1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 */ 11 12 /* 13 * This file implements UBIFS initialization and VFS superblock operations. Some 14 * initialization stuff which is rather large and complex is placed at 15 * corresponding subsystems, but most of it is here. 16 */ 17 18 #ifndef __UBOOT__ 19 #include <linux/init.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/kthread.h> 24 #include <linux/parser.h> 25 #include <linux/seq_file.h> 26 #include <linux/mount.h> 27 #include <linux/math64.h> 28 #include <linux/writeback.h> 29 #else 30 31 #include <linux/compat.h> 32 #include <linux/stat.h> 33 #include <linux/err.h> 34 #include "ubifs.h" 35 #include <ubi_uboot.h> 36 #include <mtd/ubi-user.h> 37 38 struct dentry; 39 struct file; 40 struct iattr; 41 struct kstat; 42 struct vfsmount; 43 44 #define INODE_LOCKED_MAX 64 45 46 struct super_block *ubifs_sb; 47 LIST_HEAD(super_blocks); 48 49 static struct inode *inodes_locked_down[INODE_LOCKED_MAX]; 50 51 int set_anon_super(struct super_block *s, void *data) 52 { 53 return 0; 54 } 55 56 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 57 { 58 struct inode *inode; 59 60 inode = (struct inode *)malloc(sizeof(struct ubifs_inode)); 61 if (inode) { 62 inode->i_ino = ino; 63 inode->i_sb = sb; 64 list_add(&inode->i_sb_list, &sb->s_inodes); 65 inode->i_state = I_LOCK | I_NEW; 66 } 67 68 return inode; 69 } 70 71 void iget_failed(struct inode *inode) 72 { 73 } 74 75 int ubifs_iput(struct inode *inode) 76 { 77 list_del_init(&inode->i_sb_list); 78 79 free(inode); 80 return 0; 81 } 82 83 /* 84 * Lock (save) inode in inode array for readback after recovery 85 */ 86 void iput(struct inode *inode) 87 { 88 int i; 89 struct inode *ino; 90 91 /* 92 * Search end of list 93 */ 94 for (i = 0; i < INODE_LOCKED_MAX; i++) { 95 if (inodes_locked_down[i] == NULL) 96 break; 97 } 98 99 if (i >= INODE_LOCKED_MAX) { 100 ubifs_err("Error, can't lock (save) more inodes while recovery!!!"); 101 return; 102 } 103 104 /* 105 * Allocate and use new inode 106 */ 107 ino = (struct inode *)malloc(sizeof(struct ubifs_inode)); 108 memcpy(ino, inode, sizeof(struct ubifs_inode)); 109 110 /* 111 * Finally save inode in array 112 */ 113 inodes_locked_down[i] = ino; 114 } 115 116 /* from fs/inode.c */ 117 /** 118 * clear_nlink - directly zero an inode's link count 119 * @inode: inode 120 * 121 * This is a low-level filesystem helper to replace any 122 * direct filesystem manipulation of i_nlink. See 123 * drop_nlink() for why we care about i_nlink hitting zero. 124 */ 125 void clear_nlink(struct inode *inode) 126 { 127 if (inode->i_nlink) { 128 inode->__i_nlink = 0; 129 atomic_long_inc(&inode->i_sb->s_remove_count); 130 } 131 } 132 EXPORT_SYMBOL(clear_nlink); 133 134 /** 135 * set_nlink - directly set an inode's link count 136 * @inode: inode 137 * @nlink: new nlink (should be non-zero) 138 * 139 * This is a low-level filesystem helper to replace any 140 * direct filesystem manipulation of i_nlink. 141 */ 142 void set_nlink(struct inode *inode, unsigned int nlink) 143 { 144 if (!nlink) { 145 clear_nlink(inode); 146 } else { 147 /* Yes, some filesystems do change nlink from zero to one */ 148 if (inode->i_nlink == 0) 149 atomic_long_dec(&inode->i_sb->s_remove_count); 150 151 inode->__i_nlink = nlink; 152 } 153 } 154 EXPORT_SYMBOL(set_nlink); 155 156 /* from include/linux/fs.h */ 157 static inline void i_uid_write(struct inode *inode, uid_t uid) 158 { 159 inode->i_uid.val = uid; 160 } 161 162 static inline void i_gid_write(struct inode *inode, gid_t gid) 163 { 164 inode->i_gid.val = gid; 165 } 166 167 void unlock_new_inode(struct inode *inode) 168 { 169 return; 170 } 171 #endif 172 173 /* 174 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 175 * allocating too much. 176 */ 177 #define UBIFS_KMALLOC_OK (128*1024) 178 179 /* Slab cache for UBIFS inodes */ 180 struct kmem_cache *ubifs_inode_slab; 181 182 #ifndef __UBOOT__ 183 /* UBIFS TNC shrinker description */ 184 static struct shrinker ubifs_shrinker_info = { 185 .scan_objects = ubifs_shrink_scan, 186 .count_objects = ubifs_shrink_count, 187 .seeks = DEFAULT_SEEKS, 188 }; 189 #endif 190 191 /** 192 * validate_inode - validate inode. 193 * @c: UBIFS file-system description object 194 * @inode: the inode to validate 195 * 196 * This is a helper function for 'ubifs_iget()' which validates various fields 197 * of a newly built inode to make sure they contain sane values and prevent 198 * possible vulnerabilities. Returns zero if the inode is all right and 199 * a non-zero error code if not. 200 */ 201 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 202 { 203 int err; 204 const struct ubifs_inode *ui = ubifs_inode(inode); 205 206 if (inode->i_size > c->max_inode_sz) { 207 ubifs_err("inode is too large (%lld)", 208 (long long)inode->i_size); 209 return 1; 210 } 211 212 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 213 ubifs_err("unknown compression type %d", ui->compr_type); 214 return 2; 215 } 216 217 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 218 return 3; 219 220 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 221 return 4; 222 223 if (ui->xattr && !S_ISREG(inode->i_mode)) 224 return 5; 225 226 if (!ubifs_compr_present(ui->compr_type)) { 227 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in", 228 inode->i_ino, ubifs_compr_name(ui->compr_type)); 229 } 230 231 err = dbg_check_dir(c, inode); 232 return err; 233 } 234 235 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 236 { 237 int err; 238 union ubifs_key key; 239 struct ubifs_ino_node *ino; 240 struct ubifs_info *c = sb->s_fs_info; 241 struct inode *inode; 242 struct ubifs_inode *ui; 243 #ifdef __UBOOT__ 244 int i; 245 #endif 246 247 dbg_gen("inode %lu", inum); 248 249 #ifdef __UBOOT__ 250 /* 251 * U-Boot special handling of locked down inodes via recovery 252 * e.g. ubifs_recover_size() 253 */ 254 for (i = 0; i < INODE_LOCKED_MAX; i++) { 255 /* 256 * Exit on last entry (NULL), inode not found in list 257 */ 258 if (inodes_locked_down[i] == NULL) 259 break; 260 261 if (inodes_locked_down[i]->i_ino == inum) { 262 /* 263 * We found the locked down inode in our array, 264 * so just return this pointer instead of creating 265 * a new one. 266 */ 267 return inodes_locked_down[i]; 268 } 269 } 270 #endif 271 272 inode = iget_locked(sb, inum); 273 if (!inode) 274 return ERR_PTR(-ENOMEM); 275 if (!(inode->i_state & I_NEW)) 276 return inode; 277 ui = ubifs_inode(inode); 278 279 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 280 if (!ino) { 281 err = -ENOMEM; 282 goto out; 283 } 284 285 ino_key_init(c, &key, inode->i_ino); 286 287 err = ubifs_tnc_lookup(c, &key, ino); 288 if (err) 289 goto out_ino; 290 291 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 292 set_nlink(inode, le32_to_cpu(ino->nlink)); 293 i_uid_write(inode, le32_to_cpu(ino->uid)); 294 i_gid_write(inode, le32_to_cpu(ino->gid)); 295 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 296 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 297 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 298 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 299 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 300 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 301 inode->i_mode = le32_to_cpu(ino->mode); 302 inode->i_size = le64_to_cpu(ino->size); 303 304 ui->data_len = le32_to_cpu(ino->data_len); 305 ui->flags = le32_to_cpu(ino->flags); 306 ui->compr_type = le16_to_cpu(ino->compr_type); 307 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 308 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 309 ui->xattr_size = le32_to_cpu(ino->xattr_size); 310 ui->xattr_names = le32_to_cpu(ino->xattr_names); 311 ui->synced_i_size = ui->ui_size = inode->i_size; 312 313 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 314 315 err = validate_inode(c, inode); 316 if (err) 317 goto out_invalid; 318 319 #ifndef __UBOOT__ 320 /* Disable read-ahead */ 321 inode->i_mapping->backing_dev_info = &c->bdi; 322 323 switch (inode->i_mode & S_IFMT) { 324 case S_IFREG: 325 inode->i_mapping->a_ops = &ubifs_file_address_operations; 326 inode->i_op = &ubifs_file_inode_operations; 327 inode->i_fop = &ubifs_file_operations; 328 if (ui->xattr) { 329 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 330 if (!ui->data) { 331 err = -ENOMEM; 332 goto out_ino; 333 } 334 memcpy(ui->data, ino->data, ui->data_len); 335 ((char *)ui->data)[ui->data_len] = '\0'; 336 } else if (ui->data_len != 0) { 337 err = 10; 338 goto out_invalid; 339 } 340 break; 341 case S_IFDIR: 342 inode->i_op = &ubifs_dir_inode_operations; 343 inode->i_fop = &ubifs_dir_operations; 344 if (ui->data_len != 0) { 345 err = 11; 346 goto out_invalid; 347 } 348 break; 349 case S_IFLNK: 350 inode->i_op = &ubifs_symlink_inode_operations; 351 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 352 err = 12; 353 goto out_invalid; 354 } 355 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 356 if (!ui->data) { 357 err = -ENOMEM; 358 goto out_ino; 359 } 360 memcpy(ui->data, ino->data, ui->data_len); 361 ((char *)ui->data)[ui->data_len] = '\0'; 362 break; 363 case S_IFBLK: 364 case S_IFCHR: 365 { 366 dev_t rdev; 367 union ubifs_dev_desc *dev; 368 369 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 370 if (!ui->data) { 371 err = -ENOMEM; 372 goto out_ino; 373 } 374 375 dev = (union ubifs_dev_desc *)ino->data; 376 if (ui->data_len == sizeof(dev->new)) 377 rdev = new_decode_dev(le32_to_cpu(dev->new)); 378 else if (ui->data_len == sizeof(dev->huge)) 379 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 380 else { 381 err = 13; 382 goto out_invalid; 383 } 384 memcpy(ui->data, ino->data, ui->data_len); 385 inode->i_op = &ubifs_file_inode_operations; 386 init_special_inode(inode, inode->i_mode, rdev); 387 break; 388 } 389 case S_IFSOCK: 390 case S_IFIFO: 391 inode->i_op = &ubifs_file_inode_operations; 392 init_special_inode(inode, inode->i_mode, 0); 393 if (ui->data_len != 0) { 394 err = 14; 395 goto out_invalid; 396 } 397 break; 398 default: 399 err = 15; 400 goto out_invalid; 401 } 402 #else 403 if ((inode->i_mode & S_IFMT) == S_IFLNK) { 404 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 405 err = 12; 406 goto out_invalid; 407 } 408 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 409 if (!ui->data) { 410 err = -ENOMEM; 411 goto out_ino; 412 } 413 memcpy(ui->data, ino->data, ui->data_len); 414 ((char *)ui->data)[ui->data_len] = '\0'; 415 } 416 #endif 417 418 kfree(ino); 419 #ifndef __UBOOT__ 420 ubifs_set_inode_flags(inode); 421 #endif 422 unlock_new_inode(inode); 423 return inode; 424 425 out_invalid: 426 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 427 ubifs_dump_node(c, ino); 428 ubifs_dump_inode(c, inode); 429 err = -EINVAL; 430 out_ino: 431 kfree(ino); 432 out: 433 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 434 iget_failed(inode); 435 return ERR_PTR(err); 436 } 437 438 static struct inode *ubifs_alloc_inode(struct super_block *sb) 439 { 440 struct ubifs_inode *ui; 441 442 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 443 if (!ui) 444 return NULL; 445 446 memset((void *)ui + sizeof(struct inode), 0, 447 sizeof(struct ubifs_inode) - sizeof(struct inode)); 448 mutex_init(&ui->ui_mutex); 449 spin_lock_init(&ui->ui_lock); 450 return &ui->vfs_inode; 451 }; 452 453 #ifndef __UBOOT__ 454 static void ubifs_i_callback(struct rcu_head *head) 455 { 456 struct inode *inode = container_of(head, struct inode, i_rcu); 457 struct ubifs_inode *ui = ubifs_inode(inode); 458 kmem_cache_free(ubifs_inode_slab, ui); 459 } 460 461 static void ubifs_destroy_inode(struct inode *inode) 462 { 463 struct ubifs_inode *ui = ubifs_inode(inode); 464 465 kfree(ui->data); 466 call_rcu(&inode->i_rcu, ubifs_i_callback); 467 } 468 469 /* 470 * Note, Linux write-back code calls this without 'i_mutex'. 471 */ 472 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 473 { 474 int err = 0; 475 struct ubifs_info *c = inode->i_sb->s_fs_info; 476 struct ubifs_inode *ui = ubifs_inode(inode); 477 478 ubifs_assert(!ui->xattr); 479 if (is_bad_inode(inode)) 480 return 0; 481 482 mutex_lock(&ui->ui_mutex); 483 /* 484 * Due to races between write-back forced by budgeting 485 * (see 'sync_some_inodes()') and background write-back, the inode may 486 * have already been synchronized, do not do this again. This might 487 * also happen if it was synchronized in an VFS operation, e.g. 488 * 'ubifs_link()'. 489 */ 490 if (!ui->dirty) { 491 mutex_unlock(&ui->ui_mutex); 492 return 0; 493 } 494 495 /* 496 * As an optimization, do not write orphan inodes to the media just 497 * because this is not needed. 498 */ 499 dbg_gen("inode %lu, mode %#x, nlink %u", 500 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 501 if (inode->i_nlink) { 502 err = ubifs_jnl_write_inode(c, inode); 503 if (err) 504 ubifs_err("can't write inode %lu, error %d", 505 inode->i_ino, err); 506 else 507 err = dbg_check_inode_size(c, inode, ui->ui_size); 508 } 509 510 ui->dirty = 0; 511 mutex_unlock(&ui->ui_mutex); 512 ubifs_release_dirty_inode_budget(c, ui); 513 return err; 514 } 515 516 static void ubifs_evict_inode(struct inode *inode) 517 { 518 int err; 519 struct ubifs_info *c = inode->i_sb->s_fs_info; 520 struct ubifs_inode *ui = ubifs_inode(inode); 521 522 if (ui->xattr) 523 /* 524 * Extended attribute inode deletions are fully handled in 525 * 'ubifs_removexattr()'. These inodes are special and have 526 * limited usage, so there is nothing to do here. 527 */ 528 goto out; 529 530 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 531 ubifs_assert(!atomic_read(&inode->i_count)); 532 533 truncate_inode_pages_final(&inode->i_data); 534 535 if (inode->i_nlink) 536 goto done; 537 538 if (is_bad_inode(inode)) 539 goto out; 540 541 ui->ui_size = inode->i_size = 0; 542 err = ubifs_jnl_delete_inode(c, inode); 543 if (err) 544 /* 545 * Worst case we have a lost orphan inode wasting space, so a 546 * simple error message is OK here. 547 */ 548 ubifs_err("can't delete inode %lu, error %d", 549 inode->i_ino, err); 550 551 out: 552 if (ui->dirty) 553 ubifs_release_dirty_inode_budget(c, ui); 554 else { 555 /* We've deleted something - clean the "no space" flags */ 556 c->bi.nospace = c->bi.nospace_rp = 0; 557 smp_wmb(); 558 } 559 done: 560 clear_inode(inode); 561 } 562 #endif 563 564 static void ubifs_dirty_inode(struct inode *inode, int flags) 565 { 566 struct ubifs_inode *ui = ubifs_inode(inode); 567 568 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 569 if (!ui->dirty) { 570 ui->dirty = 1; 571 dbg_gen("inode %lu", inode->i_ino); 572 } 573 } 574 575 #ifndef __UBOOT__ 576 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 577 { 578 struct ubifs_info *c = dentry->d_sb->s_fs_info; 579 unsigned long long free; 580 __le32 *uuid = (__le32 *)c->uuid; 581 582 free = ubifs_get_free_space(c); 583 dbg_gen("free space %lld bytes (%lld blocks)", 584 free, free >> UBIFS_BLOCK_SHIFT); 585 586 buf->f_type = UBIFS_SUPER_MAGIC; 587 buf->f_bsize = UBIFS_BLOCK_SIZE; 588 buf->f_blocks = c->block_cnt; 589 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 590 if (free > c->report_rp_size) 591 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 592 else 593 buf->f_bavail = 0; 594 buf->f_files = 0; 595 buf->f_ffree = 0; 596 buf->f_namelen = UBIFS_MAX_NLEN; 597 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 598 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 599 ubifs_assert(buf->f_bfree <= c->block_cnt); 600 return 0; 601 } 602 603 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 604 { 605 struct ubifs_info *c = root->d_sb->s_fs_info; 606 607 if (c->mount_opts.unmount_mode == 2) 608 seq_printf(s, ",fast_unmount"); 609 else if (c->mount_opts.unmount_mode == 1) 610 seq_printf(s, ",norm_unmount"); 611 612 if (c->mount_opts.bulk_read == 2) 613 seq_printf(s, ",bulk_read"); 614 else if (c->mount_opts.bulk_read == 1) 615 seq_printf(s, ",no_bulk_read"); 616 617 if (c->mount_opts.chk_data_crc == 2) 618 seq_printf(s, ",chk_data_crc"); 619 else if (c->mount_opts.chk_data_crc == 1) 620 seq_printf(s, ",no_chk_data_crc"); 621 622 if (c->mount_opts.override_compr) { 623 seq_printf(s, ",compr=%s", 624 ubifs_compr_name(c->mount_opts.compr_type)); 625 } 626 627 return 0; 628 } 629 630 static int ubifs_sync_fs(struct super_block *sb, int wait) 631 { 632 int i, err; 633 struct ubifs_info *c = sb->s_fs_info; 634 635 /* 636 * Zero @wait is just an advisory thing to help the file system shove 637 * lots of data into the queues, and there will be the second 638 * '->sync_fs()' call, with non-zero @wait. 639 */ 640 if (!wait) 641 return 0; 642 643 /* 644 * Synchronize write buffers, because 'ubifs_run_commit()' does not 645 * do this if it waits for an already running commit. 646 */ 647 for (i = 0; i < c->jhead_cnt; i++) { 648 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 649 if (err) 650 return err; 651 } 652 653 /* 654 * Strictly speaking, it is not necessary to commit the journal here, 655 * synchronizing write-buffers would be enough. But committing makes 656 * UBIFS free space predictions much more accurate, so we want to let 657 * the user be able to get more accurate results of 'statfs()' after 658 * they synchronize the file system. 659 */ 660 err = ubifs_run_commit(c); 661 if (err) 662 return err; 663 664 return ubi_sync(c->vi.ubi_num); 665 } 666 #endif 667 668 /** 669 * init_constants_early - initialize UBIFS constants. 670 * @c: UBIFS file-system description object 671 * 672 * This function initialize UBIFS constants which do not need the superblock to 673 * be read. It also checks that the UBI volume satisfies basic UBIFS 674 * requirements. Returns zero in case of success and a negative error code in 675 * case of failure. 676 */ 677 static int init_constants_early(struct ubifs_info *c) 678 { 679 if (c->vi.corrupted) { 680 ubifs_warn("UBI volume is corrupted - read-only mode"); 681 c->ro_media = 1; 682 } 683 684 if (c->di.ro_mode) { 685 ubifs_msg("read-only UBI device"); 686 c->ro_media = 1; 687 } 688 689 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 690 ubifs_msg("static UBI volume - read-only mode"); 691 c->ro_media = 1; 692 } 693 694 c->leb_cnt = c->vi.size; 695 c->leb_size = c->vi.usable_leb_size; 696 c->leb_start = c->di.leb_start; 697 c->half_leb_size = c->leb_size / 2; 698 c->min_io_size = c->di.min_io_size; 699 c->min_io_shift = fls(c->min_io_size) - 1; 700 c->max_write_size = c->di.max_write_size; 701 c->max_write_shift = fls(c->max_write_size) - 1; 702 703 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 704 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 705 c->leb_size, UBIFS_MIN_LEB_SZ); 706 return -EINVAL; 707 } 708 709 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 710 ubifs_err("too few LEBs (%d), min. is %d", 711 c->leb_cnt, UBIFS_MIN_LEB_CNT); 712 return -EINVAL; 713 } 714 715 if (!is_power_of_2(c->min_io_size)) { 716 ubifs_err("bad min. I/O size %d", c->min_io_size); 717 return -EINVAL; 718 } 719 720 /* 721 * Maximum write size has to be greater or equivalent to min. I/O 722 * size, and be multiple of min. I/O size. 723 */ 724 if (c->max_write_size < c->min_io_size || 725 c->max_write_size % c->min_io_size || 726 !is_power_of_2(c->max_write_size)) { 727 ubifs_err("bad write buffer size %d for %d min. I/O unit", 728 c->max_write_size, c->min_io_size); 729 return -EINVAL; 730 } 731 732 /* 733 * UBIFS aligns all node to 8-byte boundary, so to make function in 734 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 735 * less than 8. 736 */ 737 if (c->min_io_size < 8) { 738 c->min_io_size = 8; 739 c->min_io_shift = 3; 740 if (c->max_write_size < c->min_io_size) { 741 c->max_write_size = c->min_io_size; 742 c->max_write_shift = c->min_io_shift; 743 } 744 } 745 746 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 747 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 748 749 /* 750 * Initialize node length ranges which are mostly needed for node 751 * length validation. 752 */ 753 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 754 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 755 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 756 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 757 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 758 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 759 760 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 761 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 762 c->ranges[UBIFS_ORPH_NODE].min_len = 763 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 764 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 765 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 766 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 767 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 768 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 769 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 770 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 771 /* 772 * Minimum indexing node size is amended later when superblock is 773 * read and the key length is known. 774 */ 775 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 776 /* 777 * Maximum indexing node size is amended later when superblock is 778 * read and the fanout is known. 779 */ 780 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 781 782 /* 783 * Initialize dead and dark LEB space watermarks. See gc.c for comments 784 * about these values. 785 */ 786 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 787 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 788 789 /* 790 * Calculate how many bytes would be wasted at the end of LEB if it was 791 * fully filled with data nodes of maximum size. This is used in 792 * calculations when reporting free space. 793 */ 794 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 795 796 /* Buffer size for bulk-reads */ 797 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 798 if (c->max_bu_buf_len > c->leb_size) 799 c->max_bu_buf_len = c->leb_size; 800 return 0; 801 } 802 803 /** 804 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 805 * @c: UBIFS file-system description object 806 * @lnum: LEB the write-buffer was synchronized to 807 * @free: how many free bytes left in this LEB 808 * @pad: how many bytes were padded 809 * 810 * This is a callback function which is called by the I/O unit when the 811 * write-buffer is synchronized. We need this to correctly maintain space 812 * accounting in bud logical eraseblocks. This function returns zero in case of 813 * success and a negative error code in case of failure. 814 * 815 * This function actually belongs to the journal, but we keep it here because 816 * we want to keep it static. 817 */ 818 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 819 { 820 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 821 } 822 823 /* 824 * init_constants_sb - initialize UBIFS constants. 825 * @c: UBIFS file-system description object 826 * 827 * This is a helper function which initializes various UBIFS constants after 828 * the superblock has been read. It also checks various UBIFS parameters and 829 * makes sure they are all right. Returns zero in case of success and a 830 * negative error code in case of failure. 831 */ 832 static int init_constants_sb(struct ubifs_info *c) 833 { 834 int tmp, err; 835 long long tmp64; 836 837 c->main_bytes = (long long)c->main_lebs * c->leb_size; 838 c->max_znode_sz = sizeof(struct ubifs_znode) + 839 c->fanout * sizeof(struct ubifs_zbranch); 840 841 tmp = ubifs_idx_node_sz(c, 1); 842 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 843 c->min_idx_node_sz = ALIGN(tmp, 8); 844 845 tmp = ubifs_idx_node_sz(c, c->fanout); 846 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 847 c->max_idx_node_sz = ALIGN(tmp, 8); 848 849 /* Make sure LEB size is large enough to fit full commit */ 850 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 851 tmp = ALIGN(tmp, c->min_io_size); 852 if (tmp > c->leb_size) { 853 ubifs_err("too small LEB size %d, at least %d needed", 854 c->leb_size, tmp); 855 return -EINVAL; 856 } 857 858 /* 859 * Make sure that the log is large enough to fit reference nodes for 860 * all buds plus one reserved LEB. 861 */ 862 tmp64 = c->max_bud_bytes + c->leb_size - 1; 863 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 864 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 865 tmp /= c->leb_size; 866 tmp += 1; 867 if (c->log_lebs < tmp) { 868 ubifs_err("too small log %d LEBs, required min. %d LEBs", 869 c->log_lebs, tmp); 870 return -EINVAL; 871 } 872 873 /* 874 * When budgeting we assume worst-case scenarios when the pages are not 875 * be compressed and direntries are of the maximum size. 876 * 877 * Note, data, which may be stored in inodes is budgeted separately, so 878 * it is not included into 'c->bi.inode_budget'. 879 */ 880 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 881 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 882 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 883 884 /* 885 * When the amount of flash space used by buds becomes 886 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 887 * The writers are unblocked when the commit is finished. To avoid 888 * writers to be blocked UBIFS initiates background commit in advance, 889 * when number of bud bytes becomes above the limit defined below. 890 */ 891 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 892 893 /* 894 * Ensure minimum journal size. All the bytes in the journal heads are 895 * considered to be used, when calculating the current journal usage. 896 * Consequently, if the journal is too small, UBIFS will treat it as 897 * always full. 898 */ 899 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 900 if (c->bg_bud_bytes < tmp64) 901 c->bg_bud_bytes = tmp64; 902 if (c->max_bud_bytes < tmp64 + c->leb_size) 903 c->max_bud_bytes = tmp64 + c->leb_size; 904 905 err = ubifs_calc_lpt_geom(c); 906 if (err) 907 return err; 908 909 /* Initialize effective LEB size used in budgeting calculations */ 910 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 911 return 0; 912 } 913 914 /* 915 * init_constants_master - initialize UBIFS constants. 916 * @c: UBIFS file-system description object 917 * 918 * This is a helper function which initializes various UBIFS constants after 919 * the master node has been read. It also checks various UBIFS parameters and 920 * makes sure they are all right. 921 */ 922 static void init_constants_master(struct ubifs_info *c) 923 { 924 long long tmp64; 925 926 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 927 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 928 929 /* 930 * Calculate total amount of FS blocks. This number is not used 931 * internally because it does not make much sense for UBIFS, but it is 932 * necessary to report something for the 'statfs()' call. 933 * 934 * Subtract the LEB reserved for GC, the LEB which is reserved for 935 * deletions, minimum LEBs for the index, and assume only one journal 936 * head is available. 937 */ 938 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 939 tmp64 *= (long long)c->leb_size - c->leb_overhead; 940 tmp64 = ubifs_reported_space(c, tmp64); 941 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 942 } 943 944 /** 945 * take_gc_lnum - reserve GC LEB. 946 * @c: UBIFS file-system description object 947 * 948 * This function ensures that the LEB reserved for garbage collection is marked 949 * as "taken" in lprops. We also have to set free space to LEB size and dirty 950 * space to zero, because lprops may contain out-of-date information if the 951 * file-system was un-mounted before it has been committed. This function 952 * returns zero in case of success and a negative error code in case of 953 * failure. 954 */ 955 static int take_gc_lnum(struct ubifs_info *c) 956 { 957 int err; 958 959 if (c->gc_lnum == -1) { 960 ubifs_err("no LEB for GC"); 961 return -EINVAL; 962 } 963 964 /* And we have to tell lprops that this LEB is taken */ 965 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 966 LPROPS_TAKEN, 0, 0); 967 return err; 968 } 969 970 /** 971 * alloc_wbufs - allocate write-buffers. 972 * @c: UBIFS file-system description object 973 * 974 * This helper function allocates and initializes UBIFS write-buffers. Returns 975 * zero in case of success and %-ENOMEM in case of failure. 976 */ 977 static int alloc_wbufs(struct ubifs_info *c) 978 { 979 int i, err; 980 981 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 982 GFP_KERNEL); 983 if (!c->jheads) 984 return -ENOMEM; 985 986 /* Initialize journal heads */ 987 for (i = 0; i < c->jhead_cnt; i++) { 988 INIT_LIST_HEAD(&c->jheads[i].buds_list); 989 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 990 if (err) 991 return err; 992 993 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 994 c->jheads[i].wbuf.jhead = i; 995 c->jheads[i].grouped = 1; 996 } 997 998 /* 999 * Garbage Collector head does not need to be synchronized by timer. 1000 * Also GC head nodes are not grouped. 1001 */ 1002 c->jheads[GCHD].wbuf.no_timer = 1; 1003 c->jheads[GCHD].grouped = 0; 1004 1005 return 0; 1006 } 1007 1008 /** 1009 * free_wbufs - free write-buffers. 1010 * @c: UBIFS file-system description object 1011 */ 1012 static void free_wbufs(struct ubifs_info *c) 1013 { 1014 int i; 1015 1016 if (c->jheads) { 1017 for (i = 0; i < c->jhead_cnt; i++) { 1018 kfree(c->jheads[i].wbuf.buf); 1019 kfree(c->jheads[i].wbuf.inodes); 1020 } 1021 kfree(c->jheads); 1022 c->jheads = NULL; 1023 } 1024 } 1025 1026 /** 1027 * free_orphans - free orphans. 1028 * @c: UBIFS file-system description object 1029 */ 1030 static void free_orphans(struct ubifs_info *c) 1031 { 1032 struct ubifs_orphan *orph; 1033 1034 while (c->orph_dnext) { 1035 orph = c->orph_dnext; 1036 c->orph_dnext = orph->dnext; 1037 list_del(&orph->list); 1038 kfree(orph); 1039 } 1040 1041 while (!list_empty(&c->orph_list)) { 1042 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 1043 list_del(&orph->list); 1044 kfree(orph); 1045 ubifs_err("orphan list not empty at unmount"); 1046 } 1047 1048 vfree(c->orph_buf); 1049 c->orph_buf = NULL; 1050 } 1051 1052 #ifndef __UBOOT__ 1053 /** 1054 * free_buds - free per-bud objects. 1055 * @c: UBIFS file-system description object 1056 */ 1057 static void free_buds(struct ubifs_info *c) 1058 { 1059 struct ubifs_bud *bud, *n; 1060 1061 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 1062 kfree(bud); 1063 } 1064 #endif 1065 1066 /** 1067 * check_volume_empty - check if the UBI volume is empty. 1068 * @c: UBIFS file-system description object 1069 * 1070 * This function checks if the UBIFS volume is empty by looking if its LEBs are 1071 * mapped or not. The result of checking is stored in the @c->empty variable. 1072 * Returns zero in case of success and a negative error code in case of 1073 * failure. 1074 */ 1075 static int check_volume_empty(struct ubifs_info *c) 1076 { 1077 int lnum, err; 1078 1079 c->empty = 1; 1080 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 1081 err = ubifs_is_mapped(c, lnum); 1082 if (unlikely(err < 0)) 1083 return err; 1084 if (err == 1) { 1085 c->empty = 0; 1086 break; 1087 } 1088 1089 cond_resched(); 1090 } 1091 1092 return 0; 1093 } 1094 1095 /* 1096 * UBIFS mount options. 1097 * 1098 * Opt_fast_unmount: do not run a journal commit before un-mounting 1099 * Opt_norm_unmount: run a journal commit before un-mounting 1100 * Opt_bulk_read: enable bulk-reads 1101 * Opt_no_bulk_read: disable bulk-reads 1102 * Opt_chk_data_crc: check CRCs when reading data nodes 1103 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 1104 * Opt_override_compr: override default compressor 1105 * Opt_err: just end of array marker 1106 */ 1107 enum { 1108 Opt_fast_unmount, 1109 Opt_norm_unmount, 1110 Opt_bulk_read, 1111 Opt_no_bulk_read, 1112 Opt_chk_data_crc, 1113 Opt_no_chk_data_crc, 1114 Opt_override_compr, 1115 Opt_err, 1116 }; 1117 1118 #ifndef __UBOOT__ 1119 static const match_table_t tokens = { 1120 {Opt_fast_unmount, "fast_unmount"}, 1121 {Opt_norm_unmount, "norm_unmount"}, 1122 {Opt_bulk_read, "bulk_read"}, 1123 {Opt_no_bulk_read, "no_bulk_read"}, 1124 {Opt_chk_data_crc, "chk_data_crc"}, 1125 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 1126 {Opt_override_compr, "compr=%s"}, 1127 {Opt_err, NULL}, 1128 }; 1129 1130 /** 1131 * parse_standard_option - parse a standard mount option. 1132 * @option: the option to parse 1133 * 1134 * Normally, standard mount options like "sync" are passed to file-systems as 1135 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 1136 * be present in the options string. This function tries to deal with this 1137 * situation and parse standard options. Returns 0 if the option was not 1138 * recognized, and the corresponding integer flag if it was. 1139 * 1140 * UBIFS is only interested in the "sync" option, so do not check for anything 1141 * else. 1142 */ 1143 static int parse_standard_option(const char *option) 1144 { 1145 ubifs_msg("parse %s", option); 1146 if (!strcmp(option, "sync")) 1147 return MS_SYNCHRONOUS; 1148 return 0; 1149 } 1150 1151 /** 1152 * ubifs_parse_options - parse mount parameters. 1153 * @c: UBIFS file-system description object 1154 * @options: parameters to parse 1155 * @is_remount: non-zero if this is FS re-mount 1156 * 1157 * This function parses UBIFS mount options and returns zero in case success 1158 * and a negative error code in case of failure. 1159 */ 1160 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1161 int is_remount) 1162 { 1163 char *p; 1164 substring_t args[MAX_OPT_ARGS]; 1165 1166 if (!options) 1167 return 0; 1168 1169 while ((p = strsep(&options, ","))) { 1170 int token; 1171 1172 if (!*p) 1173 continue; 1174 1175 token = match_token(p, tokens, args); 1176 switch (token) { 1177 /* 1178 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1179 * We accept them in order to be backward-compatible. But this 1180 * should be removed at some point. 1181 */ 1182 case Opt_fast_unmount: 1183 c->mount_opts.unmount_mode = 2; 1184 break; 1185 case Opt_norm_unmount: 1186 c->mount_opts.unmount_mode = 1; 1187 break; 1188 case Opt_bulk_read: 1189 c->mount_opts.bulk_read = 2; 1190 c->bulk_read = 1; 1191 break; 1192 case Opt_no_bulk_read: 1193 c->mount_opts.bulk_read = 1; 1194 c->bulk_read = 0; 1195 break; 1196 case Opt_chk_data_crc: 1197 c->mount_opts.chk_data_crc = 2; 1198 c->no_chk_data_crc = 0; 1199 break; 1200 case Opt_no_chk_data_crc: 1201 c->mount_opts.chk_data_crc = 1; 1202 c->no_chk_data_crc = 1; 1203 break; 1204 case Opt_override_compr: 1205 { 1206 char *name = match_strdup(&args[0]); 1207 1208 if (!name) 1209 return -ENOMEM; 1210 if (!strcmp(name, "none")) 1211 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1212 else if (!strcmp(name, "lzo")) 1213 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1214 else if (!strcmp(name, "zlib")) 1215 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1216 else { 1217 ubifs_err("unknown compressor \"%s\"", name); 1218 kfree(name); 1219 return -EINVAL; 1220 } 1221 kfree(name); 1222 c->mount_opts.override_compr = 1; 1223 c->default_compr = c->mount_opts.compr_type; 1224 break; 1225 } 1226 default: 1227 { 1228 unsigned long flag; 1229 struct super_block *sb = c->vfs_sb; 1230 1231 flag = parse_standard_option(p); 1232 if (!flag) { 1233 ubifs_err("unrecognized mount option \"%s\" or missing value", 1234 p); 1235 return -EINVAL; 1236 } 1237 sb->s_flags |= flag; 1238 break; 1239 } 1240 } 1241 } 1242 1243 return 0; 1244 } 1245 1246 /** 1247 * destroy_journal - destroy journal data structures. 1248 * @c: UBIFS file-system description object 1249 * 1250 * This function destroys journal data structures including those that may have 1251 * been created by recovery functions. 1252 */ 1253 static void destroy_journal(struct ubifs_info *c) 1254 { 1255 while (!list_empty(&c->unclean_leb_list)) { 1256 struct ubifs_unclean_leb *ucleb; 1257 1258 ucleb = list_entry(c->unclean_leb_list.next, 1259 struct ubifs_unclean_leb, list); 1260 list_del(&ucleb->list); 1261 kfree(ucleb); 1262 } 1263 while (!list_empty(&c->old_buds)) { 1264 struct ubifs_bud *bud; 1265 1266 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1267 list_del(&bud->list); 1268 kfree(bud); 1269 } 1270 ubifs_destroy_idx_gc(c); 1271 ubifs_destroy_size_tree(c); 1272 ubifs_tnc_close(c); 1273 free_buds(c); 1274 } 1275 #endif 1276 1277 /** 1278 * bu_init - initialize bulk-read information. 1279 * @c: UBIFS file-system description object 1280 */ 1281 static void bu_init(struct ubifs_info *c) 1282 { 1283 ubifs_assert(c->bulk_read == 1); 1284 1285 if (c->bu.buf) 1286 return; /* Already initialized */ 1287 1288 again: 1289 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1290 if (!c->bu.buf) { 1291 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1292 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1293 goto again; 1294 } 1295 1296 /* Just disable bulk-read */ 1297 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it", 1298 c->max_bu_buf_len); 1299 c->mount_opts.bulk_read = 1; 1300 c->bulk_read = 0; 1301 return; 1302 } 1303 } 1304 1305 #ifndef __UBOOT__ 1306 /** 1307 * check_free_space - check if there is enough free space to mount. 1308 * @c: UBIFS file-system description object 1309 * 1310 * This function makes sure UBIFS has enough free space to be mounted in 1311 * read/write mode. UBIFS must always have some free space to allow deletions. 1312 */ 1313 static int check_free_space(struct ubifs_info *c) 1314 { 1315 ubifs_assert(c->dark_wm > 0); 1316 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1317 ubifs_err("insufficient free space to mount in R/W mode"); 1318 ubifs_dump_budg(c, &c->bi); 1319 ubifs_dump_lprops(c); 1320 return -ENOSPC; 1321 } 1322 return 0; 1323 } 1324 #endif 1325 1326 /** 1327 * mount_ubifs - mount UBIFS file-system. 1328 * @c: UBIFS file-system description object 1329 * 1330 * This function mounts UBIFS file system. Returns zero in case of success and 1331 * a negative error code in case of failure. 1332 */ 1333 static int mount_ubifs(struct ubifs_info *c) 1334 { 1335 int err; 1336 long long x, y; 1337 size_t sz; 1338 1339 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1340 #ifdef __UBOOT__ 1341 if (!c->ro_mount) { 1342 printf("UBIFS: only ro mode in U-Boot allowed.\n"); 1343 return -EACCES; 1344 } 1345 #endif 1346 1347 err = init_constants_early(c); 1348 if (err) 1349 return err; 1350 1351 err = ubifs_debugging_init(c); 1352 if (err) 1353 return err; 1354 1355 err = check_volume_empty(c); 1356 if (err) 1357 goto out_free; 1358 1359 if (c->empty && (c->ro_mount || c->ro_media)) { 1360 /* 1361 * This UBI volume is empty, and read-only, or the file system 1362 * is mounted read-only - we cannot format it. 1363 */ 1364 ubifs_err("can't format empty UBI volume: read-only %s", 1365 c->ro_media ? "UBI volume" : "mount"); 1366 err = -EROFS; 1367 goto out_free; 1368 } 1369 1370 if (c->ro_media && !c->ro_mount) { 1371 ubifs_err("cannot mount read-write - read-only media"); 1372 err = -EROFS; 1373 goto out_free; 1374 } 1375 1376 /* 1377 * The requirement for the buffer is that it should fit indexing B-tree 1378 * height amount of integers. We assume the height if the TNC tree will 1379 * never exceed 64. 1380 */ 1381 err = -ENOMEM; 1382 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1383 if (!c->bottom_up_buf) 1384 goto out_free; 1385 1386 c->sbuf = vmalloc(c->leb_size); 1387 if (!c->sbuf) 1388 goto out_free; 1389 1390 #ifndef __UBOOT__ 1391 if (!c->ro_mount) { 1392 c->ileb_buf = vmalloc(c->leb_size); 1393 if (!c->ileb_buf) 1394 goto out_free; 1395 } 1396 #endif 1397 1398 if (c->bulk_read == 1) 1399 bu_init(c); 1400 1401 #ifndef __UBOOT__ 1402 if (!c->ro_mount) { 1403 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1404 GFP_KERNEL); 1405 if (!c->write_reserve_buf) 1406 goto out_free; 1407 } 1408 #endif 1409 1410 c->mounting = 1; 1411 1412 err = ubifs_read_superblock(c); 1413 if (err) 1414 goto out_free; 1415 1416 /* 1417 * Make sure the compressor which is set as default in the superblock 1418 * or overridden by mount options is actually compiled in. 1419 */ 1420 if (!ubifs_compr_present(c->default_compr)) { 1421 ubifs_err("'compressor \"%s\" is not compiled in", 1422 ubifs_compr_name(c->default_compr)); 1423 err = -ENOTSUPP; 1424 goto out_free; 1425 } 1426 1427 err = init_constants_sb(c); 1428 if (err) 1429 goto out_free; 1430 1431 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1432 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1433 c->cbuf = kmalloc(sz, GFP_NOFS); 1434 if (!c->cbuf) { 1435 err = -ENOMEM; 1436 goto out_free; 1437 } 1438 1439 err = alloc_wbufs(c); 1440 if (err) 1441 goto out_cbuf; 1442 1443 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1444 #ifndef __UBOOT__ 1445 if (!c->ro_mount) { 1446 /* Create background thread */ 1447 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1448 if (IS_ERR(c->bgt)) { 1449 err = PTR_ERR(c->bgt); 1450 c->bgt = NULL; 1451 ubifs_err("cannot spawn \"%s\", error %d", 1452 c->bgt_name, err); 1453 goto out_wbufs; 1454 } 1455 wake_up_process(c->bgt); 1456 } 1457 #endif 1458 1459 err = ubifs_read_master(c); 1460 if (err) 1461 goto out_master; 1462 1463 init_constants_master(c); 1464 1465 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1466 ubifs_msg("recovery needed"); 1467 c->need_recovery = 1; 1468 } 1469 1470 #ifndef __UBOOT__ 1471 if (c->need_recovery && !c->ro_mount) { 1472 err = ubifs_recover_inl_heads(c, c->sbuf); 1473 if (err) 1474 goto out_master; 1475 } 1476 #endif 1477 1478 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1479 if (err) 1480 goto out_master; 1481 1482 #ifndef __UBOOT__ 1483 if (!c->ro_mount && c->space_fixup) { 1484 err = ubifs_fixup_free_space(c); 1485 if (err) 1486 goto out_lpt; 1487 } 1488 1489 if (!c->ro_mount) { 1490 /* 1491 * Set the "dirty" flag so that if we reboot uncleanly we 1492 * will notice this immediately on the next mount. 1493 */ 1494 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1495 err = ubifs_write_master(c); 1496 if (err) 1497 goto out_lpt; 1498 } 1499 #endif 1500 1501 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1502 if (err) 1503 goto out_lpt; 1504 1505 #ifndef __UBOOT__ 1506 err = ubifs_replay_journal(c); 1507 if (err) 1508 goto out_journal; 1509 #endif 1510 1511 /* Calculate 'min_idx_lebs' after journal replay */ 1512 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1513 1514 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1515 if (err) 1516 goto out_orphans; 1517 1518 if (!c->ro_mount) { 1519 #ifndef __UBOOT__ 1520 int lnum; 1521 1522 err = check_free_space(c); 1523 if (err) 1524 goto out_orphans; 1525 1526 /* Check for enough log space */ 1527 lnum = c->lhead_lnum + 1; 1528 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1529 lnum = UBIFS_LOG_LNUM; 1530 if (lnum == c->ltail_lnum) { 1531 err = ubifs_consolidate_log(c); 1532 if (err) 1533 goto out_orphans; 1534 } 1535 1536 if (c->need_recovery) { 1537 err = ubifs_recover_size(c); 1538 if (err) 1539 goto out_orphans; 1540 err = ubifs_rcvry_gc_commit(c); 1541 if (err) 1542 goto out_orphans; 1543 } else { 1544 err = take_gc_lnum(c); 1545 if (err) 1546 goto out_orphans; 1547 1548 /* 1549 * GC LEB may contain garbage if there was an unclean 1550 * reboot, and it should be un-mapped. 1551 */ 1552 err = ubifs_leb_unmap(c, c->gc_lnum); 1553 if (err) 1554 goto out_orphans; 1555 } 1556 1557 err = dbg_check_lprops(c); 1558 if (err) 1559 goto out_orphans; 1560 #endif 1561 } else if (c->need_recovery) { 1562 err = ubifs_recover_size(c); 1563 if (err) 1564 goto out_orphans; 1565 } else { 1566 /* 1567 * Even if we mount read-only, we have to set space in GC LEB 1568 * to proper value because this affects UBIFS free space 1569 * reporting. We do not want to have a situation when 1570 * re-mounting from R/O to R/W changes amount of free space. 1571 */ 1572 err = take_gc_lnum(c); 1573 if (err) 1574 goto out_orphans; 1575 } 1576 1577 #ifndef __UBOOT__ 1578 spin_lock(&ubifs_infos_lock); 1579 list_add_tail(&c->infos_list, &ubifs_infos); 1580 spin_unlock(&ubifs_infos_lock); 1581 #endif 1582 1583 if (c->need_recovery) { 1584 if (c->ro_mount) 1585 ubifs_msg("recovery deferred"); 1586 else { 1587 c->need_recovery = 0; 1588 ubifs_msg("recovery completed"); 1589 /* 1590 * GC LEB has to be empty and taken at this point. But 1591 * the journal head LEBs may also be accounted as 1592 * "empty taken" if they are empty. 1593 */ 1594 ubifs_assert(c->lst.taken_empty_lebs > 0); 1595 } 1596 } else 1597 ubifs_assert(c->lst.taken_empty_lebs > 0); 1598 1599 err = dbg_check_filesystem(c); 1600 if (err) 1601 goto out_infos; 1602 1603 err = dbg_debugfs_init_fs(c); 1604 if (err) 1605 goto out_infos; 1606 1607 c->mounting = 0; 1608 1609 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s", 1610 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1611 c->ro_mount ? ", R/O mode" : ""); 1612 x = (long long)c->main_lebs * c->leb_size; 1613 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1614 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1615 c->leb_size, c->leb_size >> 10, c->min_io_size, 1616 c->max_write_size); 1617 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1618 x, x >> 20, c->main_lebs, 1619 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1620 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1621 c->report_rp_size, c->report_rp_size >> 10); 1622 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1623 c->fmt_version, c->ro_compat_version, 1624 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1625 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1626 1627 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1628 dbg_gen("data journal heads: %d", 1629 c->jhead_cnt - NONDATA_JHEADS_CNT); 1630 dbg_gen("log LEBs: %d (%d - %d)", 1631 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1632 dbg_gen("LPT area LEBs: %d (%d - %d)", 1633 c->lpt_lebs, c->lpt_first, c->lpt_last); 1634 dbg_gen("orphan area LEBs: %d (%d - %d)", 1635 c->orph_lebs, c->orph_first, c->orph_last); 1636 dbg_gen("main area LEBs: %d (%d - %d)", 1637 c->main_lebs, c->main_first, c->leb_cnt - 1); 1638 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1639 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1640 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1641 c->bi.old_idx_sz >> 20); 1642 dbg_gen("key hash type: %d", c->key_hash_type); 1643 dbg_gen("tree fanout: %d", c->fanout); 1644 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1645 dbg_gen("max. znode size %d", c->max_znode_sz); 1646 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1647 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1648 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1649 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1650 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1651 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1652 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1653 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1654 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1655 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1656 dbg_gen("dead watermark: %d", c->dead_wm); 1657 dbg_gen("dark watermark: %d", c->dark_wm); 1658 dbg_gen("LEB overhead: %d", c->leb_overhead); 1659 x = (long long)c->main_lebs * c->dark_wm; 1660 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1661 x, x >> 10, x >> 20); 1662 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1663 c->max_bud_bytes, c->max_bud_bytes >> 10, 1664 c->max_bud_bytes >> 20); 1665 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1666 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1667 c->bg_bud_bytes >> 20); 1668 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1669 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1670 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1671 dbg_gen("commit number: %llu", c->cmt_no); 1672 1673 return 0; 1674 1675 out_infos: 1676 spin_lock(&ubifs_infos_lock); 1677 list_del(&c->infos_list); 1678 spin_unlock(&ubifs_infos_lock); 1679 out_orphans: 1680 free_orphans(c); 1681 #ifndef __UBOOT__ 1682 out_journal: 1683 destroy_journal(c); 1684 #endif 1685 out_lpt: 1686 ubifs_lpt_free(c, 0); 1687 out_master: 1688 kfree(c->mst_node); 1689 kfree(c->rcvrd_mst_node); 1690 if (c->bgt) 1691 kthread_stop(c->bgt); 1692 #ifndef __UBOOT__ 1693 out_wbufs: 1694 #endif 1695 free_wbufs(c); 1696 out_cbuf: 1697 kfree(c->cbuf); 1698 out_free: 1699 kfree(c->write_reserve_buf); 1700 kfree(c->bu.buf); 1701 vfree(c->ileb_buf); 1702 vfree(c->sbuf); 1703 kfree(c->bottom_up_buf); 1704 ubifs_debugging_exit(c); 1705 return err; 1706 } 1707 1708 /** 1709 * ubifs_umount - un-mount UBIFS file-system. 1710 * @c: UBIFS file-system description object 1711 * 1712 * Note, this function is called to free allocated resourced when un-mounting, 1713 * as well as free resources when an error occurred while we were half way 1714 * through mounting (error path cleanup function). So it has to make sure the 1715 * resource was actually allocated before freeing it. 1716 */ 1717 #ifndef __UBOOT__ 1718 static void ubifs_umount(struct ubifs_info *c) 1719 #else 1720 void ubifs_umount(struct ubifs_info *c) 1721 #endif 1722 { 1723 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1724 c->vi.vol_id); 1725 1726 dbg_debugfs_exit_fs(c); 1727 spin_lock(&ubifs_infos_lock); 1728 list_del(&c->infos_list); 1729 spin_unlock(&ubifs_infos_lock); 1730 1731 #ifndef __UBOOT__ 1732 if (c->bgt) 1733 kthread_stop(c->bgt); 1734 1735 destroy_journal(c); 1736 #endif 1737 free_wbufs(c); 1738 free_orphans(c); 1739 ubifs_lpt_free(c, 0); 1740 1741 kfree(c->cbuf); 1742 kfree(c->rcvrd_mst_node); 1743 kfree(c->mst_node); 1744 kfree(c->write_reserve_buf); 1745 kfree(c->bu.buf); 1746 vfree(c->ileb_buf); 1747 vfree(c->sbuf); 1748 kfree(c->bottom_up_buf); 1749 ubifs_debugging_exit(c); 1750 #ifdef __UBOOT__ 1751 /* Finally free U-Boot's global copy of superblock */ 1752 if (ubifs_sb != NULL) { 1753 free(ubifs_sb->s_fs_info); 1754 free(ubifs_sb); 1755 } 1756 #endif 1757 } 1758 1759 #ifndef __UBOOT__ 1760 /** 1761 * ubifs_remount_rw - re-mount in read-write mode. 1762 * @c: UBIFS file-system description object 1763 * 1764 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1765 * mode. This function allocates the needed resources and re-mounts UBIFS in 1766 * read-write mode. 1767 */ 1768 static int ubifs_remount_rw(struct ubifs_info *c) 1769 { 1770 int err, lnum; 1771 1772 if (c->rw_incompat) { 1773 ubifs_err("the file-system is not R/W-compatible"); 1774 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1775 c->fmt_version, c->ro_compat_version, 1776 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1777 return -EROFS; 1778 } 1779 1780 mutex_lock(&c->umount_mutex); 1781 dbg_save_space_info(c); 1782 c->remounting_rw = 1; 1783 c->ro_mount = 0; 1784 1785 if (c->space_fixup) { 1786 err = ubifs_fixup_free_space(c); 1787 if (err) 1788 goto out; 1789 } 1790 1791 err = check_free_space(c); 1792 if (err) 1793 goto out; 1794 1795 if (c->old_leb_cnt != c->leb_cnt) { 1796 struct ubifs_sb_node *sup; 1797 1798 sup = ubifs_read_sb_node(c); 1799 if (IS_ERR(sup)) { 1800 err = PTR_ERR(sup); 1801 goto out; 1802 } 1803 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1804 err = ubifs_write_sb_node(c, sup); 1805 kfree(sup); 1806 if (err) 1807 goto out; 1808 } 1809 1810 if (c->need_recovery) { 1811 ubifs_msg("completing deferred recovery"); 1812 err = ubifs_write_rcvrd_mst_node(c); 1813 if (err) 1814 goto out; 1815 err = ubifs_recover_size(c); 1816 if (err) 1817 goto out; 1818 err = ubifs_clean_lebs(c, c->sbuf); 1819 if (err) 1820 goto out; 1821 err = ubifs_recover_inl_heads(c, c->sbuf); 1822 if (err) 1823 goto out; 1824 } else { 1825 /* A readonly mount is not allowed to have orphans */ 1826 ubifs_assert(c->tot_orphans == 0); 1827 err = ubifs_clear_orphans(c); 1828 if (err) 1829 goto out; 1830 } 1831 1832 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1833 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1834 err = ubifs_write_master(c); 1835 if (err) 1836 goto out; 1837 } 1838 1839 c->ileb_buf = vmalloc(c->leb_size); 1840 if (!c->ileb_buf) { 1841 err = -ENOMEM; 1842 goto out; 1843 } 1844 1845 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1846 if (!c->write_reserve_buf) { 1847 err = -ENOMEM; 1848 goto out; 1849 } 1850 1851 err = ubifs_lpt_init(c, 0, 1); 1852 if (err) 1853 goto out; 1854 1855 /* Create background thread */ 1856 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1857 if (IS_ERR(c->bgt)) { 1858 err = PTR_ERR(c->bgt); 1859 c->bgt = NULL; 1860 ubifs_err("cannot spawn \"%s\", error %d", 1861 c->bgt_name, err); 1862 goto out; 1863 } 1864 wake_up_process(c->bgt); 1865 1866 c->orph_buf = vmalloc(c->leb_size); 1867 if (!c->orph_buf) { 1868 err = -ENOMEM; 1869 goto out; 1870 } 1871 1872 /* Check for enough log space */ 1873 lnum = c->lhead_lnum + 1; 1874 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1875 lnum = UBIFS_LOG_LNUM; 1876 if (lnum == c->ltail_lnum) { 1877 err = ubifs_consolidate_log(c); 1878 if (err) 1879 goto out; 1880 } 1881 1882 if (c->need_recovery) 1883 err = ubifs_rcvry_gc_commit(c); 1884 else 1885 err = ubifs_leb_unmap(c, c->gc_lnum); 1886 if (err) 1887 goto out; 1888 1889 dbg_gen("re-mounted read-write"); 1890 c->remounting_rw = 0; 1891 1892 if (c->need_recovery) { 1893 c->need_recovery = 0; 1894 ubifs_msg("deferred recovery completed"); 1895 } else { 1896 /* 1897 * Do not run the debugging space check if the were doing 1898 * recovery, because when we saved the information we had the 1899 * file-system in a state where the TNC and lprops has been 1900 * modified in memory, but all the I/O operations (including a 1901 * commit) were deferred. So the file-system was in 1902 * "non-committed" state. Now the file-system is in committed 1903 * state, and of course the amount of free space will change 1904 * because, for example, the old index size was imprecise. 1905 */ 1906 err = dbg_check_space_info(c); 1907 } 1908 1909 mutex_unlock(&c->umount_mutex); 1910 return err; 1911 1912 out: 1913 c->ro_mount = 1; 1914 vfree(c->orph_buf); 1915 c->orph_buf = NULL; 1916 if (c->bgt) { 1917 kthread_stop(c->bgt); 1918 c->bgt = NULL; 1919 } 1920 free_wbufs(c); 1921 kfree(c->write_reserve_buf); 1922 c->write_reserve_buf = NULL; 1923 vfree(c->ileb_buf); 1924 c->ileb_buf = NULL; 1925 ubifs_lpt_free(c, 1); 1926 c->remounting_rw = 0; 1927 mutex_unlock(&c->umount_mutex); 1928 return err; 1929 } 1930 1931 /** 1932 * ubifs_remount_ro - re-mount in read-only mode. 1933 * @c: UBIFS file-system description object 1934 * 1935 * We assume VFS has stopped writing. Possibly the background thread could be 1936 * running a commit, however kthread_stop will wait in that case. 1937 */ 1938 static void ubifs_remount_ro(struct ubifs_info *c) 1939 { 1940 int i, err; 1941 1942 ubifs_assert(!c->need_recovery); 1943 ubifs_assert(!c->ro_mount); 1944 1945 mutex_lock(&c->umount_mutex); 1946 if (c->bgt) { 1947 kthread_stop(c->bgt); 1948 c->bgt = NULL; 1949 } 1950 1951 dbg_save_space_info(c); 1952 1953 for (i = 0; i < c->jhead_cnt; i++) 1954 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1955 1956 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1957 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1958 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1959 err = ubifs_write_master(c); 1960 if (err) 1961 ubifs_ro_mode(c, err); 1962 1963 vfree(c->orph_buf); 1964 c->orph_buf = NULL; 1965 kfree(c->write_reserve_buf); 1966 c->write_reserve_buf = NULL; 1967 vfree(c->ileb_buf); 1968 c->ileb_buf = NULL; 1969 ubifs_lpt_free(c, 1); 1970 c->ro_mount = 1; 1971 err = dbg_check_space_info(c); 1972 if (err) 1973 ubifs_ro_mode(c, err); 1974 mutex_unlock(&c->umount_mutex); 1975 } 1976 1977 static void ubifs_put_super(struct super_block *sb) 1978 { 1979 int i; 1980 struct ubifs_info *c = sb->s_fs_info; 1981 1982 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1983 c->vi.vol_id); 1984 1985 /* 1986 * The following asserts are only valid if there has not been a failure 1987 * of the media. For example, there will be dirty inodes if we failed 1988 * to write them back because of I/O errors. 1989 */ 1990 if (!c->ro_error) { 1991 ubifs_assert(c->bi.idx_growth == 0); 1992 ubifs_assert(c->bi.dd_growth == 0); 1993 ubifs_assert(c->bi.data_growth == 0); 1994 } 1995 1996 /* 1997 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1998 * and file system un-mount. Namely, it prevents the shrinker from 1999 * picking this superblock for shrinking - it will be just skipped if 2000 * the mutex is locked. 2001 */ 2002 mutex_lock(&c->umount_mutex); 2003 if (!c->ro_mount) { 2004 /* 2005 * First of all kill the background thread to make sure it does 2006 * not interfere with un-mounting and freeing resources. 2007 */ 2008 if (c->bgt) { 2009 kthread_stop(c->bgt); 2010 c->bgt = NULL; 2011 } 2012 2013 /* 2014 * On fatal errors c->ro_error is set to 1, in which case we do 2015 * not write the master node. 2016 */ 2017 if (!c->ro_error) { 2018 int err; 2019 2020 /* Synchronize write-buffers */ 2021 for (i = 0; i < c->jhead_cnt; i++) 2022 ubifs_wbuf_sync(&c->jheads[i].wbuf); 2023 2024 /* 2025 * We are being cleanly unmounted which means the 2026 * orphans were killed - indicate this in the master 2027 * node. Also save the reserved GC LEB number. 2028 */ 2029 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 2030 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 2031 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 2032 err = ubifs_write_master(c); 2033 if (err) 2034 /* 2035 * Recovery will attempt to fix the master area 2036 * next mount, so we just print a message and 2037 * continue to unmount normally. 2038 */ 2039 ubifs_err("failed to write master node, error %d", 2040 err); 2041 } else { 2042 #ifndef __UBOOT__ 2043 for (i = 0; i < c->jhead_cnt; i++) 2044 /* Make sure write-buffer timers are canceled */ 2045 hrtimer_cancel(&c->jheads[i].wbuf.timer); 2046 #endif 2047 } 2048 } 2049 2050 ubifs_umount(c); 2051 #ifndef __UBOOT__ 2052 bdi_destroy(&c->bdi); 2053 #endif 2054 ubi_close_volume(c->ubi); 2055 mutex_unlock(&c->umount_mutex); 2056 } 2057 #endif 2058 2059 #ifndef __UBOOT__ 2060 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 2061 { 2062 int err; 2063 struct ubifs_info *c = sb->s_fs_info; 2064 2065 sync_filesystem(sb); 2066 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 2067 2068 err = ubifs_parse_options(c, data, 1); 2069 if (err) { 2070 ubifs_err("invalid or unknown remount parameter"); 2071 return err; 2072 } 2073 2074 if (c->ro_mount && !(*flags & MS_RDONLY)) { 2075 if (c->ro_error) { 2076 ubifs_msg("cannot re-mount R/W due to prior errors"); 2077 return -EROFS; 2078 } 2079 if (c->ro_media) { 2080 ubifs_msg("cannot re-mount R/W - UBI volume is R/O"); 2081 return -EROFS; 2082 } 2083 err = ubifs_remount_rw(c); 2084 if (err) 2085 return err; 2086 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 2087 if (c->ro_error) { 2088 ubifs_msg("cannot re-mount R/O due to prior errors"); 2089 return -EROFS; 2090 } 2091 ubifs_remount_ro(c); 2092 } 2093 2094 if (c->bulk_read == 1) 2095 bu_init(c); 2096 else { 2097 dbg_gen("disable bulk-read"); 2098 kfree(c->bu.buf); 2099 c->bu.buf = NULL; 2100 } 2101 2102 ubifs_assert(c->lst.taken_empty_lebs > 0); 2103 return 0; 2104 } 2105 #endif 2106 2107 const struct super_operations ubifs_super_operations = { 2108 .alloc_inode = ubifs_alloc_inode, 2109 #ifndef __UBOOT__ 2110 .destroy_inode = ubifs_destroy_inode, 2111 .put_super = ubifs_put_super, 2112 .write_inode = ubifs_write_inode, 2113 .evict_inode = ubifs_evict_inode, 2114 .statfs = ubifs_statfs, 2115 #endif 2116 .dirty_inode = ubifs_dirty_inode, 2117 #ifndef __UBOOT__ 2118 .remount_fs = ubifs_remount_fs, 2119 .show_options = ubifs_show_options, 2120 .sync_fs = ubifs_sync_fs, 2121 #endif 2122 }; 2123 2124 /** 2125 * open_ubi - parse UBI device name string and open the UBI device. 2126 * @name: UBI volume name 2127 * @mode: UBI volume open mode 2128 * 2129 * The primary method of mounting UBIFS is by specifying the UBI volume 2130 * character device node path. However, UBIFS may also be mounted withoug any 2131 * character device node using one of the following methods: 2132 * 2133 * o ubiX_Y - mount UBI device number X, volume Y; 2134 * o ubiY - mount UBI device number 0, volume Y; 2135 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2136 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2137 * 2138 * Alternative '!' separator may be used instead of ':' (because some shells 2139 * like busybox may interpret ':' as an NFS host name separator). This function 2140 * returns UBI volume description object in case of success and a negative 2141 * error code in case of failure. 2142 */ 2143 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2144 { 2145 #ifndef __UBOOT__ 2146 struct ubi_volume_desc *ubi; 2147 #endif 2148 int dev, vol; 2149 char *endptr; 2150 2151 #ifndef __UBOOT__ 2152 /* First, try to open using the device node path method */ 2153 ubi = ubi_open_volume_path(name, mode); 2154 if (!IS_ERR(ubi)) 2155 return ubi; 2156 #endif 2157 2158 /* Try the "nodev" method */ 2159 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2160 return ERR_PTR(-EINVAL); 2161 2162 /* ubi:NAME method */ 2163 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2164 return ubi_open_volume_nm(0, name + 4, mode); 2165 2166 if (!isdigit(name[3])) 2167 return ERR_PTR(-EINVAL); 2168 2169 dev = simple_strtoul(name + 3, &endptr, 0); 2170 2171 /* ubiY method */ 2172 if (*endptr == '\0') 2173 return ubi_open_volume(0, dev, mode); 2174 2175 /* ubiX_Y method */ 2176 if (*endptr == '_' && isdigit(endptr[1])) { 2177 vol = simple_strtoul(endptr + 1, &endptr, 0); 2178 if (*endptr != '\0') 2179 return ERR_PTR(-EINVAL); 2180 return ubi_open_volume(dev, vol, mode); 2181 } 2182 2183 /* ubiX:NAME method */ 2184 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2185 return ubi_open_volume_nm(dev, ++endptr, mode); 2186 2187 return ERR_PTR(-EINVAL); 2188 } 2189 2190 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2191 { 2192 struct ubifs_info *c; 2193 2194 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2195 if (c) { 2196 spin_lock_init(&c->cnt_lock); 2197 spin_lock_init(&c->cs_lock); 2198 spin_lock_init(&c->buds_lock); 2199 spin_lock_init(&c->space_lock); 2200 spin_lock_init(&c->orphan_lock); 2201 init_rwsem(&c->commit_sem); 2202 mutex_init(&c->lp_mutex); 2203 mutex_init(&c->tnc_mutex); 2204 mutex_init(&c->log_mutex); 2205 mutex_init(&c->mst_mutex); 2206 mutex_init(&c->umount_mutex); 2207 mutex_init(&c->bu_mutex); 2208 mutex_init(&c->write_reserve_mutex); 2209 init_waitqueue_head(&c->cmt_wq); 2210 c->buds = RB_ROOT; 2211 c->old_idx = RB_ROOT; 2212 c->size_tree = RB_ROOT; 2213 c->orph_tree = RB_ROOT; 2214 INIT_LIST_HEAD(&c->infos_list); 2215 INIT_LIST_HEAD(&c->idx_gc); 2216 INIT_LIST_HEAD(&c->replay_list); 2217 INIT_LIST_HEAD(&c->replay_buds); 2218 INIT_LIST_HEAD(&c->uncat_list); 2219 INIT_LIST_HEAD(&c->empty_list); 2220 INIT_LIST_HEAD(&c->freeable_list); 2221 INIT_LIST_HEAD(&c->frdi_idx_list); 2222 INIT_LIST_HEAD(&c->unclean_leb_list); 2223 INIT_LIST_HEAD(&c->old_buds); 2224 INIT_LIST_HEAD(&c->orph_list); 2225 INIT_LIST_HEAD(&c->orph_new); 2226 c->no_chk_data_crc = 1; 2227 2228 c->highest_inum = UBIFS_FIRST_INO; 2229 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2230 2231 ubi_get_volume_info(ubi, &c->vi); 2232 ubi_get_device_info(c->vi.ubi_num, &c->di); 2233 } 2234 return c; 2235 } 2236 2237 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2238 { 2239 struct ubifs_info *c = sb->s_fs_info; 2240 struct inode *root; 2241 int err; 2242 2243 c->vfs_sb = sb; 2244 #ifndef __UBOOT__ 2245 /* Re-open the UBI device in read-write mode */ 2246 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2247 #else 2248 /* U-Boot read only mode */ 2249 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY); 2250 #endif 2251 2252 if (IS_ERR(c->ubi)) { 2253 err = PTR_ERR(c->ubi); 2254 goto out; 2255 } 2256 2257 #ifndef __UBOOT__ 2258 /* 2259 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2260 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2261 * which means the user would have to wait not just for their own I/O 2262 * but the read-ahead I/O as well i.e. completely pointless. 2263 * 2264 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2265 */ 2266 co>bdi.name = "ubifs", 2267 c->bdi.capabilities = BDI_CAP_MAP_COPY; 2268 err = bdi_init(&c->bdi); 2269 if (err) 2270 goto out_close; 2271 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2272 c->vi.ubi_num, c->vi.vol_id); 2273 if (err) 2274 goto out_bdi; 2275 2276 err = ubifs_parse_options(c, data, 0); 2277 if (err) 2278 goto out_bdi; 2279 2280 sb->s_bdi = &c->bdi; 2281 #endif 2282 sb->s_fs_info = c; 2283 sb->s_magic = UBIFS_SUPER_MAGIC; 2284 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2285 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2286 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2287 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2288 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2289 sb->s_op = &ubifs_super_operations; 2290 2291 mutex_lock(&c->umount_mutex); 2292 err = mount_ubifs(c); 2293 if (err) { 2294 ubifs_assert(err < 0); 2295 goto out_unlock; 2296 } 2297 2298 /* Read the root inode */ 2299 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2300 if (IS_ERR(root)) { 2301 err = PTR_ERR(root); 2302 goto out_umount; 2303 } 2304 2305 #ifndef __UBOOT__ 2306 sb->s_root = d_make_root(root); 2307 if (!sb->s_root) { 2308 err = -ENOMEM; 2309 goto out_umount; 2310 } 2311 #else 2312 sb->s_root = NULL; 2313 #endif 2314 2315 mutex_unlock(&c->umount_mutex); 2316 return 0; 2317 2318 out_umount: 2319 ubifs_umount(c); 2320 out_unlock: 2321 mutex_unlock(&c->umount_mutex); 2322 #ifndef __UBOOT__ 2323 out_bdi: 2324 bdi_destroy(&c->bdi); 2325 out_close: 2326 #endif 2327 ubi_close_volume(c->ubi); 2328 out: 2329 return err; 2330 } 2331 2332 static int sb_test(struct super_block *sb, void *data) 2333 { 2334 struct ubifs_info *c1 = data; 2335 struct ubifs_info *c = sb->s_fs_info; 2336 2337 return c->vi.cdev == c1->vi.cdev; 2338 } 2339 2340 static int sb_set(struct super_block *sb, void *data) 2341 { 2342 sb->s_fs_info = data; 2343 return set_anon_super(sb, NULL); 2344 } 2345 2346 static struct super_block *alloc_super(struct file_system_type *type, int flags) 2347 { 2348 struct super_block *s; 2349 int err; 2350 2351 s = kzalloc(sizeof(struct super_block), GFP_USER); 2352 if (!s) { 2353 err = -ENOMEM; 2354 return ERR_PTR(err); 2355 } 2356 2357 INIT_HLIST_NODE(&s->s_instances); 2358 INIT_LIST_HEAD(&s->s_inodes); 2359 s->s_time_gran = 1000000000; 2360 s->s_flags = flags; 2361 2362 return s; 2363 } 2364 2365 /** 2366 * sget - find or create a superblock 2367 * @type: filesystem type superblock should belong to 2368 * @test: comparison callback 2369 * @set: setup callback 2370 * @flags: mount flags 2371 * @data: argument to each of them 2372 */ 2373 struct super_block *sget(struct file_system_type *type, 2374 int (*test)(struct super_block *,void *), 2375 int (*set)(struct super_block *,void *), 2376 int flags, 2377 void *data) 2378 { 2379 struct super_block *s = NULL; 2380 #ifndef __UBOOT__ 2381 struct super_block *old; 2382 #endif 2383 int err; 2384 2385 #ifndef __UBOOT__ 2386 retry: 2387 spin_lock(&sb_lock); 2388 if (test) { 2389 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 2390 if (!test(old, data)) 2391 continue; 2392 if (!grab_super(old)) 2393 goto retry; 2394 if (s) { 2395 up_write(&s->s_umount); 2396 destroy_super(s); 2397 s = NULL; 2398 } 2399 return old; 2400 } 2401 } 2402 #endif 2403 if (!s) { 2404 spin_unlock(&sb_lock); 2405 s = alloc_super(type, flags); 2406 if (!s) 2407 return ERR_PTR(-ENOMEM); 2408 #ifndef __UBOOT__ 2409 goto retry; 2410 #endif 2411 } 2412 2413 err = set(s, data); 2414 if (err) { 2415 #ifndef __UBOOT__ 2416 spin_unlock(&sb_lock); 2417 up_write(&s->s_umount); 2418 destroy_super(s); 2419 #endif 2420 return ERR_PTR(err); 2421 } 2422 s->s_type = type; 2423 #ifndef __UBOOT__ 2424 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 2425 #else 2426 strncpy(s->s_id, type->name, sizeof(s->s_id)); 2427 #endif 2428 list_add_tail(&s->s_list, &super_blocks); 2429 hlist_add_head(&s->s_instances, &type->fs_supers); 2430 #ifndef __UBOOT__ 2431 spin_unlock(&sb_lock); 2432 get_filesystem(type); 2433 register_shrinker(&s->s_shrink); 2434 #endif 2435 return s; 2436 } 2437 2438 EXPORT_SYMBOL(sget); 2439 2440 2441 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2442 const char *name, void *data) 2443 { 2444 struct ubi_volume_desc *ubi; 2445 struct ubifs_info *c; 2446 struct super_block *sb; 2447 int err; 2448 2449 dbg_gen("name %s, flags %#x", name, flags); 2450 2451 /* 2452 * Get UBI device number and volume ID. Mount it read-only so far 2453 * because this might be a new mount point, and UBI allows only one 2454 * read-write user at a time. 2455 */ 2456 ubi = open_ubi(name, UBI_READONLY); 2457 if (IS_ERR(ubi)) { 2458 ubifs_err("cannot open \"%s\", error %d", 2459 name, (int)PTR_ERR(ubi)); 2460 return ERR_CAST(ubi); 2461 } 2462 2463 c = alloc_ubifs_info(ubi); 2464 if (!c) { 2465 err = -ENOMEM; 2466 goto out_close; 2467 } 2468 2469 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2470 2471 sb = sget(fs_type, sb_test, sb_set, flags, c); 2472 if (IS_ERR(sb)) { 2473 err = PTR_ERR(sb); 2474 kfree(c); 2475 goto out_close; 2476 } 2477 2478 if (sb->s_root) { 2479 struct ubifs_info *c1 = sb->s_fs_info; 2480 kfree(c); 2481 /* A new mount point for already mounted UBIFS */ 2482 dbg_gen("this ubi volume is already mounted"); 2483 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2484 err = -EBUSY; 2485 goto out_deact; 2486 } 2487 } else { 2488 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2489 if (err) 2490 goto out_deact; 2491 /* We do not support atime */ 2492 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2493 } 2494 2495 /* 'fill_super()' opens ubi again so we must close it here */ 2496 ubi_close_volume(ubi); 2497 2498 #ifdef __UBOOT__ 2499 ubifs_sb = sb; 2500 return 0; 2501 #else 2502 return dget(sb->s_root); 2503 #endif 2504 2505 out_deact: 2506 #ifndef __UBOOT__ 2507 deactivate_locked_super(sb); 2508 #endif 2509 out_close: 2510 ubi_close_volume(ubi); 2511 return ERR_PTR(err); 2512 } 2513 2514 static void kill_ubifs_super(struct super_block *s) 2515 { 2516 struct ubifs_info *c = s->s_fs_info; 2517 #ifndef __UBOOT__ 2518 kill_anon_super(s); 2519 #endif 2520 kfree(c); 2521 } 2522 2523 static struct file_system_type ubifs_fs_type = { 2524 .name = "ubifs", 2525 .owner = THIS_MODULE, 2526 .mount = ubifs_mount, 2527 .kill_sb = kill_ubifs_super, 2528 }; 2529 #ifndef __UBOOT__ 2530 MODULE_ALIAS_FS("ubifs"); 2531 2532 /* 2533 * Inode slab cache constructor. 2534 */ 2535 static void inode_slab_ctor(void *obj) 2536 { 2537 struct ubifs_inode *ui = obj; 2538 inode_init_once(&ui->vfs_inode); 2539 } 2540 2541 static int __init ubifs_init(void) 2542 #else 2543 int ubifs_init(void) 2544 #endif 2545 { 2546 int err; 2547 2548 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2549 2550 /* Make sure node sizes are 8-byte aligned */ 2551 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2552 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2553 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2554 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2555 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2556 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2557 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2558 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2559 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2560 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2561 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2562 2563 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2564 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2565 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2566 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2567 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2568 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2569 2570 /* Check min. node size */ 2571 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2572 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2573 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2574 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2575 2576 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2577 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2578 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2579 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2580 2581 /* Defined node sizes */ 2582 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2583 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2584 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2585 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2586 2587 /* 2588 * We use 2 bit wide bit-fields to store compression type, which should 2589 * be amended if more compressors are added. The bit-fields are: 2590 * @compr_type in 'struct ubifs_inode', @default_compr in 2591 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2592 */ 2593 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2594 2595 /* 2596 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2597 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2598 */ 2599 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2600 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2601 (unsigned int)PAGE_CACHE_SIZE); 2602 return -EINVAL; 2603 } 2604 2605 #ifndef __UBOOT__ 2606 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2607 sizeof(struct ubifs_inode), 0, 2608 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2609 &inode_slab_ctor); 2610 if (!ubifs_inode_slab) 2611 return -ENOMEM; 2612 2613 register_shrinker(&ubifs_shrinker_info); 2614 #endif 2615 2616 err = ubifs_compressors_init(); 2617 if (err) 2618 goto out_shrinker; 2619 2620 #ifndef __UBOOT__ 2621 err = dbg_debugfs_init(); 2622 if (err) 2623 goto out_compr; 2624 2625 err = register_filesystem(&ubifs_fs_type); 2626 if (err) { 2627 ubifs_err("cannot register file system, error %d", err); 2628 goto out_dbg; 2629 } 2630 #endif 2631 return 0; 2632 2633 #ifndef __UBOOT__ 2634 out_dbg: 2635 dbg_debugfs_exit(); 2636 out_compr: 2637 ubifs_compressors_exit(); 2638 #endif 2639 out_shrinker: 2640 #ifndef __UBOOT__ 2641 unregister_shrinker(&ubifs_shrinker_info); 2642 #endif 2643 kmem_cache_destroy(ubifs_inode_slab); 2644 return err; 2645 } 2646 /* late_initcall to let compressors initialize first */ 2647 late_initcall(ubifs_init); 2648 2649 #ifndef __UBOOT__ 2650 static void __exit ubifs_exit(void) 2651 { 2652 ubifs_assert(list_empty(&ubifs_infos)); 2653 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2654 2655 dbg_debugfs_exit(); 2656 ubifs_compressors_exit(); 2657 unregister_shrinker(&ubifs_shrinker_info); 2658 2659 /* 2660 * Make sure all delayed rcu free inodes are flushed before we 2661 * destroy cache. 2662 */ 2663 rcu_barrier(); 2664 kmem_cache_destroy(ubifs_inode_slab); 2665 unregister_filesystem(&ubifs_fs_type); 2666 } 2667 module_exit(ubifs_exit); 2668 2669 MODULE_LICENSE("GPL"); 2670 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2671 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2672 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2673 #else 2674 int uboot_ubifs_mount(char *vol_name) 2675 { 2676 struct dentry *ret; 2677 int flags; 2678 2679 /* 2680 * First unmount if allready mounted 2681 */ 2682 if (ubifs_sb) 2683 ubifs_umount(ubifs_sb->s_fs_info); 2684 2685 /* 2686 * Mount in read-only mode 2687 */ 2688 flags = MS_RDONLY; 2689 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL); 2690 if (IS_ERR(ret)) { 2691 printf("Error reading superblock on volume '%s' " \ 2692 "errno=%d!\n", vol_name, (int)PTR_ERR(ret)); 2693 return -1; 2694 } 2695 2696 return 0; 2697 } 2698 #endif 2699