xref: /openbmc/u-boot/fs/ubifs/super.c (revision ae51b570)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11 
12 /*
13  * This file implements UBIFS initialization and VFS superblock operations. Some
14  * initialization stuff which is rather large and complex is placed at
15  * corresponding subsystems, but most of it is here.
16  */
17 
18 #ifndef __UBOOT__
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/kthread.h>
24 #include <linux/parser.h>
25 #include <linux/seq_file.h>
26 #include <linux/mount.h>
27 #include <linux/math64.h>
28 #include <linux/writeback.h>
29 #else
30 
31 #include <common.h>
32 #include <malloc.h>
33 #include <memalign.h>
34 #include <linux/bug.h>
35 #include <linux/log2.h>
36 #include <linux/stat.h>
37 #include <linux/err.h>
38 #include "ubifs.h"
39 #include <ubi_uboot.h>
40 #include <mtd/ubi-user.h>
41 
42 struct dentry;
43 struct file;
44 struct iattr;
45 struct kstat;
46 struct vfsmount;
47 
48 #define INODE_LOCKED_MAX	64
49 
50 struct super_block *ubifs_sb;
51 LIST_HEAD(super_blocks);
52 
53 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
54 
55 int set_anon_super(struct super_block *s, void *data)
56 {
57 	return 0;
58 }
59 
60 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
61 {
62 	struct inode *inode;
63 
64 	inode = (struct inode *)malloc_cache_aligned(
65 			sizeof(struct ubifs_inode));
66 	if (inode) {
67 		inode->i_ino = ino;
68 		inode->i_sb = sb;
69 		list_add(&inode->i_sb_list, &sb->s_inodes);
70 		inode->i_state = I_LOCK | I_NEW;
71 	}
72 
73 	return inode;
74 }
75 
76 void iget_failed(struct inode *inode)
77 {
78 }
79 
80 int ubifs_iput(struct inode *inode)
81 {
82 	list_del_init(&inode->i_sb_list);
83 
84 	free(inode);
85 	return 0;
86 }
87 
88 /*
89  * Lock (save) inode in inode array for readback after recovery
90  */
91 void iput(struct inode *inode)
92 {
93 	int i;
94 	struct inode *ino;
95 
96 	/*
97 	 * Search end of list
98 	 */
99 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
100 		if (inodes_locked_down[i] == NULL)
101 			break;
102 	}
103 
104 	if (i >= INODE_LOCKED_MAX) {
105 		dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
106 		return;
107 	}
108 
109 	/*
110 	 * Allocate and use new inode
111 	 */
112 	ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
113 	memcpy(ino, inode, sizeof(struct ubifs_inode));
114 
115 	/*
116 	 * Finally save inode in array
117 	 */
118 	inodes_locked_down[i] = ino;
119 }
120 
121 /* from fs/inode.c */
122 /**
123  * clear_nlink - directly zero an inode's link count
124  * @inode: inode
125  *
126  * This is a low-level filesystem helper to replace any
127  * direct filesystem manipulation of i_nlink.  See
128  * drop_nlink() for why we care about i_nlink hitting zero.
129  */
130 void clear_nlink(struct inode *inode)
131 {
132 	if (inode->i_nlink) {
133 		inode->__i_nlink = 0;
134 		atomic_long_inc(&inode->i_sb->s_remove_count);
135 	}
136 }
137 EXPORT_SYMBOL(clear_nlink);
138 
139 /**
140  * set_nlink - directly set an inode's link count
141  * @inode: inode
142  * @nlink: new nlink (should be non-zero)
143  *
144  * This is a low-level filesystem helper to replace any
145  * direct filesystem manipulation of i_nlink.
146  */
147 void set_nlink(struct inode *inode, unsigned int nlink)
148 {
149 	if (!nlink) {
150 		clear_nlink(inode);
151 	} else {
152 		/* Yes, some filesystems do change nlink from zero to one */
153 		if (inode->i_nlink == 0)
154 			atomic_long_dec(&inode->i_sb->s_remove_count);
155 
156 		inode->__i_nlink = nlink;
157 	}
158 }
159 EXPORT_SYMBOL(set_nlink);
160 
161 /* from include/linux/fs.h */
162 static inline void i_uid_write(struct inode *inode, uid_t uid)
163 {
164 	inode->i_uid.val = uid;
165 }
166 
167 static inline void i_gid_write(struct inode *inode, gid_t gid)
168 {
169 	inode->i_gid.val = gid;
170 }
171 
172 void unlock_new_inode(struct inode *inode)
173 {
174 	return;
175 }
176 #endif
177 
178 /*
179  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
180  * allocating too much.
181  */
182 #define UBIFS_KMALLOC_OK (128*1024)
183 
184 /* Slab cache for UBIFS inodes */
185 struct kmem_cache *ubifs_inode_slab;
186 
187 #ifndef __UBOOT__
188 /* UBIFS TNC shrinker description */
189 static struct shrinker ubifs_shrinker_info = {
190 	.scan_objects = ubifs_shrink_scan,
191 	.count_objects = ubifs_shrink_count,
192 	.seeks = DEFAULT_SEEKS,
193 };
194 #endif
195 
196 /**
197  * validate_inode - validate inode.
198  * @c: UBIFS file-system description object
199  * @inode: the inode to validate
200  *
201  * This is a helper function for 'ubifs_iget()' which validates various fields
202  * of a newly built inode to make sure they contain sane values and prevent
203  * possible vulnerabilities. Returns zero if the inode is all right and
204  * a non-zero error code if not.
205  */
206 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
207 {
208 	int err;
209 	const struct ubifs_inode *ui = ubifs_inode(inode);
210 
211 	if (inode->i_size > c->max_inode_sz) {
212 		ubifs_err(c, "inode is too large (%lld)",
213 			  (long long)inode->i_size);
214 		return 1;
215 	}
216 
217 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
218 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
219 		return 2;
220 	}
221 
222 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
223 		return 3;
224 
225 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
226 		return 4;
227 
228 	if (ui->xattr && !S_ISREG(inode->i_mode))
229 		return 5;
230 
231 	if (!ubifs_compr_present(ui->compr_type)) {
232 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
233 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
234 	}
235 
236 	err = dbg_check_dir(c, inode);
237 	return err;
238 }
239 
240 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
241 {
242 	int err;
243 	union ubifs_key key;
244 	struct ubifs_ino_node *ino;
245 	struct ubifs_info *c = sb->s_fs_info;
246 	struct inode *inode;
247 	struct ubifs_inode *ui;
248 #ifdef __UBOOT__
249 	int i;
250 #endif
251 
252 	dbg_gen("inode %lu", inum);
253 
254 #ifdef __UBOOT__
255 	/*
256 	 * U-Boot special handling of locked down inodes via recovery
257 	 * e.g. ubifs_recover_size()
258 	 */
259 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
260 		/*
261 		 * Exit on last entry (NULL), inode not found in list
262 		 */
263 		if (inodes_locked_down[i] == NULL)
264 			break;
265 
266 		if (inodes_locked_down[i]->i_ino == inum) {
267 			/*
268 			 * We found the locked down inode in our array,
269 			 * so just return this pointer instead of creating
270 			 * a new one.
271 			 */
272 			return inodes_locked_down[i];
273 		}
274 	}
275 #endif
276 
277 	inode = iget_locked(sb, inum);
278 	if (!inode)
279 		return ERR_PTR(-ENOMEM);
280 	if (!(inode->i_state & I_NEW))
281 		return inode;
282 	ui = ubifs_inode(inode);
283 
284 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
285 	if (!ino) {
286 		err = -ENOMEM;
287 		goto out;
288 	}
289 
290 	ino_key_init(c, &key, inode->i_ino);
291 
292 	err = ubifs_tnc_lookup(c, &key, ino);
293 	if (err)
294 		goto out_ino;
295 
296 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
297 	set_nlink(inode, le32_to_cpu(ino->nlink));
298 	i_uid_write(inode, le32_to_cpu(ino->uid));
299 	i_gid_write(inode, le32_to_cpu(ino->gid));
300 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
301 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
302 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
303 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
304 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
305 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
306 	inode->i_mode = le32_to_cpu(ino->mode);
307 	inode->i_size = le64_to_cpu(ino->size);
308 
309 	ui->data_len    = le32_to_cpu(ino->data_len);
310 	ui->flags       = le32_to_cpu(ino->flags);
311 	ui->compr_type  = le16_to_cpu(ino->compr_type);
312 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
313 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
314 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
315 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
316 	ui->synced_i_size = ui->ui_size = inode->i_size;
317 
318 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
319 
320 	err = validate_inode(c, inode);
321 	if (err)
322 		goto out_invalid;
323 
324 #ifndef __UBOOT__
325 	switch (inode->i_mode & S_IFMT) {
326 	case S_IFREG:
327 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
328 		inode->i_op = &ubifs_file_inode_operations;
329 		inode->i_fop = &ubifs_file_operations;
330 		if (ui->xattr) {
331 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
332 			if (!ui->data) {
333 				err = -ENOMEM;
334 				goto out_ino;
335 			}
336 			memcpy(ui->data, ino->data, ui->data_len);
337 			((char *)ui->data)[ui->data_len] = '\0';
338 		} else if (ui->data_len != 0) {
339 			err = 10;
340 			goto out_invalid;
341 		}
342 		break;
343 	case S_IFDIR:
344 		inode->i_op  = &ubifs_dir_inode_operations;
345 		inode->i_fop = &ubifs_dir_operations;
346 		if (ui->data_len != 0) {
347 			err = 11;
348 			goto out_invalid;
349 		}
350 		break;
351 	case S_IFLNK:
352 		inode->i_op = &ubifs_symlink_inode_operations;
353 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
354 			err = 12;
355 			goto out_invalid;
356 		}
357 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
358 		if (!ui->data) {
359 			err = -ENOMEM;
360 			goto out_ino;
361 		}
362 		memcpy(ui->data, ino->data, ui->data_len);
363 		((char *)ui->data)[ui->data_len] = '\0';
364 		inode->i_link = ui->data;
365 		break;
366 	case S_IFBLK:
367 	case S_IFCHR:
368 	{
369 		dev_t rdev;
370 		union ubifs_dev_desc *dev;
371 
372 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
373 		if (!ui->data) {
374 			err = -ENOMEM;
375 			goto out_ino;
376 		}
377 
378 		dev = (union ubifs_dev_desc *)ino->data;
379 		if (ui->data_len == sizeof(dev->new))
380 			rdev = new_decode_dev(le32_to_cpu(dev->new));
381 		else if (ui->data_len == sizeof(dev->huge))
382 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
383 		else {
384 			err = 13;
385 			goto out_invalid;
386 		}
387 		memcpy(ui->data, ino->data, ui->data_len);
388 		inode->i_op = &ubifs_file_inode_operations;
389 		init_special_inode(inode, inode->i_mode, rdev);
390 		break;
391 	}
392 	case S_IFSOCK:
393 	case S_IFIFO:
394 		inode->i_op = &ubifs_file_inode_operations;
395 		init_special_inode(inode, inode->i_mode, 0);
396 		if (ui->data_len != 0) {
397 			err = 14;
398 			goto out_invalid;
399 		}
400 		break;
401 	default:
402 		err = 15;
403 		goto out_invalid;
404 	}
405 #else
406 	if ((inode->i_mode & S_IFMT) == S_IFLNK) {
407 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
408 			err = 12;
409 			goto out_invalid;
410 		}
411 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
412 		if (!ui->data) {
413 			err = -ENOMEM;
414 			goto out_ino;
415 		}
416 		memcpy(ui->data, ino->data, ui->data_len);
417 		((char *)ui->data)[ui->data_len] = '\0';
418 	}
419 #endif
420 
421 	kfree(ino);
422 #ifndef __UBOOT__
423 	ubifs_set_inode_flags(inode);
424 #endif
425 	unlock_new_inode(inode);
426 	return inode;
427 
428 out_invalid:
429 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
430 	ubifs_dump_node(c, ino);
431 	ubifs_dump_inode(c, inode);
432 	err = -EINVAL;
433 out_ino:
434 	kfree(ino);
435 out:
436 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
437 	iget_failed(inode);
438 	return ERR_PTR(err);
439 }
440 
441 static struct inode *ubifs_alloc_inode(struct super_block *sb)
442 {
443 	struct ubifs_inode *ui;
444 
445 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
446 	if (!ui)
447 		return NULL;
448 
449 	memset((void *)ui + sizeof(struct inode), 0,
450 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
451 	mutex_init(&ui->ui_mutex);
452 	spin_lock_init(&ui->ui_lock);
453 	return &ui->vfs_inode;
454 };
455 
456 #ifndef __UBOOT__
457 static void ubifs_i_callback(struct rcu_head *head)
458 {
459 	struct inode *inode = container_of(head, struct inode, i_rcu);
460 	struct ubifs_inode *ui = ubifs_inode(inode);
461 	kmem_cache_free(ubifs_inode_slab, ui);
462 }
463 
464 static void ubifs_destroy_inode(struct inode *inode)
465 {
466 	struct ubifs_inode *ui = ubifs_inode(inode);
467 
468 	kfree(ui->data);
469 	call_rcu(&inode->i_rcu, ubifs_i_callback);
470 }
471 
472 /*
473  * Note, Linux write-back code calls this without 'i_mutex'.
474  */
475 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
476 {
477 	int err = 0;
478 	struct ubifs_info *c = inode->i_sb->s_fs_info;
479 	struct ubifs_inode *ui = ubifs_inode(inode);
480 
481 	ubifs_assert(!ui->xattr);
482 	if (is_bad_inode(inode))
483 		return 0;
484 
485 	mutex_lock(&ui->ui_mutex);
486 	/*
487 	 * Due to races between write-back forced by budgeting
488 	 * (see 'sync_some_inodes()') and background write-back, the inode may
489 	 * have already been synchronized, do not do this again. This might
490 	 * also happen if it was synchronized in an VFS operation, e.g.
491 	 * 'ubifs_link()'.
492 	 */
493 	if (!ui->dirty) {
494 		mutex_unlock(&ui->ui_mutex);
495 		return 0;
496 	}
497 
498 	/*
499 	 * As an optimization, do not write orphan inodes to the media just
500 	 * because this is not needed.
501 	 */
502 	dbg_gen("inode %lu, mode %#x, nlink %u",
503 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
504 	if (inode->i_nlink) {
505 		err = ubifs_jnl_write_inode(c, inode);
506 		if (err)
507 			ubifs_err(c, "can't write inode %lu, error %d",
508 				  inode->i_ino, err);
509 		else
510 			err = dbg_check_inode_size(c, inode, ui->ui_size);
511 	}
512 
513 	ui->dirty = 0;
514 	mutex_unlock(&ui->ui_mutex);
515 	ubifs_release_dirty_inode_budget(c, ui);
516 	return err;
517 }
518 
519 static void ubifs_evict_inode(struct inode *inode)
520 {
521 	int err;
522 	struct ubifs_info *c = inode->i_sb->s_fs_info;
523 	struct ubifs_inode *ui = ubifs_inode(inode);
524 
525 	if (ui->xattr)
526 		/*
527 		 * Extended attribute inode deletions are fully handled in
528 		 * 'ubifs_removexattr()'. These inodes are special and have
529 		 * limited usage, so there is nothing to do here.
530 		 */
531 		goto out;
532 
533 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
534 	ubifs_assert(!atomic_read(&inode->i_count));
535 
536 	truncate_inode_pages_final(&inode->i_data);
537 
538 	if (inode->i_nlink)
539 		goto done;
540 
541 	if (is_bad_inode(inode))
542 		goto out;
543 
544 	ui->ui_size = inode->i_size = 0;
545 	err = ubifs_jnl_delete_inode(c, inode);
546 	if (err)
547 		/*
548 		 * Worst case we have a lost orphan inode wasting space, so a
549 		 * simple error message is OK here.
550 		 */
551 		ubifs_err(c, "can't delete inode %lu, error %d",
552 			  inode->i_ino, err);
553 
554 out:
555 	if (ui->dirty)
556 		ubifs_release_dirty_inode_budget(c, ui);
557 	else {
558 		/* We've deleted something - clean the "no space" flags */
559 		c->bi.nospace = c->bi.nospace_rp = 0;
560 		smp_wmb();
561 	}
562 done:
563 	clear_inode(inode);
564 }
565 #endif
566 
567 static void ubifs_dirty_inode(struct inode *inode, int flags)
568 {
569 	struct ubifs_inode *ui = ubifs_inode(inode);
570 
571 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
572 	if (!ui->dirty) {
573 		ui->dirty = 1;
574 		dbg_gen("inode %lu",  inode->i_ino);
575 	}
576 }
577 
578 #ifndef __UBOOT__
579 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
580 {
581 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
582 	unsigned long long free;
583 	__le32 *uuid = (__le32 *)c->uuid;
584 
585 	free = ubifs_get_free_space(c);
586 	dbg_gen("free space %lld bytes (%lld blocks)",
587 		free, free >> UBIFS_BLOCK_SHIFT);
588 
589 	buf->f_type = UBIFS_SUPER_MAGIC;
590 	buf->f_bsize = UBIFS_BLOCK_SIZE;
591 	buf->f_blocks = c->block_cnt;
592 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
593 	if (free > c->report_rp_size)
594 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
595 	else
596 		buf->f_bavail = 0;
597 	buf->f_files = 0;
598 	buf->f_ffree = 0;
599 	buf->f_namelen = UBIFS_MAX_NLEN;
600 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
601 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
602 	ubifs_assert(buf->f_bfree <= c->block_cnt);
603 	return 0;
604 }
605 
606 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
607 {
608 	struct ubifs_info *c = root->d_sb->s_fs_info;
609 
610 	if (c->mount_opts.unmount_mode == 2)
611 		seq_puts(s, ",fast_unmount");
612 	else if (c->mount_opts.unmount_mode == 1)
613 		seq_puts(s, ",norm_unmount");
614 
615 	if (c->mount_opts.bulk_read == 2)
616 		seq_puts(s, ",bulk_read");
617 	else if (c->mount_opts.bulk_read == 1)
618 		seq_puts(s, ",no_bulk_read");
619 
620 	if (c->mount_opts.chk_data_crc == 2)
621 		seq_puts(s, ",chk_data_crc");
622 	else if (c->mount_opts.chk_data_crc == 1)
623 		seq_puts(s, ",no_chk_data_crc");
624 
625 	if (c->mount_opts.override_compr) {
626 		seq_printf(s, ",compr=%s",
627 			   ubifs_compr_name(c->mount_opts.compr_type));
628 	}
629 
630 	return 0;
631 }
632 
633 static int ubifs_sync_fs(struct super_block *sb, int wait)
634 {
635 	int i, err;
636 	struct ubifs_info *c = sb->s_fs_info;
637 
638 	/*
639 	 * Zero @wait is just an advisory thing to help the file system shove
640 	 * lots of data into the queues, and there will be the second
641 	 * '->sync_fs()' call, with non-zero @wait.
642 	 */
643 	if (!wait)
644 		return 0;
645 
646 	/*
647 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
648 	 * do this if it waits for an already running commit.
649 	 */
650 	for (i = 0; i < c->jhead_cnt; i++) {
651 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
652 		if (err)
653 			return err;
654 	}
655 
656 	/*
657 	 * Strictly speaking, it is not necessary to commit the journal here,
658 	 * synchronizing write-buffers would be enough. But committing makes
659 	 * UBIFS free space predictions much more accurate, so we want to let
660 	 * the user be able to get more accurate results of 'statfs()' after
661 	 * they synchronize the file system.
662 	 */
663 	err = ubifs_run_commit(c);
664 	if (err)
665 		return err;
666 
667 	return ubi_sync(c->vi.ubi_num);
668 }
669 #endif
670 
671 /**
672  * init_constants_early - initialize UBIFS constants.
673  * @c: UBIFS file-system description object
674  *
675  * This function initialize UBIFS constants which do not need the superblock to
676  * be read. It also checks that the UBI volume satisfies basic UBIFS
677  * requirements. Returns zero in case of success and a negative error code in
678  * case of failure.
679  */
680 static int init_constants_early(struct ubifs_info *c)
681 {
682 	if (c->vi.corrupted) {
683 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
684 		c->ro_media = 1;
685 	}
686 
687 	if (c->di.ro_mode) {
688 		ubifs_msg(c, "read-only UBI device");
689 		c->ro_media = 1;
690 	}
691 
692 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
693 		ubifs_msg(c, "static UBI volume - read-only mode");
694 		c->ro_media = 1;
695 	}
696 
697 	c->leb_cnt = c->vi.size;
698 	c->leb_size = c->vi.usable_leb_size;
699 	c->leb_start = c->di.leb_start;
700 	c->half_leb_size = c->leb_size / 2;
701 	c->min_io_size = c->di.min_io_size;
702 	c->min_io_shift = fls(c->min_io_size) - 1;
703 	c->max_write_size = c->di.max_write_size;
704 	c->max_write_shift = fls(c->max_write_size) - 1;
705 
706 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
707 		ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
708 			  c->leb_size, UBIFS_MIN_LEB_SZ);
709 		return -EINVAL;
710 	}
711 
712 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
713 		ubifs_err(c, "too few LEBs (%d), min. is %d",
714 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
715 		return -EINVAL;
716 	}
717 
718 	if (!is_power_of_2(c->min_io_size)) {
719 		ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
720 		return -EINVAL;
721 	}
722 
723 	/*
724 	 * Maximum write size has to be greater or equivalent to min. I/O
725 	 * size, and be multiple of min. I/O size.
726 	 */
727 	if (c->max_write_size < c->min_io_size ||
728 	    c->max_write_size % c->min_io_size ||
729 	    !is_power_of_2(c->max_write_size)) {
730 		ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
731 			  c->max_write_size, c->min_io_size);
732 		return -EINVAL;
733 	}
734 
735 	/*
736 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
737 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
738 	 * less than 8.
739 	 */
740 	if (c->min_io_size < 8) {
741 		c->min_io_size = 8;
742 		c->min_io_shift = 3;
743 		if (c->max_write_size < c->min_io_size) {
744 			c->max_write_size = c->min_io_size;
745 			c->max_write_shift = c->min_io_shift;
746 		}
747 	}
748 
749 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
750 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
751 
752 	/*
753 	 * Initialize node length ranges which are mostly needed for node
754 	 * length validation.
755 	 */
756 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
757 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
758 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
759 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
760 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
761 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
762 
763 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
764 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
765 	c->ranges[UBIFS_ORPH_NODE].min_len =
766 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
767 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
768 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
769 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
770 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
771 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
772 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
773 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
774 	/*
775 	 * Minimum indexing node size is amended later when superblock is
776 	 * read and the key length is known.
777 	 */
778 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
779 	/*
780 	 * Maximum indexing node size is amended later when superblock is
781 	 * read and the fanout is known.
782 	 */
783 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
784 
785 	/*
786 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
787 	 * about these values.
788 	 */
789 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
790 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
791 
792 	/*
793 	 * Calculate how many bytes would be wasted at the end of LEB if it was
794 	 * fully filled with data nodes of maximum size. This is used in
795 	 * calculations when reporting free space.
796 	 */
797 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
798 
799 	/* Buffer size for bulk-reads */
800 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
801 	if (c->max_bu_buf_len > c->leb_size)
802 		c->max_bu_buf_len = c->leb_size;
803 	return 0;
804 }
805 
806 /**
807  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
808  * @c: UBIFS file-system description object
809  * @lnum: LEB the write-buffer was synchronized to
810  * @free: how many free bytes left in this LEB
811  * @pad: how many bytes were padded
812  *
813  * This is a callback function which is called by the I/O unit when the
814  * write-buffer is synchronized. We need this to correctly maintain space
815  * accounting in bud logical eraseblocks. This function returns zero in case of
816  * success and a negative error code in case of failure.
817  *
818  * This function actually belongs to the journal, but we keep it here because
819  * we want to keep it static.
820  */
821 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
822 {
823 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
824 }
825 
826 /*
827  * init_constants_sb - initialize UBIFS constants.
828  * @c: UBIFS file-system description object
829  *
830  * This is a helper function which initializes various UBIFS constants after
831  * the superblock has been read. It also checks various UBIFS parameters and
832  * makes sure they are all right. Returns zero in case of success and a
833  * negative error code in case of failure.
834  */
835 static int init_constants_sb(struct ubifs_info *c)
836 {
837 	int tmp, err;
838 	long long tmp64;
839 
840 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
841 	c->max_znode_sz = sizeof(struct ubifs_znode) +
842 				c->fanout * sizeof(struct ubifs_zbranch);
843 
844 	tmp = ubifs_idx_node_sz(c, 1);
845 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
846 	c->min_idx_node_sz = ALIGN(tmp, 8);
847 
848 	tmp = ubifs_idx_node_sz(c, c->fanout);
849 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
850 	c->max_idx_node_sz = ALIGN(tmp, 8);
851 
852 	/* Make sure LEB size is large enough to fit full commit */
853 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
854 	tmp = ALIGN(tmp, c->min_io_size);
855 	if (tmp > c->leb_size) {
856 		ubifs_err(c, "too small LEB size %d, at least %d needed",
857 			  c->leb_size, tmp);
858 		return -EINVAL;
859 	}
860 
861 	/*
862 	 * Make sure that the log is large enough to fit reference nodes for
863 	 * all buds plus one reserved LEB.
864 	 */
865 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
866 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
867 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
868 	tmp /= c->leb_size;
869 	tmp += 1;
870 	if (c->log_lebs < tmp) {
871 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
872 			  c->log_lebs, tmp);
873 		return -EINVAL;
874 	}
875 
876 	/*
877 	 * When budgeting we assume worst-case scenarios when the pages are not
878 	 * be compressed and direntries are of the maximum size.
879 	 *
880 	 * Note, data, which may be stored in inodes is budgeted separately, so
881 	 * it is not included into 'c->bi.inode_budget'.
882 	 */
883 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
884 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
885 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
886 
887 	/*
888 	 * When the amount of flash space used by buds becomes
889 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
890 	 * The writers are unblocked when the commit is finished. To avoid
891 	 * writers to be blocked UBIFS initiates background commit in advance,
892 	 * when number of bud bytes becomes above the limit defined below.
893 	 */
894 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
895 
896 	/*
897 	 * Ensure minimum journal size. All the bytes in the journal heads are
898 	 * considered to be used, when calculating the current journal usage.
899 	 * Consequently, if the journal is too small, UBIFS will treat it as
900 	 * always full.
901 	 */
902 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
903 	if (c->bg_bud_bytes < tmp64)
904 		c->bg_bud_bytes = tmp64;
905 	if (c->max_bud_bytes < tmp64 + c->leb_size)
906 		c->max_bud_bytes = tmp64 + c->leb_size;
907 
908 	err = ubifs_calc_lpt_geom(c);
909 	if (err)
910 		return err;
911 
912 	/* Initialize effective LEB size used in budgeting calculations */
913 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
914 	return 0;
915 }
916 
917 /*
918  * init_constants_master - initialize UBIFS constants.
919  * @c: UBIFS file-system description object
920  *
921  * This is a helper function which initializes various UBIFS constants after
922  * the master node has been read. It also checks various UBIFS parameters and
923  * makes sure they are all right.
924  */
925 static void init_constants_master(struct ubifs_info *c)
926 {
927 	long long tmp64;
928 
929 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
930 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
931 
932 	/*
933 	 * Calculate total amount of FS blocks. This number is not used
934 	 * internally because it does not make much sense for UBIFS, but it is
935 	 * necessary to report something for the 'statfs()' call.
936 	 *
937 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
938 	 * deletions, minimum LEBs for the index, and assume only one journal
939 	 * head is available.
940 	 */
941 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
942 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
943 	tmp64 = ubifs_reported_space(c, tmp64);
944 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
945 }
946 
947 /**
948  * take_gc_lnum - reserve GC LEB.
949  * @c: UBIFS file-system description object
950  *
951  * This function ensures that the LEB reserved for garbage collection is marked
952  * as "taken" in lprops. We also have to set free space to LEB size and dirty
953  * space to zero, because lprops may contain out-of-date information if the
954  * file-system was un-mounted before it has been committed. This function
955  * returns zero in case of success and a negative error code in case of
956  * failure.
957  */
958 static int take_gc_lnum(struct ubifs_info *c)
959 {
960 	int err;
961 
962 	if (c->gc_lnum == -1) {
963 		ubifs_err(c, "no LEB for GC");
964 		return -EINVAL;
965 	}
966 
967 	/* And we have to tell lprops that this LEB is taken */
968 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
969 				  LPROPS_TAKEN, 0, 0);
970 	return err;
971 }
972 
973 /**
974  * alloc_wbufs - allocate write-buffers.
975  * @c: UBIFS file-system description object
976  *
977  * This helper function allocates and initializes UBIFS write-buffers. Returns
978  * zero in case of success and %-ENOMEM in case of failure.
979  */
980 static int alloc_wbufs(struct ubifs_info *c)
981 {
982 	int i, err;
983 
984 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
985 			    GFP_KERNEL);
986 	if (!c->jheads)
987 		return -ENOMEM;
988 
989 	/* Initialize journal heads */
990 	for (i = 0; i < c->jhead_cnt; i++) {
991 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
992 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
993 		if (err)
994 			return err;
995 
996 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
997 		c->jheads[i].wbuf.jhead = i;
998 		c->jheads[i].grouped = 1;
999 	}
1000 
1001 	/*
1002 	 * Garbage Collector head does not need to be synchronized by timer.
1003 	 * Also GC head nodes are not grouped.
1004 	 */
1005 	c->jheads[GCHD].wbuf.no_timer = 1;
1006 	c->jheads[GCHD].grouped = 0;
1007 
1008 	return 0;
1009 }
1010 
1011 /**
1012  * free_wbufs - free write-buffers.
1013  * @c: UBIFS file-system description object
1014  */
1015 static void free_wbufs(struct ubifs_info *c)
1016 {
1017 	int i;
1018 
1019 	if (c->jheads) {
1020 		for (i = 0; i < c->jhead_cnt; i++) {
1021 			kfree(c->jheads[i].wbuf.buf);
1022 			kfree(c->jheads[i].wbuf.inodes);
1023 		}
1024 		kfree(c->jheads);
1025 		c->jheads = NULL;
1026 	}
1027 }
1028 
1029 /**
1030  * free_orphans - free orphans.
1031  * @c: UBIFS file-system description object
1032  */
1033 static void free_orphans(struct ubifs_info *c)
1034 {
1035 	struct ubifs_orphan *orph;
1036 
1037 	while (c->orph_dnext) {
1038 		orph = c->orph_dnext;
1039 		c->orph_dnext = orph->dnext;
1040 		list_del(&orph->list);
1041 		kfree(orph);
1042 	}
1043 
1044 	while (!list_empty(&c->orph_list)) {
1045 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1046 		list_del(&orph->list);
1047 		kfree(orph);
1048 		ubifs_err(c, "orphan list not empty at unmount");
1049 	}
1050 
1051 	vfree(c->orph_buf);
1052 	c->orph_buf = NULL;
1053 }
1054 
1055 /**
1056  * free_buds - free per-bud objects.
1057  * @c: UBIFS file-system description object
1058  */
1059 static void free_buds(struct ubifs_info *c)
1060 {
1061 	struct ubifs_bud *bud, *n;
1062 
1063 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1064 		kfree(bud);
1065 }
1066 
1067 /**
1068  * check_volume_empty - check if the UBI volume is empty.
1069  * @c: UBIFS file-system description object
1070  *
1071  * This function checks if the UBIFS volume is empty by looking if its LEBs are
1072  * mapped or not. The result of checking is stored in the @c->empty variable.
1073  * Returns zero in case of success and a negative error code in case of
1074  * failure.
1075  */
1076 static int check_volume_empty(struct ubifs_info *c)
1077 {
1078 	int lnum, err;
1079 
1080 	c->empty = 1;
1081 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1082 		err = ubifs_is_mapped(c, lnum);
1083 		if (unlikely(err < 0))
1084 			return err;
1085 		if (err == 1) {
1086 			c->empty = 0;
1087 			break;
1088 		}
1089 
1090 		cond_resched();
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 /*
1097  * UBIFS mount options.
1098  *
1099  * Opt_fast_unmount: do not run a journal commit before un-mounting
1100  * Opt_norm_unmount: run a journal commit before un-mounting
1101  * Opt_bulk_read: enable bulk-reads
1102  * Opt_no_bulk_read: disable bulk-reads
1103  * Opt_chk_data_crc: check CRCs when reading data nodes
1104  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1105  * Opt_override_compr: override default compressor
1106  * Opt_err: just end of array marker
1107  */
1108 enum {
1109 	Opt_fast_unmount,
1110 	Opt_norm_unmount,
1111 	Opt_bulk_read,
1112 	Opt_no_bulk_read,
1113 	Opt_chk_data_crc,
1114 	Opt_no_chk_data_crc,
1115 	Opt_override_compr,
1116 	Opt_err,
1117 };
1118 
1119 #ifndef __UBOOT__
1120 static const match_table_t tokens = {
1121 	{Opt_fast_unmount, "fast_unmount"},
1122 	{Opt_norm_unmount, "norm_unmount"},
1123 	{Opt_bulk_read, "bulk_read"},
1124 	{Opt_no_bulk_read, "no_bulk_read"},
1125 	{Opt_chk_data_crc, "chk_data_crc"},
1126 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
1127 	{Opt_override_compr, "compr=%s"},
1128 	{Opt_err, NULL},
1129 };
1130 
1131 /**
1132  * parse_standard_option - parse a standard mount option.
1133  * @option: the option to parse
1134  *
1135  * Normally, standard mount options like "sync" are passed to file-systems as
1136  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1137  * be present in the options string. This function tries to deal with this
1138  * situation and parse standard options. Returns 0 if the option was not
1139  * recognized, and the corresponding integer flag if it was.
1140  *
1141  * UBIFS is only interested in the "sync" option, so do not check for anything
1142  * else.
1143  */
1144 static int parse_standard_option(const char *option)
1145 {
1146 
1147 	pr_notice("UBIFS: parse %s\n", option);
1148 	if (!strcmp(option, "sync"))
1149 		return MS_SYNCHRONOUS;
1150 	return 0;
1151 }
1152 
1153 /**
1154  * ubifs_parse_options - parse mount parameters.
1155  * @c: UBIFS file-system description object
1156  * @options: parameters to parse
1157  * @is_remount: non-zero if this is FS re-mount
1158  *
1159  * This function parses UBIFS mount options and returns zero in case success
1160  * and a negative error code in case of failure.
1161  */
1162 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1163 			       int is_remount)
1164 {
1165 	char *p;
1166 	substring_t args[MAX_OPT_ARGS];
1167 
1168 	if (!options)
1169 		return 0;
1170 
1171 	while ((p = strsep(&options, ","))) {
1172 		int token;
1173 
1174 		if (!*p)
1175 			continue;
1176 
1177 		token = match_token(p, tokens, args);
1178 		switch (token) {
1179 		/*
1180 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1181 		 * We accept them in order to be backward-compatible. But this
1182 		 * should be removed at some point.
1183 		 */
1184 		case Opt_fast_unmount:
1185 			c->mount_opts.unmount_mode = 2;
1186 			break;
1187 		case Opt_norm_unmount:
1188 			c->mount_opts.unmount_mode = 1;
1189 			break;
1190 		case Opt_bulk_read:
1191 			c->mount_opts.bulk_read = 2;
1192 			c->bulk_read = 1;
1193 			break;
1194 		case Opt_no_bulk_read:
1195 			c->mount_opts.bulk_read = 1;
1196 			c->bulk_read = 0;
1197 			break;
1198 		case Opt_chk_data_crc:
1199 			c->mount_opts.chk_data_crc = 2;
1200 			c->no_chk_data_crc = 0;
1201 			break;
1202 		case Opt_no_chk_data_crc:
1203 			c->mount_opts.chk_data_crc = 1;
1204 			c->no_chk_data_crc = 1;
1205 			break;
1206 		case Opt_override_compr:
1207 		{
1208 			char *name = match_strdup(&args[0]);
1209 
1210 			if (!name)
1211 				return -ENOMEM;
1212 			if (!strcmp(name, "none"))
1213 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1214 			else if (!strcmp(name, "lzo"))
1215 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1216 			else if (!strcmp(name, "zlib"))
1217 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1218 			else {
1219 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1220 				kfree(name);
1221 				return -EINVAL;
1222 			}
1223 			kfree(name);
1224 			c->mount_opts.override_compr = 1;
1225 			c->default_compr = c->mount_opts.compr_type;
1226 			break;
1227 		}
1228 		default:
1229 		{
1230 			unsigned long flag;
1231 			struct super_block *sb = c->vfs_sb;
1232 
1233 			flag = parse_standard_option(p);
1234 			if (!flag) {
1235 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1236 					  p);
1237 				return -EINVAL;
1238 			}
1239 			sb->s_flags |= flag;
1240 			break;
1241 		}
1242 		}
1243 	}
1244 
1245 	return 0;
1246 }
1247 #endif
1248 
1249 /**
1250  * destroy_journal - destroy journal data structures.
1251  * @c: UBIFS file-system description object
1252  *
1253  * This function destroys journal data structures including those that may have
1254  * been created by recovery functions.
1255  */
1256 static void destroy_journal(struct ubifs_info *c)
1257 {
1258 	while (!list_empty(&c->unclean_leb_list)) {
1259 		struct ubifs_unclean_leb *ucleb;
1260 
1261 		ucleb = list_entry(c->unclean_leb_list.next,
1262 				   struct ubifs_unclean_leb, list);
1263 		list_del(&ucleb->list);
1264 		kfree(ucleb);
1265 	}
1266 	while (!list_empty(&c->old_buds)) {
1267 		struct ubifs_bud *bud;
1268 
1269 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1270 		list_del(&bud->list);
1271 		kfree(bud);
1272 	}
1273 	ubifs_destroy_idx_gc(c);
1274 	ubifs_destroy_size_tree(c);
1275 	ubifs_tnc_close(c);
1276 	free_buds(c);
1277 }
1278 
1279 /**
1280  * bu_init - initialize bulk-read information.
1281  * @c: UBIFS file-system description object
1282  */
1283 static void bu_init(struct ubifs_info *c)
1284 {
1285 	ubifs_assert(c->bulk_read == 1);
1286 
1287 	if (c->bu.buf)
1288 		return; /* Already initialized */
1289 
1290 again:
1291 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1292 	if (!c->bu.buf) {
1293 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1294 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1295 			goto again;
1296 		}
1297 
1298 		/* Just disable bulk-read */
1299 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1300 			   c->max_bu_buf_len);
1301 		c->mount_opts.bulk_read = 1;
1302 		c->bulk_read = 0;
1303 		return;
1304 	}
1305 }
1306 
1307 #ifndef __UBOOT__
1308 /**
1309  * check_free_space - check if there is enough free space to mount.
1310  * @c: UBIFS file-system description object
1311  *
1312  * This function makes sure UBIFS has enough free space to be mounted in
1313  * read/write mode. UBIFS must always have some free space to allow deletions.
1314  */
1315 static int check_free_space(struct ubifs_info *c)
1316 {
1317 	ubifs_assert(c->dark_wm > 0);
1318 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1319 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1320 		ubifs_dump_budg(c, &c->bi);
1321 		ubifs_dump_lprops(c);
1322 		return -ENOSPC;
1323 	}
1324 	return 0;
1325 }
1326 #endif
1327 
1328 /**
1329  * mount_ubifs - mount UBIFS file-system.
1330  * @c: UBIFS file-system description object
1331  *
1332  * This function mounts UBIFS file system. Returns zero in case of success and
1333  * a negative error code in case of failure.
1334  */
1335 static int mount_ubifs(struct ubifs_info *c)
1336 {
1337 	int err;
1338 	long long x, y;
1339 	size_t sz;
1340 
1341 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1342 	/* Suppress error messages while probing if MS_SILENT is set */
1343 	c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1344 #ifdef __UBOOT__
1345 	if (!c->ro_mount) {
1346 		printf("UBIFS: only ro mode in U-Boot allowed.\n");
1347 		return -EACCES;
1348 	}
1349 #endif
1350 
1351 	err = init_constants_early(c);
1352 	if (err)
1353 		return err;
1354 
1355 	err = ubifs_debugging_init(c);
1356 	if (err)
1357 		return err;
1358 
1359 	err = check_volume_empty(c);
1360 	if (err)
1361 		goto out_free;
1362 
1363 	if (c->empty && (c->ro_mount || c->ro_media)) {
1364 		/*
1365 		 * This UBI volume is empty, and read-only, or the file system
1366 		 * is mounted read-only - we cannot format it.
1367 		 */
1368 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1369 			  c->ro_media ? "UBI volume" : "mount");
1370 		err = -EROFS;
1371 		goto out_free;
1372 	}
1373 
1374 	if (c->ro_media && !c->ro_mount) {
1375 		ubifs_err(c, "cannot mount read-write - read-only media");
1376 		err = -EROFS;
1377 		goto out_free;
1378 	}
1379 
1380 	/*
1381 	 * The requirement for the buffer is that it should fit indexing B-tree
1382 	 * height amount of integers. We assume the height if the TNC tree will
1383 	 * never exceed 64.
1384 	 */
1385 	err = -ENOMEM;
1386 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1387 	if (!c->bottom_up_buf)
1388 		goto out_free;
1389 
1390 	c->sbuf = vmalloc(c->leb_size);
1391 	if (!c->sbuf)
1392 		goto out_free;
1393 
1394 #ifndef __UBOOT__
1395 	if (!c->ro_mount) {
1396 		c->ileb_buf = vmalloc(c->leb_size);
1397 		if (!c->ileb_buf)
1398 			goto out_free;
1399 	}
1400 #endif
1401 
1402 	if (c->bulk_read == 1)
1403 		bu_init(c);
1404 
1405 #ifndef __UBOOT__
1406 	if (!c->ro_mount) {
1407 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1408 					       GFP_KERNEL);
1409 		if (!c->write_reserve_buf)
1410 			goto out_free;
1411 	}
1412 #endif
1413 
1414 	c->mounting = 1;
1415 
1416 	err = ubifs_read_superblock(c);
1417 	if (err)
1418 		goto out_free;
1419 
1420 	c->probing = 0;
1421 
1422 	/*
1423 	 * Make sure the compressor which is set as default in the superblock
1424 	 * or overridden by mount options is actually compiled in.
1425 	 */
1426 	if (!ubifs_compr_present(c->default_compr)) {
1427 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1428 			  ubifs_compr_name(c->default_compr));
1429 		err = -ENOTSUPP;
1430 		goto out_free;
1431 	}
1432 
1433 	err = init_constants_sb(c);
1434 	if (err)
1435 		goto out_free;
1436 
1437 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1438 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1439 	c->cbuf = kmalloc(sz, GFP_NOFS);
1440 	if (!c->cbuf) {
1441 		err = -ENOMEM;
1442 		goto out_free;
1443 	}
1444 
1445 	err = alloc_wbufs(c);
1446 	if (err)
1447 		goto out_cbuf;
1448 
1449 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1450 #ifndef __UBOOT__
1451 	if (!c->ro_mount) {
1452 		/* Create background thread */
1453 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1454 		if (IS_ERR(c->bgt)) {
1455 			err = PTR_ERR(c->bgt);
1456 			c->bgt = NULL;
1457 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1458 				  c->bgt_name, err);
1459 			goto out_wbufs;
1460 		}
1461 		wake_up_process(c->bgt);
1462 	}
1463 #endif
1464 
1465 	err = ubifs_read_master(c);
1466 	if (err)
1467 		goto out_master;
1468 
1469 	init_constants_master(c);
1470 
1471 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1472 		ubifs_msg(c, "recovery needed");
1473 		c->need_recovery = 1;
1474 	}
1475 
1476 #ifndef __UBOOT__
1477 	if (c->need_recovery && !c->ro_mount) {
1478 		err = ubifs_recover_inl_heads(c, c->sbuf);
1479 		if (err)
1480 			goto out_master;
1481 	}
1482 #endif
1483 
1484 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1485 	if (err)
1486 		goto out_master;
1487 
1488 #ifndef __UBOOT__
1489 	if (!c->ro_mount && c->space_fixup) {
1490 		err = ubifs_fixup_free_space(c);
1491 		if (err)
1492 			goto out_lpt;
1493 	}
1494 
1495 	if (!c->ro_mount && !c->need_recovery) {
1496 		/*
1497 		 * Set the "dirty" flag so that if we reboot uncleanly we
1498 		 * will notice this immediately on the next mount.
1499 		 */
1500 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1501 		err = ubifs_write_master(c);
1502 		if (err)
1503 			goto out_lpt;
1504 	}
1505 #endif
1506 
1507 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1508 	if (err)
1509 		goto out_lpt;
1510 
1511 	err = ubifs_replay_journal(c);
1512 	if (err)
1513 		goto out_journal;
1514 
1515 	/* Calculate 'min_idx_lebs' after journal replay */
1516 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1517 
1518 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1519 	if (err)
1520 		goto out_orphans;
1521 
1522 	if (!c->ro_mount) {
1523 #ifndef __UBOOT__
1524 		int lnum;
1525 
1526 		err = check_free_space(c);
1527 		if (err)
1528 			goto out_orphans;
1529 
1530 		/* Check for enough log space */
1531 		lnum = c->lhead_lnum + 1;
1532 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1533 			lnum = UBIFS_LOG_LNUM;
1534 		if (lnum == c->ltail_lnum) {
1535 			err = ubifs_consolidate_log(c);
1536 			if (err)
1537 				goto out_orphans;
1538 		}
1539 
1540 		if (c->need_recovery) {
1541 			err = ubifs_recover_size(c);
1542 			if (err)
1543 				goto out_orphans;
1544 			err = ubifs_rcvry_gc_commit(c);
1545 			if (err)
1546 				goto out_orphans;
1547 		} else {
1548 			err = take_gc_lnum(c);
1549 			if (err)
1550 				goto out_orphans;
1551 
1552 			/*
1553 			 * GC LEB may contain garbage if there was an unclean
1554 			 * reboot, and it should be un-mapped.
1555 			 */
1556 			err = ubifs_leb_unmap(c, c->gc_lnum);
1557 			if (err)
1558 				goto out_orphans;
1559 		}
1560 
1561 		err = dbg_check_lprops(c);
1562 		if (err)
1563 			goto out_orphans;
1564 #endif
1565 	} else if (c->need_recovery) {
1566 		err = ubifs_recover_size(c);
1567 		if (err)
1568 			goto out_orphans;
1569 	} else {
1570 		/*
1571 		 * Even if we mount read-only, we have to set space in GC LEB
1572 		 * to proper value because this affects UBIFS free space
1573 		 * reporting. We do not want to have a situation when
1574 		 * re-mounting from R/O to R/W changes amount of free space.
1575 		 */
1576 		err = take_gc_lnum(c);
1577 		if (err)
1578 			goto out_orphans;
1579 	}
1580 
1581 #ifndef __UBOOT__
1582 	spin_lock(&ubifs_infos_lock);
1583 	list_add_tail(&c->infos_list, &ubifs_infos);
1584 	spin_unlock(&ubifs_infos_lock);
1585 #endif
1586 
1587 	if (c->need_recovery) {
1588 		if (c->ro_mount)
1589 			ubifs_msg(c, "recovery deferred");
1590 		else {
1591 			c->need_recovery = 0;
1592 			ubifs_msg(c, "recovery completed");
1593 			/*
1594 			 * GC LEB has to be empty and taken at this point. But
1595 			 * the journal head LEBs may also be accounted as
1596 			 * "empty taken" if they are empty.
1597 			 */
1598 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1599 		}
1600 	} else
1601 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1602 
1603 	err = dbg_check_filesystem(c);
1604 	if (err)
1605 		goto out_infos;
1606 
1607 	err = dbg_debugfs_init_fs(c);
1608 	if (err)
1609 		goto out_infos;
1610 
1611 	c->mounting = 0;
1612 
1613 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1614 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1615 		  c->ro_mount ? ", R/O mode" : "");
1616 	x = (long long)c->main_lebs * c->leb_size;
1617 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1618 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1619 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1620 		  c->max_write_size);
1621 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1622 		  x, x >> 20, c->main_lebs,
1623 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1624 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1625 		  c->report_rp_size, c->report_rp_size >> 10);
1626 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1627 		  c->fmt_version, c->ro_compat_version,
1628 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1629 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1630 
1631 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1632 	dbg_gen("data journal heads:  %d",
1633 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1634 	dbg_gen("log LEBs:            %d (%d - %d)",
1635 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1636 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1637 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1638 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1639 		c->orph_lebs, c->orph_first, c->orph_last);
1640 	dbg_gen("main area LEBs:      %d (%d - %d)",
1641 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1642 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1643 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1644 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1645 		c->bi.old_idx_sz >> 20);
1646 	dbg_gen("key hash type:       %d", c->key_hash_type);
1647 	dbg_gen("tree fanout:         %d", c->fanout);
1648 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1649 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1650 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1651 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1652 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1653 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1654 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1655 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1656 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1657 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1658 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1659 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1660 	dbg_gen("dead watermark:      %d", c->dead_wm);
1661 	dbg_gen("dark watermark:      %d", c->dark_wm);
1662 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1663 	x = (long long)c->main_lebs * c->dark_wm;
1664 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1665 		x, x >> 10, x >> 20);
1666 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1667 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1668 		c->max_bud_bytes >> 20);
1669 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1670 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1671 		c->bg_bud_bytes >> 20);
1672 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1673 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1674 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1675 	dbg_gen("commit number:       %llu", c->cmt_no);
1676 
1677 	return 0;
1678 
1679 out_infos:
1680 	spin_lock(&ubifs_infos_lock);
1681 	list_del(&c->infos_list);
1682 	spin_unlock(&ubifs_infos_lock);
1683 out_orphans:
1684 	free_orphans(c);
1685 out_journal:
1686 	destroy_journal(c);
1687 out_lpt:
1688 	ubifs_lpt_free(c, 0);
1689 out_master:
1690 	kfree(c->mst_node);
1691 	kfree(c->rcvrd_mst_node);
1692 	if (c->bgt)
1693 		kthread_stop(c->bgt);
1694 #ifndef __UBOOT__
1695 out_wbufs:
1696 #endif
1697 	free_wbufs(c);
1698 out_cbuf:
1699 	kfree(c->cbuf);
1700 out_free:
1701 	kfree(c->write_reserve_buf);
1702 	kfree(c->bu.buf);
1703 	vfree(c->ileb_buf);
1704 	vfree(c->sbuf);
1705 	kfree(c->bottom_up_buf);
1706 	ubifs_debugging_exit(c);
1707 	return err;
1708 }
1709 
1710 /**
1711  * ubifs_umount - un-mount UBIFS file-system.
1712  * @c: UBIFS file-system description object
1713  *
1714  * Note, this function is called to free allocated resourced when un-mounting,
1715  * as well as free resources when an error occurred while we were half way
1716  * through mounting (error path cleanup function). So it has to make sure the
1717  * resource was actually allocated before freeing it.
1718  */
1719 #ifndef __UBOOT__
1720 static void ubifs_umount(struct ubifs_info *c)
1721 #else
1722 void ubifs_umount(struct ubifs_info *c)
1723 #endif
1724 {
1725 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1726 		c->vi.vol_id);
1727 
1728 	dbg_debugfs_exit_fs(c);
1729 	spin_lock(&ubifs_infos_lock);
1730 	list_del(&c->infos_list);
1731 	spin_unlock(&ubifs_infos_lock);
1732 
1733 #ifndef __UBOOT__
1734 	if (c->bgt)
1735 		kthread_stop(c->bgt);
1736 
1737 	destroy_journal(c);
1738 #endif
1739 	free_wbufs(c);
1740 	free_orphans(c);
1741 	ubifs_lpt_free(c, 0);
1742 
1743 	kfree(c->cbuf);
1744 	kfree(c->rcvrd_mst_node);
1745 	kfree(c->mst_node);
1746 	kfree(c->write_reserve_buf);
1747 	kfree(c->bu.buf);
1748 	vfree(c->ileb_buf);
1749 	vfree(c->sbuf);
1750 	kfree(c->bottom_up_buf);
1751 	ubifs_debugging_exit(c);
1752 #ifdef __UBOOT__
1753 	/* Finally free U-Boot's global copy of superblock */
1754 	if (ubifs_sb != NULL) {
1755 		free(ubifs_sb->s_fs_info);
1756 		free(ubifs_sb);
1757 	}
1758 #endif
1759 }
1760 
1761 #ifndef __UBOOT__
1762 /**
1763  * ubifs_remount_rw - re-mount in read-write mode.
1764  * @c: UBIFS file-system description object
1765  *
1766  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1767  * mode. This function allocates the needed resources and re-mounts UBIFS in
1768  * read-write mode.
1769  */
1770 static int ubifs_remount_rw(struct ubifs_info *c)
1771 {
1772 	int err, lnum;
1773 
1774 	if (c->rw_incompat) {
1775 		ubifs_err(c, "the file-system is not R/W-compatible");
1776 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1777 			  c->fmt_version, c->ro_compat_version,
1778 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1779 		return -EROFS;
1780 	}
1781 
1782 	mutex_lock(&c->umount_mutex);
1783 	dbg_save_space_info(c);
1784 	c->remounting_rw = 1;
1785 	c->ro_mount = 0;
1786 
1787 	if (c->space_fixup) {
1788 		err = ubifs_fixup_free_space(c);
1789 		if (err)
1790 			goto out;
1791 	}
1792 
1793 	err = check_free_space(c);
1794 	if (err)
1795 		goto out;
1796 
1797 	if (c->old_leb_cnt != c->leb_cnt) {
1798 		struct ubifs_sb_node *sup;
1799 
1800 		sup = ubifs_read_sb_node(c);
1801 		if (IS_ERR(sup)) {
1802 			err = PTR_ERR(sup);
1803 			goto out;
1804 		}
1805 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1806 		err = ubifs_write_sb_node(c, sup);
1807 		kfree(sup);
1808 		if (err)
1809 			goto out;
1810 	}
1811 
1812 	if (c->need_recovery) {
1813 		ubifs_msg(c, "completing deferred recovery");
1814 		err = ubifs_write_rcvrd_mst_node(c);
1815 		if (err)
1816 			goto out;
1817 		err = ubifs_recover_size(c);
1818 		if (err)
1819 			goto out;
1820 		err = ubifs_clean_lebs(c, c->sbuf);
1821 		if (err)
1822 			goto out;
1823 		err = ubifs_recover_inl_heads(c, c->sbuf);
1824 		if (err)
1825 			goto out;
1826 	} else {
1827 		/* A readonly mount is not allowed to have orphans */
1828 		ubifs_assert(c->tot_orphans == 0);
1829 		err = ubifs_clear_orphans(c);
1830 		if (err)
1831 			goto out;
1832 	}
1833 
1834 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1835 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1836 		err = ubifs_write_master(c);
1837 		if (err)
1838 			goto out;
1839 	}
1840 
1841 	c->ileb_buf = vmalloc(c->leb_size);
1842 	if (!c->ileb_buf) {
1843 		err = -ENOMEM;
1844 		goto out;
1845 	}
1846 
1847 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1848 	if (!c->write_reserve_buf) {
1849 		err = -ENOMEM;
1850 		goto out;
1851 	}
1852 
1853 	err = ubifs_lpt_init(c, 0, 1);
1854 	if (err)
1855 		goto out;
1856 
1857 	/* Create background thread */
1858 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1859 	if (IS_ERR(c->bgt)) {
1860 		err = PTR_ERR(c->bgt);
1861 		c->bgt = NULL;
1862 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1863 			  c->bgt_name, err);
1864 		goto out;
1865 	}
1866 	wake_up_process(c->bgt);
1867 
1868 	c->orph_buf = vmalloc(c->leb_size);
1869 	if (!c->orph_buf) {
1870 		err = -ENOMEM;
1871 		goto out;
1872 	}
1873 
1874 	/* Check for enough log space */
1875 	lnum = c->lhead_lnum + 1;
1876 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1877 		lnum = UBIFS_LOG_LNUM;
1878 	if (lnum == c->ltail_lnum) {
1879 		err = ubifs_consolidate_log(c);
1880 		if (err)
1881 			goto out;
1882 	}
1883 
1884 	if (c->need_recovery)
1885 		err = ubifs_rcvry_gc_commit(c);
1886 	else
1887 		err = ubifs_leb_unmap(c, c->gc_lnum);
1888 	if (err)
1889 		goto out;
1890 
1891 	dbg_gen("re-mounted read-write");
1892 	c->remounting_rw = 0;
1893 
1894 	if (c->need_recovery) {
1895 		c->need_recovery = 0;
1896 		ubifs_msg(c, "deferred recovery completed");
1897 	} else {
1898 		/*
1899 		 * Do not run the debugging space check if the were doing
1900 		 * recovery, because when we saved the information we had the
1901 		 * file-system in a state where the TNC and lprops has been
1902 		 * modified in memory, but all the I/O operations (including a
1903 		 * commit) were deferred. So the file-system was in
1904 		 * "non-committed" state. Now the file-system is in committed
1905 		 * state, and of course the amount of free space will change
1906 		 * because, for example, the old index size was imprecise.
1907 		 */
1908 		err = dbg_check_space_info(c);
1909 	}
1910 
1911 	mutex_unlock(&c->umount_mutex);
1912 	return err;
1913 
1914 out:
1915 	c->ro_mount = 1;
1916 	vfree(c->orph_buf);
1917 	c->orph_buf = NULL;
1918 	if (c->bgt) {
1919 		kthread_stop(c->bgt);
1920 		c->bgt = NULL;
1921 	}
1922 	free_wbufs(c);
1923 	kfree(c->write_reserve_buf);
1924 	c->write_reserve_buf = NULL;
1925 	vfree(c->ileb_buf);
1926 	c->ileb_buf = NULL;
1927 	ubifs_lpt_free(c, 1);
1928 	c->remounting_rw = 0;
1929 	mutex_unlock(&c->umount_mutex);
1930 	return err;
1931 }
1932 
1933 /**
1934  * ubifs_remount_ro - re-mount in read-only mode.
1935  * @c: UBIFS file-system description object
1936  *
1937  * We assume VFS has stopped writing. Possibly the background thread could be
1938  * running a commit, however kthread_stop will wait in that case.
1939  */
1940 static void ubifs_remount_ro(struct ubifs_info *c)
1941 {
1942 	int i, err;
1943 
1944 	ubifs_assert(!c->need_recovery);
1945 	ubifs_assert(!c->ro_mount);
1946 
1947 	mutex_lock(&c->umount_mutex);
1948 	if (c->bgt) {
1949 		kthread_stop(c->bgt);
1950 		c->bgt = NULL;
1951 	}
1952 
1953 	dbg_save_space_info(c);
1954 
1955 	for (i = 0; i < c->jhead_cnt; i++)
1956 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1957 
1958 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1959 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1960 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1961 	err = ubifs_write_master(c);
1962 	if (err)
1963 		ubifs_ro_mode(c, err);
1964 
1965 	vfree(c->orph_buf);
1966 	c->orph_buf = NULL;
1967 	kfree(c->write_reserve_buf);
1968 	c->write_reserve_buf = NULL;
1969 	vfree(c->ileb_buf);
1970 	c->ileb_buf = NULL;
1971 	ubifs_lpt_free(c, 1);
1972 	c->ro_mount = 1;
1973 	err = dbg_check_space_info(c);
1974 	if (err)
1975 		ubifs_ro_mode(c, err);
1976 	mutex_unlock(&c->umount_mutex);
1977 }
1978 
1979 static void ubifs_put_super(struct super_block *sb)
1980 {
1981 	int i;
1982 	struct ubifs_info *c = sb->s_fs_info;
1983 
1984 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1985 
1986 	/*
1987 	 * The following asserts are only valid if there has not been a failure
1988 	 * of the media. For example, there will be dirty inodes if we failed
1989 	 * to write them back because of I/O errors.
1990 	 */
1991 	if (!c->ro_error) {
1992 		ubifs_assert(c->bi.idx_growth == 0);
1993 		ubifs_assert(c->bi.dd_growth == 0);
1994 		ubifs_assert(c->bi.data_growth == 0);
1995 	}
1996 
1997 	/*
1998 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1999 	 * and file system un-mount. Namely, it prevents the shrinker from
2000 	 * picking this superblock for shrinking - it will be just skipped if
2001 	 * the mutex is locked.
2002 	 */
2003 	mutex_lock(&c->umount_mutex);
2004 	if (!c->ro_mount) {
2005 		/*
2006 		 * First of all kill the background thread to make sure it does
2007 		 * not interfere with un-mounting and freeing resources.
2008 		 */
2009 		if (c->bgt) {
2010 			kthread_stop(c->bgt);
2011 			c->bgt = NULL;
2012 		}
2013 
2014 		/*
2015 		 * On fatal errors c->ro_error is set to 1, in which case we do
2016 		 * not write the master node.
2017 		 */
2018 		if (!c->ro_error) {
2019 			int err;
2020 
2021 			/* Synchronize write-buffers */
2022 			for (i = 0; i < c->jhead_cnt; i++)
2023 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
2024 
2025 			/*
2026 			 * We are being cleanly unmounted which means the
2027 			 * orphans were killed - indicate this in the master
2028 			 * node. Also save the reserved GC LEB number.
2029 			 */
2030 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2031 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2032 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2033 			err = ubifs_write_master(c);
2034 			if (err)
2035 				/*
2036 				 * Recovery will attempt to fix the master area
2037 				 * next mount, so we just print a message and
2038 				 * continue to unmount normally.
2039 				 */
2040 				ubifs_err(c, "failed to write master node, error %d",
2041 					  err);
2042 		} else {
2043 #ifndef __UBOOT__
2044 			for (i = 0; i < c->jhead_cnt; i++)
2045 				/* Make sure write-buffer timers are canceled */
2046 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
2047 #endif
2048 		}
2049 	}
2050 
2051 	ubifs_umount(c);
2052 #ifndef __UBOOT__
2053 	bdi_destroy(&c->bdi);
2054 #endif
2055 	ubi_close_volume(c->ubi);
2056 	mutex_unlock(&c->umount_mutex);
2057 }
2058 #endif
2059 
2060 #ifndef __UBOOT__
2061 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2062 {
2063 	int err;
2064 	struct ubifs_info *c = sb->s_fs_info;
2065 
2066 	sync_filesystem(sb);
2067 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2068 
2069 	err = ubifs_parse_options(c, data, 1);
2070 	if (err) {
2071 		ubifs_err(c, "invalid or unknown remount parameter");
2072 		return err;
2073 	}
2074 
2075 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
2076 		if (c->ro_error) {
2077 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2078 			return -EROFS;
2079 		}
2080 		if (c->ro_media) {
2081 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2082 			return -EROFS;
2083 		}
2084 		err = ubifs_remount_rw(c);
2085 		if (err)
2086 			return err;
2087 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2088 		if (c->ro_error) {
2089 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2090 			return -EROFS;
2091 		}
2092 		ubifs_remount_ro(c);
2093 	}
2094 
2095 	if (c->bulk_read == 1)
2096 		bu_init(c);
2097 	else {
2098 		dbg_gen("disable bulk-read");
2099 		kfree(c->bu.buf);
2100 		c->bu.buf = NULL;
2101 	}
2102 
2103 	ubifs_assert(c->lst.taken_empty_lebs > 0);
2104 	return 0;
2105 }
2106 #endif
2107 
2108 const struct super_operations ubifs_super_operations = {
2109 	.alloc_inode   = ubifs_alloc_inode,
2110 #ifndef __UBOOT__
2111 	.destroy_inode = ubifs_destroy_inode,
2112 	.put_super     = ubifs_put_super,
2113 	.write_inode   = ubifs_write_inode,
2114 	.evict_inode   = ubifs_evict_inode,
2115 	.statfs        = ubifs_statfs,
2116 #endif
2117 	.dirty_inode   = ubifs_dirty_inode,
2118 #ifndef __UBOOT__
2119 	.remount_fs    = ubifs_remount_fs,
2120 	.show_options  = ubifs_show_options,
2121 	.sync_fs       = ubifs_sync_fs,
2122 #endif
2123 };
2124 
2125 /**
2126  * open_ubi - parse UBI device name string and open the UBI device.
2127  * @name: UBI volume name
2128  * @mode: UBI volume open mode
2129  *
2130  * The primary method of mounting UBIFS is by specifying the UBI volume
2131  * character device node path. However, UBIFS may also be mounted withoug any
2132  * character device node using one of the following methods:
2133  *
2134  * o ubiX_Y    - mount UBI device number X, volume Y;
2135  * o ubiY      - mount UBI device number 0, volume Y;
2136  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2137  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2138  *
2139  * Alternative '!' separator may be used instead of ':' (because some shells
2140  * like busybox may interpret ':' as an NFS host name separator). This function
2141  * returns UBI volume description object in case of success and a negative
2142  * error code in case of failure.
2143  */
2144 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2145 {
2146 #ifndef __UBOOT__
2147 	struct ubi_volume_desc *ubi;
2148 #endif
2149 	int dev, vol;
2150 	char *endptr;
2151 
2152 #ifndef __UBOOT__
2153 	/* First, try to open using the device node path method */
2154 	ubi = ubi_open_volume_path(name, mode);
2155 	if (!IS_ERR(ubi))
2156 		return ubi;
2157 #endif
2158 
2159 	/* Try the "nodev" method */
2160 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2161 		return ERR_PTR(-EINVAL);
2162 
2163 	/* ubi:NAME method */
2164 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2165 		return ubi_open_volume_nm(0, name + 4, mode);
2166 
2167 	if (!isdigit(name[3]))
2168 		return ERR_PTR(-EINVAL);
2169 
2170 	dev = simple_strtoul(name + 3, &endptr, 0);
2171 
2172 	/* ubiY method */
2173 	if (*endptr == '\0')
2174 		return ubi_open_volume(0, dev, mode);
2175 
2176 	/* ubiX_Y method */
2177 	if (*endptr == '_' && isdigit(endptr[1])) {
2178 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2179 		if (*endptr != '\0')
2180 			return ERR_PTR(-EINVAL);
2181 		return ubi_open_volume(dev, vol, mode);
2182 	}
2183 
2184 	/* ubiX:NAME method */
2185 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2186 		return ubi_open_volume_nm(dev, ++endptr, mode);
2187 
2188 	return ERR_PTR(-EINVAL);
2189 }
2190 
2191 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2192 {
2193 	struct ubifs_info *c;
2194 
2195 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2196 	if (c) {
2197 		spin_lock_init(&c->cnt_lock);
2198 		spin_lock_init(&c->cs_lock);
2199 		spin_lock_init(&c->buds_lock);
2200 		spin_lock_init(&c->space_lock);
2201 		spin_lock_init(&c->orphan_lock);
2202 		init_rwsem(&c->commit_sem);
2203 		mutex_init(&c->lp_mutex);
2204 		mutex_init(&c->tnc_mutex);
2205 		mutex_init(&c->log_mutex);
2206 		mutex_init(&c->umount_mutex);
2207 		mutex_init(&c->bu_mutex);
2208 		mutex_init(&c->write_reserve_mutex);
2209 		init_waitqueue_head(&c->cmt_wq);
2210 		c->buds = RB_ROOT;
2211 		c->old_idx = RB_ROOT;
2212 		c->size_tree = RB_ROOT;
2213 		c->orph_tree = RB_ROOT;
2214 		INIT_LIST_HEAD(&c->infos_list);
2215 		INIT_LIST_HEAD(&c->idx_gc);
2216 		INIT_LIST_HEAD(&c->replay_list);
2217 		INIT_LIST_HEAD(&c->replay_buds);
2218 		INIT_LIST_HEAD(&c->uncat_list);
2219 		INIT_LIST_HEAD(&c->empty_list);
2220 		INIT_LIST_HEAD(&c->freeable_list);
2221 		INIT_LIST_HEAD(&c->frdi_idx_list);
2222 		INIT_LIST_HEAD(&c->unclean_leb_list);
2223 		INIT_LIST_HEAD(&c->old_buds);
2224 		INIT_LIST_HEAD(&c->orph_list);
2225 		INIT_LIST_HEAD(&c->orph_new);
2226 		c->no_chk_data_crc = 1;
2227 
2228 		c->highest_inum = UBIFS_FIRST_INO;
2229 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2230 
2231 		ubi_get_volume_info(ubi, &c->vi);
2232 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2233 	}
2234 	return c;
2235 }
2236 
2237 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2238 {
2239 	struct ubifs_info *c = sb->s_fs_info;
2240 	struct inode *root;
2241 	int err;
2242 
2243 	c->vfs_sb = sb;
2244 #ifndef __UBOOT__
2245 	/* Re-open the UBI device in read-write mode */
2246 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2247 #else
2248 	/* U-Boot read only mode */
2249 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2250 #endif
2251 
2252 	if (IS_ERR(c->ubi)) {
2253 		err = PTR_ERR(c->ubi);
2254 		goto out;
2255 	}
2256 
2257 #ifndef __UBOOT__
2258 	/*
2259 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2260 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2261 	 * which means the user would have to wait not just for their own I/O
2262 	 * but the read-ahead I/O as well i.e. completely pointless.
2263 	 *
2264 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2265 	 */
2266 	c->bdi.name = "ubifs",
2267 	c->bdi.capabilities = 0;
2268 	err  = bdi_init(&c->bdi);
2269 	if (err)
2270 		goto out_close;
2271 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2272 			   c->vi.ubi_num, c->vi.vol_id);
2273 	if (err)
2274 		goto out_bdi;
2275 
2276 	err = ubifs_parse_options(c, data, 0);
2277 	if (err)
2278 		goto out_bdi;
2279 
2280 	sb->s_bdi = &c->bdi;
2281 #endif
2282 	sb->s_fs_info = c;
2283 	sb->s_magic = UBIFS_SUPER_MAGIC;
2284 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2285 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2286 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2287 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2288 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2289 	sb->s_op = &ubifs_super_operations;
2290 #ifndef __UBOOT__
2291 	sb->s_xattr = ubifs_xattr_handlers;
2292 #endif
2293 
2294 	mutex_lock(&c->umount_mutex);
2295 	err = mount_ubifs(c);
2296 	if (err) {
2297 		ubifs_assert(err < 0);
2298 		goto out_unlock;
2299 	}
2300 
2301 	/* Read the root inode */
2302 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2303 	if (IS_ERR(root)) {
2304 		err = PTR_ERR(root);
2305 		goto out_umount;
2306 	}
2307 
2308 #ifndef __UBOOT__
2309 	sb->s_root = d_make_root(root);
2310 	if (!sb->s_root) {
2311 		err = -ENOMEM;
2312 		goto out_umount;
2313 	}
2314 #else
2315 	sb->s_root = NULL;
2316 #endif
2317 
2318 	mutex_unlock(&c->umount_mutex);
2319 	return 0;
2320 
2321 out_umount:
2322 	ubifs_umount(c);
2323 out_unlock:
2324 	mutex_unlock(&c->umount_mutex);
2325 #ifndef __UBOOT__
2326 out_bdi:
2327 	bdi_destroy(&c->bdi);
2328 out_close:
2329 #endif
2330 	ubi_close_volume(c->ubi);
2331 out:
2332 	return err;
2333 }
2334 
2335 static int sb_test(struct super_block *sb, void *data)
2336 {
2337 	struct ubifs_info *c1 = data;
2338 	struct ubifs_info *c = sb->s_fs_info;
2339 
2340 	return c->vi.cdev == c1->vi.cdev;
2341 }
2342 
2343 static int sb_set(struct super_block *sb, void *data)
2344 {
2345 	sb->s_fs_info = data;
2346 	return set_anon_super(sb, NULL);
2347 }
2348 
2349 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2350 {
2351 	struct super_block *s;
2352 	int err;
2353 
2354 	s = kzalloc(sizeof(struct super_block),  GFP_USER);
2355 	if (!s) {
2356 		err = -ENOMEM;
2357 		return ERR_PTR(err);
2358 	}
2359 
2360 	INIT_HLIST_NODE(&s->s_instances);
2361 	INIT_LIST_HEAD(&s->s_inodes);
2362 	s->s_time_gran = 1000000000;
2363 	s->s_flags = flags;
2364 
2365 	return s;
2366 }
2367 
2368 /**
2369  *	sget	-	find or create a superblock
2370  *	@type:	filesystem type superblock should belong to
2371  *	@test:	comparison callback
2372  *	@set:	setup callback
2373  *	@flags:	mount flags
2374  *	@data:	argument to each of them
2375  */
2376 struct super_block *sget(struct file_system_type *type,
2377 			int (*test)(struct super_block *,void *),
2378 			int (*set)(struct super_block *,void *),
2379 			int flags,
2380 			void *data)
2381 {
2382 	struct super_block *s = NULL;
2383 #ifndef __UBOOT__
2384 	struct super_block *old;
2385 #endif
2386 	int err;
2387 
2388 #ifndef __UBOOT__
2389 retry:
2390 	spin_lock(&sb_lock);
2391 	if (test) {
2392 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2393 			if (!test(old, data))
2394 				continue;
2395 			if (!grab_super(old))
2396 				goto retry;
2397 			if (s) {
2398 				up_write(&s->s_umount);
2399 				destroy_super(s);
2400 				s = NULL;
2401 			}
2402 			return old;
2403 		}
2404 	}
2405 #endif
2406 	if (!s) {
2407 		spin_unlock(&sb_lock);
2408 		s = alloc_super(type, flags);
2409 		if (!s)
2410 			return ERR_PTR(-ENOMEM);
2411 #ifndef __UBOOT__
2412 		goto retry;
2413 #endif
2414 	}
2415 
2416 	err = set(s, data);
2417 	if (err) {
2418 #ifndef __UBOOT__
2419 		spin_unlock(&sb_lock);
2420 		up_write(&s->s_umount);
2421 		destroy_super(s);
2422 #endif
2423 		return ERR_PTR(err);
2424 	}
2425 	s->s_type = type;
2426 #ifndef __UBOOT__
2427 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
2428 #else
2429 	strncpy(s->s_id, type->name, sizeof(s->s_id));
2430 #endif
2431 	list_add_tail(&s->s_list, &super_blocks);
2432 	hlist_add_head(&s->s_instances, &type->fs_supers);
2433 #ifndef __UBOOT__
2434 	spin_unlock(&sb_lock);
2435 	get_filesystem(type);
2436 	register_shrinker(&s->s_shrink);
2437 #endif
2438 	return s;
2439 }
2440 
2441 EXPORT_SYMBOL(sget);
2442 
2443 
2444 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2445 			const char *name, void *data)
2446 {
2447 	struct ubi_volume_desc *ubi;
2448 	struct ubifs_info *c;
2449 	struct super_block *sb;
2450 	int err;
2451 
2452 	dbg_gen("name %s, flags %#x", name, flags);
2453 
2454 	/*
2455 	 * Get UBI device number and volume ID. Mount it read-only so far
2456 	 * because this might be a new mount point, and UBI allows only one
2457 	 * read-write user at a time.
2458 	 */
2459 	ubi = open_ubi(name, UBI_READONLY);
2460 	if (IS_ERR(ubi)) {
2461 		pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2462 		       current->pid, name, (int)PTR_ERR(ubi));
2463 		return ERR_CAST(ubi);
2464 	}
2465 
2466 	c = alloc_ubifs_info(ubi);
2467 	if (!c) {
2468 		err = -ENOMEM;
2469 		goto out_close;
2470 	}
2471 
2472 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2473 
2474 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2475 	if (IS_ERR(sb)) {
2476 		err = PTR_ERR(sb);
2477 		kfree(c);
2478 		goto out_close;
2479 	}
2480 
2481 	if (sb->s_root) {
2482 		struct ubifs_info *c1 = sb->s_fs_info;
2483 		kfree(c);
2484 		/* A new mount point for already mounted UBIFS */
2485 		dbg_gen("this ubi volume is already mounted");
2486 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2487 			err = -EBUSY;
2488 			goto out_deact;
2489 		}
2490 	} else {
2491 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2492 		if (err)
2493 			goto out_deact;
2494 		/* We do not support atime */
2495 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2496 	}
2497 
2498 	/* 'fill_super()' opens ubi again so we must close it here */
2499 	ubi_close_volume(ubi);
2500 
2501 #ifdef __UBOOT__
2502 	ubifs_sb = sb;
2503 	return 0;
2504 #else
2505 	return dget(sb->s_root);
2506 #endif
2507 
2508 out_deact:
2509 #ifndef __UBOOT__
2510 	deactivate_locked_super(sb);
2511 #endif
2512 out_close:
2513 	ubi_close_volume(ubi);
2514 	return ERR_PTR(err);
2515 }
2516 
2517 static void kill_ubifs_super(struct super_block *s)
2518 {
2519 	struct ubifs_info *c = s->s_fs_info;
2520 #ifndef __UBOOT__
2521 	kill_anon_super(s);
2522 #endif
2523 	kfree(c);
2524 }
2525 
2526 static struct file_system_type ubifs_fs_type = {
2527 	.name    = "ubifs",
2528 	.owner   = THIS_MODULE,
2529 	.mount   = ubifs_mount,
2530 	.kill_sb = kill_ubifs_super,
2531 };
2532 #ifndef __UBOOT__
2533 MODULE_ALIAS_FS("ubifs");
2534 
2535 /*
2536  * Inode slab cache constructor.
2537  */
2538 static void inode_slab_ctor(void *obj)
2539 {
2540 	struct ubifs_inode *ui = obj;
2541 	inode_init_once(&ui->vfs_inode);
2542 }
2543 
2544 static int __init ubifs_init(void)
2545 #else
2546 int ubifs_init(void)
2547 #endif
2548 {
2549 	int err;
2550 
2551 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2552 
2553 	/* Make sure node sizes are 8-byte aligned */
2554 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2555 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2556 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2557 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2558 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2559 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2560 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2561 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2562 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2563 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2564 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2565 
2566 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2567 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2568 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2569 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2570 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2571 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2572 
2573 	/* Check min. node size */
2574 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2575 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2576 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2577 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2578 
2579 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2580 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2581 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2582 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2583 
2584 	/* Defined node sizes */
2585 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2586 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2587 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2588 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2589 
2590 	/*
2591 	 * We use 2 bit wide bit-fields to store compression type, which should
2592 	 * be amended if more compressors are added. The bit-fields are:
2593 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2594 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2595 	 */
2596 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2597 
2598 	/*
2599 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2600 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2601 	 */
2602 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2603 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2604 		       current->pid, (unsigned int)PAGE_CACHE_SIZE);
2605 		return -EINVAL;
2606 	}
2607 
2608 #ifndef __UBOOT__
2609 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2610 				sizeof(struct ubifs_inode), 0,
2611 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2612 				&inode_slab_ctor);
2613 	if (!ubifs_inode_slab)
2614 		return -ENOMEM;
2615 
2616 	err = register_shrinker(&ubifs_shrinker_info);
2617 	if (err)
2618 		goto out_slab;
2619 #endif
2620 
2621 	err = ubifs_compressors_init();
2622 	if (err)
2623 		goto out_shrinker;
2624 
2625 #ifndef __UBOOT__
2626 	err = dbg_debugfs_init();
2627 	if (err)
2628 		goto out_compr;
2629 
2630 	err = register_filesystem(&ubifs_fs_type);
2631 	if (err) {
2632 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2633 		       current->pid, err);
2634 		goto out_dbg;
2635 	}
2636 #endif
2637 	return 0;
2638 
2639 #ifndef __UBOOT__
2640 out_dbg:
2641 	dbg_debugfs_exit();
2642 out_compr:
2643 	ubifs_compressors_exit();
2644 #endif
2645 out_shrinker:
2646 #ifndef __UBOOT__
2647 	unregister_shrinker(&ubifs_shrinker_info);
2648 out_slab:
2649 #endif
2650 	kmem_cache_destroy(ubifs_inode_slab);
2651 	return err;
2652 }
2653 /* late_initcall to let compressors initialize first */
2654 late_initcall(ubifs_init);
2655 
2656 #ifndef __UBOOT__
2657 static void __exit ubifs_exit(void)
2658 {
2659 	ubifs_assert(list_empty(&ubifs_infos));
2660 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2661 
2662 	dbg_debugfs_exit();
2663 	ubifs_compressors_exit();
2664 	unregister_shrinker(&ubifs_shrinker_info);
2665 
2666 	/*
2667 	 * Make sure all delayed rcu free inodes are flushed before we
2668 	 * destroy cache.
2669 	 */
2670 	rcu_barrier();
2671 	kmem_cache_destroy(ubifs_inode_slab);
2672 	unregister_filesystem(&ubifs_fs_type);
2673 }
2674 module_exit(ubifs_exit);
2675 
2676 MODULE_LICENSE("GPL");
2677 MODULE_VERSION(__stringify(UBIFS_VERSION));
2678 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2679 MODULE_DESCRIPTION("UBIFS - UBI File System");
2680 #else
2681 int uboot_ubifs_mount(char *vol_name)
2682 {
2683 	struct dentry *ret;
2684 	int flags;
2685 
2686 	/*
2687 	 * First unmount if allready mounted
2688 	 */
2689 	if (ubifs_sb)
2690 		ubifs_umount(ubifs_sb->s_fs_info);
2691 
2692 	/*
2693 	 * Mount in read-only mode
2694 	 */
2695 	flags = MS_RDONLY;
2696 	ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2697 	if (IS_ERR(ret)) {
2698 		printf("Error reading superblock on volume '%s' " \
2699 			"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2700 		return -1;
2701 	}
2702 
2703 	return 0;
2704 }
2705 #endif
2706