xref: /openbmc/u-boot/fs/ubifs/super.c (revision ca6c5e03)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11 
12 /*
13  * This file implements UBIFS initialization and VFS superblock operations. Some
14  * initialization stuff which is rather large and complex is placed at
15  * corresponding subsystems, but most of it is here.
16  */
17 
18 #ifndef __UBOOT__
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/kthread.h>
24 #include <linux/parser.h>
25 #include <linux/seq_file.h>
26 #include <linux/mount.h>
27 #include <linux/math64.h>
28 #include <linux/writeback.h>
29 #else
30 
31 #include <common.h>
32 #include <malloc.h>
33 #include <memalign.h>
34 #include <linux/bug.h>
35 #include <linux/log2.h>
36 #include <linux/stat.h>
37 #include <linux/err.h>
38 #include "ubifs.h"
39 #include <ubi_uboot.h>
40 #include <mtd/ubi-user.h>
41 
42 struct dentry;
43 struct file;
44 struct iattr;
45 struct kstat;
46 struct vfsmount;
47 
48 #define INODE_LOCKED_MAX	64
49 
50 struct super_block *ubifs_sb;
51 
52 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
53 
54 int set_anon_super(struct super_block *s, void *data)
55 {
56 	return 0;
57 }
58 
59 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
60 {
61 	struct inode *inode;
62 
63 	inode = (struct inode *)malloc_cache_aligned(
64 			sizeof(struct ubifs_inode));
65 	if (inode) {
66 		inode->i_ino = ino;
67 		inode->i_sb = sb;
68 		list_add(&inode->i_sb_list, &sb->s_inodes);
69 		inode->i_state = I_LOCK | I_NEW;
70 	}
71 
72 	return inode;
73 }
74 
75 void iget_failed(struct inode *inode)
76 {
77 }
78 
79 int ubifs_iput(struct inode *inode)
80 {
81 	list_del_init(&inode->i_sb_list);
82 
83 	free(inode);
84 	return 0;
85 }
86 
87 /*
88  * Lock (save) inode in inode array for readback after recovery
89  */
90 void iput(struct inode *inode)
91 {
92 	int i;
93 	struct inode *ino;
94 
95 	/*
96 	 * Search end of list
97 	 */
98 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
99 		if (inodes_locked_down[i] == NULL)
100 			break;
101 	}
102 
103 	if (i >= INODE_LOCKED_MAX) {
104 		dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
105 		return;
106 	}
107 
108 	/*
109 	 * Allocate and use new inode
110 	 */
111 	ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
112 	memcpy(ino, inode, sizeof(struct ubifs_inode));
113 
114 	/*
115 	 * Finally save inode in array
116 	 */
117 	inodes_locked_down[i] = ino;
118 }
119 
120 /* from fs/inode.c */
121 /**
122  * clear_nlink - directly zero an inode's link count
123  * @inode: inode
124  *
125  * This is a low-level filesystem helper to replace any
126  * direct filesystem manipulation of i_nlink.  See
127  * drop_nlink() for why we care about i_nlink hitting zero.
128  */
129 void clear_nlink(struct inode *inode)
130 {
131 	if (inode->i_nlink) {
132 		inode->__i_nlink = 0;
133 		atomic_long_inc(&inode->i_sb->s_remove_count);
134 	}
135 }
136 EXPORT_SYMBOL(clear_nlink);
137 
138 /**
139  * set_nlink - directly set an inode's link count
140  * @inode: inode
141  * @nlink: new nlink (should be non-zero)
142  *
143  * This is a low-level filesystem helper to replace any
144  * direct filesystem manipulation of i_nlink.
145  */
146 void set_nlink(struct inode *inode, unsigned int nlink)
147 {
148 	if (!nlink) {
149 		clear_nlink(inode);
150 	} else {
151 		/* Yes, some filesystems do change nlink from zero to one */
152 		if (inode->i_nlink == 0)
153 			atomic_long_dec(&inode->i_sb->s_remove_count);
154 
155 		inode->__i_nlink = nlink;
156 	}
157 }
158 EXPORT_SYMBOL(set_nlink);
159 
160 /* from include/linux/fs.h */
161 static inline void i_uid_write(struct inode *inode, uid_t uid)
162 {
163 	inode->i_uid.val = uid;
164 }
165 
166 static inline void i_gid_write(struct inode *inode, gid_t gid)
167 {
168 	inode->i_gid.val = gid;
169 }
170 
171 void unlock_new_inode(struct inode *inode)
172 {
173 	return;
174 }
175 #endif
176 
177 /*
178  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
179  * allocating too much.
180  */
181 #define UBIFS_KMALLOC_OK (128*1024)
182 
183 /* Slab cache for UBIFS inodes */
184 struct kmem_cache *ubifs_inode_slab;
185 
186 #ifndef __UBOOT__
187 /* UBIFS TNC shrinker description */
188 static struct shrinker ubifs_shrinker_info = {
189 	.scan_objects = ubifs_shrink_scan,
190 	.count_objects = ubifs_shrink_count,
191 	.seeks = DEFAULT_SEEKS,
192 };
193 #endif
194 
195 /**
196  * validate_inode - validate inode.
197  * @c: UBIFS file-system description object
198  * @inode: the inode to validate
199  *
200  * This is a helper function for 'ubifs_iget()' which validates various fields
201  * of a newly built inode to make sure they contain sane values and prevent
202  * possible vulnerabilities. Returns zero if the inode is all right and
203  * a non-zero error code if not.
204  */
205 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
206 {
207 	int err;
208 	const struct ubifs_inode *ui = ubifs_inode(inode);
209 
210 	if (inode->i_size > c->max_inode_sz) {
211 		ubifs_err(c, "inode is too large (%lld)",
212 			  (long long)inode->i_size);
213 		return 1;
214 	}
215 
216 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
217 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
218 		return 2;
219 	}
220 
221 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
222 		return 3;
223 
224 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
225 		return 4;
226 
227 	if (ui->xattr && !S_ISREG(inode->i_mode))
228 		return 5;
229 
230 	if (!ubifs_compr_present(ui->compr_type)) {
231 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
232 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
233 	}
234 
235 	err = dbg_check_dir(c, inode);
236 	return err;
237 }
238 
239 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
240 {
241 	int err;
242 	union ubifs_key key;
243 	struct ubifs_ino_node *ino;
244 	struct ubifs_info *c = sb->s_fs_info;
245 	struct inode *inode;
246 	struct ubifs_inode *ui;
247 #ifdef __UBOOT__
248 	int i;
249 #endif
250 
251 	dbg_gen("inode %lu", inum);
252 
253 #ifdef __UBOOT__
254 	/*
255 	 * U-Boot special handling of locked down inodes via recovery
256 	 * e.g. ubifs_recover_size()
257 	 */
258 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
259 		/*
260 		 * Exit on last entry (NULL), inode not found in list
261 		 */
262 		if (inodes_locked_down[i] == NULL)
263 			break;
264 
265 		if (inodes_locked_down[i]->i_ino == inum) {
266 			/*
267 			 * We found the locked down inode in our array,
268 			 * so just return this pointer instead of creating
269 			 * a new one.
270 			 */
271 			return inodes_locked_down[i];
272 		}
273 	}
274 #endif
275 
276 	inode = iget_locked(sb, inum);
277 	if (!inode)
278 		return ERR_PTR(-ENOMEM);
279 	if (!(inode->i_state & I_NEW))
280 		return inode;
281 	ui = ubifs_inode(inode);
282 
283 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
284 	if (!ino) {
285 		err = -ENOMEM;
286 		goto out;
287 	}
288 
289 	ino_key_init(c, &key, inode->i_ino);
290 
291 	err = ubifs_tnc_lookup(c, &key, ino);
292 	if (err)
293 		goto out_ino;
294 
295 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
296 	set_nlink(inode, le32_to_cpu(ino->nlink));
297 	i_uid_write(inode, le32_to_cpu(ino->uid));
298 	i_gid_write(inode, le32_to_cpu(ino->gid));
299 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
300 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
301 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
302 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
303 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
304 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
305 	inode->i_mode = le32_to_cpu(ino->mode);
306 	inode->i_size = le64_to_cpu(ino->size);
307 
308 	ui->data_len    = le32_to_cpu(ino->data_len);
309 	ui->flags       = le32_to_cpu(ino->flags);
310 	ui->compr_type  = le16_to_cpu(ino->compr_type);
311 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
312 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
313 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
314 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
315 	ui->synced_i_size = ui->ui_size = inode->i_size;
316 
317 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
318 
319 	err = validate_inode(c, inode);
320 	if (err)
321 		goto out_invalid;
322 
323 #ifndef __UBOOT__
324 	switch (inode->i_mode & S_IFMT) {
325 	case S_IFREG:
326 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
327 		inode->i_op = &ubifs_file_inode_operations;
328 		inode->i_fop = &ubifs_file_operations;
329 		if (ui->xattr) {
330 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
331 			if (!ui->data) {
332 				err = -ENOMEM;
333 				goto out_ino;
334 			}
335 			memcpy(ui->data, ino->data, ui->data_len);
336 			((char *)ui->data)[ui->data_len] = '\0';
337 		} else if (ui->data_len != 0) {
338 			err = 10;
339 			goto out_invalid;
340 		}
341 		break;
342 	case S_IFDIR:
343 		inode->i_op  = &ubifs_dir_inode_operations;
344 		inode->i_fop = &ubifs_dir_operations;
345 		if (ui->data_len != 0) {
346 			err = 11;
347 			goto out_invalid;
348 		}
349 		break;
350 	case S_IFLNK:
351 		inode->i_op = &ubifs_symlink_inode_operations;
352 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
353 			err = 12;
354 			goto out_invalid;
355 		}
356 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
357 		if (!ui->data) {
358 			err = -ENOMEM;
359 			goto out_ino;
360 		}
361 		memcpy(ui->data, ino->data, ui->data_len);
362 		((char *)ui->data)[ui->data_len] = '\0';
363 		inode->i_link = ui->data;
364 		break;
365 	case S_IFBLK:
366 	case S_IFCHR:
367 	{
368 		dev_t rdev;
369 		union ubifs_dev_desc *dev;
370 
371 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
372 		if (!ui->data) {
373 			err = -ENOMEM;
374 			goto out_ino;
375 		}
376 
377 		dev = (union ubifs_dev_desc *)ino->data;
378 		if (ui->data_len == sizeof(dev->new))
379 			rdev = new_decode_dev(le32_to_cpu(dev->new));
380 		else if (ui->data_len == sizeof(dev->huge))
381 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
382 		else {
383 			err = 13;
384 			goto out_invalid;
385 		}
386 		memcpy(ui->data, ino->data, ui->data_len);
387 		inode->i_op = &ubifs_file_inode_operations;
388 		init_special_inode(inode, inode->i_mode, rdev);
389 		break;
390 	}
391 	case S_IFSOCK:
392 	case S_IFIFO:
393 		inode->i_op = &ubifs_file_inode_operations;
394 		init_special_inode(inode, inode->i_mode, 0);
395 		if (ui->data_len != 0) {
396 			err = 14;
397 			goto out_invalid;
398 		}
399 		break;
400 	default:
401 		err = 15;
402 		goto out_invalid;
403 	}
404 #else
405 	if ((inode->i_mode & S_IFMT) == S_IFLNK) {
406 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
407 			err = 12;
408 			goto out_invalid;
409 		}
410 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
411 		if (!ui->data) {
412 			err = -ENOMEM;
413 			goto out_ino;
414 		}
415 		memcpy(ui->data, ino->data, ui->data_len);
416 		((char *)ui->data)[ui->data_len] = '\0';
417 	}
418 #endif
419 
420 	kfree(ino);
421 #ifndef __UBOOT__
422 	ubifs_set_inode_flags(inode);
423 #endif
424 	unlock_new_inode(inode);
425 	return inode;
426 
427 out_invalid:
428 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
429 	ubifs_dump_node(c, ino);
430 	ubifs_dump_inode(c, inode);
431 	err = -EINVAL;
432 out_ino:
433 	kfree(ino);
434 out:
435 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
436 	iget_failed(inode);
437 	return ERR_PTR(err);
438 }
439 
440 static struct inode *ubifs_alloc_inode(struct super_block *sb)
441 {
442 	struct ubifs_inode *ui;
443 
444 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
445 	if (!ui)
446 		return NULL;
447 
448 	memset((void *)ui + sizeof(struct inode), 0,
449 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
450 	mutex_init(&ui->ui_mutex);
451 	spin_lock_init(&ui->ui_lock);
452 	return &ui->vfs_inode;
453 };
454 
455 #ifndef __UBOOT__
456 static void ubifs_i_callback(struct rcu_head *head)
457 {
458 	struct inode *inode = container_of(head, struct inode, i_rcu);
459 	struct ubifs_inode *ui = ubifs_inode(inode);
460 	kmem_cache_free(ubifs_inode_slab, ui);
461 }
462 
463 static void ubifs_destroy_inode(struct inode *inode)
464 {
465 	struct ubifs_inode *ui = ubifs_inode(inode);
466 
467 	kfree(ui->data);
468 	call_rcu(&inode->i_rcu, ubifs_i_callback);
469 }
470 
471 /*
472  * Note, Linux write-back code calls this without 'i_mutex'.
473  */
474 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
475 {
476 	int err = 0;
477 	struct ubifs_info *c = inode->i_sb->s_fs_info;
478 	struct ubifs_inode *ui = ubifs_inode(inode);
479 
480 	ubifs_assert(!ui->xattr);
481 	if (is_bad_inode(inode))
482 		return 0;
483 
484 	mutex_lock(&ui->ui_mutex);
485 	/*
486 	 * Due to races between write-back forced by budgeting
487 	 * (see 'sync_some_inodes()') and background write-back, the inode may
488 	 * have already been synchronized, do not do this again. This might
489 	 * also happen if it was synchronized in an VFS operation, e.g.
490 	 * 'ubifs_link()'.
491 	 */
492 	if (!ui->dirty) {
493 		mutex_unlock(&ui->ui_mutex);
494 		return 0;
495 	}
496 
497 	/*
498 	 * As an optimization, do not write orphan inodes to the media just
499 	 * because this is not needed.
500 	 */
501 	dbg_gen("inode %lu, mode %#x, nlink %u",
502 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
503 	if (inode->i_nlink) {
504 		err = ubifs_jnl_write_inode(c, inode);
505 		if (err)
506 			ubifs_err(c, "can't write inode %lu, error %d",
507 				  inode->i_ino, err);
508 		else
509 			err = dbg_check_inode_size(c, inode, ui->ui_size);
510 	}
511 
512 	ui->dirty = 0;
513 	mutex_unlock(&ui->ui_mutex);
514 	ubifs_release_dirty_inode_budget(c, ui);
515 	return err;
516 }
517 
518 static void ubifs_evict_inode(struct inode *inode)
519 {
520 	int err;
521 	struct ubifs_info *c = inode->i_sb->s_fs_info;
522 	struct ubifs_inode *ui = ubifs_inode(inode);
523 
524 	if (ui->xattr)
525 		/*
526 		 * Extended attribute inode deletions are fully handled in
527 		 * 'ubifs_removexattr()'. These inodes are special and have
528 		 * limited usage, so there is nothing to do here.
529 		 */
530 		goto out;
531 
532 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
533 	ubifs_assert(!atomic_read(&inode->i_count));
534 
535 	truncate_inode_pages_final(&inode->i_data);
536 
537 	if (inode->i_nlink)
538 		goto done;
539 
540 	if (is_bad_inode(inode))
541 		goto out;
542 
543 	ui->ui_size = inode->i_size = 0;
544 	err = ubifs_jnl_delete_inode(c, inode);
545 	if (err)
546 		/*
547 		 * Worst case we have a lost orphan inode wasting space, so a
548 		 * simple error message is OK here.
549 		 */
550 		ubifs_err(c, "can't delete inode %lu, error %d",
551 			  inode->i_ino, err);
552 
553 out:
554 	if (ui->dirty)
555 		ubifs_release_dirty_inode_budget(c, ui);
556 	else {
557 		/* We've deleted something - clean the "no space" flags */
558 		c->bi.nospace = c->bi.nospace_rp = 0;
559 		smp_wmb();
560 	}
561 done:
562 	clear_inode(inode);
563 }
564 #endif
565 
566 static void ubifs_dirty_inode(struct inode *inode, int flags)
567 {
568 	struct ubifs_inode *ui = ubifs_inode(inode);
569 
570 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
571 	if (!ui->dirty) {
572 		ui->dirty = 1;
573 		dbg_gen("inode %lu",  inode->i_ino);
574 	}
575 }
576 
577 #ifndef __UBOOT__
578 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
579 {
580 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
581 	unsigned long long free;
582 	__le32 *uuid = (__le32 *)c->uuid;
583 
584 	free = ubifs_get_free_space(c);
585 	dbg_gen("free space %lld bytes (%lld blocks)",
586 		free, free >> UBIFS_BLOCK_SHIFT);
587 
588 	buf->f_type = UBIFS_SUPER_MAGIC;
589 	buf->f_bsize = UBIFS_BLOCK_SIZE;
590 	buf->f_blocks = c->block_cnt;
591 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
592 	if (free > c->report_rp_size)
593 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
594 	else
595 		buf->f_bavail = 0;
596 	buf->f_files = 0;
597 	buf->f_ffree = 0;
598 	buf->f_namelen = UBIFS_MAX_NLEN;
599 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
600 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
601 	ubifs_assert(buf->f_bfree <= c->block_cnt);
602 	return 0;
603 }
604 
605 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
606 {
607 	struct ubifs_info *c = root->d_sb->s_fs_info;
608 
609 	if (c->mount_opts.unmount_mode == 2)
610 		seq_puts(s, ",fast_unmount");
611 	else if (c->mount_opts.unmount_mode == 1)
612 		seq_puts(s, ",norm_unmount");
613 
614 	if (c->mount_opts.bulk_read == 2)
615 		seq_puts(s, ",bulk_read");
616 	else if (c->mount_opts.bulk_read == 1)
617 		seq_puts(s, ",no_bulk_read");
618 
619 	if (c->mount_opts.chk_data_crc == 2)
620 		seq_puts(s, ",chk_data_crc");
621 	else if (c->mount_opts.chk_data_crc == 1)
622 		seq_puts(s, ",no_chk_data_crc");
623 
624 	if (c->mount_opts.override_compr) {
625 		seq_printf(s, ",compr=%s",
626 			   ubifs_compr_name(c->mount_opts.compr_type));
627 	}
628 
629 	return 0;
630 }
631 
632 static int ubifs_sync_fs(struct super_block *sb, int wait)
633 {
634 	int i, err;
635 	struct ubifs_info *c = sb->s_fs_info;
636 
637 	/*
638 	 * Zero @wait is just an advisory thing to help the file system shove
639 	 * lots of data into the queues, and there will be the second
640 	 * '->sync_fs()' call, with non-zero @wait.
641 	 */
642 	if (!wait)
643 		return 0;
644 
645 	/*
646 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
647 	 * do this if it waits for an already running commit.
648 	 */
649 	for (i = 0; i < c->jhead_cnt; i++) {
650 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
651 		if (err)
652 			return err;
653 	}
654 
655 	/*
656 	 * Strictly speaking, it is not necessary to commit the journal here,
657 	 * synchronizing write-buffers would be enough. But committing makes
658 	 * UBIFS free space predictions much more accurate, so we want to let
659 	 * the user be able to get more accurate results of 'statfs()' after
660 	 * they synchronize the file system.
661 	 */
662 	err = ubifs_run_commit(c);
663 	if (err)
664 		return err;
665 
666 	return ubi_sync(c->vi.ubi_num);
667 }
668 #endif
669 
670 /**
671  * init_constants_early - initialize UBIFS constants.
672  * @c: UBIFS file-system description object
673  *
674  * This function initialize UBIFS constants which do not need the superblock to
675  * be read. It also checks that the UBI volume satisfies basic UBIFS
676  * requirements. Returns zero in case of success and a negative error code in
677  * case of failure.
678  */
679 static int init_constants_early(struct ubifs_info *c)
680 {
681 	if (c->vi.corrupted) {
682 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
683 		c->ro_media = 1;
684 	}
685 
686 	if (c->di.ro_mode) {
687 		ubifs_msg(c, "read-only UBI device");
688 		c->ro_media = 1;
689 	}
690 
691 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
692 		ubifs_msg(c, "static UBI volume - read-only mode");
693 		c->ro_media = 1;
694 	}
695 
696 	c->leb_cnt = c->vi.size;
697 	c->leb_size = c->vi.usable_leb_size;
698 	c->leb_start = c->di.leb_start;
699 	c->half_leb_size = c->leb_size / 2;
700 	c->min_io_size = c->di.min_io_size;
701 	c->min_io_shift = fls(c->min_io_size) - 1;
702 	c->max_write_size = c->di.max_write_size;
703 	c->max_write_shift = fls(c->max_write_size) - 1;
704 
705 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
706 		ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
707 			  c->leb_size, UBIFS_MIN_LEB_SZ);
708 		return -EINVAL;
709 	}
710 
711 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
712 		ubifs_err(c, "too few LEBs (%d), min. is %d",
713 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
714 		return -EINVAL;
715 	}
716 
717 	if (!is_power_of_2(c->min_io_size)) {
718 		ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
719 		return -EINVAL;
720 	}
721 
722 	/*
723 	 * Maximum write size has to be greater or equivalent to min. I/O
724 	 * size, and be multiple of min. I/O size.
725 	 */
726 	if (c->max_write_size < c->min_io_size ||
727 	    c->max_write_size % c->min_io_size ||
728 	    !is_power_of_2(c->max_write_size)) {
729 		ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
730 			  c->max_write_size, c->min_io_size);
731 		return -EINVAL;
732 	}
733 
734 	/*
735 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
736 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
737 	 * less than 8.
738 	 */
739 	if (c->min_io_size < 8) {
740 		c->min_io_size = 8;
741 		c->min_io_shift = 3;
742 		if (c->max_write_size < c->min_io_size) {
743 			c->max_write_size = c->min_io_size;
744 			c->max_write_shift = c->min_io_shift;
745 		}
746 	}
747 
748 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
749 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
750 
751 	/*
752 	 * Initialize node length ranges which are mostly needed for node
753 	 * length validation.
754 	 */
755 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
756 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
757 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
758 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
759 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
760 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
761 
762 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
763 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
764 	c->ranges[UBIFS_ORPH_NODE].min_len =
765 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
766 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
767 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
768 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
769 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
770 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
771 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
772 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
773 	/*
774 	 * Minimum indexing node size is amended later when superblock is
775 	 * read and the key length is known.
776 	 */
777 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
778 	/*
779 	 * Maximum indexing node size is amended later when superblock is
780 	 * read and the fanout is known.
781 	 */
782 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
783 
784 	/*
785 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
786 	 * about these values.
787 	 */
788 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
789 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
790 
791 	/*
792 	 * Calculate how many bytes would be wasted at the end of LEB if it was
793 	 * fully filled with data nodes of maximum size. This is used in
794 	 * calculations when reporting free space.
795 	 */
796 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
797 
798 	/* Buffer size for bulk-reads */
799 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
800 	if (c->max_bu_buf_len > c->leb_size)
801 		c->max_bu_buf_len = c->leb_size;
802 	return 0;
803 }
804 
805 /**
806  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
807  * @c: UBIFS file-system description object
808  * @lnum: LEB the write-buffer was synchronized to
809  * @free: how many free bytes left in this LEB
810  * @pad: how many bytes were padded
811  *
812  * This is a callback function which is called by the I/O unit when the
813  * write-buffer is synchronized. We need this to correctly maintain space
814  * accounting in bud logical eraseblocks. This function returns zero in case of
815  * success and a negative error code in case of failure.
816  *
817  * This function actually belongs to the journal, but we keep it here because
818  * we want to keep it static.
819  */
820 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
821 {
822 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
823 }
824 
825 /*
826  * init_constants_sb - initialize UBIFS constants.
827  * @c: UBIFS file-system description object
828  *
829  * This is a helper function which initializes various UBIFS constants after
830  * the superblock has been read. It also checks various UBIFS parameters and
831  * makes sure they are all right. Returns zero in case of success and a
832  * negative error code in case of failure.
833  */
834 static int init_constants_sb(struct ubifs_info *c)
835 {
836 	int tmp, err;
837 	long long tmp64;
838 
839 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
840 	c->max_znode_sz = sizeof(struct ubifs_znode) +
841 				c->fanout * sizeof(struct ubifs_zbranch);
842 
843 	tmp = ubifs_idx_node_sz(c, 1);
844 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
845 	c->min_idx_node_sz = ALIGN(tmp, 8);
846 
847 	tmp = ubifs_idx_node_sz(c, c->fanout);
848 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
849 	c->max_idx_node_sz = ALIGN(tmp, 8);
850 
851 	/* Make sure LEB size is large enough to fit full commit */
852 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
853 	tmp = ALIGN(tmp, c->min_io_size);
854 	if (tmp > c->leb_size) {
855 		ubifs_err(c, "too small LEB size %d, at least %d needed",
856 			  c->leb_size, tmp);
857 		return -EINVAL;
858 	}
859 
860 	/*
861 	 * Make sure that the log is large enough to fit reference nodes for
862 	 * all buds plus one reserved LEB.
863 	 */
864 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
865 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
866 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
867 	tmp /= c->leb_size;
868 	tmp += 1;
869 	if (c->log_lebs < tmp) {
870 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
871 			  c->log_lebs, tmp);
872 		return -EINVAL;
873 	}
874 
875 	/*
876 	 * When budgeting we assume worst-case scenarios when the pages are not
877 	 * be compressed and direntries are of the maximum size.
878 	 *
879 	 * Note, data, which may be stored in inodes is budgeted separately, so
880 	 * it is not included into 'c->bi.inode_budget'.
881 	 */
882 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
883 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
884 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
885 
886 	/*
887 	 * When the amount of flash space used by buds becomes
888 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
889 	 * The writers are unblocked when the commit is finished. To avoid
890 	 * writers to be blocked UBIFS initiates background commit in advance,
891 	 * when number of bud bytes becomes above the limit defined below.
892 	 */
893 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
894 
895 	/*
896 	 * Ensure minimum journal size. All the bytes in the journal heads are
897 	 * considered to be used, when calculating the current journal usage.
898 	 * Consequently, if the journal is too small, UBIFS will treat it as
899 	 * always full.
900 	 */
901 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
902 	if (c->bg_bud_bytes < tmp64)
903 		c->bg_bud_bytes = tmp64;
904 	if (c->max_bud_bytes < tmp64 + c->leb_size)
905 		c->max_bud_bytes = tmp64 + c->leb_size;
906 
907 	err = ubifs_calc_lpt_geom(c);
908 	if (err)
909 		return err;
910 
911 	/* Initialize effective LEB size used in budgeting calculations */
912 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
913 	return 0;
914 }
915 
916 /*
917  * init_constants_master - initialize UBIFS constants.
918  * @c: UBIFS file-system description object
919  *
920  * This is a helper function which initializes various UBIFS constants after
921  * the master node has been read. It also checks various UBIFS parameters and
922  * makes sure they are all right.
923  */
924 static void init_constants_master(struct ubifs_info *c)
925 {
926 	long long tmp64;
927 
928 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
929 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
930 
931 	/*
932 	 * Calculate total amount of FS blocks. This number is not used
933 	 * internally because it does not make much sense for UBIFS, but it is
934 	 * necessary to report something for the 'statfs()' call.
935 	 *
936 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
937 	 * deletions, minimum LEBs for the index, and assume only one journal
938 	 * head is available.
939 	 */
940 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
941 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
942 	tmp64 = ubifs_reported_space(c, tmp64);
943 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
944 }
945 
946 /**
947  * take_gc_lnum - reserve GC LEB.
948  * @c: UBIFS file-system description object
949  *
950  * This function ensures that the LEB reserved for garbage collection is marked
951  * as "taken" in lprops. We also have to set free space to LEB size and dirty
952  * space to zero, because lprops may contain out-of-date information if the
953  * file-system was un-mounted before it has been committed. This function
954  * returns zero in case of success and a negative error code in case of
955  * failure.
956  */
957 static int take_gc_lnum(struct ubifs_info *c)
958 {
959 	int err;
960 
961 	if (c->gc_lnum == -1) {
962 		ubifs_err(c, "no LEB for GC");
963 		return -EINVAL;
964 	}
965 
966 	/* And we have to tell lprops that this LEB is taken */
967 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
968 				  LPROPS_TAKEN, 0, 0);
969 	return err;
970 }
971 
972 /**
973  * alloc_wbufs - allocate write-buffers.
974  * @c: UBIFS file-system description object
975  *
976  * This helper function allocates and initializes UBIFS write-buffers. Returns
977  * zero in case of success and %-ENOMEM in case of failure.
978  */
979 static int alloc_wbufs(struct ubifs_info *c)
980 {
981 	int i, err;
982 
983 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
984 			    GFP_KERNEL);
985 	if (!c->jheads)
986 		return -ENOMEM;
987 
988 	/* Initialize journal heads */
989 	for (i = 0; i < c->jhead_cnt; i++) {
990 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
991 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
992 		if (err)
993 			return err;
994 
995 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
996 		c->jheads[i].wbuf.jhead = i;
997 		c->jheads[i].grouped = 1;
998 	}
999 
1000 	/*
1001 	 * Garbage Collector head does not need to be synchronized by timer.
1002 	 * Also GC head nodes are not grouped.
1003 	 */
1004 	c->jheads[GCHD].wbuf.no_timer = 1;
1005 	c->jheads[GCHD].grouped = 0;
1006 
1007 	return 0;
1008 }
1009 
1010 /**
1011  * free_wbufs - free write-buffers.
1012  * @c: UBIFS file-system description object
1013  */
1014 static void free_wbufs(struct ubifs_info *c)
1015 {
1016 	int i;
1017 
1018 	if (c->jheads) {
1019 		for (i = 0; i < c->jhead_cnt; i++) {
1020 			kfree(c->jheads[i].wbuf.buf);
1021 			kfree(c->jheads[i].wbuf.inodes);
1022 		}
1023 		kfree(c->jheads);
1024 		c->jheads = NULL;
1025 	}
1026 }
1027 
1028 /**
1029  * free_orphans - free orphans.
1030  * @c: UBIFS file-system description object
1031  */
1032 static void free_orphans(struct ubifs_info *c)
1033 {
1034 	struct ubifs_orphan *orph;
1035 
1036 	while (c->orph_dnext) {
1037 		orph = c->orph_dnext;
1038 		c->orph_dnext = orph->dnext;
1039 		list_del(&orph->list);
1040 		kfree(orph);
1041 	}
1042 
1043 	while (!list_empty(&c->orph_list)) {
1044 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1045 		list_del(&orph->list);
1046 		kfree(orph);
1047 		ubifs_err(c, "orphan list not empty at unmount");
1048 	}
1049 
1050 	vfree(c->orph_buf);
1051 	c->orph_buf = NULL;
1052 }
1053 
1054 /**
1055  * free_buds - free per-bud objects.
1056  * @c: UBIFS file-system description object
1057  */
1058 static void free_buds(struct ubifs_info *c)
1059 {
1060 	struct ubifs_bud *bud, *n;
1061 
1062 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1063 		kfree(bud);
1064 }
1065 
1066 /**
1067  * check_volume_empty - check if the UBI volume is empty.
1068  * @c: UBIFS file-system description object
1069  *
1070  * This function checks if the UBIFS volume is empty by looking if its LEBs are
1071  * mapped or not. The result of checking is stored in the @c->empty variable.
1072  * Returns zero in case of success and a negative error code in case of
1073  * failure.
1074  */
1075 static int check_volume_empty(struct ubifs_info *c)
1076 {
1077 	int lnum, err;
1078 
1079 	c->empty = 1;
1080 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1081 		err = ubifs_is_mapped(c, lnum);
1082 		if (unlikely(err < 0))
1083 			return err;
1084 		if (err == 1) {
1085 			c->empty = 0;
1086 			break;
1087 		}
1088 
1089 		cond_resched();
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * UBIFS mount options.
1097  *
1098  * Opt_fast_unmount: do not run a journal commit before un-mounting
1099  * Opt_norm_unmount: run a journal commit before un-mounting
1100  * Opt_bulk_read: enable bulk-reads
1101  * Opt_no_bulk_read: disable bulk-reads
1102  * Opt_chk_data_crc: check CRCs when reading data nodes
1103  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1104  * Opt_override_compr: override default compressor
1105  * Opt_err: just end of array marker
1106  */
1107 enum {
1108 	Opt_fast_unmount,
1109 	Opt_norm_unmount,
1110 	Opt_bulk_read,
1111 	Opt_no_bulk_read,
1112 	Opt_chk_data_crc,
1113 	Opt_no_chk_data_crc,
1114 	Opt_override_compr,
1115 	Opt_err,
1116 };
1117 
1118 #ifndef __UBOOT__
1119 static const match_table_t tokens = {
1120 	{Opt_fast_unmount, "fast_unmount"},
1121 	{Opt_norm_unmount, "norm_unmount"},
1122 	{Opt_bulk_read, "bulk_read"},
1123 	{Opt_no_bulk_read, "no_bulk_read"},
1124 	{Opt_chk_data_crc, "chk_data_crc"},
1125 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
1126 	{Opt_override_compr, "compr=%s"},
1127 	{Opt_err, NULL},
1128 };
1129 
1130 /**
1131  * parse_standard_option - parse a standard mount option.
1132  * @option: the option to parse
1133  *
1134  * Normally, standard mount options like "sync" are passed to file-systems as
1135  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1136  * be present in the options string. This function tries to deal with this
1137  * situation and parse standard options. Returns 0 if the option was not
1138  * recognized, and the corresponding integer flag if it was.
1139  *
1140  * UBIFS is only interested in the "sync" option, so do not check for anything
1141  * else.
1142  */
1143 static int parse_standard_option(const char *option)
1144 {
1145 
1146 	pr_notice("UBIFS: parse %s\n", option);
1147 	if (!strcmp(option, "sync"))
1148 		return MS_SYNCHRONOUS;
1149 	return 0;
1150 }
1151 
1152 /**
1153  * ubifs_parse_options - parse mount parameters.
1154  * @c: UBIFS file-system description object
1155  * @options: parameters to parse
1156  * @is_remount: non-zero if this is FS re-mount
1157  *
1158  * This function parses UBIFS mount options and returns zero in case success
1159  * and a negative error code in case of failure.
1160  */
1161 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1162 			       int is_remount)
1163 {
1164 	char *p;
1165 	substring_t args[MAX_OPT_ARGS];
1166 
1167 	if (!options)
1168 		return 0;
1169 
1170 	while ((p = strsep(&options, ","))) {
1171 		int token;
1172 
1173 		if (!*p)
1174 			continue;
1175 
1176 		token = match_token(p, tokens, args);
1177 		switch (token) {
1178 		/*
1179 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1180 		 * We accept them in order to be backward-compatible. But this
1181 		 * should be removed at some point.
1182 		 */
1183 		case Opt_fast_unmount:
1184 			c->mount_opts.unmount_mode = 2;
1185 			break;
1186 		case Opt_norm_unmount:
1187 			c->mount_opts.unmount_mode = 1;
1188 			break;
1189 		case Opt_bulk_read:
1190 			c->mount_opts.bulk_read = 2;
1191 			c->bulk_read = 1;
1192 			break;
1193 		case Opt_no_bulk_read:
1194 			c->mount_opts.bulk_read = 1;
1195 			c->bulk_read = 0;
1196 			break;
1197 		case Opt_chk_data_crc:
1198 			c->mount_opts.chk_data_crc = 2;
1199 			c->no_chk_data_crc = 0;
1200 			break;
1201 		case Opt_no_chk_data_crc:
1202 			c->mount_opts.chk_data_crc = 1;
1203 			c->no_chk_data_crc = 1;
1204 			break;
1205 		case Opt_override_compr:
1206 		{
1207 			char *name = match_strdup(&args[0]);
1208 
1209 			if (!name)
1210 				return -ENOMEM;
1211 			if (!strcmp(name, "none"))
1212 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1213 			else if (!strcmp(name, "lzo"))
1214 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1215 			else if (!strcmp(name, "zlib"))
1216 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1217 			else {
1218 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1219 				kfree(name);
1220 				return -EINVAL;
1221 			}
1222 			kfree(name);
1223 			c->mount_opts.override_compr = 1;
1224 			c->default_compr = c->mount_opts.compr_type;
1225 			break;
1226 		}
1227 		default:
1228 		{
1229 			unsigned long flag;
1230 			struct super_block *sb = c->vfs_sb;
1231 
1232 			flag = parse_standard_option(p);
1233 			if (!flag) {
1234 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1235 					  p);
1236 				return -EINVAL;
1237 			}
1238 			sb->s_flags |= flag;
1239 			break;
1240 		}
1241 		}
1242 	}
1243 
1244 	return 0;
1245 }
1246 #endif
1247 
1248 /**
1249  * destroy_journal - destroy journal data structures.
1250  * @c: UBIFS file-system description object
1251  *
1252  * This function destroys journal data structures including those that may have
1253  * been created by recovery functions.
1254  */
1255 static void destroy_journal(struct ubifs_info *c)
1256 {
1257 	while (!list_empty(&c->unclean_leb_list)) {
1258 		struct ubifs_unclean_leb *ucleb;
1259 
1260 		ucleb = list_entry(c->unclean_leb_list.next,
1261 				   struct ubifs_unclean_leb, list);
1262 		list_del(&ucleb->list);
1263 		kfree(ucleb);
1264 	}
1265 	while (!list_empty(&c->old_buds)) {
1266 		struct ubifs_bud *bud;
1267 
1268 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1269 		list_del(&bud->list);
1270 		kfree(bud);
1271 	}
1272 	ubifs_destroy_idx_gc(c);
1273 	ubifs_destroy_size_tree(c);
1274 	ubifs_tnc_close(c);
1275 	free_buds(c);
1276 }
1277 
1278 /**
1279  * bu_init - initialize bulk-read information.
1280  * @c: UBIFS file-system description object
1281  */
1282 static void bu_init(struct ubifs_info *c)
1283 {
1284 	ubifs_assert(c->bulk_read == 1);
1285 
1286 	if (c->bu.buf)
1287 		return; /* Already initialized */
1288 
1289 again:
1290 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1291 	if (!c->bu.buf) {
1292 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1293 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1294 			goto again;
1295 		}
1296 
1297 		/* Just disable bulk-read */
1298 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1299 			   c->max_bu_buf_len);
1300 		c->mount_opts.bulk_read = 1;
1301 		c->bulk_read = 0;
1302 		return;
1303 	}
1304 }
1305 
1306 #ifndef __UBOOT__
1307 /**
1308  * check_free_space - check if there is enough free space to mount.
1309  * @c: UBIFS file-system description object
1310  *
1311  * This function makes sure UBIFS has enough free space to be mounted in
1312  * read/write mode. UBIFS must always have some free space to allow deletions.
1313  */
1314 static int check_free_space(struct ubifs_info *c)
1315 {
1316 	ubifs_assert(c->dark_wm > 0);
1317 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1318 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1319 		ubifs_dump_budg(c, &c->bi);
1320 		ubifs_dump_lprops(c);
1321 		return -ENOSPC;
1322 	}
1323 	return 0;
1324 }
1325 #endif
1326 
1327 /**
1328  * mount_ubifs - mount UBIFS file-system.
1329  * @c: UBIFS file-system description object
1330  *
1331  * This function mounts UBIFS file system. Returns zero in case of success and
1332  * a negative error code in case of failure.
1333  */
1334 static int mount_ubifs(struct ubifs_info *c)
1335 {
1336 	int err;
1337 	long long x, y;
1338 	size_t sz;
1339 
1340 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1341 	/* Suppress error messages while probing if MS_SILENT is set */
1342 	c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1343 #ifdef __UBOOT__
1344 	if (!c->ro_mount) {
1345 		printf("UBIFS: only ro mode in U-Boot allowed.\n");
1346 		return -EACCES;
1347 	}
1348 #endif
1349 
1350 	err = init_constants_early(c);
1351 	if (err)
1352 		return err;
1353 
1354 	err = ubifs_debugging_init(c);
1355 	if (err)
1356 		return err;
1357 
1358 	err = check_volume_empty(c);
1359 	if (err)
1360 		goto out_free;
1361 
1362 	if (c->empty && (c->ro_mount || c->ro_media)) {
1363 		/*
1364 		 * This UBI volume is empty, and read-only, or the file system
1365 		 * is mounted read-only - we cannot format it.
1366 		 */
1367 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1368 			  c->ro_media ? "UBI volume" : "mount");
1369 		err = -EROFS;
1370 		goto out_free;
1371 	}
1372 
1373 	if (c->ro_media && !c->ro_mount) {
1374 		ubifs_err(c, "cannot mount read-write - read-only media");
1375 		err = -EROFS;
1376 		goto out_free;
1377 	}
1378 
1379 	/*
1380 	 * The requirement for the buffer is that it should fit indexing B-tree
1381 	 * height amount of integers. We assume the height if the TNC tree will
1382 	 * never exceed 64.
1383 	 */
1384 	err = -ENOMEM;
1385 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1386 	if (!c->bottom_up_buf)
1387 		goto out_free;
1388 
1389 	c->sbuf = vmalloc(c->leb_size);
1390 	if (!c->sbuf)
1391 		goto out_free;
1392 
1393 #ifndef __UBOOT__
1394 	if (!c->ro_mount) {
1395 		c->ileb_buf = vmalloc(c->leb_size);
1396 		if (!c->ileb_buf)
1397 			goto out_free;
1398 	}
1399 #endif
1400 
1401 	if (c->bulk_read == 1)
1402 		bu_init(c);
1403 
1404 #ifndef __UBOOT__
1405 	if (!c->ro_mount) {
1406 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1407 					       GFP_KERNEL);
1408 		if (!c->write_reserve_buf)
1409 			goto out_free;
1410 	}
1411 #endif
1412 
1413 	c->mounting = 1;
1414 
1415 	err = ubifs_read_superblock(c);
1416 	if (err)
1417 		goto out_free;
1418 
1419 	c->probing = 0;
1420 
1421 	/*
1422 	 * Make sure the compressor which is set as default in the superblock
1423 	 * or overridden by mount options is actually compiled in.
1424 	 */
1425 	if (!ubifs_compr_present(c->default_compr)) {
1426 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1427 			  ubifs_compr_name(c->default_compr));
1428 		err = -ENOTSUPP;
1429 		goto out_free;
1430 	}
1431 
1432 	err = init_constants_sb(c);
1433 	if (err)
1434 		goto out_free;
1435 
1436 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1437 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1438 	c->cbuf = kmalloc(sz, GFP_NOFS);
1439 	if (!c->cbuf) {
1440 		err = -ENOMEM;
1441 		goto out_free;
1442 	}
1443 
1444 	err = alloc_wbufs(c);
1445 	if (err)
1446 		goto out_cbuf;
1447 
1448 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1449 #ifndef __UBOOT__
1450 	if (!c->ro_mount) {
1451 		/* Create background thread */
1452 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1453 		if (IS_ERR(c->bgt)) {
1454 			err = PTR_ERR(c->bgt);
1455 			c->bgt = NULL;
1456 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1457 				  c->bgt_name, err);
1458 			goto out_wbufs;
1459 		}
1460 		wake_up_process(c->bgt);
1461 	}
1462 #endif
1463 
1464 	err = ubifs_read_master(c);
1465 	if (err)
1466 		goto out_master;
1467 
1468 	init_constants_master(c);
1469 
1470 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1471 		ubifs_msg(c, "recovery needed");
1472 		c->need_recovery = 1;
1473 	}
1474 
1475 #ifndef __UBOOT__
1476 	if (c->need_recovery && !c->ro_mount) {
1477 		err = ubifs_recover_inl_heads(c, c->sbuf);
1478 		if (err)
1479 			goto out_master;
1480 	}
1481 #endif
1482 
1483 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1484 	if (err)
1485 		goto out_master;
1486 
1487 #ifndef __UBOOT__
1488 	if (!c->ro_mount && c->space_fixup) {
1489 		err = ubifs_fixup_free_space(c);
1490 		if (err)
1491 			goto out_lpt;
1492 	}
1493 
1494 	if (!c->ro_mount && !c->need_recovery) {
1495 		/*
1496 		 * Set the "dirty" flag so that if we reboot uncleanly we
1497 		 * will notice this immediately on the next mount.
1498 		 */
1499 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1500 		err = ubifs_write_master(c);
1501 		if (err)
1502 			goto out_lpt;
1503 	}
1504 #endif
1505 
1506 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1507 	if (err)
1508 		goto out_lpt;
1509 
1510 	err = ubifs_replay_journal(c);
1511 	if (err)
1512 		goto out_journal;
1513 
1514 	/* Calculate 'min_idx_lebs' after journal replay */
1515 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1516 
1517 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1518 	if (err)
1519 		goto out_orphans;
1520 
1521 	if (!c->ro_mount) {
1522 #ifndef __UBOOT__
1523 		int lnum;
1524 
1525 		err = check_free_space(c);
1526 		if (err)
1527 			goto out_orphans;
1528 
1529 		/* Check for enough log space */
1530 		lnum = c->lhead_lnum + 1;
1531 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1532 			lnum = UBIFS_LOG_LNUM;
1533 		if (lnum == c->ltail_lnum) {
1534 			err = ubifs_consolidate_log(c);
1535 			if (err)
1536 				goto out_orphans;
1537 		}
1538 
1539 		if (c->need_recovery) {
1540 			err = ubifs_recover_size(c);
1541 			if (err)
1542 				goto out_orphans;
1543 			err = ubifs_rcvry_gc_commit(c);
1544 			if (err)
1545 				goto out_orphans;
1546 		} else {
1547 			err = take_gc_lnum(c);
1548 			if (err)
1549 				goto out_orphans;
1550 
1551 			/*
1552 			 * GC LEB may contain garbage if there was an unclean
1553 			 * reboot, and it should be un-mapped.
1554 			 */
1555 			err = ubifs_leb_unmap(c, c->gc_lnum);
1556 			if (err)
1557 				goto out_orphans;
1558 		}
1559 
1560 		err = dbg_check_lprops(c);
1561 		if (err)
1562 			goto out_orphans;
1563 #endif
1564 	} else if (c->need_recovery) {
1565 		err = ubifs_recover_size(c);
1566 		if (err)
1567 			goto out_orphans;
1568 	} else {
1569 		/*
1570 		 * Even if we mount read-only, we have to set space in GC LEB
1571 		 * to proper value because this affects UBIFS free space
1572 		 * reporting. We do not want to have a situation when
1573 		 * re-mounting from R/O to R/W changes amount of free space.
1574 		 */
1575 		err = take_gc_lnum(c);
1576 		if (err)
1577 			goto out_orphans;
1578 	}
1579 
1580 #ifndef __UBOOT__
1581 	spin_lock(&ubifs_infos_lock);
1582 	list_add_tail(&c->infos_list, &ubifs_infos);
1583 	spin_unlock(&ubifs_infos_lock);
1584 #endif
1585 
1586 	if (c->need_recovery) {
1587 		if (c->ro_mount)
1588 			ubifs_msg(c, "recovery deferred");
1589 		else {
1590 			c->need_recovery = 0;
1591 			ubifs_msg(c, "recovery completed");
1592 			/*
1593 			 * GC LEB has to be empty and taken at this point. But
1594 			 * the journal head LEBs may also be accounted as
1595 			 * "empty taken" if they are empty.
1596 			 */
1597 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1598 		}
1599 	} else
1600 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1601 
1602 	err = dbg_check_filesystem(c);
1603 	if (err)
1604 		goto out_infos;
1605 
1606 	err = dbg_debugfs_init_fs(c);
1607 	if (err)
1608 		goto out_infos;
1609 
1610 	c->mounting = 0;
1611 
1612 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1613 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1614 		  c->ro_mount ? ", R/O mode" : "");
1615 	x = (long long)c->main_lebs * c->leb_size;
1616 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1617 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1618 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1619 		  c->max_write_size);
1620 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1621 		  x, x >> 20, c->main_lebs,
1622 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1623 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1624 		  c->report_rp_size, c->report_rp_size >> 10);
1625 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1626 		  c->fmt_version, c->ro_compat_version,
1627 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1628 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1629 
1630 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1631 	dbg_gen("data journal heads:  %d",
1632 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1633 	dbg_gen("log LEBs:            %d (%d - %d)",
1634 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1635 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1636 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1637 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1638 		c->orph_lebs, c->orph_first, c->orph_last);
1639 	dbg_gen("main area LEBs:      %d (%d - %d)",
1640 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1641 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1642 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1643 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1644 		c->bi.old_idx_sz >> 20);
1645 	dbg_gen("key hash type:       %d", c->key_hash_type);
1646 	dbg_gen("tree fanout:         %d", c->fanout);
1647 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1648 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1649 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1650 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1651 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1652 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1653 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1654 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1655 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1656 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1657 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1658 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1659 	dbg_gen("dead watermark:      %d", c->dead_wm);
1660 	dbg_gen("dark watermark:      %d", c->dark_wm);
1661 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1662 	x = (long long)c->main_lebs * c->dark_wm;
1663 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1664 		x, x >> 10, x >> 20);
1665 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1666 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1667 		c->max_bud_bytes >> 20);
1668 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1669 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1670 		c->bg_bud_bytes >> 20);
1671 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1672 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1673 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1674 	dbg_gen("commit number:       %llu", c->cmt_no);
1675 
1676 	return 0;
1677 
1678 out_infos:
1679 	spin_lock(&ubifs_infos_lock);
1680 	list_del(&c->infos_list);
1681 	spin_unlock(&ubifs_infos_lock);
1682 out_orphans:
1683 	free_orphans(c);
1684 out_journal:
1685 	destroy_journal(c);
1686 out_lpt:
1687 	ubifs_lpt_free(c, 0);
1688 out_master:
1689 	kfree(c->mst_node);
1690 	kfree(c->rcvrd_mst_node);
1691 	if (c->bgt)
1692 		kthread_stop(c->bgt);
1693 #ifndef __UBOOT__
1694 out_wbufs:
1695 #endif
1696 	free_wbufs(c);
1697 out_cbuf:
1698 	kfree(c->cbuf);
1699 out_free:
1700 	kfree(c->write_reserve_buf);
1701 	kfree(c->bu.buf);
1702 	vfree(c->ileb_buf);
1703 	vfree(c->sbuf);
1704 	kfree(c->bottom_up_buf);
1705 	ubifs_debugging_exit(c);
1706 	return err;
1707 }
1708 
1709 /**
1710  * ubifs_umount - un-mount UBIFS file-system.
1711  * @c: UBIFS file-system description object
1712  *
1713  * Note, this function is called to free allocated resourced when un-mounting,
1714  * as well as free resources when an error occurred while we were half way
1715  * through mounting (error path cleanup function). So it has to make sure the
1716  * resource was actually allocated before freeing it.
1717  */
1718 #ifndef __UBOOT__
1719 static void ubifs_umount(struct ubifs_info *c)
1720 #else
1721 void ubifs_umount(struct ubifs_info *c)
1722 #endif
1723 {
1724 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1725 		c->vi.vol_id);
1726 
1727 	dbg_debugfs_exit_fs(c);
1728 	spin_lock(&ubifs_infos_lock);
1729 	list_del(&c->infos_list);
1730 	spin_unlock(&ubifs_infos_lock);
1731 
1732 #ifndef __UBOOT__
1733 	if (c->bgt)
1734 		kthread_stop(c->bgt);
1735 
1736 	destroy_journal(c);
1737 #endif
1738 	free_wbufs(c);
1739 	free_orphans(c);
1740 	ubifs_lpt_free(c, 0);
1741 
1742 	kfree(c->cbuf);
1743 	kfree(c->rcvrd_mst_node);
1744 	kfree(c->mst_node);
1745 	kfree(c->write_reserve_buf);
1746 	kfree(c->bu.buf);
1747 	vfree(c->ileb_buf);
1748 	vfree(c->sbuf);
1749 	kfree(c->bottom_up_buf);
1750 	ubifs_debugging_exit(c);
1751 #ifdef __UBOOT__
1752 	/* Finally free U-Boot's global copy of superblock */
1753 	if (ubifs_sb != NULL) {
1754 		free(ubifs_sb->s_fs_info);
1755 		free(ubifs_sb);
1756 	}
1757 #endif
1758 }
1759 
1760 #ifndef __UBOOT__
1761 /**
1762  * ubifs_remount_rw - re-mount in read-write mode.
1763  * @c: UBIFS file-system description object
1764  *
1765  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1766  * mode. This function allocates the needed resources and re-mounts UBIFS in
1767  * read-write mode.
1768  */
1769 static int ubifs_remount_rw(struct ubifs_info *c)
1770 {
1771 	int err, lnum;
1772 
1773 	if (c->rw_incompat) {
1774 		ubifs_err(c, "the file-system is not R/W-compatible");
1775 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1776 			  c->fmt_version, c->ro_compat_version,
1777 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1778 		return -EROFS;
1779 	}
1780 
1781 	mutex_lock(&c->umount_mutex);
1782 	dbg_save_space_info(c);
1783 	c->remounting_rw = 1;
1784 	c->ro_mount = 0;
1785 
1786 	if (c->space_fixup) {
1787 		err = ubifs_fixup_free_space(c);
1788 		if (err)
1789 			goto out;
1790 	}
1791 
1792 	err = check_free_space(c);
1793 	if (err)
1794 		goto out;
1795 
1796 	if (c->old_leb_cnt != c->leb_cnt) {
1797 		struct ubifs_sb_node *sup;
1798 
1799 		sup = ubifs_read_sb_node(c);
1800 		if (IS_ERR(sup)) {
1801 			err = PTR_ERR(sup);
1802 			goto out;
1803 		}
1804 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1805 		err = ubifs_write_sb_node(c, sup);
1806 		kfree(sup);
1807 		if (err)
1808 			goto out;
1809 	}
1810 
1811 	if (c->need_recovery) {
1812 		ubifs_msg(c, "completing deferred recovery");
1813 		err = ubifs_write_rcvrd_mst_node(c);
1814 		if (err)
1815 			goto out;
1816 		err = ubifs_recover_size(c);
1817 		if (err)
1818 			goto out;
1819 		err = ubifs_clean_lebs(c, c->sbuf);
1820 		if (err)
1821 			goto out;
1822 		err = ubifs_recover_inl_heads(c, c->sbuf);
1823 		if (err)
1824 			goto out;
1825 	} else {
1826 		/* A readonly mount is not allowed to have orphans */
1827 		ubifs_assert(c->tot_orphans == 0);
1828 		err = ubifs_clear_orphans(c);
1829 		if (err)
1830 			goto out;
1831 	}
1832 
1833 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1834 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1835 		err = ubifs_write_master(c);
1836 		if (err)
1837 			goto out;
1838 	}
1839 
1840 	c->ileb_buf = vmalloc(c->leb_size);
1841 	if (!c->ileb_buf) {
1842 		err = -ENOMEM;
1843 		goto out;
1844 	}
1845 
1846 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1847 	if (!c->write_reserve_buf) {
1848 		err = -ENOMEM;
1849 		goto out;
1850 	}
1851 
1852 	err = ubifs_lpt_init(c, 0, 1);
1853 	if (err)
1854 		goto out;
1855 
1856 	/* Create background thread */
1857 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1858 	if (IS_ERR(c->bgt)) {
1859 		err = PTR_ERR(c->bgt);
1860 		c->bgt = NULL;
1861 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1862 			  c->bgt_name, err);
1863 		goto out;
1864 	}
1865 	wake_up_process(c->bgt);
1866 
1867 	c->orph_buf = vmalloc(c->leb_size);
1868 	if (!c->orph_buf) {
1869 		err = -ENOMEM;
1870 		goto out;
1871 	}
1872 
1873 	/* Check for enough log space */
1874 	lnum = c->lhead_lnum + 1;
1875 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1876 		lnum = UBIFS_LOG_LNUM;
1877 	if (lnum == c->ltail_lnum) {
1878 		err = ubifs_consolidate_log(c);
1879 		if (err)
1880 			goto out;
1881 	}
1882 
1883 	if (c->need_recovery)
1884 		err = ubifs_rcvry_gc_commit(c);
1885 	else
1886 		err = ubifs_leb_unmap(c, c->gc_lnum);
1887 	if (err)
1888 		goto out;
1889 
1890 	dbg_gen("re-mounted read-write");
1891 	c->remounting_rw = 0;
1892 
1893 	if (c->need_recovery) {
1894 		c->need_recovery = 0;
1895 		ubifs_msg(c, "deferred recovery completed");
1896 	} else {
1897 		/*
1898 		 * Do not run the debugging space check if the were doing
1899 		 * recovery, because when we saved the information we had the
1900 		 * file-system in a state where the TNC and lprops has been
1901 		 * modified in memory, but all the I/O operations (including a
1902 		 * commit) were deferred. So the file-system was in
1903 		 * "non-committed" state. Now the file-system is in committed
1904 		 * state, and of course the amount of free space will change
1905 		 * because, for example, the old index size was imprecise.
1906 		 */
1907 		err = dbg_check_space_info(c);
1908 	}
1909 
1910 	mutex_unlock(&c->umount_mutex);
1911 	return err;
1912 
1913 out:
1914 	c->ro_mount = 1;
1915 	vfree(c->orph_buf);
1916 	c->orph_buf = NULL;
1917 	if (c->bgt) {
1918 		kthread_stop(c->bgt);
1919 		c->bgt = NULL;
1920 	}
1921 	free_wbufs(c);
1922 	kfree(c->write_reserve_buf);
1923 	c->write_reserve_buf = NULL;
1924 	vfree(c->ileb_buf);
1925 	c->ileb_buf = NULL;
1926 	ubifs_lpt_free(c, 1);
1927 	c->remounting_rw = 0;
1928 	mutex_unlock(&c->umount_mutex);
1929 	return err;
1930 }
1931 
1932 /**
1933  * ubifs_remount_ro - re-mount in read-only mode.
1934  * @c: UBIFS file-system description object
1935  *
1936  * We assume VFS has stopped writing. Possibly the background thread could be
1937  * running a commit, however kthread_stop will wait in that case.
1938  */
1939 static void ubifs_remount_ro(struct ubifs_info *c)
1940 {
1941 	int i, err;
1942 
1943 	ubifs_assert(!c->need_recovery);
1944 	ubifs_assert(!c->ro_mount);
1945 
1946 	mutex_lock(&c->umount_mutex);
1947 	if (c->bgt) {
1948 		kthread_stop(c->bgt);
1949 		c->bgt = NULL;
1950 	}
1951 
1952 	dbg_save_space_info(c);
1953 
1954 	for (i = 0; i < c->jhead_cnt; i++)
1955 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1956 
1957 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1958 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1959 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1960 	err = ubifs_write_master(c);
1961 	if (err)
1962 		ubifs_ro_mode(c, err);
1963 
1964 	vfree(c->orph_buf);
1965 	c->orph_buf = NULL;
1966 	kfree(c->write_reserve_buf);
1967 	c->write_reserve_buf = NULL;
1968 	vfree(c->ileb_buf);
1969 	c->ileb_buf = NULL;
1970 	ubifs_lpt_free(c, 1);
1971 	c->ro_mount = 1;
1972 	err = dbg_check_space_info(c);
1973 	if (err)
1974 		ubifs_ro_mode(c, err);
1975 	mutex_unlock(&c->umount_mutex);
1976 }
1977 
1978 static void ubifs_put_super(struct super_block *sb)
1979 {
1980 	int i;
1981 	struct ubifs_info *c = sb->s_fs_info;
1982 
1983 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1984 
1985 	/*
1986 	 * The following asserts are only valid if there has not been a failure
1987 	 * of the media. For example, there will be dirty inodes if we failed
1988 	 * to write them back because of I/O errors.
1989 	 */
1990 	if (!c->ro_error) {
1991 		ubifs_assert(c->bi.idx_growth == 0);
1992 		ubifs_assert(c->bi.dd_growth == 0);
1993 		ubifs_assert(c->bi.data_growth == 0);
1994 	}
1995 
1996 	/*
1997 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1998 	 * and file system un-mount. Namely, it prevents the shrinker from
1999 	 * picking this superblock for shrinking - it will be just skipped if
2000 	 * the mutex is locked.
2001 	 */
2002 	mutex_lock(&c->umount_mutex);
2003 	if (!c->ro_mount) {
2004 		/*
2005 		 * First of all kill the background thread to make sure it does
2006 		 * not interfere with un-mounting and freeing resources.
2007 		 */
2008 		if (c->bgt) {
2009 			kthread_stop(c->bgt);
2010 			c->bgt = NULL;
2011 		}
2012 
2013 		/*
2014 		 * On fatal errors c->ro_error is set to 1, in which case we do
2015 		 * not write the master node.
2016 		 */
2017 		if (!c->ro_error) {
2018 			int err;
2019 
2020 			/* Synchronize write-buffers */
2021 			for (i = 0; i < c->jhead_cnt; i++)
2022 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
2023 
2024 			/*
2025 			 * We are being cleanly unmounted which means the
2026 			 * orphans were killed - indicate this in the master
2027 			 * node. Also save the reserved GC LEB number.
2028 			 */
2029 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2030 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2031 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2032 			err = ubifs_write_master(c);
2033 			if (err)
2034 				/*
2035 				 * Recovery will attempt to fix the master area
2036 				 * next mount, so we just print a message and
2037 				 * continue to unmount normally.
2038 				 */
2039 				ubifs_err(c, "failed to write master node, error %d",
2040 					  err);
2041 		} else {
2042 #ifndef __UBOOT__
2043 			for (i = 0; i < c->jhead_cnt; i++)
2044 				/* Make sure write-buffer timers are canceled */
2045 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
2046 #endif
2047 		}
2048 	}
2049 
2050 	ubifs_umount(c);
2051 #ifndef __UBOOT__
2052 	bdi_destroy(&c->bdi);
2053 #endif
2054 	ubi_close_volume(c->ubi);
2055 	mutex_unlock(&c->umount_mutex);
2056 }
2057 #endif
2058 
2059 #ifndef __UBOOT__
2060 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2061 {
2062 	int err;
2063 	struct ubifs_info *c = sb->s_fs_info;
2064 
2065 	sync_filesystem(sb);
2066 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2067 
2068 	err = ubifs_parse_options(c, data, 1);
2069 	if (err) {
2070 		ubifs_err(c, "invalid or unknown remount parameter");
2071 		return err;
2072 	}
2073 
2074 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
2075 		if (c->ro_error) {
2076 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2077 			return -EROFS;
2078 		}
2079 		if (c->ro_media) {
2080 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2081 			return -EROFS;
2082 		}
2083 		err = ubifs_remount_rw(c);
2084 		if (err)
2085 			return err;
2086 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2087 		if (c->ro_error) {
2088 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2089 			return -EROFS;
2090 		}
2091 		ubifs_remount_ro(c);
2092 	}
2093 
2094 	if (c->bulk_read == 1)
2095 		bu_init(c);
2096 	else {
2097 		dbg_gen("disable bulk-read");
2098 		kfree(c->bu.buf);
2099 		c->bu.buf = NULL;
2100 	}
2101 
2102 	ubifs_assert(c->lst.taken_empty_lebs > 0);
2103 	return 0;
2104 }
2105 #endif
2106 
2107 const struct super_operations ubifs_super_operations = {
2108 	.alloc_inode   = ubifs_alloc_inode,
2109 #ifndef __UBOOT__
2110 	.destroy_inode = ubifs_destroy_inode,
2111 	.put_super     = ubifs_put_super,
2112 	.write_inode   = ubifs_write_inode,
2113 	.evict_inode   = ubifs_evict_inode,
2114 	.statfs        = ubifs_statfs,
2115 #endif
2116 	.dirty_inode   = ubifs_dirty_inode,
2117 #ifndef __UBOOT__
2118 	.remount_fs    = ubifs_remount_fs,
2119 	.show_options  = ubifs_show_options,
2120 	.sync_fs       = ubifs_sync_fs,
2121 #endif
2122 };
2123 
2124 /**
2125  * open_ubi - parse UBI device name string and open the UBI device.
2126  * @name: UBI volume name
2127  * @mode: UBI volume open mode
2128  *
2129  * The primary method of mounting UBIFS is by specifying the UBI volume
2130  * character device node path. However, UBIFS may also be mounted withoug any
2131  * character device node using one of the following methods:
2132  *
2133  * o ubiX_Y    - mount UBI device number X, volume Y;
2134  * o ubiY      - mount UBI device number 0, volume Y;
2135  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2136  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2137  *
2138  * Alternative '!' separator may be used instead of ':' (because some shells
2139  * like busybox may interpret ':' as an NFS host name separator). This function
2140  * returns UBI volume description object in case of success and a negative
2141  * error code in case of failure.
2142  */
2143 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2144 {
2145 #ifndef __UBOOT__
2146 	struct ubi_volume_desc *ubi;
2147 #endif
2148 	int dev, vol;
2149 	char *endptr;
2150 
2151 #ifndef __UBOOT__
2152 	/* First, try to open using the device node path method */
2153 	ubi = ubi_open_volume_path(name, mode);
2154 	if (!IS_ERR(ubi))
2155 		return ubi;
2156 #endif
2157 
2158 	/* Try the "nodev" method */
2159 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2160 		return ERR_PTR(-EINVAL);
2161 
2162 	/* ubi:NAME method */
2163 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2164 		return ubi_open_volume_nm(0, name + 4, mode);
2165 
2166 	if (!isdigit(name[3]))
2167 		return ERR_PTR(-EINVAL);
2168 
2169 	dev = simple_strtoul(name + 3, &endptr, 0);
2170 
2171 	/* ubiY method */
2172 	if (*endptr == '\0')
2173 		return ubi_open_volume(0, dev, mode);
2174 
2175 	/* ubiX_Y method */
2176 	if (*endptr == '_' && isdigit(endptr[1])) {
2177 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2178 		if (*endptr != '\0')
2179 			return ERR_PTR(-EINVAL);
2180 		return ubi_open_volume(dev, vol, mode);
2181 	}
2182 
2183 	/* ubiX:NAME method */
2184 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2185 		return ubi_open_volume_nm(dev, ++endptr, mode);
2186 
2187 	return ERR_PTR(-EINVAL);
2188 }
2189 
2190 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2191 {
2192 	struct ubifs_info *c;
2193 
2194 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2195 	if (c) {
2196 		spin_lock_init(&c->cnt_lock);
2197 		spin_lock_init(&c->cs_lock);
2198 		spin_lock_init(&c->buds_lock);
2199 		spin_lock_init(&c->space_lock);
2200 		spin_lock_init(&c->orphan_lock);
2201 		init_rwsem(&c->commit_sem);
2202 		mutex_init(&c->lp_mutex);
2203 		mutex_init(&c->tnc_mutex);
2204 		mutex_init(&c->log_mutex);
2205 		mutex_init(&c->umount_mutex);
2206 		mutex_init(&c->bu_mutex);
2207 		mutex_init(&c->write_reserve_mutex);
2208 		init_waitqueue_head(&c->cmt_wq);
2209 		c->buds = RB_ROOT;
2210 		c->old_idx = RB_ROOT;
2211 		c->size_tree = RB_ROOT;
2212 		c->orph_tree = RB_ROOT;
2213 		INIT_LIST_HEAD(&c->infos_list);
2214 		INIT_LIST_HEAD(&c->idx_gc);
2215 		INIT_LIST_HEAD(&c->replay_list);
2216 		INIT_LIST_HEAD(&c->replay_buds);
2217 		INIT_LIST_HEAD(&c->uncat_list);
2218 		INIT_LIST_HEAD(&c->empty_list);
2219 		INIT_LIST_HEAD(&c->freeable_list);
2220 		INIT_LIST_HEAD(&c->frdi_idx_list);
2221 		INIT_LIST_HEAD(&c->unclean_leb_list);
2222 		INIT_LIST_HEAD(&c->old_buds);
2223 		INIT_LIST_HEAD(&c->orph_list);
2224 		INIT_LIST_HEAD(&c->orph_new);
2225 		c->no_chk_data_crc = 1;
2226 
2227 		c->highest_inum = UBIFS_FIRST_INO;
2228 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2229 
2230 		ubi_get_volume_info(ubi, &c->vi);
2231 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2232 	}
2233 	return c;
2234 }
2235 
2236 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2237 {
2238 	struct ubifs_info *c = sb->s_fs_info;
2239 	struct inode *root;
2240 	int err;
2241 
2242 	c->vfs_sb = sb;
2243 #ifndef __UBOOT__
2244 	/* Re-open the UBI device in read-write mode */
2245 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2246 #else
2247 	/* U-Boot read only mode */
2248 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2249 #endif
2250 
2251 	if (IS_ERR(c->ubi)) {
2252 		err = PTR_ERR(c->ubi);
2253 		goto out;
2254 	}
2255 
2256 #ifndef __UBOOT__
2257 	/*
2258 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2259 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2260 	 * which means the user would have to wait not just for their own I/O
2261 	 * but the read-ahead I/O as well i.e. completely pointless.
2262 	 *
2263 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2264 	 */
2265 	c->bdi.name = "ubifs",
2266 	c->bdi.capabilities = 0;
2267 	err  = bdi_init(&c->bdi);
2268 	if (err)
2269 		goto out_close;
2270 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2271 			   c->vi.ubi_num, c->vi.vol_id);
2272 	if (err)
2273 		goto out_bdi;
2274 
2275 	err = ubifs_parse_options(c, data, 0);
2276 	if (err)
2277 		goto out_bdi;
2278 
2279 	sb->s_bdi = &c->bdi;
2280 #endif
2281 	sb->s_fs_info = c;
2282 	sb->s_magic = UBIFS_SUPER_MAGIC;
2283 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2284 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2285 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2286 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2287 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2288 	sb->s_op = &ubifs_super_operations;
2289 #ifndef __UBOOT__
2290 	sb->s_xattr = ubifs_xattr_handlers;
2291 #endif
2292 
2293 	mutex_lock(&c->umount_mutex);
2294 	err = mount_ubifs(c);
2295 	if (err) {
2296 		ubifs_assert(err < 0);
2297 		goto out_unlock;
2298 	}
2299 
2300 	/* Read the root inode */
2301 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2302 	if (IS_ERR(root)) {
2303 		err = PTR_ERR(root);
2304 		goto out_umount;
2305 	}
2306 
2307 #ifndef __UBOOT__
2308 	sb->s_root = d_make_root(root);
2309 	if (!sb->s_root) {
2310 		err = -ENOMEM;
2311 		goto out_umount;
2312 	}
2313 #else
2314 	sb->s_root = NULL;
2315 #endif
2316 
2317 	mutex_unlock(&c->umount_mutex);
2318 	return 0;
2319 
2320 out_umount:
2321 	ubifs_umount(c);
2322 out_unlock:
2323 	mutex_unlock(&c->umount_mutex);
2324 #ifndef __UBOOT__
2325 out_bdi:
2326 	bdi_destroy(&c->bdi);
2327 out_close:
2328 #endif
2329 	ubi_close_volume(c->ubi);
2330 out:
2331 	return err;
2332 }
2333 
2334 static int sb_test(struct super_block *sb, void *data)
2335 {
2336 	struct ubifs_info *c1 = data;
2337 	struct ubifs_info *c = sb->s_fs_info;
2338 
2339 	return c->vi.cdev == c1->vi.cdev;
2340 }
2341 
2342 static int sb_set(struct super_block *sb, void *data)
2343 {
2344 	sb->s_fs_info = data;
2345 	return set_anon_super(sb, NULL);
2346 }
2347 
2348 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2349 {
2350 	struct super_block *s;
2351 	int err;
2352 
2353 	s = kzalloc(sizeof(struct super_block),  GFP_USER);
2354 	if (!s) {
2355 		err = -ENOMEM;
2356 		return ERR_PTR(err);
2357 	}
2358 
2359 	INIT_HLIST_NODE(&s->s_instances);
2360 	INIT_LIST_HEAD(&s->s_inodes);
2361 	s->s_time_gran = 1000000000;
2362 	s->s_flags = flags;
2363 
2364 	return s;
2365 }
2366 
2367 /**
2368  *	sget	-	find or create a superblock
2369  *	@type:	filesystem type superblock should belong to
2370  *	@test:	comparison callback
2371  *	@set:	setup callback
2372  *	@flags:	mount flags
2373  *	@data:	argument to each of them
2374  */
2375 struct super_block *sget(struct file_system_type *type,
2376 			int (*test)(struct super_block *,void *),
2377 			int (*set)(struct super_block *,void *),
2378 			int flags,
2379 			void *data)
2380 {
2381 	struct super_block *s = NULL;
2382 #ifndef __UBOOT__
2383 	struct super_block *old;
2384 #endif
2385 	int err;
2386 
2387 #ifndef __UBOOT__
2388 retry:
2389 	spin_lock(&sb_lock);
2390 	if (test) {
2391 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2392 			if (!test(old, data))
2393 				continue;
2394 			if (!grab_super(old))
2395 				goto retry;
2396 			if (s) {
2397 				up_write(&s->s_umount);
2398 				destroy_super(s);
2399 				s = NULL;
2400 			}
2401 			return old;
2402 		}
2403 	}
2404 #endif
2405 	if (!s) {
2406 		spin_unlock(&sb_lock);
2407 		s = alloc_super(type, flags);
2408 		if (!s)
2409 			return ERR_PTR(-ENOMEM);
2410 #ifndef __UBOOT__
2411 		goto retry;
2412 #endif
2413 	}
2414 
2415 	err = set(s, data);
2416 	if (err) {
2417 #ifndef __UBOOT__
2418 		spin_unlock(&sb_lock);
2419 		up_write(&s->s_umount);
2420 		destroy_super(s);
2421 #endif
2422 		return ERR_PTR(err);
2423 	}
2424 	s->s_type = type;
2425 #ifndef __UBOOT__
2426 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
2427 	list_add_tail(&s->s_list, &super_blocks);
2428 #else
2429 	strncpy(s->s_id, type->name, sizeof(s->s_id));
2430 #endif
2431 	hlist_add_head(&s->s_instances, &type->fs_supers);
2432 #ifndef __UBOOT__
2433 	spin_unlock(&sb_lock);
2434 	get_filesystem(type);
2435 	register_shrinker(&s->s_shrink);
2436 #endif
2437 	return s;
2438 }
2439 
2440 EXPORT_SYMBOL(sget);
2441 
2442 
2443 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2444 			const char *name, void *data)
2445 {
2446 	struct ubi_volume_desc *ubi;
2447 	struct ubifs_info *c;
2448 	struct super_block *sb;
2449 	int err;
2450 
2451 	dbg_gen("name %s, flags %#x", name, flags);
2452 
2453 	/*
2454 	 * Get UBI device number and volume ID. Mount it read-only so far
2455 	 * because this might be a new mount point, and UBI allows only one
2456 	 * read-write user at a time.
2457 	 */
2458 	ubi = open_ubi(name, UBI_READONLY);
2459 	if (IS_ERR(ubi)) {
2460 		pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2461 		       current->pid, name, (int)PTR_ERR(ubi));
2462 		return ERR_CAST(ubi);
2463 	}
2464 
2465 	c = alloc_ubifs_info(ubi);
2466 	if (!c) {
2467 		err = -ENOMEM;
2468 		goto out_close;
2469 	}
2470 
2471 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2472 
2473 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2474 	if (IS_ERR(sb)) {
2475 		err = PTR_ERR(sb);
2476 		kfree(c);
2477 		goto out_close;
2478 	}
2479 
2480 	if (sb->s_root) {
2481 		struct ubifs_info *c1 = sb->s_fs_info;
2482 		kfree(c);
2483 		/* A new mount point for already mounted UBIFS */
2484 		dbg_gen("this ubi volume is already mounted");
2485 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2486 			err = -EBUSY;
2487 			goto out_deact;
2488 		}
2489 	} else {
2490 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2491 		if (err)
2492 			goto out_deact;
2493 		/* We do not support atime */
2494 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2495 	}
2496 
2497 	/* 'fill_super()' opens ubi again so we must close it here */
2498 	ubi_close_volume(ubi);
2499 
2500 #ifdef __UBOOT__
2501 	ubifs_sb = sb;
2502 	return 0;
2503 #else
2504 	return dget(sb->s_root);
2505 #endif
2506 
2507 out_deact:
2508 #ifndef __UBOOT__
2509 	deactivate_locked_super(sb);
2510 #endif
2511 out_close:
2512 	ubi_close_volume(ubi);
2513 	return ERR_PTR(err);
2514 }
2515 
2516 static void kill_ubifs_super(struct super_block *s)
2517 {
2518 	struct ubifs_info *c = s->s_fs_info;
2519 #ifndef __UBOOT__
2520 	kill_anon_super(s);
2521 #endif
2522 	kfree(c);
2523 }
2524 
2525 static struct file_system_type ubifs_fs_type = {
2526 	.name    = "ubifs",
2527 	.owner   = THIS_MODULE,
2528 	.mount   = ubifs_mount,
2529 	.kill_sb = kill_ubifs_super,
2530 };
2531 #ifndef __UBOOT__
2532 MODULE_ALIAS_FS("ubifs");
2533 
2534 /*
2535  * Inode slab cache constructor.
2536  */
2537 static void inode_slab_ctor(void *obj)
2538 {
2539 	struct ubifs_inode *ui = obj;
2540 	inode_init_once(&ui->vfs_inode);
2541 }
2542 
2543 static int __init ubifs_init(void)
2544 #else
2545 int ubifs_init(void)
2546 #endif
2547 {
2548 	int err;
2549 
2550 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2551 
2552 	/* Make sure node sizes are 8-byte aligned */
2553 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2554 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2555 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2556 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2557 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2558 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2559 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2560 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2561 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2562 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2563 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2564 
2565 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2566 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2567 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2568 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2569 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2570 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2571 
2572 	/* Check min. node size */
2573 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2574 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2575 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2576 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2577 
2578 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2579 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2580 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2581 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2582 
2583 	/* Defined node sizes */
2584 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2585 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2586 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2587 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2588 
2589 	/*
2590 	 * We use 2 bit wide bit-fields to store compression type, which should
2591 	 * be amended if more compressors are added. The bit-fields are:
2592 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2593 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2594 	 */
2595 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2596 
2597 	/*
2598 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2599 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2600 	 */
2601 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2602 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2603 		       current->pid, (unsigned int)PAGE_CACHE_SIZE);
2604 		return -EINVAL;
2605 	}
2606 
2607 #ifndef __UBOOT__
2608 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2609 				sizeof(struct ubifs_inode), 0,
2610 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2611 				&inode_slab_ctor);
2612 	if (!ubifs_inode_slab)
2613 		return -ENOMEM;
2614 
2615 	err = register_shrinker(&ubifs_shrinker_info);
2616 	if (err)
2617 		goto out_slab;
2618 #endif
2619 
2620 	err = ubifs_compressors_init();
2621 	if (err)
2622 		goto out_shrinker;
2623 
2624 #ifndef __UBOOT__
2625 	err = dbg_debugfs_init();
2626 	if (err)
2627 		goto out_compr;
2628 
2629 	err = register_filesystem(&ubifs_fs_type);
2630 	if (err) {
2631 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2632 		       current->pid, err);
2633 		goto out_dbg;
2634 	}
2635 #endif
2636 	return 0;
2637 
2638 #ifndef __UBOOT__
2639 out_dbg:
2640 	dbg_debugfs_exit();
2641 out_compr:
2642 	ubifs_compressors_exit();
2643 #endif
2644 out_shrinker:
2645 #ifndef __UBOOT__
2646 	unregister_shrinker(&ubifs_shrinker_info);
2647 out_slab:
2648 #endif
2649 	kmem_cache_destroy(ubifs_inode_slab);
2650 	return err;
2651 }
2652 /* late_initcall to let compressors initialize first */
2653 late_initcall(ubifs_init);
2654 
2655 #ifndef __UBOOT__
2656 static void __exit ubifs_exit(void)
2657 {
2658 	ubifs_assert(list_empty(&ubifs_infos));
2659 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2660 
2661 	dbg_debugfs_exit();
2662 	ubifs_compressors_exit();
2663 	unregister_shrinker(&ubifs_shrinker_info);
2664 
2665 	/*
2666 	 * Make sure all delayed rcu free inodes are flushed before we
2667 	 * destroy cache.
2668 	 */
2669 	rcu_barrier();
2670 	kmem_cache_destroy(ubifs_inode_slab);
2671 	unregister_filesystem(&ubifs_fs_type);
2672 }
2673 module_exit(ubifs_exit);
2674 
2675 MODULE_LICENSE("GPL");
2676 MODULE_VERSION(__stringify(UBIFS_VERSION));
2677 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2678 MODULE_DESCRIPTION("UBIFS - UBI File System");
2679 #else
2680 int uboot_ubifs_mount(char *vol_name)
2681 {
2682 	struct dentry *ret;
2683 	int flags;
2684 
2685 	/*
2686 	 * First unmount if allready mounted
2687 	 */
2688 	if (ubifs_sb)
2689 		ubifs_umount(ubifs_sb->s_fs_info);
2690 
2691 	/*
2692 	 * Mount in read-only mode
2693 	 */
2694 	flags = MS_RDONLY;
2695 	ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2696 	if (IS_ERR(ret)) {
2697 		printf("Error reading superblock on volume '%s' " \
2698 			"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2699 		return -1;
2700 	}
2701 
2702 	return 0;
2703 }
2704 #endif
2705