX]; 53 54 int set_anon_super(struct super_block *s, void *data) 55 { 56 return 0; 57 } 58 59 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 60 { 61 struct inode *inode; 62 63 inode = (struct inode *)malloc_cache_aligned( 64 sizeof(struct ubifs_inode)); 65 if (inode) { 66 inode->i_ino = ino; 67 inode->i_sb = sb; 68 list_add(&inode->i_sb_list, &sb->s_inodes); 69 inode->i_state = I_LOCK | I_NEW; 70 } 71 72 return inode; 73 } 74 75 void iget_failed(struct inode *inode) 76 { 77 } 78 79 int ubifs_iput(struct inode *inode) 80 { 81 list_del_init(&inode->i_sb_list); 82 83 free(inode); 84 return 0; 85 } 86 87 /* 88 * Lock (save) inode in inode array for readback after recovery 89 */ 90 void iput(struct inode *inode) 91 { 92 int i; 93 struct inode *ino; 94 95 /* 96 * Search end of list 97 */ 98 for (i = 0; i < INODE_LOCKED_MAX; i++) { 99 if (inodes_locked_down[i] == NULL) 100 break; 101 } 102 103 if (i >= INODE_LOCKED_MAX) { 104 dbg_gen("Error, can't lock (save) more inodes while recovery!!!"); 105 return; 106 } 107 108 /* 109 * Allocate and use new inode 110 */ 111 ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode)); 112 memcpy(ino, inode, sizeof(struct ubifs_inode)); 113 114 /* 115 * Finally save inode in array 116 */ 117 inodes_locked_down[i] = ino; 118 } 119 120 /* from fs/inode.c */ 121 /** 122 * clear_nlink - directly zero an inode's link count 123 * @inode: inode 124 * 125 * This is a low-level filesystem helper to replace any 126 * direct filesystem manipulation of i_nlink. See 127 * drop_nlink() for why we care about i_nlink hitting zero. 128 */ 129 void clear_nlink(struct inode *inode) 130 { 131 if (inode->i_nlink) { 132 inode->__i_nlink = 0; 133 atomic_long_inc(&inode->i_sb->s_remove_count); 134 } 135 } 136 EXPORT_SYMBOL(clear_nlink); 137 138 /** 139 * set_nlink - directly set an inode's link count 140 * @inode: inode 141 * @nlink: new nlink (should be non-zero) 142 * 143 * This is a low-level filesystem helper to replace any 144 * direct filesystem manipulation of i_nlink. 145 */ 146 void set_nlink(struct inode *inode, unsigned int nlink) 147 { 148 if (!nlink) { 149 clear_nlink(inode); 150 } else { 151 /* Yes, some filesystems do change nlink from zero to one */ 152 if (inode->i_nlink == 0) 153 atomic_long_dec(&inode->i_sb->s_remove_count); 154 155 inode->__i_nlink = nlink; 156 } 157 } 158 EXPORT_SYMBOL(set_nlink); 159 160 /* from include/linux/fs.h */ 161 static inline void i_uid_write(struct inode *inode, uid_t uid) 162 { 163 inode->i_uid.val = uid; 164 } 165 166 static inline void i_gid_write(struct inode *inode, gid_t gid) 167 { 168 inode->i_gid.val = gid; 169 } 170 171 void unlock_new_inode(struct inode *inode) 172 { 173 return; 174 } 175 #endif 176 177 /* 178 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 179 * allocating too much. 180 */ 181 #define UBIFS_KMALLOC_OK (128*1024) 182 183 /* Slab cache for UBIFS inodes */ 184 struct kmem_cache *ubifs_inode_slab; 185 186 #ifndef __UBOOT__ 187 /* UBIFS TNC shrinker description */ 188 static struct shrinker ubifs_shrinker_info = { 189 .scan_objects = ubifs_shrink_scan, 190 .count_objects = ubifs_shrink_count, 191 .seeks = DEFAULT_SEEKS, 192 }; 193 #endif 194 195 /** 196 * validate_inode - validate inode. 197 * @c: UBIFS file-system description object 198 * @inode: the inode to validate 199 * 200 * This is a helper function for 'ubifs_iget()' which validates various fields 201 * of a newly built inode to make sure they contain sane values and prevent 202 * possible vulnerabilities. Returns zero if the inode is all right and 203 * a non-zero error code if not. 204 */ 205 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 206 { 207 int err; 208 const struct ubifs_inode *ui = ubifs_inode(inode); 209 210 if (inode->i_size > c->max_inode_sz) { 211 ubifs_err(c, "inode is too large (%lld)", 212 (long long)inode->i_size); 213 return 1; 214 } 215 216 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 217 ubifs_err(c, "unknown compression type %d", ui->compr_type); 218 return 2; 219 } 220 221 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 222 return 3; 223 224 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 225 return 4; 226 227 if (ui->xattr && !S_ISREG(inode->i_mode)) 228 return 5; 229 230 if (!ubifs_compr_present(ui->compr_type)) { 231 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 232 inode->i_ino, ubifs_compr_name(ui->compr_type)); 233 } 234 235 err = dbg_check_dir(c, inode); 236 return err; 237 } 238 239 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 240 { 241 int err; 242 union ubifs_key key; 243 struct ubifs_ino_node *ino; 244 struct ubifs_info *c = sb->s_fs_info; 245 struct inode *inode; 246 struct ubifs_inode *ui; 247 #ifdef __UBOOT__ 248 int i; 249 #endif 250 251 dbg_gen("inode %lu", inum); 252 253 #ifdef __UBOOT__ 254 /* 255 * U-Boot special handling of locked down inodes via recovery 256 * e.g. ubifs_recover_size() 257 */ 258 for (i = 0; i < INODE_LOCKED_MAX; i++) { 259 /* 260 * Exit on last entry (NULL), inode not found in list 261 */ 262 if (inodes_locked_down[i] == NULL) 263 break; 264 265 if (inodes_locked_down[i]->i_ino == inum) { 266 /* 267 * We found the locked down inode in our array, 268 * so just return this pointer instead of creating 269 * a new one. 270 */ 271 return inodes_locked_down[i]; 272 } 273 } 274 #endif 275 276 inode = iget_locked(sb, inum); 277 if (!inode) 278 return ERR_PTR(-ENOMEM); 279 if (!(inode->i_state & I_NEW)) 280 return inode; 281 ui = ubifs_inode(inode); 282 283 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 284 if (!ino) { 285 err = -ENOMEM; 286 goto out; 287 } 288 289 ino_key_init(c, &key, inode->i_ino); 290 291 err = ubifs_tnc_lookup(c, &key, ino); 292 if (err) 293 goto out_ino; 294 295 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 296 set_nlink(inode, le32_to_cpu(ino->nlink)); 297 i_uid_write(inode, le32_to_cpu(ino->uid)); 298 i_gid_write(inode, le32_to_cpu(ino->gid)); 299 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 300 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 301 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 302 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 303 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 304 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 305 inode->i_mode = le32_to_cpu(ino->mode); 306 inode->i_size = le64_to_cpu(ino->size); 307 308 ui->data_len = le32_to_cpu(ino->data_len); 309 ui->flags = le32_to_cpu(ino->flags); 310 ui->compr_type = le16_to_cpu(ino->compr_type); 311 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 312 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 313 ui->xattr_size = le32_to_cpu(ino->xattr_size); 314 ui->xattr_names = le32_to_cpu(ino->xattr_names); 315 ui->synced_i_size = ui->ui_size = inode->i_size; 316 317 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 318 319 err = validate_inode(c, inode); 320 if (err) 321 goto out_invalid; 322 323 #ifndef __UBOOT__ 324 switch (inode->i_mode & S_IFMT) { 325 case S_IFREG: 326 inode->i_mapping->a_ops = &ubifs_file_address_operations; 327 inode->i_op = &ubifs_file_inode_operations; 328 inode->i_fop = &ubifs_file_operations; 329 if (ui->xattr) { 330 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 331 if (!ui->data) { 332 err = -ENOMEM; 333 goto out_ino; 334 } 335 memcpy(ui->data, ino->data, ui->data_len); 336 ((char *)ui->data)[ui->data_len] = '\0'; 337 } else if (ui->data_len != 0) { 338 err = 10; 339 goto out_invalid; 340 } 341 break; 342 case S_IFDIR: 343 inode->i_op = &ubifs_dir_inode_operations; 344 inode->i_fop = &ubifs_dir_operations; 345 if (ui->data_len != 0) { 346 err = 11; 347 goto out_invalid; 348 } 349 break; 350 case S_IFLNK: 351 inode->i_op = &ubifs_symlink_inode_operations; 352 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 353 err = 12; 354 goto out_invalid; 355 } 356 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 357 if (!ui->data) { 358 err = -ENOMEM; 359 goto out_ino; 360 } 361 memcpy(ui->data, ino->data, ui->data_len); 362 ((char *)ui->data)[ui->data_len] = '\0'; 363 inode->i_link = ui->data; 364 break; 365 case S_IFBLK: 366 case S_IFCHR: 367 { 368 dev_t rdev; 369 union ubifs_dev_desc *dev; 370 371 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 372 if (!ui->data) { 373 err = -ENOMEM; 374 goto out_ino; 375 } 376 377 dev = (union ubifs_dev_desc *)ino->data; 378 if (ui->data_len == sizeof(dev->new)) 379 rdev = new_decode_dev(le32_to_cpu(dev->new)); 380 else if (ui->data_len == sizeof(dev->huge)) 381 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 382 else { 383 err = 13; 384 goto out_invalid; 385 } 386 memcpy(ui->data, ino->data, ui->data_len); 387 inode->i_op = &ubifs_file_inode_operations; 388 init_special_inode(inode, inode->i_mode, rdev); 389 break; 390 } 391 case S_IFSOCK: 392 case S_IFIFO: 393 inode->i_op = &ubifs_file_inode_operations; 394 init_special_inode(inode, inode->i_mode, 0); 395 if (ui->data_len != 0) { 396 err = 14; 397 goto out_invalid; 398 } 399 break; 400 default: 401 err = 15; 402 goto out_invalid; 403 } 404 #else 405 if ((inode->i_mode & S_IFMT) == S_IFLNK) { 406 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 407 err = 12; 408 goto out_invalid; 409 } 410 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 411 if (!ui->data) { 412 err = -ENOMEM; 413 goto out_ino; 414 } 415 memcpy(ui->data, ino->data, ui->data_len); 416 ((char *)ui->data)[ui->data_len] = '\0'; 417 } 418 #endif 419 420 kfree(ino); 421 #ifndef __UBOOT__ 422 ubifs_set_inode_flags(inode); 423 #endif 424 unlock_new_inode(inode); 425 return inode; 426 427 out_invalid: 428 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 429 ubifs_dump_node(c, ino); 430 ubifs_dump_inode(c, inode); 431 err = -EINVAL; 432 out_ino: 433 kfree(ino); 434 out: 435 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 436 iget_failed(inode); 437 return ERR_PTR(err); 438 } 439 440 static struct inode *ubifs_alloc_inode(struct super_block *sb) 441 { 442 struct ubifs_inode *ui; 443 444 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 445 if (!ui) 446 return NULL; 447 448 memset((void *)ui + sizeof(struct inode), 0, 449 sizeof(struct ubifs_inode) - sizeof(struct inode)); 450 mutex_init(&ui->ui_mutex); 451 spin_lock_init(&ui->ui_lock); 452 return &ui->vfs_inode; 453 }; 454 455 #ifndef __UBOOT__ 456 static void ubifs_i_callback(struct rcu_head *head) 457 { 458 struct inode *inode = container_of(head, struct inode, i_rcu); 459 struct ubifs_inode *ui = ubifs_inode(inode); 460 kmem_cache_free(ubifs_inode_slab, ui); 461 } 462 463 static void ubifs_destroy_inode(struct inode *inode) 464 { 465 struct ubifs_inode *ui = ubifs_inode(inode); 466 467 kfree(ui->data); 468 call_rcu(&inode->i_rcu, ubifs_i_callback); 469 } 470 471 /* 472 * Note, Linux write-back code calls this without 'i_mutex'. 473 */ 474 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 475 { 476 int err = 0; 477 struct ubifs_info *c = inode->i_sb->s_fs_info; 478 struct ubifs_inode *ui = ubifs_inode(inode); 479 480 ubifs_assert(!ui->xattr); 481 if (is_bad_inode(inode)) 482 return 0; 483 484 mutex_lock(&ui->ui_mutex); 485 /* 486 * Due to races between write-back forced by budgeting 487 * (see 'sync_some_inodes()') and background write-back, the inode may 488 * have already been synchronized, do not do this again. This might 489 * also happen if it was synchronized in an VFS operation, e.g. 490 * 'ubifs_link()'. 491 */ 492 if (!ui->dirty) { 493 mutex_unlock(&ui->ui_mutex); 494 return 0; 495 } 496 497 /* 498 * As an optimization, do not write orphan inodes to the media just 499 * because this is not needed. 500 */ 501 dbg_gen("inode %lu, mode %#x, nlink %u", 502 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 503 if (inode->i_nlink) { 504 err = ubifs_jnl_write_inode(c, inode); 505 if (err) 506 ubifs_err(c, "can't write inode %lu, error %d", 507 inode->i_ino, err); 508 else 509 err = dbg_check_inode_size(c, inode, ui->ui_size); 510 } 511 512 ui->dirty = 0; 513 mutex_unlock(&ui->ui_mutex); 514 ubifs_release_dirty_inode_budget(c, ui); 515 return err; 516 } 517 518 static void ubifs_evict_inode(struct inode *inode) 519 { 520 int err; 521 struct ubifs_info *c = inode->i_sb->s_fs_info; 522 struct ubifs_inode *ui = ubifs_inode(inode); 523 524 if (ui->xattr) 525 /* 526 * Extended attribute inode deletions are fully handled in 527 * 'ubifs_removexattr()'. These inodes are special and have 528 * limited usage, so there is nothing to do here. 529 */ 530 goto out; 531 532 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 533 ubifs_assert(!atomic_read(&inode->i_count)); 534 535 truncate_inode_pages_final(&inode->i_data); 536 537 if (inode->i_nlink) 538 goto done; 539 540 if (is_bad_inode(inode)) 541 goto out; 542 543 ui->ui_size = inode->i_size = 0; 544 err = ubifs_jnl_delete_inode(c, inode); 545 if (err) 546 /* 547 * Worst case we have a lost orphan inode wasting space, so a 548 * simple error message is OK here. 549 */ 550 ubifs_err(c, "can't delete inode %lu, error %d", 551 inode->i_ino, err); 552 553 out: 554 if (ui->dirty) 555 ubifs_release_dirty_inode_budget(c, ui); 556 else { 557 /* We've deleted something - clean the "no space" flags */ 558 c->bi.nospace = c->bi.nospace_rp = 0; 559 smp_wmb(); 560 } 561 done: 562 clear_inode(inode); 563 } 564 #endif 565 566 static void ubifs_dirty_inode(struct inode *inode, int flags) 567 { 568 struct ubifs_inode *ui = ubifs_inode(inode); 569 570 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 571 if (!ui->dirty) { 572 ui->dirty = 1; 573 dbg_gen("inode %lu", inode->i_ino); 574 } 575 } 576 577 #ifndef __UBOOT__ 578 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 579 { 580 struct ubifs_info *c = dentry->d_sb->s_fs_info; 581 unsigned long long free; 582 __le32 *uuid = (__le32 *)c->uuid; 583 584 free = ubifs_get_free_space(c); 585 dbg_gen("free space %lld bytes (%lld blocks)", 586 free, free >> UBIFS_BLOCK_SHIFT); 587 588 buf->f_type = UBIFS_SUPER_MAGIC; 589 buf->f_bsize = UBIFS_BLOCK_SIZE; 590 buf->f_blocks = c->block_cnt; 591 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 592 if (free > c->report_rp_size) 593 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 594 else 595 buf->f_bavail = 0; 596 buf->f_files = 0; 597 buf->f_ffree = 0; 598 buf->f_namelen = UBIFS_MAX_NLEN; 599 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 600 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 601 ubifs_assert(buf->f_bfree <= c->block_cnt); 602 return 0; 603 } 604 605 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 606 { 607 struct ubifs_info *c = root->d_sb->s_fs_info; 608 609 if (c->mount_opts.unmount_mode == 2) 610 seq_puts(s, ",fast_unmount"); 611 else if (c->mount_opts.unmount_mode == 1) 612 seq_puts(s, ",norm_unmount"); 613 614 if (c->mount_opts.bulk_read == 2) 615 seq_puts(s, ",bulk_read"); 616 else if (c->mount_opts.bulk_read == 1) 617 seq_puts(s, ",no_bulk_read"); 618 619 if (c->mount_opts.chk_data_crc == 2) 620 seq_puts(s, ",chk_data_crc"); 621 else if (c->mount_opts.chk_data_crc == 1) 622 seq_puts(s, ",no_chk_data_crc"); 623 624 if (c->mount_opts.override_compr) { 625 seq_printf(s, ",compr=%s", 626 ubifs_compr_name(c->mount_opts.compr_type)); 627 } 628 629 return 0; 630 } 631 632 static int ubifs_sync_fs(struct super_block *sb, int wait) 633 { 634 int i, err; 635 struct ubifs_info *c = sb->s_fs_info; 636 637 /* 638 * Zero @wait is just an advisory thing to help the file system shove 639 * lots of data into the queues, and there will be the second 640 * '->sync_fs()' call, with non-zero @wait. 641 */ 642 if (!wait) 643 return 0; 644 645 /* 646 * Synchronize write buffers, because 'ubifs_run_commit()' does not 647 * do this if it waits for an already running commit. 648 */ 649 for (i = 0; i < c->jhead_cnt; i++) { 650 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 651 if (err) 652 return err; 653 } 654 655 /* 656 * Strictly speaking, it is not necessary to commit the journal here, 657 * synchronizing write-buffers would be enough. But committing makes 658 * UBIFS free space predictions much more accurate, so we want to let 659 * the user be able to get more accurate results of 'statfs()' after 660 * they synchronize the file system. 661 */ 662 err = ubifs_run_commit(c); 663 if (err) 664 return err; 665 666 return ubi_sync(c->vi.ubi_num); 667 } 668 #endif 669 670 /** 671 * init_constants_early - initialize UBIFS constants. 672 * @c: UBIFS file-system description object 673 * 674 * This function initialize UBIFS constants which do not need the superblock to 675 * be read. It also checks that the UBI volume satisfies basic UBIFS 676 * requirements. Returns zero in case of success and a negative error code in 677 * case of failure. 678 */ 679 static int init_constants_early(struct ubifs_info *c) 680 { 681 if (c->vi.corrupted) { 682 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 683 c->ro_media = 1; 684 } 685 686 if (c->di.ro_mode) { 687 ubifs_msg(c, "read-only UBI device"); 688 c->ro_media = 1; 689 } 690 691 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 692 ubifs_msg(c, "static UBI volume - read-only mode"); 693 c->ro_media = 1; 694 } 695 696 c->leb_cnt = c->vi.size; 697 c->leb_size = c->vi.usable_leb_size; 698 c->leb_start = c->di.leb_start; 699 c->half_leb_size = c->leb_size / 2; 700 c->min_io_size = c->di.min_io_size; 701 c->min_io_shift = fls(c->min_io_size) - 1; 702 c->max_write_size = c->di.max_write_size; 703 c->max_write_shift = fls(c->max_write_size) - 1; 704 705 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 706 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes", 707 c->leb_size, UBIFS_MIN_LEB_SZ); 708 return -EINVAL; 709 } 710 711 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 712 ubifs_err(c, "too few LEBs (%d), min. is %d", 713 c->leb_cnt, UBIFS_MIN_LEB_CNT); 714 return -EINVAL; 715 } 716 717 if (!is_power_of_2(c->min_io_size)) { 718 ubifs_err(c, "bad min. I/O size %d", c->min_io_size); 719 return -EINVAL; 720 } 721 722 /* 723 * Maximum write size has to be greater or equivalent to min. I/O 724 * size, and be multiple of min. I/O size. 725 */ 726 if (c->max_write_size < c->min_io_size || 727 c->max_write_size % c->min_io_size || 728 !is_power_of_2(c->max_write_size)) { 729 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit", 730 c->max_write_size, c->min_io_size); 731 return -EINVAL; 732 } 733 734 /* 735 * UBIFS aligns all node to 8-byte boundary, so to make function in 736 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 737 * less than 8. 738 */ 739 if (c->min_io_size < 8) { 740 c->min_io_size = 8; 741 c->min_io_shift = 3; 742 if (c->max_write_size < c->min_io_size) { 743 c->max_write_size = c->min_io_size; 744 c->max_write_shift = c->min_io_shift; 745 } 746 } 747 748 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 749 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 750 751 /* 752 * Initialize node length ranges which are mostly needed for node 753 * length validation. 754 */ 755 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 756 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 757 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 758 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 759 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 760 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 761 762 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 763 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 764 c->ranges[UBIFS_ORPH_NODE].min_len = 765 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 766 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 767 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 768 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 769 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 770 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 771 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 772 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 773 /* 774 * Minimum indexing node size is amended later when superblock is 775 * read and the key length is known. 776 */ 777 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 778 /* 779 * Maximum indexing node size is amended later when superblock is 780 * read and the fanout is known. 781 */ 782 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 783 784 /* 785 * Initialize dead and dark LEB space watermarks. See gc.c for comments 786 * about these values. 787 */ 788 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 789 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 790 791 /* 792 * Calculate how many bytes would be wasted at the end of LEB if it was 793 * fully filled with data nodes of maximum size. This is used in 794 * calculations when reporting free space. 795 */ 796 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 797 798 /* Buffer size for bulk-reads */ 799 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 800 if (c->max_bu_buf_len > c->leb_size) 801 c->max_bu_buf_len = c->leb_size; 802 return 0; 803 } 804 805 /** 806 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 807 * @c: UBIFS file-system description object 808 * @lnum: LEB the write-buffer was synchronized to 809 * @free: how many free bytes left in this LEB 810 * @pad: how many bytes were padded 811 * 812 * This is a callback function which is called by the I/O unit when the 813 * write-buffer is synchronized. We need this to correctly maintain space 814 * accounting in bud logical eraseblocks. This function returns zero in case of 815 * success and a negative error code in case of failure. 816 * 817 * This function actually belongs to the journal, but we keep it here because 818 * we want to keep it static. 819 */ 820 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 821 { 822 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 823 } 824 825 /* 826 * init_constants_sb - initialize UBIFS constants. 827 * @c: UBIFS file-system description object 828 * 829 * This is a helper function which initializes various UBIFS constants after 830 * the superblock has been read. It also checks various UBIFS parameters and 831 * makes sure they are all right. Returns zero in case of success and a 832 * negative error code in case of failure. 833 */ 834 static int init_constants_sb(struct ubifs_info *c) 835 { 836 int tmp, err; 837 long long tmp64; 838 839 c->main_bytes = (long long)c->main_lebs * c->leb_size; 840 c->max_znode_sz = sizeof(struct ubifs_znode) + 841 c->fanout * sizeof(struct ubifs_zbranch); 842 843 tmp = ubifs_idx_node_sz(c, 1); 844 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 845 c->min_idx_node_sz = ALIGN(tmp, 8); 846 847 tmp = ubifs_idx_node_sz(c, c->fanout); 848 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 849 c->max_idx_node_sz = ALIGN(tmp, 8); 850 851 /* Make sure LEB size is large enough to fit full commit */ 852 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 853 tmp = ALIGN(tmp, c->min_io_size); 854 if (tmp > c->leb_size) { 855 ubifs_err(c, "too small LEB size %d, at least %d needed", 856 c->leb_size, tmp); 857 return -EINVAL; 858 } 859 860 /* 861 * Make sure that the log is large enough to fit reference nodes for 862 * all buds plus one reserved LEB. 863 */ 864 tmp64 = c->max_bud_bytes + c->leb_size - 1; 865 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 866 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 867 tmp /= c->leb_size; 868 tmp += 1; 869 if (c->log_lebs < tmp) { 870 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 871 c->log_lebs, tmp); 872 return -EINVAL; 873 } 874 875 /* 876 * When budgeting we assume worst-case scenarios when the pages are not 877 * be compressed and direntries are of the maximum size. 878 * 879 * Note, data, which may be stored in inodes is budgeted separately, so 880 * it is not included into 'c->bi.inode_budget'. 881 */ 882 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 883 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 884 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 885 886 /* 887 * When the amount of flash space used by buds becomes 888 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 889 * The writers are unblocked when the commit is finished. To avoid 890 * writers to be blocked UBIFS initiates background commit in advance, 891 * when number of bud bytes becomes above the limit defined below. 892 */ 893 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 894 895 /* 896 * Ensure minimum journal size. All the bytes in the journal heads are 897 * considered to be used, when calculating the current journal usage. 898 * Consequently, if the journal is too small, UBIFS will treat it as 899 * always full. 900 */ 901 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 902 if (c->bg_bud_bytes < tmp64) 903 c->bg_bud_bytes = tmp64; 904 if (c->max_bud_bytes < tmp64 + c->leb_size) 905 c->max_bud_bytes = tmp64 + c->leb_size; 906 907 err = ubifs_calc_lpt_geom(c); 908 if (err) 909 return err; 910 911 /* Initialize effective LEB size used in budgeting calculations */ 912 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 913 return 0; 914 } 915 916 /* 917 * init_constants_master - initialize UBIFS constants. 918 * @c: UBIFS file-system description object 919 * 920 * This is a helper function which initializes various UBIFS constants after 921 * the master node has been read. It also checks various UBIFS parameters and 922 * makes sure they are all right. 923 */ 924 static void init_constants_master(struct ubifs_info *c) 925 { 926 long long tmp64; 927 928 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 929 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 930 931 /* 932 * Calculate total amount of FS blocks. This number is not used 933 * internally because it does not make much sense for UBIFS, but it is 934 * necessary to report something for the 'statfs()' call. 935 * 936 * Subtract the LEB reserved for GC, the LEB which is reserved for 937 * deletions, minimum LEBs for the index, and assume only one journal 938 * head is available. 939 */ 940 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 941 tmp64 *= (long long)c->leb_size - c->leb_overhead; 942 tmp64 = ubifs_reported_space(c, tmp64); 943 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 944 } 945 946 /** 947 * take_gc_lnum - reserve GC LEB. 948 * @c: UBIFS file-system description object 949 * 950 * This function ensures that the LEB reserved for garbage collection is marked 951 * as "taken" in lprops. We also have to set free space to LEB size and dirty 952 * space to zero, because lprops may contain out-of-date information if the 953 * file-system was un-mounted before it has been committed. This function 954 * returns zero in case of success and a negative error code in case of 955 * failure. 956 */ 957 static int take_gc_lnum(struct ubifs_info *c) 958 { 959 int err; 960 961 if (c->gc_lnum == -1) { 962 ubifs_err(c, "no LEB for GC"); 963 return -EINVAL; 964 } 965 966 /* And we have to tell lprops that this LEB is taken */ 967 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 968 LPROPS_TAKEN, 0, 0); 969 return err; 970 } 971 972 /** 973 * alloc_wbufs - allocate write-buffers. 974 * @c: UBIFS file-system description object 975 * 976 * This helper function allocates and initializes UBIFS write-buffers. Returns 977 * zero in case of success and %-ENOMEM in case of failure. 978 */ 979 static int alloc_wbufs(struct ubifs_info *c) 980 { 981 int i, err; 982 983 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 984 GFP_KERNEL); 985 if (!c->jheads) 986 return -ENOMEM; 987 988 /* Initialize journal heads */ 989 for (i = 0; i < c->jhead_cnt; i++) { 990 INIT_LIST_HEAD(&c->jheads[i].buds_list); 991 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 992 if (err) 993 return err; 994 995 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 996 c->jheads[i].wbuf.jhead = i; 997 c->jheads[i].grouped = 1; 998 } 999 1000 /* 1001 * Garbage Collector head does not need to be synchronized by timer. 1002 * Also GC head nodes are not grouped. 1003 */ 1004 c->jheads[GCHD].wbuf.no_timer = 1; 1005 c->jheads[GCHD].grouped = 0; 1006 1007 return 0; 1008 } 1009 1010 /** 1011 * free_wbufs - free write-buffers. 1012 * @c: UBIFS file-system description object 1013 */ 1014 static void free_wbufs(struct ubifs_info *c) 1015 { 1016 int i; 1017 1018 if (c->jheads) { 1019 for (i = 0; i < c->jhead_cnt; i++) { 1020 kfree(c->jheads[i].wbuf.buf); 1021 kfree(c->jheads[i].wbuf.inodes); 1022 } 1023 kfree(c->jheads); 1024 c->jheads = NULL; 1025 } 1026 } 1027 1028 /** 1029 * free_orphans - free orphans. 1030 * @c: UBIFS file-system description object 1031 */ 1032 static void free_orphans(struct ubifs_info *c) 1033 { 1034 struct ubifs_orphan *orph; 1035 1036 while (c->orph_dnext) { 1037 orph = c->orph_dnext; 1038 c->orph_dnext = orph->dnext; 1039 list_del(&orph->list); 1040 kfree(orph); 1041 } 1042 1043 while (!list_empty(&c->orph_list)) { 1044 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 1045 list_del(&orph->list); 1046 kfree(orph); 1047 ubifs_err(c, "orphan list not empty at unmount"); 1048 } 1049 1050 vfree(c->orph_buf); 1051 c->orph_buf = NULL; 1052 } 1053 1054 /** 1055 * free_buds - free per-bud objects. 1056 * @c: UBIFS file-system description object 1057 */ 1058 static void free_buds(struct ubifs_info *c) 1059 { 1060 struct ubifs_bud *bud, *n; 1061 1062 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 1063 kfree(bud); 1064 } 1065 1066 /** 1067 * check_volume_empty - check if the UBI volume is empty. 1068 * @c: UBIFS file-system description object 1069 * 1070 * This function checks if the UBIFS volume is empty by looking if its LEBs are 1071 * mapped or not. The result of checking is stored in the @c->empty variable. 1072 * Returns zero in case of success and a negative error code in case of 1073 * failure. 1074 */ 1075 static int check_volume_empty(struct ubifs_info *c) 1076 { 1077 int lnum, err; 1078 1079 c->empty = 1; 1080 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 1081 err = ubifs_is_mapped(c, lnum); 1082 if (unlikely(err < 0)) 1083 return err; 1084 if (err == 1) { 1085 c->empty = 0; 1086 break; 1087 } 1088 1089 cond_resched(); 1090 } 1091 1092 return 0; 1093 } 1094 1095 /* 1096 * UBIFS mount options. 1097 * 1098 * Opt_fast_unmount: do not run a journal commit before un-mounting 1099 * Opt_norm_unmount: run a journal commit before un-mounting 1100 * Opt_bulk_read: enable bulk-reads 1101 * Opt_no_bulk_read: disable bulk-reads 1102 * Opt_chk_data_crc: check CRCs when reading data nodes 1103 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 1104 * Opt_override_compr: override default compressor 1105 * Opt_err: just end of array marker 1106 */ 1107 enum { 1108 Opt_fast_unmount, 1109 Opt_norm_unmount, 1110 Opt_bulk_read, 1111 Opt_no_bulk_read, 1112 Opt_chk_data_crc, 1113 Opt_no_chk_data_crc, 1114 Opt_override_compr, 1115 Opt_err, 1116 }; 1117 1118 #ifndef __UBOOT__ 1119 static const match_table_t tokens = { 1120 {Opt_fast_unmount, "fast_unmount"}, 1121 {Opt_norm_unmount, "norm_unmount"}, 1122 {Opt_bulk_read, "bulk_read"}, 1123 {Opt_no_bulk_read, "no_bulk_read"}, 1124 {Opt_chk_data_crc, "chk_data_crc"}, 1125 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 1126 {Opt_override_compr, "compr=%s"}, 1127 {Opt_err, NULL}, 1128 }; 1129 1130 /** 1131 * parse_standard_option - parse a standard mount option. 1132 * @option: the option to parse 1133 * 1134 * Normally, standard mount options like "sync" are passed to file-systems as 1135 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 1136 * be present in the options string. This function tries to deal with this 1137 * situation and parse standard options. Returns 0 if the option was not 1138 * recognized, and the corresponding integer flag if it was. 1139 * 1140 * UBIFS is only interested in the "sync" option, so do not check for anything 1141 * else. 1142 */ 1143 static int parse_standard_option(const char *option) 1144 { 1145 1146 pr_notice("UBIFS: parse %s\n", option); 1147 if (!strcmp(option, "sync")) 1148 return MS_SYNCHRONOUS; 1149 return 0; 1150 } 1151 1152 /** 1153 * ubifs_parse_options - parse mount parameters. 1154 * @c: UBIFS file-system description object 1155 * @options: parameters to parse 1156 * @is_remount: non-zero if this is FS re-mount 1157 * 1158 * This function parses UBIFS mount options and returns zero in case success 1159 * and a negative error code in case of failure. 1160 */ 1161 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1162 int is_remount) 1163 { 1164 char *p; 1165 substring_t args[MAX_OPT_ARGS]; 1166 1167 if (!options) 1168 return 0; 1169 1170 while ((p = strsep(&options, ","))) { 1171 int token; 1172 1173 if (!*p) 1174 continue; 1175 1176 token = match_token(p, tokens, args); 1177 switch (token) { 1178 /* 1179 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1180 * We accept them in order to be backward-compatible. But this 1181 * should be removed at some point. 1182 */ 1183 case Opt_fast_unmount: 1184 c->mount_opts.unmount_mode = 2; 1185 break; 1186 case Opt_norm_unmount: 1187 c->mount_opts.unmount_mode = 1; 1188 break; 1189 case Opt_bulk_read: 1190 c->mount_opts.bulk_read = 2; 1191 c->bulk_read = 1; 1192 break; 1193 case Opt_no_bulk_read: 1194 c->mount_opts.bulk_read = 1; 1195 c->bulk_read = 0; 1196 break; 1197 case Opt_chk_data_crc: 1198 c->mount_opts.chk_data_crc = 2; 1199 c->no_chk_data_crc = 0; 1200 break; 1201 case Opt_no_chk_data_crc: 1202 c->mount_opts.chk_data_crc = 1; 1203 c->no_chk_data_crc = 1; 1204 break; 1205 case Opt_override_compr: 1206 { 1207 char *name = match_strdup(&args[0]); 1208 1209 if (!name) 1210 return -ENOMEM; 1211 if (!strcmp(name, "none")) 1212 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1213 else if (!strcmp(name, "lzo")) 1214 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1215 else if (!strcmp(name, "zlib")) 1216 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1217 else { 1218 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1219 kfree(name); 1220 return -EINVAL; 1221 } 1222 kfree(name); 1223 c->mount_opts.override_compr = 1; 1224 c->default_compr = c->mount_opts.compr_type; 1225 break; 1226 } 1227 default: 1228 { 1229 unsigned long flag; 1230 struct super_block *sb = c->vfs_sb; 1231 1232 flag = parse_standard_option(p); 1233 if (!flag) { 1234 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1235 p); 1236 return -EINVAL; 1237 } 1238 sb->s_flags |= flag; 1239 break; 1240 } 1241 } 1242 } 1243 1244 return 0; 1245 } 1246 #endif 1247 1248 /** 1249 * destroy_journal - destroy journal data structures. 1250 * @c: UBIFS file-system description object 1251 * 1252 * This function destroys journal data structures including those that may have 1253 * been created by recovery functions. 1254 */ 1255 static void destroy_journal(struct ubifs_info *c) 1256 { 1257 while (!list_empty(&c->unclean_leb_list)) { 1258 struct ubifs_unclean_leb *ucleb; 1259 1260 ucleb = list_entry(c->unclean_leb_list.next, 1261 struct ubifs_unclean_leb, list); 1262 list_del(&ucleb->list); 1263 kfree(ucleb); 1264 } 1265 while (!list_empty(&c->old_buds)) { 1266 struct ubifs_bud *bud; 1267 1268 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1269 list_del(&bud->list); 1270 kfree(bud); 1271 } 1272 ubifs_destroy_idx_gc(c); 1273 ubifs_destroy_size_tree(c); 1274 ubifs_tnc_close(c); 1275 free_buds(c); 1276 } 1277 1278 /** 1279 * bu_init - initialize bulk-read information. 1280 * @c: UBIFS file-system description object 1281 */ 1282 static void bu_init(struct ubifs_info *c) 1283 { 1284 ubifs_assert(c->bulk_read == 1); 1285 1286 if (c->bu.buf) 1287 return; /* Already initialized */ 1288 1289 again: 1290 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1291 if (!c->bu.buf) { 1292 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1293 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1294 goto again; 1295 } 1296 1297 /* Just disable bulk-read */ 1298 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1299 c->max_bu_buf_len); 1300 c->mount_opts.bulk_read = 1; 1301 c->bulk_read = 0; 1302 return; 1303 } 1304 } 1305 1306 #ifndef __UBOOT__ 1307 /** 1308 * check_free_space - check if there is enough free space to mount. 1309 * @c: UBIFS file-system description object 1310 * 1311 * This function makes sure UBIFS has enough free space to be mounted in 1312 * read/write mode. UBIFS must always have some free space to allow deletions. 1313 */ 1314 static int check_free_space(struct ubifs_info *c) 1315 { 1316 ubifs_assert(c->dark_wm > 0); 1317 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1318 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1319 ubifs_dump_budg(c, &c->bi); 1320 ubifs_dump_lprops(c); 1321 return -ENOSPC; 1322 } 1323 return 0; 1324 } 1325 #endif 1326 1327 /** 1328 * mount_ubifs - mount UBIFS file-system. 1329 * @c: UBIFS file-system description object 1330 * 1331 * This function mounts UBIFS file system. Returns zero in case of success and 1332 * a negative error code in case of failure. 1333 */ 1334 static int mount_ubifs(struct ubifs_info *c) 1335 { 1336 int err; 1337 long long x; 1338 #ifndef CONFIG_UBIFS_SILENCE_MSG 1339 long long y; 1340 #endif 1341 size_t sz; 1342 1343 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1344 /* Suppress error messages while probing if MS_SILENT is set */ 1345 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT); 1346 #ifdef __UBOOT__ 1347 if (!c->ro_mount) { 1348 printf("UBIFS: only ro mode in U-Boot allowed.\n"); 1349 return -EACCES; 1350 } 1351 #endif 1352 1353 err = init_constants_early(c); 1354 if (err) 1355 return err; 1356 1357 err = ubifs_debugging_init(c); 1358 if (err) 1359 return err; 1360 1361 err = check_volume_empty(c); 1362 if (err) 1363 goto out_free; 1364 1365 if (c->empty && (c->ro_mount || c->ro_media)) { 1366 /* 1367 * This UBI volume is empty, and read-only, or the file system 1368 * is mounted read-only - we cannot format it. 1369 */ 1370 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1371 c->ro_media ? "UBI volume" : "mount"); 1372 err = -EROFS; 1373 goto out_free; 1374 } 1375 1376 if (c->ro_media && !c->ro_mount) { 1377 ubifs_err(c, "cannot mount read-write - read-only media"); 1378 err = -EROFS; 1379 goto out_free; 1380 } 1381 1382 /* 1383 * The requirement for the buffer is that it should fit indexing B-tree 1384 * height amount of integers. We assume the height if the TNC tree will 1385 * never exceed 64. 1386 */ 1387 err = -ENOMEM; 1388 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1389 if (!c->bottom_up_buf) 1390 goto out_free; 1391 1392 c->sbuf = vmalloc(c->leb_size); 1393 if (!c->sbuf) 1394 goto out_free; 1395 1396 #ifndef __UBOOT__ 1397 if (!c->ro_mount) { 1398 c->ileb_buf = vmalloc(c->leb_size); 1399 if (!c->ileb_buf) 1400 goto out_free; 1401 } 1402 #endif 1403 1404 if (c->bulk_read == 1) 1405 bu_init(c); 1406 1407 #ifndef __UBOOT__ 1408 if (!c->ro_mount) { 1409 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1410 GFP_KERNEL); 1411 if (!c->write_reserve_buf) 1412 goto out_free; 1413 } 1414 #endif 1415 1416 c->mounting = 1; 1417 1418 err = ubifs_read_superblock(c); 1419 if (err) 1420 goto out_free; 1421 1422 c->probing = 0; 1423 1424 /* 1425 * Make sure the compressor which is set as default in the superblock 1426 * or overridden by mount options is actually compiled in. 1427 */ 1428 if (!ubifs_compr_present(c->default_compr)) { 1429 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1430 ubifs_compr_name(c->default_compr)); 1431 err = -ENOTSUPP; 1432 goto out_free; 1433 } 1434 1435 err = init_constants_sb(c); 1436 if (err) 1437 goto out_free; 1438 1439 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1440 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1441 c->cbuf = kmalloc(sz, GFP_NOFS); 1442 if (!c->cbuf) { 1443 err = -ENOMEM; 1444 goto out_free; 1445 } 1446 1447 err = alloc_wbufs(c); 1448 if (err) 1449 goto out_cbuf; 1450 1451 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1452 #ifndef __UBOOT__ 1453 if (!c->ro_mount) { 1454 /* Create background thread */ 1455 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1456 if (IS_ERR(c->bgt)) { 1457 err = PTR_ERR(c->bgt); 1458 c->bgt = NULL; 1459 ubifs_err(c, "cannot spawn \"%s\", error %d", 1460 c->bgt_name, err); 1461 goto out_wbufs; 1462 } 1463 wake_up_process(c->bgt); 1464 } 1465 #endif 1466 1467 err = ubifs_read_master(c); 1468 if (err) 1469 goto out_master; 1470 1471 init_constants_master(c); 1472 1473 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1474 ubifs_msg(c, "recovery needed"); 1475 c->need_recovery = 1; 1476 } 1477 1478 #ifndef __UBOOT__ 1479 if (c->need_recovery && !c->ro_mount) { 1480 err = ubifs_recover_inl_heads(c, c->sbuf); 1481 if (err) 1482 goto out_master; 1483 } 1484 #endif 1485 1486 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1487 if (err) 1488 goto out_master; 1489 1490 #ifndef __UBOOT__ 1491 if (!c->ro_mount && c->space_fixup) { 1492 err = ubifs_fixup_free_space(c); 1493 if (err) 1494 goto out_lpt; 1495 } 1496 1497 if (!c->ro_mount && !c->need_recovery) { 1498 /* 1499 * Set the "dirty" flag so that if we reboot uncleanly we 1500 * will notice this immediately on the next mount. 1501 */ 1502 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1503 err = ubifs_write_master(c); 1504 if (err) 1505 goto out_lpt; 1506 } 1507 #endif 1508 1509 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1510 if (err) 1511 goto out_lpt; 1512 1513 err = ubifs_replay_journal(c); 1514 if (err) 1515 goto out_journal; 1516 1517 /* Calculate 'min_idx_lebs' after journal replay */ 1518 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1519 1520 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1521 if (err) 1522 goto out_orphans; 1523 1524 if (!c->ro_mount) { 1525 #ifndef __UBOOT__ 1526 int lnum; 1527 1528 err = check_free_space(c); 1529 if (err) 1530 goto out_orphans; 1531 1532 /* Check for enough log space */ 1533 lnum = c->lhead_lnum + 1; 1534 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1535 lnum = UBIFS_LOG_LNUM; 1536 if (lnum == c->ltail_lnum) { 1537 err = ubifs_consolidate_log(c); 1538 if (err) 1539 goto out_orphans; 1540 } 1541 1542 if (c->need_recovery) { 1543 err = ubifs_recover_size(c); 1544 if (err) 1545 goto out_orphans; 1546 err = ubifs_rcvry_gc_commit(c); 1547 if (err) 1548 goto out_orphans; 1549 } else { 1550 err = take_gc_lnum(c); 1551 if (err) 1552 goto out_orphans; 1553 1554 /* 1555 * GC LEB may contain garbage if there was an unclean 1556 * reboot, and it should be un-mapped. 1557 */ 1558 err = ubifs_leb_unmap(c, c->gc_lnum); 1559 if (err) 1560 goto out_orphans; 1561 } 1562 1563 err = dbg_check_lprops(c); 1564 if (err) 1565 goto out_orphans; 1566 #endif 1567 } else if (c->need_recovery) { 1568 err = ubifs_recover_size(c); 1569 if (err) 1570 goto out_orphans; 1571 } else { 1572 /* 1573 * Even if we mount read-only, we have to set space in GC LEB 1574 * to proper value because this affects UBIFS free space 1575 * reporting. We do not want to have a situation when 1576 * re-mounting from R/O to R/W changes amount of free space. 1577 */ 1578 err = take_gc_lnum(c); 1579 if (err) 1580 goto out_orphans; 1581 } 1582 1583 #ifndef __UBOOT__ 1584 spin_lock(&ubifs_infos_lock); 1585 list_add_tail(&c->infos_list, &ubifs_infos); 1586 spin_unlock(&ubifs_infos_lock); 1587 #endif 1588 1589 if (c->need_recovery) { 1590 if (c->ro_mount) 1591 ubifs_msg(c, "recovery deferred"); 1592 else { 1593 c->need_recovery = 0; 1594 ubifs_msg(c, "recovery completed"); 1595 /* 1596 * GC LEB has to be empty and taken at this point. But 1597 * the journal head LEBs may also be accounted as 1598 * "empty taken" if they are empty. 1599 */ 1600 ubifs_assert(c->lst.taken_empty_lebs > 0); 1601 } 1602 } else 1603 ubifs_assert(c->lst.taken_empty_lebs > 0); 1604 1605 err = dbg_check_filesystem(c); 1606 if (err) 1607 goto out_infos; 1608 1609 err = dbg_debugfs_init_fs(c); 1610 if (err) 1611 goto out_infos; 1612 1613 c->mounting = 0; 1614 1615 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1616 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1617 c->ro_mount ? ", R/O mode" : ""); 1618 x = (long long)c->main_lebs * c->leb_size; 1619 #ifndef CONFIG_UBIFS_SILENCE_MSG 1620 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1621 #endif 1622 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1623 c->leb_size, c->leb_size >> 10, c->min_io_size, 1624 c->max_write_size); 1625 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1626 x, x >> 20, c->main_lebs, 1627 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1628 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1629 c->report_rp_size, c->report_rp_size >> 10); 1630 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1631 c->fmt_version, c->ro_compat_version, 1632 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1633 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1634 1635 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1636 dbg_gen("data journal heads: %d", 1637 c->jhead_cnt - NONDATA_JHEADS_CNT); 1638 dbg_gen("log LEBs: %d (%d - %d)", 1639 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1640 dbg_gen("LPT area LEBs: %d (%d - %d)", 1641 c->lpt_lebs, c->lpt_first, c->lpt_last); 1642 dbg_gen("orphan area LEBs: %d (%d - %d)", 1643 c->orph_lebs, c->orph_first, c->orph_last); 1644 dbg_gen("main area LEBs: %d (%d - %d)", 1645 c->main_lebs, c->main_first, c->leb_cnt - 1); 1646 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1647 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1648 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1649 c->bi.old_idx_sz >> 20); 1650 dbg_gen("key hash type: %d", c->key_hash_type); 1651 dbg_gen("tree fanout: %d", c->fanout); 1652 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1653 dbg_gen("max. znode size %d", c->max_znode_sz); 1654 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1655 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1656 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1657 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1658 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1659 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1660 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1661 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1662 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1663 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1664 dbg_gen("dead watermark: %d", c->dead_wm); 1665 dbg_gen("dark watermark: %d", c->dark_wm); 1666 dbg_gen("LEB overhead: %d", c->leb_overhead); 1667 x = (long long)c->main_lebs * c->dark_wm; 1668 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1669 x, x >> 10, x >> 20); 1670 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1671 c->max_bud_bytes, c->max_bud_bytes >> 10, 1672 c->max_bud_bytes >> 20); 1673 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1674 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1675 c->bg_bud_bytes >> 20); 1676 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1677 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1678 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1679 dbg_gen("commit number: %llu", c->cmt_no); 1680 1681 return 0; 1682 1683 out_infos: 1684 spin_lock(&ubifs_infos_lock); 1685 list_del(&c->infos_list); 1686 spin_unlock(&ubifs_infos_lock); 1687 out_orphans: 1688 free_orphans(c); 1689 out_journal: 1690 destroy_journal(c); 1691 out_lpt: 1692 ubifs_lpt_free(c, 0); 1693 out_master: 1694 kfree(c->mst_node); 1695 kfree(c->rcvrd_mst_node); 1696 if (c->bgt) 1697 kthread_stop(c->bgt); 1698 #ifndef __UBOOT__ 1699 out_wbufs: 1700 #endif 1701 free_wbufs(c); 1702 out_cbuf: 1703 kfree(c->cbuf); 1704 out_free: 1705 kfree(c->write_reserve_buf); 1706 kfree(c->bu.buf); 1707 vfree(c->ileb_buf); 1708 vfree(c->sbuf); 1709 kfree(c->bottom_up_buf); 1710 ubifs_debugging_exit(c); 1711 return err; 1712 } 1713 1714 /** 1715 * ubifs_umount - un-mount UBIFS file-system. 1716 * @c: UBIFS file-system description object 1717 * 1718 * Note, this function is called to free allocated resourced when un-mounting, 1719 * as well as free resources when an error occurred while we were half way 1720 * through mounting (error path cleanup function). So it has to make sure the 1721 * resource was actually allocated before freeing it. 1722 */ 1723 #ifndef __UBOOT__ 1724 static void ubifs_umount(struct ubifs_info *c) 1725 #else 1726 void ubifs_umount(struct ubifs_info *c) 1727 #endif 1728 { 1729 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1730 c->vi.vol_id); 1731 1732 dbg_debugfs_exit_fs(c); 1733 spin_lock(&ubifs_infos_lock); 1734 list_del(&c->infos_list); 1735 spin_unlock(&ubifs_infos_lock); 1736 1737 #ifndef __UBOOT__ 1738 if (c->bgt) 1739 kthread_stop(c->bgt); 1740 1741 destroy_journal(c); 1742 #endif 1743 free_wbufs(c); 1744 free_orphans(c); 1745 ubifs_lpt_free(c, 0); 1746 1747 kfree(c->cbuf); 1748 kfree(c->rcvrd_mst_node); 1749 kfree(c->mst_node); 1750 kfree(c->write_reserve_buf); 1751 kfree(c->bu.buf); 1752 vfree(c->ileb_buf); 1753 vfree(c->sbuf); 1754 kfree(c->bottom_up_buf); 1755 ubifs_debugging_exit(c); 1756 #ifdef __UBOOT__ 1757 /* Finally free U-Boot's global copy of superblock */ 1758 if (ubifs_sb != NULL) { 1759 free(ubifs_sb->s_fs_info); 1760 free(ubifs_sb); 1761 } 1762 #endif 1763 } 1764 1765 #ifndef __UBOOT__ 1766 /** 1767 * ubifs_remount_rw - re-mount in read-write mode. 1768 * @c: UBIFS file-system description object 1769 * 1770 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1771 * mode. This function allocates the needed resources and re-mounts UBIFS in 1772 * read-write mode. 1773 */ 1774 static int ubifs_remount_rw(struct ubifs_info *c) 1775 { 1776 int err, lnum; 1777 1778 if (c->rw_incompat) { 1779 ubifs_err(c, "the file-system is not R/W-compatible"); 1780 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1781 c->fmt_version, c->ro_compat_version, 1782 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1783 return -EROFS; 1784 } 1785 1786 mutex_lock(&c->umount_mutex); 1787 dbg_save_space_info(c); 1788 c->remounting_rw = 1; 1789 c->ro_mount = 0; 1790 1791 if (c->space_fixup) { 1792 err = ubifs_fixup_free_space(c); 1793 if (err) 1794 goto out; 1795 } 1796 1797 err = check_free_space(c); 1798 if (err) 1799 goto out; 1800 1801 if (c->old_leb_cnt != c->leb_cnt) { 1802 struct ubifs_sb_node *sup; 1803 1804 sup = ubifs_read_sb_node(c); 1805 if (IS_ERR(sup)) { 1806 err = PTR_ERR(sup); 1807 goto out; 1808 } 1809 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1810 err = ubifs_write_sb_node(c, sup); 1811 kfree(sup); 1812 if (err) 1813 goto out; 1814 } 1815 1816 if (c->need_recovery) { 1817 ubifs_msg(c, "completing deferred recovery"); 1818 err = ubifs_write_rcvrd_mst_node(c); 1819 if (err) 1820 goto out; 1821 err = ubifs_recover_size(c); 1822 if (err) 1823 goto out; 1824 err = ubifs_clean_lebs(c, c->sbuf); 1825 if (err) 1826 goto out; 1827 err = ubifs_recover_inl_heads(c, c->sbuf); 1828 if (err) 1829 goto out; 1830 } else { 1831 /* A readonly mount is not allowed to have orphans */ 1832 ubifs_assert(c->tot_orphans == 0); 1833 err = ubifs_clear_orphans(c); 1834 if (err) 1835 goto out; 1836 } 1837 1838 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1839 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1840 err = ubifs_write_master(c); 1841 if (err) 1842 goto out; 1843 } 1844 1845 c->ileb_buf = vmalloc(c->leb_size); 1846 if (!c->ileb_buf) { 1847 err = -ENOMEM; 1848 goto out; 1849 } 1850 1851 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1852 if (!c->write_reserve_buf) { 1853 err = -ENOMEM; 1854 goto out; 1855 } 1856 1857 err = ubifs_lpt_init(c, 0, 1); 1858 if (err) 1859 goto out; 1860 1861 /* Create background thread */ 1862 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1863 if (IS_ERR(c->bgt)) { 1864 err = PTR_ERR(c->bgt); 1865 c->bgt = NULL; 1866 ubifs_err(c, "cannot spawn \"%s\", error %d", 1867 c->bgt_name, err); 1868 goto out; 1869 } 1870 wake_up_process(c->bgt); 1871 1872 c->orph_buf = vmalloc(c->leb_size); 1873 if (!c->orph_buf) { 1874 err = -ENOMEM; 1875 goto out; 1876 } 1877 1878 /* Check for enough log space */ 1879 lnum = c->lhead_lnum + 1; 1880 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1881 lnum = UBIFS_LOG_LNUM; 1882 if (lnum == c->ltail_lnum) { 1883 err = ubifs_consolidate_log(c); 1884 if (err) 1885 goto out; 1886 } 1887 1888 if (c->need_recovery) 1889 err = ubifs_rcvry_gc_commit(c); 1890 else 1891 err = ubifs_leb_unmap(c, c->gc_lnum); 1892 if (err) 1893 goto out; 1894 1895 dbg_gen("re-mounted read-write"); 1896 c->remounting_rw = 0; 1897 1898 if (c->need_recovery) { 1899 c->need_recovery = 0; 1900 ubifs_msg(c, "deferred recovery completed"); 1901 } else { 1902 /* 1903 * Do not run the debugging space check if the were doing 1904 * recovery, because when we saved the information we had the 1905 * file-system in a state where the TNC and lprops has been 1906 * modified in memory, but all the I/O operations (including a 1907 * commit) were deferred. So the file-system was in 1908 * "non-committed" state. Now the file-system is in committed 1909 * state, and of course the amount of free space will change 1910 * because, for example, the old index size was imprecise. 1911 */ 1912 err = dbg_check_space_info(c); 1913 } 1914 1915 mutex_unlock(&c->umount_mutex); 1916 return err; 1917 1918 out: 1919 c->ro_mount = 1; 1920 vfree(c->orph_buf); 1921 c->orph_buf = NULL; 1922 if (c->bgt) { 1923 kthread_stop(c->bgt); 1924 c->bgt = NULL; 1925 } 1926 free_wbufs(c); 1927 kfree(c->write_reserve_buf); 1928 c->write_reserve_buf = NULL; 1929 vfree(c->ileb_buf); 1930 c->ileb_buf = NULL; 1931 ubifs_lpt_free(c, 1); 1932 c->remounting_rw = 0; 1933 mutex_unlock(&c->umount_mutex); 1934 return err; 1935 } 1936 1937 /** 1938 * ubifs_remount_ro - re-mount in read-only mode. 1939 * @c: UBIFS file-system description object 1940 * 1941 * We assume VFS has stopped writing. Possibly the background thread could be 1942 * running a commit, however kthread_stop will wait in that case. 1943 */ 1944 static void ubifs_remount_ro(struct ubifs_info *c) 1945 { 1946 int i, err; 1947 1948 ubifs_assert(!c->need_recovery); 1949 ubifs_assert(!c->ro_mount); 1950 1951 mutex_lock(&c->umount_mutex); 1952 if (c->bgt) { 1953 kthread_stop(c->bgt); 1954 c->bgt = NULL; 1955 } 1956 1957 dbg_save_space_info(c); 1958 1959 for (i = 0; i < c->jhead_cnt; i++) 1960 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1961 1962 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1963 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1964 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1965 err = ubifs_write_master(c); 1966 if (err) 1967 ubifs_ro_mode(c, err); 1968 1969 vfree(c->orph_buf); 1970 c->orph_buf = NULL; 1971 kfree(c->write_reserve_buf); 1972 c->write_reserve_buf = NULL; 1973 vfree(c->ileb_buf); 1974 c->ileb_buf = NULL; 1975 ubifs_lpt_free(c, 1); 1976 c->ro_mount = 1; 1977 err = dbg_check_space_info(c); 1978 if (err) 1979 ubifs_ro_mode(c, err); 1980 mutex_unlock(&c->umount_mutex); 1981 } 1982 1983 static void ubifs_put_super(struct super_block *sb) 1984 { 1985 int i; 1986 struct ubifs_info *c = sb->s_fs_info; 1987 1988 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1989 1990 /* 1991 * The following asserts are only valid if there has not been a failure 1992 * of the media. For example, there will be dirty inodes if we failed 1993 * to write them back because of I/O errors. 1994 */ 1995 if (!c->ro_error) { 1996 ubifs_assert(c->bi.idx_growth == 0); 1997 ubifs_assert(c->bi.dd_growth == 0); 1998 ubifs_assert(c->bi.data_growth == 0); 1999 } 2000 2001 /* 2002 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 2003 * and file system un-mount. Namely, it prevents the shrinker from 2004 * picking this superblock for shrinking - it will be just skipped if 2005 * the mutex is locked. 2006 */ 2007 mutex_lock(&c->umount_mutex); 2008 if (!c->ro_mount) { 2009 /* 2010 * First of all kill the background thread to make sure it does 2011 * not interfere with un-mounting and freeing resources. 2012 */ 2013 if (c->bgt) { 2014 kthread_stop(c->bgt); 2015 c->bgt = NULL; 2016 } 2017 2018 /* 2019 * On fatal errors c->ro_error is set to 1, in which case we do 2020 * not write the master node. 2021 */ 2022 if (!c->ro_error) { 2023 int err; 2024 2025 /* Synchronize write-buffers */ 2026 for (i = 0; i < c->jhead_cnt; i++) 2027 ubifs_wbuf_sync(&c->jheads[i].wbuf); 2028 2029 /* 2030 * We are being cleanly unmounted which means the 2031 * orphans were killed - indicate this in the master 2032 * node. Also save the reserved GC LEB number. 2033 */ 2034 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 2035 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 2036 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 2037 err = ubifs_write_master(c); 2038 if (err) 2039 /* 2040 * Recovery will attempt to fix the master area 2041 * next mount, so we just print a message and 2042 * continue to unmount normally. 2043 */ 2044 ubifs_err(c, "failed to write master node, error %d", 2045 err); 2046 } else { 2047 #ifndef __UBOOT__ 2048 for (i = 0; i < c->jhead_cnt; i++) 2049 /* Make sure write-buffer timers are canceled */ 2050 hrtimer_cancel(&c->jheads[i].wbuf.timer); 2051 #endif 2052 } 2053 } 2054 2055 ubifs_umount(c); 2056 #ifndef __UBOOT__ 2057 bdi_destroy(&c->bdi); 2058 #endif 2059 ubi_close_volume(c->ubi); 2060 mutex_unlock(&c->umount_mutex); 2061 } 2062 #endif 2063 2064 #ifndef __UBOOT__ 2065 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 2066 { 2067 int err; 2068 struct ubifs_info *c = sb->s_fs_info; 2069 2070 sync_filesystem(sb); 2071 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 2072 2073 err = ubifs_parse_options(c, data, 1); 2074 if (err) { 2075 ubifs_err(c, "invalid or unknown remount parameter"); 2076 return err; 2077 } 2078 2079 if (c->ro_mount && !(*flags & MS_RDONLY)) { 2080 if (c->ro_error) { 2081 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 2082 return -EROFS; 2083 } 2084 if (c->ro_media) { 2085 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 2086 return -EROFS; 2087 } 2088 err = ubifs_remount_rw(c); 2089 if (err) 2090 return err; 2091 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 2092 if (c->ro_error) { 2093 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 2094 return -EROFS; 2095 } 2096 ubifs_remount_ro(c); 2097 } 2098 2099 if (c->bulk_read == 1) 2100 bu_init(c); 2101 else { 2102 dbg_gen("disable bulk-read"); 2103 kfree(c->bu.buf); 2104 c->bu.buf = NULL; 2105 } 2106 2107 ubifs_assert(c->lst.taken_empty_lebs > 0); 2108 return 0; 2109 } 2110 #endif 2111 2112 const struct super_operations ubifs_super_operations = { 2113 .alloc_inode = ubifs_alloc_inode, 2114 #ifndef __UBOOT__ 2115 .destroy_inode = ubifs_destroy_inode, 2116 .put_super = ubifs_put_super, 2117 .write_inode = ubifs_write_inode, 2118 .evict_inode = ubifs_evict_inode, 2119 .statfs = ubifs_statfs, 2120 #endif 2121 .dirty_inode = ubifs_dirty_inode, 2122 #ifndef __UBOOT__ 2123 .remount_fs = ubifs_remount_fs, 2124 .show_options = ubifs_show_options, 2125 .sync_fs = ubifs_sync_fs, 2126 #endif 2127 }; 2128 2129 /** 2130 * open_ubi - parse UBI device name string and open the UBI device. 2131 * @name: UBI volume name 2132 * @mode: UBI volume open mode 2133 * 2134 * The primary method of mounting UBIFS is by specifying the UBI volume 2135 * character device node path. However, UBIFS may also be mounted withoug any 2136 * character device node using one of the following methods: 2137 * 2138 * o ubiX_Y - mount UBI device number X, volume Y; 2139 * o ubiY - mount UBI device number 0, volume Y; 2140 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2141 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2142 * 2143 * Alternative '!' separator may be used instead of ':' (because some shells 2144 * like busybox may interpret ':' as an NFS host name separator). This function 2145 * returns UBI volume description object in case of success and a negative 2146 * error code in case of failure. 2147 */ 2148 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2149 { 2150 #ifndef __UBOOT__ 2151 struct ubi_volume_desc *ubi; 2152 #endif 2153 int dev, vol; 2154 char *endptr; 2155 2156 #ifndef __UBOOT__ 2157 /* First, try to open using the device node path method */ 2158 ubi = ubi_open_volume_path(name, mode); 2159 if (!IS_ERR(ubi)) 2160 return ubi; 2161 #endif 2162 2163 /* Try the "nodev" method */ 2164 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2165 return ERR_PTR(-EINVAL); 2166 2167 /* ubi:NAME method */ 2168 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2169 return ubi_open_volume_nm(0, name + 4, mode); 2170 2171 if (!isdigit(name[3])) 2172 return ERR_PTR(-EINVAL); 2173 2174 dev = simple_strtoul(name + 3, &endptr, 0); 2175 2176 /* ubiY method */ 2177 if (*endptr == '\0') 2178 return ubi_open_volume(0, dev, mode); 2179 2180 /* ubiX_Y method */ 2181 if (*endptr == '_' && isdigit(endptr[1])) { 2182 vol = simple_strtoul(endptr + 1, &endptr, 0); 2183 if (*endptr != '\0') 2184 return ERR_PTR(-EINVAL); 2185 return ubi_open_volume(dev, vol, mode); 2186 } 2187 2188 /* ubiX:NAME method */ 2189 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2190 return ubi_open_volume_nm(dev, ++endptr, mode); 2191 2192 return ERR_PTR(-EINVAL); 2193 } 2194 2195 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2196 { 2197 struct ubifs_info *c; 2198 2199 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2200 if (c) { 2201 spin_lock_init(&c->cnt_lock); 2202 spin_lock_init(&c->cs_lock); 2203 spin_lock_init(&c->buds_lock); 2204 spin_lock_init(&c->space_lock); 2205 spin_lock_init(&c->orphan_lock); 2206 init_rwsem(&c->commit_sem); 2207 mutex_init(&c->lp_mutex); 2208 mutex_init(&c->tnc_mutex); 2209 mutex_init(&c->log_mutex); 2210 mutex_init(&c->umount_mutex); 2211 mutex_init(&c->bu_mutex); 2212 mutex_init(&c->write_reserve_mutex); 2213 init_waitqueue_head(&c->cmt_wq); 2214 c->buds = RB_ROOT; 2215 c->old_idx = RB_ROOT; 2216 c->size_tree = RB_ROOT; 2217 c->orph_tree = RB_ROOT; 2218 INIT_LIST_HEAD(&c->infos_list); 2219 INIT_LIST_HEAD(&c->idx_gc); 2220 INIT_LIST_HEAD(&c->replay_list); 2221 INIT_LIST_HEAD(&c->replay_buds); 2222 INIT_LIST_HEAD(&c->uncat_list); 2223 INIT_LIST_HEAD(&c->empty_list); 2224 INIT_LIST_HEAD(&c->freeable_list); 2225 INIT_LIST_HEAD(&c->frdi_idx_list); 2226 INIT_LIST_HEAD(&c->unclean_leb_list); 2227 INIT_LIST_HEAD(&c->old_buds); 2228 INIT_LIST_HEAD(&c->orph_list); 2229 INIT_LIST_HEAD(&c->orph_new); 2230 c->no_chk_data_crc = 1; 2231 2232 c->highest_inum = UBIFS_FIRST_INO; 2233 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2234 2235 ubi_get_volume_info(ubi, &c->vi); 2236 ubi_get_device_info(c->vi.ubi_num, &c->di); 2237 } 2238 return c; 2239 } 2240 2241 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2242 { 2243 struct ubifs_info *c = sb->s_fs_info; 2244 struct inode *root; 2245 int err; 2246 2247 c->vfs_sb = sb; 2248 #ifndef __UBOOT__ 2249 /* Re-open the UBI device in read-write mode */ 2250 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2251 #else 2252 /* U-Boot read only mode */ 2253 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY); 2254 #endif 2255 2256 if (IS_ERR(c->ubi)) { 2257 err = PTR_ERR(c->ubi); 2258 goto out; 2259 } 2260 2261 #ifndef __UBOOT__ 2262 /* 2263 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2264 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2265 * which means the user would have to wait not just for their own I/O 2266 * but the read-ahead I/O as well i.e. completely pointless. 2267 * 2268 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2269 */ 2270 c->bdi.name = "ubifs", 2271 c->bdi.capabilities = 0; 2272 err = bdi_init(&c->bdi); 2273 if (err) 2274 goto out_close; 2275 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2276 c->vi.ubi_num, c->vi.vol_id); 2277 if (err) 2278 goto out_bdi; 2279 2280 err = ubifs_parse_options(c, data, 0); 2281 if (err) 2282 goto out_bdi; 2283 2284 sb->s_bdi = &c->bdi; 2285 #endif 2286 sb->s_fs_info = c; 2287 sb->s_magic = UBIFS_SUPER_MAGIC; 2288 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2289 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2290 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2291 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2292 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2293 sb->s_op = &ubifs_super_operations; 2294 #ifndef __UBOOT__ 2295 sb->s_xattr = ubifs_xattr_handlers; 2296 #endif 2297 2298 mutex_lock(&c->umount_mutex); 2299 err = mount_ubifs(c); 2300 if (err) { 2301 ubifs_assert(err < 0); 2302 goto out_unlock; 2303 } 2304 2305 /* Read the root inode */ 2306 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2307 if (IS_ERR(root)) { 2308 err = PTR_ERR(root); 2309 goto out_umount; 2310 } 2311 2312 #ifndef __UBOOT__ 2313 sb->s_root = d_make_root(root); 2314 if (!sb->s_root) { 2315 err = -ENOMEM; 2316 goto out_umount; 2317 } 2318 #else 2319 sb->s_root = NULL; 2320 #endif 2321 2322 mutex_unlock(&c->umount_mutex); 2323 return 0; 2324 2325 out_umount: 2326 ubifs_umount(c); 2327 out_unlock: 2328 mutex_unlock(&c->umount_mutex); 2329 #ifndef __UBOOT__ 2330 out_bdi: 2331 bdi_destroy(&c->bdi); 2332 out_close: 2333 #endif 2334 ubi_close_volume(c->ubi); 2335 out: 2336 return err; 2337 } 2338 2339 static int sb_test(struct super_block *sb, void *data) 2340 { 2341 struct ubifs_info *c1 = data; 2342 struct ubifs_info *c = sb->s_fs_info; 2343 2344 return c->vi.cdev == c1->vi.cdev; 2345 } 2346 2347 static int sb_set(struct super_block *sb, void *data) 2348 { 2349 sb->s_fs_info = data; 2350 return set_anon_super(sb, NULL); 2351 } 2352 2353 static struct super_block *alloc_super(struct file_system_type *type, int flags) 2354 { 2355 struct super_block *s; 2356 int err; 2357 2358 s = kzalloc(sizeof(struct super_block), GFP_USER); 2359 if (!s) { 2360 err = -ENOMEM; 2361 return ERR_PTR(err); 2362 } 2363 2364 INIT_HLIST_NODE(&s->s_instances); 2365 INIT_LIST_HEAD(&s->s_inodes); 2366 s->s_time_gran = 1000000000; 2367 s->s_flags = flags; 2368 2369 return s; 2370 } 2371 2372 /** 2373 * sget - find or create a superblock 2374 * @type: filesystem type superblock should belong to 2375 * @test: comparison callback 2376 * @set: setup callback 2377 * @flags: mount flags 2378 * @data: argument to each of them 2379 */ 2380 struct super_block *sget(struct file_system_type *type, 2381 int (*test)(struct super_block *,void *), 2382 int (*set)(struct super_block *,void *), 2383 int flags, 2384 void *data) 2385 { 2386 struct super_block *s = NULL; 2387 #ifndef __UBOOT__ 2388 struct super_block *old; 2389 #endif 2390 int err; 2391 2392 #ifndef __UBOOT__ 2393 retry: 2394 spin_lock(&sb_lock); 2395 if (test) { 2396 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 2397 if (!test(old, data)) 2398 continue; 2399 if (!grab_super(old)) 2400 goto retry; 2401 if (s) { 2402 up_write(&s->s_umount); 2403 destroy_super(s); 2404 s = NULL; 2405 } 2406 return old; 2407 } 2408 } 2409 #endif 2410 if (!s) { 2411 spin_unlock(&sb_lock); 2412 s = alloc_super(type, flags); 2413 if (!s) 2414 return ERR_PTR(-ENOMEM); 2415 #ifndef __UBOOT__ 2416 goto retry; 2417 #endif 2418 } 2419 2420 err = set(s, data); 2421 if (err) { 2422 #ifndef __UBOOT__ 2423 spin_unlock(&sb_lock); 2424 up_write(&s->s_umount); 2425 destroy_super(s); 2426 #endif 2427 return ERR_PTR(err); 2428 } 2429 s->s_type = type; 2430 #ifndef __UBOOT__ 2431 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 2432 list_add_tail(&s->s_list, &super_blocks); 2433 #else 2434 strncpy(s->s_id, type->name, sizeof(s->s_id)); 2435 #endif 2436 hlist_add_head(&s->s_instances, &type->fs_supers); 2437 #ifndef __UBOOT__ 2438 spin_unlock(&sb_lock); 2439 get_filesystem(type); 2440 register_shrinker(&s->s_shrink); 2441 #endif 2442 return s; 2443 } 2444 2445 EXPORT_SYMBOL(sget); 2446 2447 2448 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2449 const char *name, void *data) 2450 { 2451 struct ubi_volume_desc *ubi; 2452 struct ubifs_info *c; 2453 struct super_block *sb; 2454 int err; 2455 2456 dbg_gen("name %s, flags %#x", name, flags); 2457 2458 /* 2459 * Get UBI device number and volume ID. Mount it read-only so far 2460 * because this might be a new mount point, and UBI allows only one 2461 * read-write user at a time. 2462 */ 2463 ubi = open_ubi(name, UBI_READONLY); 2464 if (IS_ERR(ubi)) { 2465 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2466 current->pid, name, (int)PTR_ERR(ubi)); 2467 return ERR_CAST(ubi); 2468 } 2469 2470 c = alloc_ubifs_info(ubi); 2471 if (!c) { 2472 err = -ENOMEM; 2473 goto out_close; 2474 } 2475 2476 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2477 2478 sb = sget(fs_type, sb_test, sb_set, flags, c); 2479 if (IS_ERR(sb)) { 2480 err = PTR_ERR(sb); 2481 kfree(c); 2482 goto out_close; 2483 } 2484 2485 if (sb->s_root) { 2486 struct ubifs_info *c1 = sb->s_fs_info; 2487 kfree(c); 2488 /* A new mount point for already mounted UBIFS */ 2489 dbg_gen("this ubi volume is already mounted"); 2490 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2491 err = -EBUSY; 2492 goto out_deact; 2493 } 2494 } else { 2495 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2496 if (err) 2497 goto out_deact; 2498 /* We do not support atime */ 2499 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2500 } 2501 2502 /* 'fill_super()' opens ubi again so we must close it here */ 2503 ubi_close_volume(ubi); 2504 2505 #ifdef __UBOOT__ 2506 ubifs_sb = sb; 2507 return 0; 2508 #else 2509 return dget(sb->s_root); 2510 #endif 2511 2512 out_deact: 2513 #ifndef __UBOOT__ 2514 deactivate_locked_super(sb); 2515 #endif 2516 out_close: 2517 ubi_close_volume(ubi); 2518 return ERR_PTR(err); 2519 } 2520 2521 static void kill_ubifs_super(struct super_block *s) 2522 { 2523 struct ubifs_info *c = s->s_fs_info; 2524 #ifndef __UBOOT__ 2525 kill_anon_super(s); 2526 #endif 2527 kfree(c); 2528 } 2529 2530 static struct file_system_type ubifs_fs_type = { 2531 .name = "ubifs", 2532 .owner = THIS_MODULE, 2533 .mount = ubifs_mount, 2534 .kill_sb = kill_ubifs_super, 2535 }; 2536 #ifndef __UBOOT__ 2537 MODULE_ALIAS_FS("ubifs"); 2538 2539 /* 2540 * Inode slab cache constructor. 2541 */ 2542 static void inode_slab_ctor(void *obj) 2543 { 2544 struct ubifs_inode *ui = obj; 2545 inode_init_once(&ui->vfs_inode); 2546 } 2547 2548 static int __init ubifs_init(void) 2549 #else 2550 int ubifs_init(void) 2551 #endif 2552 { 2553 int err; 2554 2555 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2556 2557 /* Make sure node sizes are 8-byte aligned */ 2558 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2559 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2560 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2561 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2562 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2563 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2564 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2565 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2566 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2567 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2568 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2569 2570 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2571 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2572 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2573 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2574 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2575 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2576 2577 /* Check min. node size */ 2578 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2579 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2580 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2581 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2582 2583 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2584 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2585 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2586 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2587 2588 /* Defined node sizes */ 2589 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2590 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2591 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2592 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2593 2594 /* 2595 * We use 2 bit wide bit-fields to store compression type, which should 2596 * be amended if more compressors are added. The bit-fields are: 2597 * @compr_type in 'struct ubifs_inode', @default_compr in 2598 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2599 */ 2600 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2601 2602 /* 2603 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2604 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2605 */ 2606 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2607 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2608 current->pid, (unsigned int)PAGE_CACHE_SIZE); 2609 return -EINVAL; 2610 } 2611 2612 #ifndef __UBOOT__ 2613 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2614 sizeof(struct ubifs_inode), 0, 2615 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2616 &inode_slab_ctor); 2617 if (!ubifs_inode_slab) 2618 return -ENOMEM; 2619 2620 err = register_shrinker(&ubifs_shrinker_info); 2621 if (err) 2622 goto out_slab; 2623 #endif 2624 2625 err = ubifs_compressors_init(); 2626 if (err) 2627 goto out_shrinker; 2628 2629 #ifndef __UBOOT__ 2630 err = dbg_debugfs_init(); 2631 if (err) 2632 goto out_compr; 2633 2634 err = register_filesystem(&ubifs_fs_type); 2635 if (err) { 2636 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2637 current->pid, err); 2638 goto out_dbg; 2639 } 2640 #endif 2641 return 0; 2642 2643 #ifndef __UBOOT__ 2644 out_dbg: 2645 dbg_debugfs_exit(); 2646 out_compr: 2647 ubifs_compressors_exit(); 2648 #endif 2649 out_shrinker: 2650 #ifndef __UBOOT__ 2651 unregister_shrinker(&ubifs_shrinker_info); 2652 out_slab: 2653 #endif 2654 kmem_cache_destroy(ubifs_inode_slab); 2655 return err; 2656 } 2657 /* late_initcall to let compressors initialize first */ 2658 late_initcall(ubifs_init); 2659 2660 #ifndef __UBOOT__ 2661 static void __exit ubifs_exit(void) 2662 { 2663 ubifs_assert(list_empty(&ubifs_infos)); 2664 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2665 2666 dbg_debugfs_exit(); 2667 ubifs_compressors_exit(); 2668 unregister_shrinker(&ubifs_shrinker_info); 2669 2670 /* 2671 * Make sure all delayed rcu free inodes are flushed before we 2672 * destroy cache. 2673 */ 2674 rcu_barrier(); 2675 kmem_cache_destroy(ubifs_inode_slab); 2676 unregister_filesystem(&ubifs_fs_type); 2677 } 2678 module_exit(ubifs_exit); 2679 2680 MODULE_LICENSE("GPL"); 2681 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2682 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2683 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2684 #else 2685 int uboot_ubifs_mount(char *vol_name) 2686 { 2687 struct dentry *ret; 2688 int flags; 2689 2690 /* 2691 * First unmount if allready mounted 2692 */ 2693 if (ubifs_sb) 2694 ubifs_umount(ubifs_sb->s_fs_info); 2695 2696 /* 2697 * Mount in read-only mode 2698 */ 2699 flags = MS_RDONLY; 2700 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL); 2701 if (IS_ERR(ret)) { 2702 printf("Error reading superblock on volume '%s' " \ 2703 "errno=%d!\n", vol_name, (int)PTR_ERR(ret)); 2704 return -1; 2705 } 2706 2707 return 0; 2708 } 2709 #endif 2710