1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 */ 11 12 /* 13 * This file implements UBIFS initialization and VFS superblock operations. Some 14 * initialization stuff which is rather large and complex is placed at 15 * corresponding subsystems, but most of it is here. 16 */ 17 18 #ifndef __UBOOT__ 19 #include <linux/init.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/kthread.h> 24 #include <linux/parser.h> 25 #include <linux/seq_file.h> 26 #include <linux/mount.h> 27 #include <linux/math64.h> 28 #include <linux/writeback.h> 29 #else 30 31 #include <common.h> 32 #include <malloc.h> 33 #include <memalign.h> 34 #include <linux/bug.h> 35 #include <linux/log2.h> 36 #include <linux/stat.h> 37 #include <linux/err.h> 38 #include "ubifs.h" 39 #include <ubi_uboot.h> 40 #include <mtd/ubi-user.h> 41 42 struct dentry; 43 struct file; 44 struct iattr; 45 struct kstat; 46 struct vfsmount; 47 48 #define INODE_LOCKED_MAX 64 49 50 struct super_block *ubifs_sb; 51 LIST_HEAD(super_blocks); 52 53 static struct inode *inodes_locked_down[INODE_LOCKED_MAX]; 54 55 int set_anon_super(struct super_block *s, void *data) 56 { 57 return 0; 58 } 59 60 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 61 { 62 struct inode *inode; 63 64 inode = (struct inode *)malloc_cache_aligned( 65 sizeof(struct ubifs_inode)); 66 if (inode) { 67 inode->i_ino = ino; 68 inode->i_sb = sb; 69 list_add(&inode->i_sb_list, &sb->s_inodes); 70 inode->i_state = I_LOCK | I_NEW; 71 } 72 73 return inode; 74 } 75 76 void iget_failed(struct inode *inode) 77 { 78 } 79 80 int ubifs_iput(struct inode *inode) 81 { 82 list_del_init(&inode->i_sb_list); 83 84 free(inode); 85 return 0; 86 } 87 88 /* 89 * Lock (save) inode in inode array for readback after recovery 90 */ 91 void iput(struct inode *inode) 92 { 93 int i; 94 struct inode *ino; 95 96 /* 97 * Search end of list 98 */ 99 for (i = 0; i < INODE_LOCKED_MAX; i++) { 100 if (inodes_locked_down[i] == NULL) 101 break; 102 } 103 104 if (i >= INODE_LOCKED_MAX) { 105 dbg_gen("Error, can't lock (save) more inodes while recovery!!!"); 106 return; 107 } 108 109 /* 110 * Allocate and use new inode 111 */ 112 ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode)); 113 memcpy(ino, inode, sizeof(struct ubifs_inode)); 114 115 /* 116 * Finally save inode in array 117 */ 118 inodes_locked_down[i] = ino; 119 } 120 121 /* from fs/inode.c */ 122 /** 123 * clear_nlink - directly zero an inode's link count 124 * @inode: inode 125 * 126 * This is a low-level filesystem helper to replace any 127 * direct filesystem manipulation of i_nlink. See 128 * drop_nlink() for why we care about i_nlink hitting zero. 129 */ 130 void clear_nlink(struct inode *inode) 131 { 132 if (inode->i_nlink) { 133 inode->__i_nlink = 0; 134 atomic_long_inc(&inode->i_sb->s_remove_count); 135 } 136 } 137 EXPORT_SYMBOL(clear_nlink); 138 139 /** 140 * set_nlink - directly set an inode's link count 141 * @inode: inode 142 * @nlink: new nlink (should be non-zero) 143 * 144 * This is a low-level filesystem helper to replace any 145 * direct filesystem manipulation of i_nlink. 146 */ 147 void set_nlink(struct inode *inode, unsigned int nlink) 148 { 149 if (!nlink) { 150 clear_nlink(inode); 151 } else { 152 /* Yes, some filesystems do change nlink from zero to one */ 153 if (inode->i_nlink == 0) 154 atomic_long_dec(&inode->i_sb->s_remove_count); 155 156 inode->__i_nlink = nlink; 157 } 158 } 159 EXPORT_SYMBOL(set_nlink); 160 161 /* from include/linux/fs.h */ 162 static inline void i_uid_write(struct inode *inode, uid_t uid) 163 { 164 inode->i_uid.val = uid; 165 } 166 167 static inline void i_gid_write(struct inode *inode, gid_t gid) 168 { 169 inode->i_gid.val = gid; 170 } 171 172 void unlock_new_inode(struct inode *inode) 173 { 174 return; 175 } 176 #endif 177 178 /* 179 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 180 * allocating too much. 181 */ 182 #define UBIFS_KMALLOC_OK (128*1024) 183 184 /* Slab cache for UBIFS inodes */ 185 struct kmem_cache *ubifs_inode_slab; 186 187 #ifndef __UBOOT__ 188 /* UBIFS TNC shrinker description */ 189 static struct shrinker ubifs_shrinker_info = { 190 .scan_objects = ubifs_shrink_scan, 191 .count_objects = ubifs_shrink_count, 192 .seeks = DEFAULT_SEEKS, 193 }; 194 #endif 195 196 /** 197 * validate_inode - validate inode. 198 * @c: UBIFS file-system description object 199 * @inode: the inode to validate 200 * 201 * This is a helper function for 'ubifs_iget()' which validates various fields 202 * of a newly built inode to make sure they contain sane values and prevent 203 * possible vulnerabilities. Returns zero if the inode is all right and 204 * a non-zero error code if not. 205 */ 206 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 207 { 208 int err; 209 const struct ubifs_inode *ui = ubifs_inode(inode); 210 211 if (inode->i_size > c->max_inode_sz) { 212 ubifs_err(c, "inode is too large (%lld)", 213 (long long)inode->i_size); 214 return 1; 215 } 216 217 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 218 ubifs_err(c, "unknown compression type %d", ui->compr_type); 219 return 2; 220 } 221 222 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 223 return 3; 224 225 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 226 return 4; 227 228 if (ui->xattr && !S_ISREG(inode->i_mode)) 229 return 5; 230 231 if (!ubifs_compr_present(ui->compr_type)) { 232 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 233 inode->i_ino, ubifs_compr_name(ui->compr_type)); 234 } 235 236 err = dbg_check_dir(c, inode); 237 return err; 238 } 239 240 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 241 { 242 int err; 243 union ubifs_key key; 244 struct ubifs_ino_node *ino; 245 struct ubifs_info *c = sb->s_fs_info; 246 struct inode *inode; 247 struct ubifs_inode *ui; 248 #ifdef __UBOOT__ 249 int i; 250 #endif 251 252 dbg_gen("inode %lu", inum); 253 254 #ifdef __UBOOT__ 255 /* 256 * U-Boot special handling of locked down inodes via recovery 257 * e.g. ubifs_recover_size() 258 */ 259 for (i = 0; i < INODE_LOCKED_MAX; i++) { 260 /* 261 * Exit on last entry (NULL), inode not found in list 262 */ 263 if (inodes_locked_down[i] == NULL) 264 break; 265 266 if (inodes_locked_down[i]->i_ino == inum) { 267 /* 268 * We found the locked down inode in our array, 269 * so just return this pointer instead of creating 270 * a new one. 271 */ 272 return inodes_locked_down[i]; 273 } 274 } 275 #endif 276 277 inode = iget_locked(sb, inum); 278 if (!inode) 279 return ERR_PTR(-ENOMEM); 280 if (!(inode->i_state & I_NEW)) 281 return inode; 282 ui = ubifs_inode(inode); 283 284 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 285 if (!ino) { 286 err = -ENOMEM; 287 goto out; 288 } 289 290 ino_key_init(c, &key, inode->i_ino); 291 292 err = ubifs_tnc_lookup(c, &key, ino); 293 if (err) 294 goto out_ino; 295 296 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 297 set_nlink(inode, le32_to_cpu(ino->nlink)); 298 i_uid_write(inode, le32_to_cpu(ino->uid)); 299 i_gid_write(inode, le32_to_cpu(ino->gid)); 300 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 301 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 302 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 303 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 304 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 305 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 306 inode->i_mode = le32_to_cpu(ino->mode); 307 inode->i_size = le64_to_cpu(ino->size); 308 309 ui->data_len = le32_to_cpu(ino->data_len); 310 ui->flags = le32_to_cpu(ino->flags); 311 ui->compr_type = le16_to_cpu(ino->compr_type); 312 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 313 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 314 ui->xattr_size = le32_to_cpu(ino->xattr_size); 315 ui->xattr_names = le32_to_cpu(ino->xattr_names); 316 ui->synced_i_size = ui->ui_size = inode->i_size; 317 318 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 319 320 err = validate_inode(c, inode); 321 if (err) 322 goto out_invalid; 323 324 #ifndef __UBOOT__ 325 switch (inode->i_mode & S_IFMT) { 326 case S_IFREG: 327 inode->i_mapping->a_ops = &ubifs_file_address_operations; 328 inode->i_op = &ubifs_file_inode_operations; 329 inode->i_fop = &ubifs_file_operations; 330 if (ui->xattr) { 331 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 332 if (!ui->data) { 333 err = -ENOMEM; 334 goto out_ino; 335 } 336 memcpy(ui->data, ino->data, ui->data_len); 337 ((char *)ui->data)[ui->data_len] = '\0'; 338 } else if (ui->data_len != 0) { 339 err = 10; 340 goto out_invalid; 341 } 342 break; 343 case S_IFDIR: 344 inode->i_op = &ubifs_dir_inode_operations; 345 inode->i_fop = &ubifs_dir_operations; 346 if (ui->data_len != 0) { 347 err = 11; 348 goto out_invalid; 349 } 350 break; 351 case S_IFLNK: 352 inode->i_op = &ubifs_symlink_inode_operations; 353 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 354 err = 12; 355 goto out_invalid; 356 } 357 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 358 if (!ui->data) { 359 err = -ENOMEM; 360 goto out_ino; 361 } 362 memcpy(ui->data, ino->data, ui->data_len); 363 ((char *)ui->data)[ui->data_len] = '\0'; 364 inode->i_link = ui->data; 365 break; 366 case S_IFBLK: 367 case S_IFCHR: 368 { 369 dev_t rdev; 370 union ubifs_dev_desc *dev; 371 372 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 373 if (!ui->data) { 374 err = -ENOMEM; 375 goto out_ino; 376 } 377 378 dev = (union ubifs_dev_desc *)ino->data; 379 if (ui->data_len == sizeof(dev->new)) 380 rdev = new_decode_dev(le32_to_cpu(dev->new)); 381 else if (ui->data_len == sizeof(dev->huge)) 382 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 383 else { 384 err = 13; 385 goto out_invalid; 386 } 387 memcpy(ui->data, ino->data, ui->data_len); 388 inode->i_op = &ubifs_file_inode_operations; 389 init_special_inode(inode, inode->i_mode, rdev); 390 break; 391 } 392 case S_IFSOCK: 393 case S_IFIFO: 394 inode->i_op = &ubifs_file_inode_operations; 395 init_special_inode(inode, inode->i_mode, 0); 396 if (ui->data_len != 0) { 397 err = 14; 398 goto out_invalid; 399 } 400 break; 401 default: 402 err = 15; 403 goto out_invalid; 404 } 405 #else 406 if ((inode->i_mode & S_IFMT) == S_IFLNK) { 407 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 408 err = 12; 409 goto out_invalid; 410 } 411 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 412 if (!ui->data) { 413 err = -ENOMEM; 414 goto out_ino; 415 } 416 memcpy(ui->data, ino->data, ui->data_len); 417 ((char *)ui->data)[ui->data_len] = '\0'; 418 } 419 #endif 420 421 kfree(ino); 422 #ifndef __UBOOT__ 423 ubifs_set_inode_flags(inode); 424 #endif 425 unlock_new_inode(inode); 426 return inode; 427 428 out_invalid: 429 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 430 ubifs_dump_node(c, ino); 431 ubifs_dump_inode(c, inode); 432 err = -EINVAL; 433 out_ino: 434 kfree(ino); 435 out: 436 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 437 iget_failed(inode); 438 return ERR_PTR(err); 439 } 440 441 static struct inode *ubifs_alloc_inode(struct super_block *sb) 442 { 443 struct ubifs_inode *ui; 444 445 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 446 if (!ui) 447 return NULL; 448 449 memset((void *)ui + sizeof(struct inode), 0, 450 sizeof(struct ubifs_inode) - sizeof(struct inode)); 451 mutex_init(&ui->ui_mutex); 452 spin_lock_init(&ui->ui_lock); 453 return &ui->vfs_inode; 454 }; 455 456 #ifndef __UBOOT__ 457 static void ubifs_i_callback(struct rcu_head *head) 458 { 459 struct inode *inode = container_of(head, struct inode, i_rcu); 460 struct ubifs_inode *ui = ubifs_inode(inode); 461 kmem_cache_free(ubifs_inode_slab, ui); 462 } 463 464 static void ubifs_destroy_inode(struct inode *inode) 465 { 466 struct ubifs_inode *ui = ubifs_inode(inode); 467 468 kfree(ui->data); 469 call_rcu(&inode->i_rcu, ubifs_i_callback); 470 } 471 472 /* 473 * Note, Linux write-back code calls this without 'i_mutex'. 474 */ 475 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 476 { 477 int err = 0; 478 struct ubifs_info *c = inode->i_sb->s_fs_info; 479 struct ubifs_inode *ui = ubifs_inode(inode); 480 481 ubifs_assert(!ui->xattr); 482 if (is_bad_inode(inode)) 483 return 0; 484 485 mutex_lock(&ui->ui_mutex); 486 /* 487 * Due to races between write-back forced by budgeting 488 * (see 'sync_some_inodes()') and background write-back, the inode may 489 * have already been synchronized, do not do this again. This might 490 * also happen if it was synchronized in an VFS operation, e.g. 491 * 'ubifs_link()'. 492 */ 493 if (!ui->dirty) { 494 mutex_unlock(&ui->ui_mutex); 495 return 0; 496 } 497 498 /* 499 * As an optimization, do not write orphan inodes to the media just 500 * because this is not needed. 501 */ 502 dbg_gen("inode %lu, mode %#x, nlink %u", 503 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 504 if (inode->i_nlink) { 505 err = ubifs_jnl_write_inode(c, inode); 506 if (err) 507 ubifs_err(c, "can't write inode %lu, error %d", 508 inode->i_ino, err); 509 else 510 err = dbg_check_inode_size(c, inode, ui->ui_size); 511 } 512 513 ui->dirty = 0; 514 mutex_unlock(&ui->ui_mutex); 515 ubifs_release_dirty_inode_budget(c, ui); 516 return err; 517 } 518 519 static void ubifs_evict_inode(struct inode *inode) 520 { 521 int err; 522 struct ubifs_info *c = inode->i_sb->s_fs_info; 523 struct ubifs_inode *ui = ubifs_inode(inode); 524 525 if (ui->xattr) 526 /* 527 * Extended attribute inode deletions are fully handled in 528 * 'ubifs_removexattr()'. These inodes are special and have 529 * limited usage, so there is nothing to do here. 530 */ 531 goto out; 532 533 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 534 ubifs_assert(!atomic_read(&inode->i_count)); 535 536 truncate_inode_pages_final(&inode->i_data); 537 538 if (inode->i_nlink) 539 goto done; 540 541 if (is_bad_inode(inode)) 542 goto out; 543 544 ui->ui_size = inode->i_size = 0; 545 err = ubifs_jnl_delete_inode(c, inode); 546 if (err) 547 /* 548 * Worst case we have a lost orphan inode wasting space, so a 549 * simple error message is OK here. 550 */ 551 ubifs_err(c, "can't delete inode %lu, error %d", 552 inode->i_ino, err); 553 554 out: 555 if (ui->dirty) 556 ubifs_release_dirty_inode_budget(c, ui); 557 else { 558 /* We've deleted something - clean the "no space" flags */ 559 c->bi.nospace = c->bi.nospace_rp = 0; 560 smp_wmb(); 561 } 562 done: 563 clear_inode(inode); 564 } 565 #endif 566 567 static void ubifs_dirty_inode(struct inode *inode, int flags) 568 { 569 struct ubifs_inode *ui = ubifs_inode(inode); 570 571 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 572 if (!ui->dirty) { 573 ui->dirty = 1; 574 dbg_gen("inode %lu", inode->i_ino); 575 } 576 } 577 578 #ifndef __UBOOT__ 579 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 580 { 581 struct ubifs_info *c = dentry->d_sb->s_fs_info; 582 unsigned long long free; 583 __le32 *uuid = (__le32 *)c->uuid; 584 585 free = ubifs_get_free_space(c); 586 dbg_gen("free space %lld bytes (%lld blocks)", 587 free, free >> UBIFS_BLOCK_SHIFT); 588 589 buf->f_type = UBIFS_SUPER_MAGIC; 590 buf->f_bsize = UBIFS_BLOCK_SIZE; 591 buf->f_blocks = c->block_cnt; 592 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 593 if (free > c->report_rp_size) 594 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 595 else 596 buf->f_bavail = 0; 597 buf->f_files = 0; 598 buf->f_ffree = 0; 599 buf->f_namelen = UBIFS_MAX_NLEN; 600 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 601 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 602 ubifs_assert(buf->f_bfree <= c->block_cnt); 603 return 0; 604 } 605 606 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 607 { 608 struct ubifs_info *c = root->d_sb->s_fs_info; 609 610 if (c->mount_opts.unmount_mode == 2) 611 seq_puts(s, ",fast_unmount"); 612 else if (c->mount_opts.unmount_mode == 1) 613 seq_puts(s, ",norm_unmount"); 614 615 if (c->mount_opts.bulk_read == 2) 616 seq_puts(s, ",bulk_read"); 617 else if (c->mount_opts.bulk_read == 1) 618 seq_puts(s, ",no_bulk_read"); 619 620 if (c->mount_opts.chk_data_crc == 2) 621 seq_puts(s, ",chk_data_crc"); 622 else if (c->mount_opts.chk_data_crc == 1) 623 seq_puts(s, ",no_chk_data_crc"); 624 625 if (c->mount_opts.override_compr) { 626 seq_printf(s, ",compr=%s", 627 ubifs_compr_name(c->mount_opts.compr_type)); 628 } 629 630 return 0; 631 } 632 633 static int ubifs_sync_fs(struct super_block *sb, int wait) 634 { 635 int i, err; 636 struct ubifs_info *c = sb->s_fs_info; 637 638 /* 639 * Zero @wait is just an advisory thing to help the file system shove 640 * lots of data into the queues, and there will be the second 641 * '->sync_fs()' call, with non-zero @wait. 642 */ 643 if (!wait) 644 return 0; 645 646 /* 647 * Synchronize write buffers, because 'ubifs_run_commit()' does not 648 * do this if it waits for an already running commit. 649 */ 650 for (i = 0; i < c->jhead_cnt; i++) { 651 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 652 if (err) 653 return err; 654 } 655 656 /* 657 * Strictly speaking, it is not necessary to commit the journal here, 658 * synchronizing write-buffers would be enough. But committing makes 659 * UBIFS free space predictions much more accurate, so we want to let 660 * the user be able to get more accurate results of 'statfs()' after 661 * they synchronize the file system. 662 */ 663 err = ubifs_run_commit(c); 664 if (err) 665 return err; 666 667 return ubi_sync(c->vi.ubi_num); 668 } 669 #endif 670 671 /** 672 * init_constants_early - initialize UBIFS constants. 673 * @c: UBIFS file-system description object 674 * 675 * This function initialize UBIFS constants which do not need the superblock to 676 * be read. It also checks that the UBI volume satisfies basic UBIFS 677 * requirements. Returns zero in case of success and a negative error code in 678 * case of failure. 679 */ 680 static int init_constants_early(struct ubifs_info *c) 681 { 682 if (c->vi.corrupted) { 683 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 684 c->ro_media = 1; 685 } 686 687 if (c->di.ro_mode) { 688 ubifs_msg(c, "read-only UBI device"); 689 c->ro_media = 1; 690 } 691 692 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 693 ubifs_msg(c, "static UBI volume - read-only mode"); 694 c->ro_media = 1; 695 } 696 697 c->leb_cnt = c->vi.size; 698 c->leb_size = c->vi.usable_leb_size; 699 c->leb_start = c->di.leb_start; 700 c->half_leb_size = c->leb_size / 2; 701 c->min_io_size = c->di.min_io_size; 702 c->min_io_shift = fls(c->min_io_size) - 1; 703 c->max_write_size = c->di.max_write_size; 704 c->max_write_shift = fls(c->max_write_size) - 1; 705 706 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 707 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes", 708 c->leb_size, UBIFS_MIN_LEB_SZ); 709 return -EINVAL; 710 } 711 712 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 713 ubifs_err(c, "too few LEBs (%d), min. is %d", 714 c->leb_cnt, UBIFS_MIN_LEB_CNT); 715 return -EINVAL; 716 } 717 718 if (!is_power_of_2(c->min_io_size)) { 719 ubifs_err(c, "bad min. I/O size %d", c->min_io_size); 720 return -EINVAL; 721 } 722 723 /* 724 * Maximum write size has to be greater or equivalent to min. I/O 725 * size, and be multiple of min. I/O size. 726 */ 727 if (c->max_write_size < c->min_io_size || 728 c->max_write_size % c->min_io_size || 729 !is_power_of_2(c->max_write_size)) { 730 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit", 731 c->max_write_size, c->min_io_size); 732 return -EINVAL; 733 } 734 735 /* 736 * UBIFS aligns all node to 8-byte boundary, so to make function in 737 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 738 * less than 8. 739 */ 740 if (c->min_io_size < 8) { 741 c->min_io_size = 8; 742 c->min_io_shift = 3; 743 if (c->max_write_size < c->min_io_size) { 744 c->max_write_size = c->min_io_size; 745 c->max_write_shift = c->min_io_shift; 746 } 747 } 748 749 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 750 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 751 752 /* 753 * Initialize node length ranges which are mostly needed for node 754 * length validation. 755 */ 756 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 757 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 758 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 759 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 760 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 761 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 762 763 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 764 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 765 c->ranges[UBIFS_ORPH_NODE].min_len = 766 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 767 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 768 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 769 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 770 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 771 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 772 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 773 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 774 /* 775 * Minimum indexing node size is amended later when superblock is 776 * read and the key length is known. 777 */ 778 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 779 /* 780 * Maximum indexing node size is amended later when superblock is 781 * read and the fanout is known. 782 */ 783 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 784 785 /* 786 * Initialize dead and dark LEB space watermarks. See gc.c for comments 787 * about these values. 788 */ 789 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 790 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 791 792 /* 793 * Calculate how many bytes would be wasted at the end of LEB if it was 794 * fully filled with data nodes of maximum size. This is used in 795 * calculations when reporting free space. 796 */ 797 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 798 799 /* Buffer size for bulk-reads */ 800 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 801 if (c->max_bu_buf_len > c->leb_size) 802 c->max_bu_buf_len = c->leb_size; 803 return 0; 804 } 805 806 /** 807 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 808 * @c: UBIFS file-system description object 809 * @lnum: LEB the write-buffer was synchronized to 810 * @free: how many free bytes left in this LEB 811 * @pad: how many bytes were padded 812 * 813 * This is a callback function which is called by the I/O unit when the 814 * write-buffer is synchronized. We need this to correctly maintain space 815 * accounting in bud logical eraseblocks. This function returns zero in case of 816 * success and a negative error code in case of failure. 817 * 818 * This function actually belongs to the journal, but we keep it here because 819 * we want to keep it static. 820 */ 821 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 822 { 823 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 824 } 825 826 /* 827 * init_constants_sb - initialize UBIFS constants. 828 * @c: UBIFS file-system description object 829 * 830 * This is a helper function which initializes various UBIFS constants after 831 * the superblock has been read. It also checks various UBIFS parameters and 832 * makes sure they are all right. Returns zero in case of success and a 833 * negative error code in case of failure. 834 */ 835 static int init_constants_sb(struct ubifs_info *c) 836 { 837 int tmp, err; 838 long long tmp64; 839 840 c->main_bytes = (long long)c->main_lebs * c->leb_size; 841 c->max_znode_sz = sizeof(struct ubifs_znode) + 842 c->fanout * sizeof(struct ubifs_zbranch); 843 844 tmp = ubifs_idx_node_sz(c, 1); 845 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 846 c->min_idx_node_sz = ALIGN(tmp, 8); 847 848 tmp = ubifs_idx_node_sz(c, c->fanout); 849 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 850 c->max_idx_node_sz = ALIGN(tmp, 8); 851 852 /* Make sure LEB size is large enough to fit full commit */ 853 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 854 tmp = ALIGN(tmp, c->min_io_size); 855 if (tmp > c->leb_size) { 856 ubifs_err(c, "too small LEB size %d, at least %d needed", 857 c->leb_size, tmp); 858 return -EINVAL; 859 } 860 861 /* 862 * Make sure that the log is large enough to fit reference nodes for 863 * all buds plus one reserved LEB. 864 */ 865 tmp64 = c->max_bud_bytes + c->leb_size - 1; 866 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 867 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 868 tmp /= c->leb_size; 869 tmp += 1; 870 if (c->log_lebs < tmp) { 871 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 872 c->log_lebs, tmp); 873 return -EINVAL; 874 } 875 876 /* 877 * When budgeting we assume worst-case scenarios when the pages are not 878 * be compressed and direntries are of the maximum size. 879 * 880 * Note, data, which may be stored in inodes is budgeted separately, so 881 * it is not included into 'c->bi.inode_budget'. 882 */ 883 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 884 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 885 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 886 887 /* 888 * When the amount of flash space used by buds becomes 889 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 890 * The writers are unblocked when the commit is finished. To avoid 891 * writers to be blocked UBIFS initiates background commit in advance, 892 * when number of bud bytes becomes above the limit defined below. 893 */ 894 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 895 896 /* 897 * Ensure minimum journal size. All the bytes in the journal heads are 898 * considered to be used, when calculating the current journal usage. 899 * Consequently, if the journal is too small, UBIFS will treat it as 900 * always full. 901 */ 902 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 903 if (c->bg_bud_bytes < tmp64) 904 c->bg_bud_bytes = tmp64; 905 if (c->max_bud_bytes < tmp64 + c->leb_size) 906 c->max_bud_bytes = tmp64 + c->leb_size; 907 908 err = ubifs_calc_lpt_geom(c); 909 if (err) 910 return err; 911 912 /* Initialize effective LEB size used in budgeting calculations */ 913 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 914 return 0; 915 } 916 917 /* 918 * init_constants_master - initialize UBIFS constants. 919 * @c: UBIFS file-system description object 920 * 921 * This is a helper function which initializes various UBIFS constants after 922 * the master node has been read. It also checks various UBIFS parameters and 923 * makes sure they are all right. 924 */ 925 static void init_constants_master(struct ubifs_info *c) 926 { 927 long long tmp64; 928 929 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 930 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 931 932 /* 933 * Calculate total amount of FS blocks. This number is not used 934 * internally because it does not make much sense for UBIFS, but it is 935 * necessary to report something for the 'statfs()' call. 936 * 937 * Subtract the LEB reserved for GC, the LEB which is reserved for 938 * deletions, minimum LEBs for the index, and assume only one journal 939 * head is available. 940 */ 941 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 942 tmp64 *= (long long)c->leb_size - c->leb_overhead; 943 tmp64 = ubifs_reported_space(c, tmp64); 944 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 945 } 946 947 /** 948 * take_gc_lnum - reserve GC LEB. 949 * @c: UBIFS file-system description object 950 * 951 * This function ensures that the LEB reserved for garbage collection is marked 952 * as "taken" in lprops. We also have to set free space to LEB size and dirty 953 * space to zero, because lprops may contain out-of-date information if the 954 * file-system was un-mounted before it has been committed. This function 955 * returns zero in case of success and a negative error code in case of 956 * failure. 957 */ 958 static int take_gc_lnum(struct ubifs_info *c) 959 { 960 int err; 961 962 if (c->gc_lnum == -1) { 963 ubifs_err(c, "no LEB for GC"); 964 return -EINVAL; 965 } 966 967 /* And we have to tell lprops that this LEB is taken */ 968 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 969 LPROPS_TAKEN, 0, 0); 970 return err; 971 } 972 973 /** 974 * alloc_wbufs - allocate write-buffers. 975 * @c: UBIFS file-system description object 976 * 977 * This helper function allocates and initializes UBIFS write-buffers. Returns 978 * zero in case of success and %-ENOMEM in case of failure. 979 */ 980 static int alloc_wbufs(struct ubifs_info *c) 981 { 982 int i, err; 983 984 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 985 GFP_KERNEL); 986 if (!c->jheads) 987 return -ENOMEM; 988 989 /* Initialize journal heads */ 990 for (i = 0; i < c->jhead_cnt; i++) { 991 INIT_LIST_HEAD(&c->jheads[i].buds_list); 992 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 993 if (err) 994 return err; 995 996 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 997 c->jheads[i].wbuf.jhead = i; 998 c->jheads[i].grouped = 1; 999 } 1000 1001 /* 1002 * Garbage Collector head does not need to be synchronized by timer. 1003 * Also GC head nodes are not grouped. 1004 */ 1005 c->jheads[GCHD].wbuf.no_timer = 1; 1006 c->jheads[GCHD].grouped = 0; 1007 1008 return 0; 1009 } 1010 1011 /** 1012 * free_wbufs - free write-buffers. 1013 * @c: UBIFS file-system description object 1014 */ 1015 static void free_wbufs(struct ubifs_info *c) 1016 { 1017 int i; 1018 1019 if (c->jheads) { 1020 for (i = 0; i < c->jhead_cnt; i++) { 1021 kfree(c->jheads[i].wbuf.buf); 1022 kfree(c->jheads[i].wbuf.inodes); 1023 } 1024 kfree(c->jheads); 1025 c->jheads = NULL; 1026 } 1027 } 1028 1029 /** 1030 * free_orphans - free orphans. 1031 * @c: UBIFS file-system description object 1032 */ 1033 static void free_orphans(struct ubifs_info *c) 1034 { 1035 struct ubifs_orphan *orph; 1036 1037 while (c->orph_dnext) { 1038 orph = c->orph_dnext; 1039 c->orph_dnext = orph->dnext; 1040 list_del(&orph->list); 1041 kfree(orph); 1042 } 1043 1044 while (!list_empty(&c->orph_list)) { 1045 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 1046 list_del(&orph->list); 1047 kfree(orph); 1048 ubifs_err(c, "orphan list not empty at unmount"); 1049 } 1050 1051 vfree(c->orph_buf); 1052 c->orph_buf = NULL; 1053 } 1054 1055 /** 1056 * free_buds - free per-bud objects. 1057 * @c: UBIFS file-system description object 1058 */ 1059 static void free_buds(struct ubifs_info *c) 1060 { 1061 struct ubifs_bud *bud, *n; 1062 1063 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 1064 kfree(bud); 1065 } 1066 1067 /** 1068 * check_volume_empty - check if the UBI volume is empty. 1069 * @c: UBIFS file-system description object 1070 * 1071 * This function checks if the UBIFS volume is empty by looking if its LEBs are 1072 * mapped or not. The result of checking is stored in the @c->empty variable. 1073 * Returns zero in case of success and a negative error code in case of 1074 * failure. 1075 */ 1076 static int check_volume_empty(struct ubifs_info *c) 1077 { 1078 int lnum, err; 1079 1080 c->empty = 1; 1081 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 1082 err = ubifs_is_mapped(c, lnum); 1083 if (unlikely(err < 0)) 1084 return err; 1085 if (err == 1) { 1086 c->empty = 0; 1087 break; 1088 } 1089 1090 cond_resched(); 1091 } 1092 1093 return 0; 1094 } 1095 1096 /* 1097 * UBIFS mount options. 1098 * 1099 * Opt_fast_unmount: do not run a journal commit before un-mounting 1100 * Opt_norm_unmount: run a journal commit before un-mounting 1101 * Opt_bulk_read: enable bulk-reads 1102 * Opt_no_bulk_read: disable bulk-reads 1103 * Opt_chk_data_crc: check CRCs when reading data nodes 1104 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 1105 * Opt_override_compr: override default compressor 1106 * Opt_err: just end of array marker 1107 */ 1108 enum { 1109 Opt_fast_unmount, 1110 Opt_norm_unmount, 1111 Opt_bulk_read, 1112 Opt_no_bulk_read, 1113 Opt_chk_data_crc, 1114 Opt_no_chk_data_crc, 1115 Opt_override_compr, 1116 Opt_err, 1117 }; 1118 1119 #ifndef __UBOOT__ 1120 static const match_table_t tokens = { 1121 {Opt_fast_unmount, "fast_unmount"}, 1122 {Opt_norm_unmount, "norm_unmount"}, 1123 {Opt_bulk_read, "bulk_read"}, 1124 {Opt_no_bulk_read, "no_bulk_read"}, 1125 {Opt_chk_data_crc, "chk_data_crc"}, 1126 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 1127 {Opt_override_compr, "compr=%s"}, 1128 {Opt_err, NULL}, 1129 }; 1130 1131 /** 1132 * parse_standard_option - parse a standard mount option. 1133 * @option: the option to parse 1134 * 1135 * Normally, standard mount options like "sync" are passed to file-systems as 1136 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 1137 * be present in the options string. This function tries to deal with this 1138 * situation and parse standard options. Returns 0 if the option was not 1139 * recognized, and the corresponding integer flag if it was. 1140 * 1141 * UBIFS is only interested in the "sync" option, so do not check for anything 1142 * else. 1143 */ 1144 static int parse_standard_option(const char *option) 1145 { 1146 1147 pr_notice("UBIFS: parse %s\n", option); 1148 if (!strcmp(option, "sync")) 1149 return MS_SYNCHRONOUS; 1150 return 0; 1151 } 1152 1153 /** 1154 * ubifs_parse_options - parse mount parameters. 1155 * @c: UBIFS file-system description object 1156 * @options: parameters to parse 1157 * @is_remount: non-zero if this is FS re-mount 1158 * 1159 * This function parses UBIFS mount options and returns zero in case success 1160 * and a negative error code in case of failure. 1161 */ 1162 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1163 int is_remount) 1164 { 1165 char *p; 1166 substring_t args[MAX_OPT_ARGS]; 1167 1168 if (!options) 1169 return 0; 1170 1171 while ((p = strsep(&options, ","))) { 1172 int token; 1173 1174 if (!*p) 1175 continue; 1176 1177 token = match_token(p, tokens, args); 1178 switch (token) { 1179 /* 1180 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1181 * We accept them in order to be backward-compatible. But this 1182 * should be removed at some point. 1183 */ 1184 case Opt_fast_unmount: 1185 c->mount_opts.unmount_mode = 2; 1186 break; 1187 case Opt_norm_unmount: 1188 c->mount_opts.unmount_mode = 1; 1189 break; 1190 case Opt_bulk_read: 1191 c->mount_opts.bulk_read = 2; 1192 c->bulk_read = 1; 1193 break; 1194 case Opt_no_bulk_read: 1195 c->mount_opts.bulk_read = 1; 1196 c->bulk_read = 0; 1197 break; 1198 case Opt_chk_data_crc: 1199 c->mount_opts.chk_data_crc = 2; 1200 c->no_chk_data_crc = 0; 1201 break; 1202 case Opt_no_chk_data_crc: 1203 c->mount_opts.chk_data_crc = 1; 1204 c->no_chk_data_crc = 1; 1205 break; 1206 case Opt_override_compr: 1207 { 1208 char *name = match_strdup(&args[0]); 1209 1210 if (!name) 1211 return -ENOMEM; 1212 if (!strcmp(name, "none")) 1213 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1214 else if (!strcmp(name, "lzo")) 1215 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1216 else if (!strcmp(name, "zlib")) 1217 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1218 else { 1219 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1220 kfree(name); 1221 return -EINVAL; 1222 } 1223 kfree(name); 1224 c->mount_opts.override_compr = 1; 1225 c->default_compr = c->mount_opts.compr_type; 1226 break; 1227 } 1228 default: 1229 { 1230 unsigned long flag; 1231 struct super_block *sb = c->vfs_sb; 1232 1233 flag = parse_standard_option(p); 1234 if (!flag) { 1235 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1236 p); 1237 return -EINVAL; 1238 } 1239 sb->s_flags |= flag; 1240 break; 1241 } 1242 } 1243 } 1244 1245 return 0; 1246 } 1247 #endif 1248 1249 /** 1250 * destroy_journal - destroy journal data structures. 1251 * @c: UBIFS file-system description object 1252 * 1253 * This function destroys journal data structures including those that may have 1254 * been created by recovery functions. 1255 */ 1256 static void destroy_journal(struct ubifs_info *c) 1257 { 1258 while (!list_empty(&c->unclean_leb_list)) { 1259 struct ubifs_unclean_leb *ucleb; 1260 1261 ucleb = list_entry(c->unclean_leb_list.next, 1262 struct ubifs_unclean_leb, list); 1263 list_del(&ucleb->list); 1264 kfree(ucleb); 1265 } 1266 while (!list_empty(&c->old_buds)) { 1267 struct ubifs_bud *bud; 1268 1269 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1270 list_del(&bud->list); 1271 kfree(bud); 1272 } 1273 ubifs_destroy_idx_gc(c); 1274 ubifs_destroy_size_tree(c); 1275 ubifs_tnc_close(c); 1276 free_buds(c); 1277 } 1278 1279 /** 1280 * bu_init - initialize bulk-read information. 1281 * @c: UBIFS file-system description object 1282 */ 1283 static void bu_init(struct ubifs_info *c) 1284 { 1285 ubifs_assert(c->bulk_read == 1); 1286 1287 if (c->bu.buf) 1288 return; /* Already initialized */ 1289 1290 again: 1291 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1292 if (!c->bu.buf) { 1293 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1294 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1295 goto again; 1296 } 1297 1298 /* Just disable bulk-read */ 1299 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1300 c->max_bu_buf_len); 1301 c->mount_opts.bulk_read = 1; 1302 c->bulk_read = 0; 1303 return; 1304 } 1305 } 1306 1307 #ifndef __UBOOT__ 1308 /** 1309 * check_free_space - check if there is enough free space to mount. 1310 * @c: UBIFS file-system description object 1311 * 1312 * This function makes sure UBIFS has enough free space to be mounted in 1313 * read/write mode. UBIFS must always have some free space to allow deletions. 1314 */ 1315 static int check_free_space(struct ubifs_info *c) 1316 { 1317 ubifs_assert(c->dark_wm > 0); 1318 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1319 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1320 ubifs_dump_budg(c, &c->bi); 1321 ubifs_dump_lprops(c); 1322 return -ENOSPC; 1323 } 1324 return 0; 1325 } 1326 #endif 1327 1328 /** 1329 * mount_ubifs - mount UBIFS file-system. 1330 * @c: UBIFS file-system description object 1331 * 1332 * This function mounts UBIFS file system. Returns zero in case of success and 1333 * a negative error code in case of failure. 1334 */ 1335 static int mount_ubifs(struct ubifs_info *c) 1336 { 1337 int err; 1338 long long x, y; 1339 size_t sz; 1340 1341 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1342 /* Suppress error messages while probing if MS_SILENT is set */ 1343 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT); 1344 #ifdef __UBOOT__ 1345 if (!c->ro_mount) { 1346 printf("UBIFS: only ro mode in U-Boot allowed.\n"); 1347 return -EACCES; 1348 } 1349 #endif 1350 1351 err = init_constants_early(c); 1352 if (err) 1353 return err; 1354 1355 err = ubifs_debugging_init(c); 1356 if (err) 1357 return err; 1358 1359 err = check_volume_empty(c); 1360 if (err) 1361 goto out_free; 1362 1363 if (c->empty && (c->ro_mount || c->ro_media)) { 1364 /* 1365 * This UBI volume is empty, and read-only, or the file system 1366 * is mounted read-only - we cannot format it. 1367 */ 1368 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1369 c->ro_media ? "UBI volume" : "mount"); 1370 err = -EROFS; 1371 goto out_free; 1372 } 1373 1374 if (c->ro_media && !c->ro_mount) { 1375 ubifs_err(c, "cannot mount read-write - read-only media"); 1376 err = -EROFS; 1377 goto out_free; 1378 } 1379 1380 /* 1381 * The requirement for the buffer is that it should fit indexing B-tree 1382 * height amount of integers. We assume the height if the TNC tree will 1383 * never exceed 64. 1384 */ 1385 err = -ENOMEM; 1386 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1387 if (!c->bottom_up_buf) 1388 goto out_free; 1389 1390 c->sbuf = vmalloc(c->leb_size); 1391 if (!c->sbuf) 1392 goto out_free; 1393 1394 #ifndef __UBOOT__ 1395 if (!c->ro_mount) { 1396 c->ileb_buf = vmalloc(c->leb_size); 1397 if (!c->ileb_buf) 1398 goto out_free; 1399 } 1400 #endif 1401 1402 if (c->bulk_read == 1) 1403 bu_init(c); 1404 1405 #ifndef __UBOOT__ 1406 if (!c->ro_mount) { 1407 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1408 GFP_KERNEL); 1409 if (!c->write_reserve_buf) 1410 goto out_free; 1411 } 1412 #endif 1413 1414 c->mounting = 1; 1415 1416 err = ubifs_read_superblock(c); 1417 if (err) 1418 goto out_free; 1419 1420 c->probing = 0; 1421 1422 /* 1423 * Make sure the compressor which is set as default in the superblock 1424 * or overridden by mount options is actually compiled in. 1425 */ 1426 if (!ubifs_compr_present(c->default_compr)) { 1427 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1428 ubifs_compr_name(c->default_compr)); 1429 err = -ENOTSUPP; 1430 goto out_free; 1431 } 1432 1433 err = init_constants_sb(c); 1434 if (err) 1435 goto out_free; 1436 1437 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1438 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1439 c->cbuf = kmalloc(sz, GFP_NOFS); 1440 if (!c->cbuf) { 1441 err = -ENOMEM; 1442 goto out_free; 1443 } 1444 1445 err = alloc_wbufs(c); 1446 if (err) 1447 goto out_cbuf; 1448 1449 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1450 #ifndef __UBOOT__ 1451 if (!c->ro_mount) { 1452 /* Create background thread */ 1453 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1454 if (IS_ERR(c->bgt)) { 1455 err = PTR_ERR(c->bgt); 1456 c->bgt = NULL; 1457 ubifs_err(c, "cannot spawn \"%s\", error %d", 1458 c->bgt_name, err); 1459 goto out_wbufs; 1460 } 1461 wake_up_process(c->bgt); 1462 } 1463 #endif 1464 1465 err = ubifs_read_master(c); 1466 if (err) 1467 goto out_master; 1468 1469 init_constants_master(c); 1470 1471 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1472 ubifs_msg(c, "recovery needed"); 1473 c->need_recovery = 1; 1474 } 1475 1476 #ifndef __UBOOT__ 1477 if (c->need_recovery && !c->ro_mount) { 1478 err = ubifs_recover_inl_heads(c, c->sbuf); 1479 if (err) 1480 goto out_master; 1481 } 1482 #endif 1483 1484 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1485 if (err) 1486 goto out_master; 1487 1488 #ifndef __UBOOT__ 1489 if (!c->ro_mount && c->space_fixup) { 1490 err = ubifs_fixup_free_space(c); 1491 if (err) 1492 goto out_lpt; 1493 } 1494 1495 if (!c->ro_mount && !c->need_recovery) { 1496 /* 1497 * Set the "dirty" flag so that if we reboot uncleanly we 1498 * will notice this immediately on the next mount. 1499 */ 1500 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1501 err = ubifs_write_master(c); 1502 if (err) 1503 goto out_lpt; 1504 } 1505 #endif 1506 1507 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1508 if (err) 1509 goto out_lpt; 1510 1511 err = ubifs_replay_journal(c); 1512 if (err) 1513 goto out_journal; 1514 1515 /* Calculate 'min_idx_lebs' after journal replay */ 1516 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1517 1518 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1519 if (err) 1520 goto out_orphans; 1521 1522 if (!c->ro_mount) { 1523 #ifndef __UBOOT__ 1524 int lnum; 1525 1526 err = check_free_space(c); 1527 if (err) 1528 goto out_orphans; 1529 1530 /* Check for enough log space */ 1531 lnum = c->lhead_lnum + 1; 1532 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1533 lnum = UBIFS_LOG_LNUM; 1534 if (lnum == c->ltail_lnum) { 1535 err = ubifs_consolidate_log(c); 1536 if (err) 1537 goto out_orphans; 1538 } 1539 1540 if (c->need_recovery) { 1541 err = ubifs_recover_size(c); 1542 if (err) 1543 goto out_orphans; 1544 err = ubifs_rcvry_gc_commit(c); 1545 if (err) 1546 goto out_orphans; 1547 } else { 1548 err = take_gc_lnum(c); 1549 if (err) 1550 goto out_orphans; 1551 1552 /* 1553 * GC LEB may contain garbage if there was an unclean 1554 * reboot, and it should be un-mapped. 1555 */ 1556 err = ubifs_leb_unmap(c, c->gc_lnum); 1557 if (err) 1558 goto out_orphans; 1559 } 1560 1561 err = dbg_check_lprops(c); 1562 if (err) 1563 goto out_orphans; 1564 #endif 1565 } else if (c->need_recovery) { 1566 err = ubifs_recover_size(c); 1567 if (err) 1568 goto out_orphans; 1569 } else { 1570 /* 1571 * Even if we mount read-only, we have to set space in GC LEB 1572 * to proper value because this affects UBIFS free space 1573 * reporting. We do not want to have a situation when 1574 * re-mounting from R/O to R/W changes amount of free space. 1575 */ 1576 err = take_gc_lnum(c); 1577 if (err) 1578 goto out_orphans; 1579 } 1580 1581 #ifndef __UBOOT__ 1582 spin_lock(&ubifs_infos_lock); 1583 list_add_tail(&c->infos_list, &ubifs_infos); 1584 spin_unlock(&ubifs_infos_lock); 1585 #endif 1586 1587 if (c->need_recovery) { 1588 if (c->ro_mount) 1589 ubifs_msg(c, "recovery deferred"); 1590 else { 1591 c->need_recovery = 0; 1592 ubifs_msg(c, "recovery completed"); 1593 /* 1594 * GC LEB has to be empty and taken at this point. But 1595 * the journal head LEBs may also be accounted as 1596 * "empty taken" if they are empty. 1597 */ 1598 ubifs_assert(c->lst.taken_empty_lebs > 0); 1599 } 1600 } else 1601 ubifs_assert(c->lst.taken_empty_lebs > 0); 1602 1603 err = dbg_check_filesystem(c); 1604 if (err) 1605 goto out_infos; 1606 1607 err = dbg_debugfs_init_fs(c); 1608 if (err) 1609 goto out_infos; 1610 1611 c->mounting = 0; 1612 1613 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1614 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1615 c->ro_mount ? ", R/O mode" : ""); 1616 x = (long long)c->main_lebs * c->leb_size; 1617 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1618 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1619 c->leb_size, c->leb_size >> 10, c->min_io_size, 1620 c->max_write_size); 1621 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1622 x, x >> 20, c->main_lebs, 1623 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1624 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1625 c->report_rp_size, c->report_rp_size >> 10); 1626 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1627 c->fmt_version, c->ro_compat_version, 1628 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1629 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1630 1631 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1632 dbg_gen("data journal heads: %d", 1633 c->jhead_cnt - NONDATA_JHEADS_CNT); 1634 dbg_gen("log LEBs: %d (%d - %d)", 1635 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1636 dbg_gen("LPT area LEBs: %d (%d - %d)", 1637 c->lpt_lebs, c->lpt_first, c->lpt_last); 1638 dbg_gen("orphan area LEBs: %d (%d - %d)", 1639 c->orph_lebs, c->orph_first, c->orph_last); 1640 dbg_gen("main area LEBs: %d (%d - %d)", 1641 c->main_lebs, c->main_first, c->leb_cnt - 1); 1642 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1643 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1644 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1645 c->bi.old_idx_sz >> 20); 1646 dbg_gen("key hash type: %d", c->key_hash_type); 1647 dbg_gen("tree fanout: %d", c->fanout); 1648 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1649 dbg_gen("max. znode size %d", c->max_znode_sz); 1650 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1651 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1652 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1653 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1654 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1655 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1656 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1657 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1658 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1659 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1660 dbg_gen("dead watermark: %d", c->dead_wm); 1661 dbg_gen("dark watermark: %d", c->dark_wm); 1662 dbg_gen("LEB overhead: %d", c->leb_overhead); 1663 x = (long long)c->main_lebs * c->dark_wm; 1664 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1665 x, x >> 10, x >> 20); 1666 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1667 c->max_bud_bytes, c->max_bud_bytes >> 10, 1668 c->max_bud_bytes >> 20); 1669 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1670 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1671 c->bg_bud_bytes >> 20); 1672 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1673 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1674 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1675 dbg_gen("commit number: %llu", c->cmt_no); 1676 1677 return 0; 1678 1679 out_infos: 1680 spin_lock(&ubifs_infos_lock); 1681 list_del(&c->infos_list); 1682 spin_unlock(&ubifs_infos_lock); 1683 out_orphans: 1684 free_orphans(c); 1685 out_journal: 1686 destroy_journal(c); 1687 out_lpt: 1688 ubifs_lpt_free(c, 0); 1689 out_master: 1690 kfree(c->mst_node); 1691 kfree(c->rcvrd_mst_node); 1692 if (c->bgt) 1693 kthread_stop(c->bgt); 1694 #ifndef __UBOOT__ 1695 out_wbufs: 1696 #endif 1697 free_wbufs(c); 1698 out_cbuf: 1699 kfree(c->cbuf); 1700 out_free: 1701 kfree(c->write_reserve_buf); 1702 kfree(c->bu.buf); 1703 vfree(c->ileb_buf); 1704 vfree(c->sbuf); 1705 kfree(c->bottom_up_buf); 1706 ubifs_debugging_exit(c); 1707 return err; 1708 } 1709 1710 /** 1711 * ubifs_umount - un-mount UBIFS file-system. 1712 * @c: UBIFS file-system description object 1713 * 1714 * Note, this function is called to free allocated resourced when un-mounting, 1715 * as well as free resources when an error occurred while we were half way 1716 * through mounting (error path cleanup function). So it has to make sure the 1717 * resource was actually allocated before freeing it. 1718 */ 1719 #ifndef __UBOOT__ 1720 static void ubifs_umount(struct ubifs_info *c) 1721 #else 1722 void ubifs_umount(struct ubifs_info *c) 1723 #endif 1724 { 1725 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1726 c->vi.vol_id); 1727 1728 dbg_debugfs_exit_fs(c); 1729 spin_lock(&ubifs_infos_lock); 1730 list_del(&c->infos_list); 1731 spin_unlock(&ubifs_infos_lock); 1732 1733 #ifndef __UBOOT__ 1734 if (c->bgt) 1735 kthread_stop(c->bgt); 1736 1737 destroy_journal(c); 1738 #endif 1739 free_wbufs(c); 1740 free_orphans(c); 1741 ubifs_lpt_free(c, 0); 1742 1743 kfree(c->cbuf); 1744 kfree(c->rcvrd_mst_node); 1745 kfree(c->mst_node); 1746 kfree(c->write_reserve_buf); 1747 kfree(c->bu.buf); 1748 vfree(c->ileb_buf); 1749 vfree(c->sbuf); 1750 kfree(c->bottom_up_buf); 1751 ubifs_debugging_exit(c); 1752 #ifdef __UBOOT__ 1753 /* Finally free U-Boot's global copy of superblock */ 1754 if (ubifs_sb != NULL) { 1755 free(ubifs_sb->s_fs_info); 1756 free(ubifs_sb); 1757 } 1758 #endif 1759 } 1760 1761 #ifndef __UBOOT__ 1762 /** 1763 * ubifs_remount_rw - re-mount in read-write mode. 1764 * @c: UBIFS file-system description object 1765 * 1766 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1767 * mode. This function allocates the needed resources and re-mounts UBIFS in 1768 * read-write mode. 1769 */ 1770 static int ubifs_remount_rw(struct ubifs_info *c) 1771 { 1772 int err, lnum; 1773 1774 if (c->rw_incompat) { 1775 ubifs_err(c, "the file-system is not R/W-compatible"); 1776 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1777 c->fmt_version, c->ro_compat_version, 1778 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1779 return -EROFS; 1780 } 1781 1782 mutex_lock(&c->umount_mutex); 1783 dbg_save_space_info(c); 1784 c->remounting_rw = 1; 1785 c->ro_mount = 0; 1786 1787 if (c->space_fixup) { 1788 err = ubifs_fixup_free_space(c); 1789 if (err) 1790 goto out; 1791 } 1792 1793 err = check_free_space(c); 1794 if (err) 1795 goto out; 1796 1797 if (c->old_leb_cnt != c->leb_cnt) { 1798 struct ubifs_sb_node *sup; 1799 1800 sup = ubifs_read_sb_node(c); 1801 if (IS_ERR(sup)) { 1802 err = PTR_ERR(sup); 1803 goto out; 1804 } 1805 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1806 err = ubifs_write_sb_node(c, sup); 1807 kfree(sup); 1808 if (err) 1809 goto out; 1810 } 1811 1812 if (c->need_recovery) { 1813 ubifs_msg(c, "completing deferred recovery"); 1814 err = ubifs_write_rcvrd_mst_node(c); 1815 if (err) 1816 goto out; 1817 err = ubifs_recover_size(c); 1818 if (err) 1819 goto out; 1820 err = ubifs_clean_lebs(c, c->sbuf); 1821 if (err) 1822 goto out; 1823 err = ubifs_recover_inl_heads(c, c->sbuf); 1824 if (err) 1825 goto out; 1826 } else { 1827 /* A readonly mount is not allowed to have orphans */ 1828 ubifs_assert(c->tot_orphans == 0); 1829 err = ubifs_clear_orphans(c); 1830 if (err) 1831 goto out; 1832 } 1833 1834 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1835 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1836 err = ubifs_write_master(c); 1837 if (err) 1838 goto out; 1839 } 1840 1841 c->ileb_buf = vmalloc(c->leb_size); 1842 if (!c->ileb_buf) { 1843 err = -ENOMEM; 1844 goto out; 1845 } 1846 1847 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1848 if (!c->write_reserve_buf) { 1849 err = -ENOMEM; 1850 goto out; 1851 } 1852 1853 err = ubifs_lpt_init(c, 0, 1); 1854 if (err) 1855 goto out; 1856 1857 /* Create background thread */ 1858 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1859 if (IS_ERR(c->bgt)) { 1860 err = PTR_ERR(c->bgt); 1861 c->bgt = NULL; 1862 ubifs_err(c, "cannot spawn \"%s\", error %d", 1863 c->bgt_name, err); 1864 goto out; 1865 } 1866 wake_up_process(c->bgt); 1867 1868 c->orph_buf = vmalloc(c->leb_size); 1869 if (!c->orph_buf) { 1870 err = -ENOMEM; 1871 goto out; 1872 } 1873 1874 /* Check for enough log space */ 1875 lnum = c->lhead_lnum + 1; 1876 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1877 lnum = UBIFS_LOG_LNUM; 1878 if (lnum == c->ltail_lnum) { 1879 err = ubifs_consolidate_log(c); 1880 if (err) 1881 goto out; 1882 } 1883 1884 if (c->need_recovery) 1885 err = ubifs_rcvry_gc_commit(c); 1886 else 1887 err = ubifs_leb_unmap(c, c->gc_lnum); 1888 if (err) 1889 goto out; 1890 1891 dbg_gen("re-mounted read-write"); 1892 c->remounting_rw = 0; 1893 1894 if (c->need_recovery) { 1895 c->need_recovery = 0; 1896 ubifs_msg(c, "deferred recovery completed"); 1897 } else { 1898 /* 1899 * Do not run the debugging space check if the were doing 1900 * recovery, because when we saved the information we had the 1901 * file-system in a state where the TNC and lprops has been 1902 * modified in memory, but all the I/O operations (including a 1903 * commit) were deferred. So the file-system was in 1904 * "non-committed" state. Now the file-system is in committed 1905 * state, and of course the amount of free space will change 1906 * because, for example, the old index size was imprecise. 1907 */ 1908 err = dbg_check_space_info(c); 1909 } 1910 1911 mutex_unlock(&c->umount_mutex); 1912 return err; 1913 1914 out: 1915 c->ro_mount = 1; 1916 vfree(c->orph_buf); 1917 c->orph_buf = NULL; 1918 if (c->bgt) { 1919 kthread_stop(c->bgt); 1920 c->bgt = NULL; 1921 } 1922 free_wbufs(c); 1923 kfree(c->write_reserve_buf); 1924 c->write_reserve_buf = NULL; 1925 vfree(c->ileb_buf); 1926 c->ileb_buf = NULL; 1927 ubifs_lpt_free(c, 1); 1928 c->remounting_rw = 0; 1929 mutex_unlock(&c->umount_mutex); 1930 return err; 1931 } 1932 1933 /** 1934 * ubifs_remount_ro - re-mount in read-only mode. 1935 * @c: UBIFS file-system description object 1936 * 1937 * We assume VFS has stopped writing. Possibly the background thread could be 1938 * running a commit, however kthread_stop will wait in that case. 1939 */ 1940 static void ubifs_remount_ro(struct ubifs_info *c) 1941 { 1942 int i, err; 1943 1944 ubifs_assert(!c->need_recovery); 1945 ubifs_assert(!c->ro_mount); 1946 1947 mutex_lock(&c->umount_mutex); 1948 if (c->bgt) { 1949 kthread_stop(c->bgt); 1950 c->bgt = NULL; 1951 } 1952 1953 dbg_save_space_info(c); 1954 1955 for (i = 0; i < c->jhead_cnt; i++) 1956 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1957 1958 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1959 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1960 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1961 err = ubifs_write_master(c); 1962 if (err) 1963 ubifs_ro_mode(c, err); 1964 1965 vfree(c->orph_buf); 1966 c->orph_buf = NULL; 1967 kfree(c->write_reserve_buf); 1968 c->write_reserve_buf = NULL; 1969 vfree(c->ileb_buf); 1970 c->ileb_buf = NULL; 1971 ubifs_lpt_free(c, 1); 1972 c->ro_mount = 1; 1973 err = dbg_check_space_info(c); 1974 if (err) 1975 ubifs_ro_mode(c, err); 1976 mutex_unlock(&c->umount_mutex); 1977 } 1978 1979 static void ubifs_put_super(struct super_block *sb) 1980 { 1981 int i; 1982 struct ubifs_info *c = sb->s_fs_info; 1983 1984 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1985 1986 /* 1987 * The following asserts are only valid if there has not been a failure 1988 * of the media. For example, there will be dirty inodes if we failed 1989 * to write them back because of I/O errors. 1990 */ 1991 if (!c->ro_error) { 1992 ubifs_assert(c->bi.idx_growth == 0); 1993 ubifs_assert(c->bi.dd_growth == 0); 1994 ubifs_assert(c->bi.data_growth == 0); 1995 } 1996 1997 /* 1998 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1999 * and file system un-mount. Namely, it prevents the shrinker from 2000 * picking this superblock for shrinking - it will be just skipped if 2001 * the mutex is locked. 2002 */ 2003 mutex_lock(&c->umount_mutex); 2004 if (!c->ro_mount) { 2005 /* 2006 * First of all kill the background thread to make sure it does 2007 * not interfere with un-mounting and freeing resources. 2008 */ 2009 if (c->bgt) { 2010 kthread_stop(c->bgt); 2011 c->bgt = NULL; 2012 } 2013 2014 /* 2015 * On fatal errors c->ro_error is set to 1, in which case we do 2016 * not write the master node. 2017 */ 2018 if (!c->ro_error) { 2019 int err; 2020 2021 /* Synchronize write-buffers */ 2022 for (i = 0; i < c->jhead_cnt; i++) 2023 ubifs_wbuf_sync(&c->jheads[i].wbuf); 2024 2025 /* 2026 * We are being cleanly unmounted which means the 2027 * orphans were killed - indicate this in the master 2028 * node. Also save the reserved GC LEB number. 2029 */ 2030 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 2031 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 2032 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 2033 err = ubifs_write_master(c); 2034 if (err) 2035 /* 2036 * Recovery will attempt to fix the master area 2037 * next mount, so we just print a message and 2038 * continue to unmount normally. 2039 */ 2040 ubifs_err(c, "failed to write master node, error %d", 2041 err); 2042 } else { 2043 #ifndef __UBOOT__ 2044 for (i = 0; i < c->jhead_cnt; i++) 2045 /* Make sure write-buffer timers are canceled */ 2046 hrtimer_cancel(&c->jheads[i].wbuf.timer); 2047 #endif 2048 } 2049 } 2050 2051 ubifs_umount(c); 2052 #ifndef __UBOOT__ 2053 bdi_destroy(&c->bdi); 2054 #endif 2055 ubi_close_volume(c->ubi); 2056 mutex_unlock(&c->umount_mutex); 2057 } 2058 #endif 2059 2060 #ifndef __UBOOT__ 2061 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 2062 { 2063 int err; 2064 struct ubifs_info *c = sb->s_fs_info; 2065 2066 sync_filesystem(sb); 2067 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 2068 2069 err = ubifs_parse_options(c, data, 1); 2070 if (err) { 2071 ubifs_err(c, "invalid or unknown remount parameter"); 2072 return err; 2073 } 2074 2075 if (c->ro_mount && !(*flags & MS_RDONLY)) { 2076 if (c->ro_error) { 2077 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 2078 return -EROFS; 2079 } 2080 if (c->ro_media) { 2081 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 2082 return -EROFS; 2083 } 2084 err = ubifs_remount_rw(c); 2085 if (err) 2086 return err; 2087 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 2088 if (c->ro_error) { 2089 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 2090 return -EROFS; 2091 } 2092 ubifs_remount_ro(c); 2093 } 2094 2095 if (c->bulk_read == 1) 2096 bu_init(c); 2097 else { 2098 dbg_gen("disable bulk-read"); 2099 kfree(c->bu.buf); 2100 c->bu.buf = NULL; 2101 } 2102 2103 ubifs_assert(c->lst.taken_empty_lebs > 0); 2104 return 0; 2105 } 2106 #endif 2107 2108 const struct super_operations ubifs_super_operations = { 2109 .alloc_inode = ubifs_alloc_inode, 2110 #ifndef __UBOOT__ 2111 .destroy_inode = ubifs_destroy_inode, 2112 .put_super = ubifs_put_super, 2113 .write_inode = ubifs_write_inode, 2114 .evict_inode = ubifs_evict_inode, 2115 .statfs = ubifs_statfs, 2116 #endif 2117 .dirty_inode = ubifs_dirty_inode, 2118 #ifndef __UBOOT__ 2119 .remount_fs = ubifs_remount_fs, 2120 .show_options = ubifs_show_options, 2121 .sync_fs = ubifs_sync_fs, 2122 #endif 2123 }; 2124 2125 /** 2126 * open_ubi - parse UBI device name string and open the UBI device. 2127 * @name: UBI volume name 2128 * @mode: UBI volume open mode 2129 * 2130 * The primary method of mounting UBIFS is by specifying the UBI volume 2131 * character device node path. However, UBIFS may also be mounted withoug any 2132 * character device node using one of the following methods: 2133 * 2134 * o ubiX_Y - mount UBI device number X, volume Y; 2135 * o ubiY - mount UBI device number 0, volume Y; 2136 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2137 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2138 * 2139 * Alternative '!' separator may be used instead of ':' (because some shells 2140 * like busybox may interpret ':' as an NFS host name separator). This function 2141 * returns UBI volume description object in case of success and a negative 2142 * error code in case of failure. 2143 */ 2144 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2145 { 2146 #ifndef __UBOOT__ 2147 struct ubi_volume_desc *ubi; 2148 #endif 2149 int dev, vol; 2150 char *endptr; 2151 2152 #ifndef __UBOOT__ 2153 /* First, try to open using the device node path method */ 2154 ubi = ubi_open_volume_path(name, mode); 2155 if (!IS_ERR(ubi)) 2156 return ubi; 2157 #endif 2158 2159 /* Try the "nodev" method */ 2160 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2161 return ERR_PTR(-EINVAL); 2162 2163 /* ubi:NAME method */ 2164 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2165 return ubi_open_volume_nm(0, name + 4, mode); 2166 2167 if (!isdigit(name[3])) 2168 return ERR_PTR(-EINVAL); 2169 2170 dev = simple_strtoul(name + 3, &endptr, 0); 2171 2172 /* ubiY method */ 2173 if (*endptr == '\0') 2174 return ubi_open_volume(0, dev, mode); 2175 2176 /* ubiX_Y method */ 2177 if (*endptr == '_' && isdigit(endptr[1])) { 2178 vol = simple_strtoul(endptr + 1, &endptr, 0); 2179 if (*endptr != '\0') 2180 return ERR_PTR(-EINVAL); 2181 return ubi_open_volume(dev, vol, mode); 2182 } 2183 2184 /* ubiX:NAME method */ 2185 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2186 return ubi_open_volume_nm(dev, ++endptr, mode); 2187 2188 return ERR_PTR(-EINVAL); 2189 } 2190 2191 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2192 { 2193 struct ubifs_info *c; 2194 2195 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2196 if (c) { 2197 spin_lock_init(&c->cnt_lock); 2198 spin_lock_init(&c->cs_lock); 2199 spin_lock_init(&c->buds_lock); 2200 spin_lock_init(&c->space_lock); 2201 spin_lock_init(&c->orphan_lock); 2202 init_rwsem(&c->commit_sem); 2203 mutex_init(&c->lp_mutex); 2204 mutex_init(&c->tnc_mutex); 2205 mutex_init(&c->log_mutex); 2206 mutex_init(&c->umount_mutex); 2207 mutex_init(&c->bu_mutex); 2208 mutex_init(&c->write_reserve_mutex); 2209 init_waitqueue_head(&c->cmt_wq); 2210 c->buds = RB_ROOT; 2211 c->old_idx = RB_ROOT; 2212 c->size_tree = RB_ROOT; 2213 c->orph_tree = RB_ROOT; 2214 INIT_LIST_HEAD(&c->infos_list); 2215 INIT_LIST_HEAD(&c->idx_gc); 2216 INIT_LIST_HEAD(&c->replay_list); 2217 INIT_LIST_HEAD(&c->replay_buds); 2218 INIT_LIST_HEAD(&c->uncat_list); 2219 INIT_LIST_HEAD(&c->empty_list); 2220 INIT_LIST_HEAD(&c->freeable_list); 2221 INIT_LIST_HEAD(&c->frdi_idx_list); 2222 INIT_LIST_HEAD(&c->unclean_leb_list); 2223 INIT_LIST_HEAD(&c->old_buds); 2224 INIT_LIST_HEAD(&c->orph_list); 2225 INIT_LIST_HEAD(&c->orph_new); 2226 c->no_chk_data_crc = 1; 2227 2228 c->highest_inum = UBIFS_FIRST_INO; 2229 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2230 2231 ubi_get_volume_info(ubi, &c->vi); 2232 ubi_get_device_info(c->vi.ubi_num, &c->di); 2233 } 2234 return c; 2235 } 2236 2237 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2238 { 2239 struct ubifs_info *c = sb->s_fs_info; 2240 struct inode *root; 2241 int err; 2242 2243 c->vfs_sb = sb; 2244 #ifndef __UBOOT__ 2245 /* Re-open the UBI device in read-write mode */ 2246 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2247 #else 2248 /* U-Boot read only mode */ 2249 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY); 2250 #endif 2251 2252 if (IS_ERR(c->ubi)) { 2253 err = PTR_ERR(c->ubi); 2254 goto out; 2255 } 2256 2257 #ifndef __UBOOT__ 2258 /* 2259 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2260 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2261 * which means the user would have to wait not just for their own I/O 2262 * but the read-ahead I/O as well i.e. completely pointless. 2263 * 2264 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2265 */ 2266 c->bdi.name = "ubifs", 2267 c->bdi.capabilities = 0; 2268 err = bdi_init(&c->bdi); 2269 if (err) 2270 goto out_close; 2271 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2272 c->vi.ubi_num, c->vi.vol_id); 2273 if (err) 2274 goto out_bdi; 2275 2276 err = ubifs_parse_options(c, data, 0); 2277 if (err) 2278 goto out_bdi; 2279 2280 sb->s_bdi = &c->bdi; 2281 #endif 2282 sb->s_fs_info = c; 2283 sb->s_magic = UBIFS_SUPER_MAGIC; 2284 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2285 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2286 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2287 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2288 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2289 sb->s_op = &ubifs_super_operations; 2290 #ifndef __UBOOT__ 2291 sb->s_xattr = ubifs_xattr_handlers; 2292 #endif 2293 2294 mutex_lock(&c->umount_mutex); 2295 err = mount_ubifs(c); 2296 if (err) { 2297 ubifs_assert(err < 0); 2298 goto out_unlock; 2299 } 2300 2301 /* Read the root inode */ 2302 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2303 if (IS_ERR(root)) { 2304 err = PTR_ERR(root); 2305 goto out_umount; 2306 } 2307 2308 #ifndef __UBOOT__ 2309 sb->s_root = d_make_root(root); 2310 if (!sb->s_root) { 2311 err = -ENOMEM; 2312 goto out_umount; 2313 } 2314 #else 2315 sb->s_root = NULL; 2316 #endif 2317 2318 mutex_unlock(&c->umount_mutex); 2319 return 0; 2320 2321 out_umount: 2322 ubifs_umount(c); 2323 out_unlock: 2324 mutex_unlock(&c->umount_mutex); 2325 #ifndef __UBOOT__ 2326 out_bdi: 2327 bdi_destroy(&c->bdi); 2328 out_close: 2329 #endif 2330 ubi_close_volume(c->ubi); 2331 out: 2332 return err; 2333 } 2334 2335 static int sb_test(struct super_block *sb, void *data) 2336 { 2337 struct ubifs_info *c1 = data; 2338 struct ubifs_info *c = sb->s_fs_info; 2339 2340 return c->vi.cdev == c1->vi.cdev; 2341 } 2342 2343 static int sb_set(struct super_block *sb, void *data) 2344 { 2345 sb->s_fs_info = data; 2346 return set_anon_super(sb, NULL); 2347 } 2348 2349 static struct super_block *alloc_super(struct file_system_type *type, int flags) 2350 { 2351 struct super_block *s; 2352 int err; 2353 2354 s = kzalloc(sizeof(struct super_block), GFP_USER); 2355 if (!s) { 2356 err = -ENOMEM; 2357 return ERR_PTR(err); 2358 } 2359 2360 INIT_HLIST_NODE(&s->s_instances); 2361 INIT_LIST_HEAD(&s->s_inodes); 2362 s->s_time_gran = 1000000000; 2363 s->s_flags = flags; 2364 2365 return s; 2366 } 2367 2368 /** 2369 * sget - find or create a superblock 2370 * @type: filesystem type superblock should belong to 2371 * @test: comparison callback 2372 * @set: setup callback 2373 * @flags: mount flags 2374 * @data: argument to each of them 2375 */ 2376 struct super_block *sget(struct file_system_type *type, 2377 int (*test)(struct super_block *,void *), 2378 int (*set)(struct super_block *,void *), 2379 int flags, 2380 void *data) 2381 { 2382 struct super_block *s = NULL; 2383 #ifndef __UBOOT__ 2384 struct super_block *old; 2385 #endif 2386 int err; 2387 2388 #ifndef __UBOOT__ 2389 retry: 2390 spin_lock(&sb_lock); 2391 if (test) { 2392 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 2393 if (!test(old, data)) 2394 continue; 2395 if (!grab_super(old)) 2396 goto retry; 2397 if (s) { 2398 up_write(&s->s_umount); 2399 destroy_super(s); 2400 s = NULL; 2401 } 2402 return old; 2403 } 2404 } 2405 #endif 2406 if (!s) { 2407 spin_unlock(&sb_lock); 2408 s = alloc_super(type, flags); 2409 if (!s) 2410 return ERR_PTR(-ENOMEM); 2411 #ifndef __UBOOT__ 2412 goto retry; 2413 #endif 2414 } 2415 2416 err = set(s, data); 2417 if (err) { 2418 #ifndef __UBOOT__ 2419 spin_unlock(&sb_lock); 2420 up_write(&s->s_umount); 2421 destroy_super(s); 2422 #endif 2423 return ERR_PTR(err); 2424 } 2425 s->s_type = type; 2426 #ifndef __UBOOT__ 2427 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 2428 #else 2429 strncpy(s->s_id, type->name, sizeof(s->s_id)); 2430 #endif 2431 list_add_tail(&s->s_list, &super_blocks); 2432 hlist_add_head(&s->s_instances, &type->fs_supers); 2433 #ifndef __UBOOT__ 2434 spin_unlock(&sb_lock); 2435 get_filesystem(type); 2436 register_shrinker(&s->s_shrink); 2437 #endif 2438 return s; 2439 } 2440 2441 EXPORT_SYMBOL(sget); 2442 2443 2444 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2445 const char *name, void *data) 2446 { 2447 struct ubi_volume_desc *ubi; 2448 struct ubifs_info *c; 2449 struct super_block *sb; 2450 int err; 2451 2452 dbg_gen("name %s, flags %#x", name, flags); 2453 2454 /* 2455 * Get UBI device number and volume ID. Mount it read-only so far 2456 * because this might be a new mount point, and UBI allows only one 2457 * read-write user at a time. 2458 */ 2459 ubi = open_ubi(name, UBI_READONLY); 2460 if (IS_ERR(ubi)) { 2461 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2462 current->pid, name, (int)PTR_ERR(ubi)); 2463 return ERR_CAST(ubi); 2464 } 2465 2466 c = alloc_ubifs_info(ubi); 2467 if (!c) { 2468 err = -ENOMEM; 2469 goto out_close; 2470 } 2471 2472 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2473 2474 sb = sget(fs_type, sb_test, sb_set, flags, c); 2475 if (IS_ERR(sb)) { 2476 err = PTR_ERR(sb); 2477 kfree(c); 2478 goto out_close; 2479 } 2480 2481 if (sb->s_root) { 2482 struct ubifs_info *c1 = sb->s_fs_info; 2483 kfree(c); 2484 /* A new mount point for already mounted UBIFS */ 2485 dbg_gen("this ubi volume is already mounted"); 2486 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2487 err = -EBUSY; 2488 goto out_deact; 2489 } 2490 } else { 2491 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2492 if (err) 2493 goto out_deact; 2494 /* We do not support atime */ 2495 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2496 } 2497 2498 /* 'fill_super()' opens ubi again so we must close it here */ 2499 ubi_close_volume(ubi); 2500 2501 #ifdef __UBOOT__ 2502 ubifs_sb = sb; 2503 return 0; 2504 #else 2505 return dget(sb->s_root); 2506 #endif 2507 2508 out_deact: 2509 #ifndef __UBOOT__ 2510 deactivate_locked_super(sb); 2511 #endif 2512 out_close: 2513 ubi_close_volume(ubi); 2514 return ERR_PTR(err); 2515 } 2516 2517 static void kill_ubifs_super(struct super_block *s) 2518 { 2519 struct ubifs_info *c = s->s_fs_info; 2520 #ifndef __UBOOT__ 2521 kill_anon_super(s); 2522 #endif 2523 kfree(c); 2524 } 2525 2526 static struct file_system_type ubifs_fs_type = { 2527 .name = "ubifs", 2528 .owner = THIS_MODULE, 2529 .mount = ubifs_mount, 2530 .kill_sb = kill_ubifs_super, 2531 }; 2532 #ifndef __UBOOT__ 2533 MODULE_ALIAS_FS("ubifs"); 2534 2535 /* 2536 * Inode slab cache constructor. 2537 */ 2538 static void inode_slab_ctor(void *obj) 2539 { 2540 struct ubifs_inode *ui = obj; 2541 inode_init_once(&ui->vfs_inode); 2542 } 2543 2544 static int __init ubifs_init(void) 2545 #else 2546 int ubifs_init(void) 2547 #endif 2548 { 2549 int err; 2550 2551 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2552 2553 /* Make sure node sizes are 8-byte aligned */ 2554 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2555 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2556 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2557 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2558 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2559 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2560 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2561 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2562 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2563 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2564 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2565 2566 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2567 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2568 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2569 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2570 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2571 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2572 2573 /* Check min. node size */ 2574 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2575 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2576 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2577 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2578 2579 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2580 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2581 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2582 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2583 2584 /* Defined node sizes */ 2585 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2586 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2587 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2588 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2589 2590 /* 2591 * We use 2 bit wide bit-fields to store compression type, which should 2592 * be amended if more compressors are added. The bit-fields are: 2593 * @compr_type in 'struct ubifs_inode', @default_compr in 2594 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2595 */ 2596 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2597 2598 /* 2599 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2600 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2601 */ 2602 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2603 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2604 current->pid, (unsigned int)PAGE_CACHE_SIZE); 2605 return -EINVAL; 2606 } 2607 2608 #ifndef __UBOOT__ 2609 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2610 sizeof(struct ubifs_inode), 0, 2611 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2612 &inode_slab_ctor); 2613 if (!ubifs_inode_slab) 2614 return -ENOMEM; 2615 2616 err = register_shrinker(&ubifs_shrinker_info); 2617 if (err) 2618 goto out_slab; 2619 #endif 2620 2621 err = ubifs_compressors_init(); 2622 if (err) 2623 goto out_shrinker; 2624 2625 #ifndef __UBOOT__ 2626 err = dbg_debugfs_init(); 2627 if (err) 2628 goto out_compr; 2629 2630 err = register_filesystem(&ubifs_fs_type); 2631 if (err) { 2632 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2633 current->pid, err); 2634 goto out_dbg; 2635 } 2636 #endif 2637 return 0; 2638 2639 #ifndef __UBOOT__ 2640 out_dbg: 2641 dbg_debugfs_exit(); 2642 out_compr: 2643 ubifs_compressors_exit(); 2644 #endif 2645 out_shrinker: 2646 #ifndef __UBOOT__ 2647 unregister_shrinker(&ubifs_shrinker_info); 2648 out_slab: 2649 #endif 2650 kmem_cache_destroy(ubifs_inode_slab); 2651 return err; 2652 } 2653 /* late_initcall to let compressors initialize first */ 2654 late_initcall(ubifs_init); 2655 2656 #ifndef __UBOOT__ 2657 static void __exit ubifs_exit(void) 2658 { 2659 ubifs_assert(list_empty(&ubifs_infos)); 2660 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2661 2662 dbg_debugfs_exit(); 2663 ubifs_compressors_exit(); 2664 unregister_shrinker(&ubifs_shrinker_info); 2665 2666 /* 2667 * Make sure all delayed rcu free inodes are flushed before we 2668 * destroy cache. 2669 */ 2670 rcu_barrier(); 2671 kmem_cache_destroy(ubifs_inode_slab); 2672 unregister_filesystem(&ubifs_fs_type); 2673 } 2674 module_exit(ubifs_exit); 2675 2676 MODULE_LICENSE("GPL"); 2677 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2678 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2679 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2680 #else 2681 int uboot_ubifs_mount(char *vol_name) 2682 { 2683 struct dentry *ret; 2684 int flags; 2685 2686 /* 2687 * First unmount if allready mounted 2688 */ 2689 if (ubifs_sb) 2690 ubifs_umount(ubifs_sb->s_fs_info); 2691 2692 /* 2693 * Mount in read-only mode 2694 */ 2695 flags = MS_RDONLY; 2696 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL); 2697 if (IS_ERR(ret)) { 2698 printf("Error reading superblock on volume '%s' " \ 2699 "errno=%d!\n", vol_name, (int)PTR_ERR(ret)); 2700 return -1; 2701 } 2702 2703 return 0; 2704 } 2705 #endif 2706