xref: /openbmc/u-boot/fs/ubifs/super.c (revision 679f82c3)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11 
12 /*
13  * This file implements UBIFS initialization and VFS superblock operations. Some
14  * initialization stuff which is rather large and complex is placed at
15  * corresponding subsystems, but most of it is here.
16  */
17 
18 #ifndef __UBOOT__
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/kthread.h>
24 #include <linux/parser.h>
25 #include <linux/seq_file.h>
26 #include <linux/mount.h>
27 #include <linux/math64.h>
28 #include <linux/writeback.h>
29 #else
30 
31 #include <common.h>
32 #include <malloc.h>
33 #include <memalign.h>
34 #include <linux/compat.h>
35 #include <linux/stat.h>
36 #include <linux/err.h>
37 #include "ubifs.h"
38 #include <ubi_uboot.h>
39 #include <mtd/ubi-user.h>
40 
41 struct dentry;
42 struct file;
43 struct iattr;
44 struct kstat;
45 struct vfsmount;
46 
47 #define INODE_LOCKED_MAX	64
48 
49 struct super_block *ubifs_sb;
50 LIST_HEAD(super_blocks);
51 
52 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
53 
54 int set_anon_super(struct super_block *s, void *data)
55 {
56 	return 0;
57 }
58 
59 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
60 {
61 	struct inode *inode;
62 
63 	inode = (struct inode *)malloc_cache_aligned(
64 			sizeof(struct ubifs_inode));
65 	if (inode) {
66 		inode->i_ino = ino;
67 		inode->i_sb = sb;
68 		list_add(&inode->i_sb_list, &sb->s_inodes);
69 		inode->i_state = I_LOCK | I_NEW;
70 	}
71 
72 	return inode;
73 }
74 
75 void iget_failed(struct inode *inode)
76 {
77 }
78 
79 int ubifs_iput(struct inode *inode)
80 {
81 	list_del_init(&inode->i_sb_list);
82 
83 	free(inode);
84 	return 0;
85 }
86 
87 /*
88  * Lock (save) inode in inode array for readback after recovery
89  */
90 void iput(struct inode *inode)
91 {
92 	int i;
93 	struct inode *ino;
94 
95 	/*
96 	 * Search end of list
97 	 */
98 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
99 		if (inodes_locked_down[i] == NULL)
100 			break;
101 	}
102 
103 	if (i >= INODE_LOCKED_MAX) {
104 		ubifs_err("Error, can't lock (save) more inodes while recovery!!!");
105 		return;
106 	}
107 
108 	/*
109 	 * Allocate and use new inode
110 	 */
111 	ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
112 	memcpy(ino, inode, sizeof(struct ubifs_inode));
113 
114 	/*
115 	 * Finally save inode in array
116 	 */
117 	inodes_locked_down[i] = ino;
118 }
119 
120 /* from fs/inode.c */
121 /**
122  * clear_nlink - directly zero an inode's link count
123  * @inode: inode
124  *
125  * This is a low-level filesystem helper to replace any
126  * direct filesystem manipulation of i_nlink.  See
127  * drop_nlink() for why we care about i_nlink hitting zero.
128  */
129 void clear_nlink(struct inode *inode)
130 {
131 	if (inode->i_nlink) {
132 		inode->__i_nlink = 0;
133 		atomic_long_inc(&inode->i_sb->s_remove_count);
134 	}
135 }
136 EXPORT_SYMBOL(clear_nlink);
137 
138 /**
139  * set_nlink - directly set an inode's link count
140  * @inode: inode
141  * @nlink: new nlink (should be non-zero)
142  *
143  * This is a low-level filesystem helper to replace any
144  * direct filesystem manipulation of i_nlink.
145  */
146 void set_nlink(struct inode *inode, unsigned int nlink)
147 {
148 	if (!nlink) {
149 		clear_nlink(inode);
150 	} else {
151 		/* Yes, some filesystems do change nlink from zero to one */
152 		if (inode->i_nlink == 0)
153 			atomic_long_dec(&inode->i_sb->s_remove_count);
154 
155 		inode->__i_nlink = nlink;
156 	}
157 }
158 EXPORT_SYMBOL(set_nlink);
159 
160 /* from include/linux/fs.h */
161 static inline void i_uid_write(struct inode *inode, uid_t uid)
162 {
163 	inode->i_uid.val = uid;
164 }
165 
166 static inline void i_gid_write(struct inode *inode, gid_t gid)
167 {
168 	inode->i_gid.val = gid;
169 }
170 
171 void unlock_new_inode(struct inode *inode)
172 {
173 	return;
174 }
175 #endif
176 
177 /*
178  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
179  * allocating too much.
180  */
181 #define UBIFS_KMALLOC_OK (128*1024)
182 
183 /* Slab cache for UBIFS inodes */
184 struct kmem_cache *ubifs_inode_slab;
185 
186 #ifndef __UBOOT__
187 /* UBIFS TNC shrinker description */
188 static struct shrinker ubifs_shrinker_info = {
189 	.scan_objects = ubifs_shrink_scan,
190 	.count_objects = ubifs_shrink_count,
191 	.seeks = DEFAULT_SEEKS,
192 };
193 #endif
194 
195 /**
196  * validate_inode - validate inode.
197  * @c: UBIFS file-system description object
198  * @inode: the inode to validate
199  *
200  * This is a helper function for 'ubifs_iget()' which validates various fields
201  * of a newly built inode to make sure they contain sane values and prevent
202  * possible vulnerabilities. Returns zero if the inode is all right and
203  * a non-zero error code if not.
204  */
205 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
206 {
207 	int err;
208 	const struct ubifs_inode *ui = ubifs_inode(inode);
209 
210 	if (inode->i_size > c->max_inode_sz) {
211 		ubifs_err("inode is too large (%lld)",
212 			  (long long)inode->i_size);
213 		return 1;
214 	}
215 
216 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
217 		ubifs_err("unknown compression type %d", ui->compr_type);
218 		return 2;
219 	}
220 
221 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
222 		return 3;
223 
224 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
225 		return 4;
226 
227 	if (ui->xattr && !S_ISREG(inode->i_mode))
228 		return 5;
229 
230 	if (!ubifs_compr_present(ui->compr_type)) {
231 		ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
232 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
233 	}
234 
235 	err = dbg_check_dir(c, inode);
236 	return err;
237 }
238 
239 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
240 {
241 	int err;
242 	union ubifs_key key;
243 	struct ubifs_ino_node *ino;
244 	struct ubifs_info *c = sb->s_fs_info;
245 	struct inode *inode;
246 	struct ubifs_inode *ui;
247 #ifdef __UBOOT__
248 	int i;
249 #endif
250 
251 	dbg_gen("inode %lu", inum);
252 
253 #ifdef __UBOOT__
254 	/*
255 	 * U-Boot special handling of locked down inodes via recovery
256 	 * e.g. ubifs_recover_size()
257 	 */
258 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
259 		/*
260 		 * Exit on last entry (NULL), inode not found in list
261 		 */
262 		if (inodes_locked_down[i] == NULL)
263 			break;
264 
265 		if (inodes_locked_down[i]->i_ino == inum) {
266 			/*
267 			 * We found the locked down inode in our array,
268 			 * so just return this pointer instead of creating
269 			 * a new one.
270 			 */
271 			return inodes_locked_down[i];
272 		}
273 	}
274 #endif
275 
276 	inode = iget_locked(sb, inum);
277 	if (!inode)
278 		return ERR_PTR(-ENOMEM);
279 	if (!(inode->i_state & I_NEW))
280 		return inode;
281 	ui = ubifs_inode(inode);
282 
283 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
284 	if (!ino) {
285 		err = -ENOMEM;
286 		goto out;
287 	}
288 
289 	ino_key_init(c, &key, inode->i_ino);
290 
291 	err = ubifs_tnc_lookup(c, &key, ino);
292 	if (err)
293 		goto out_ino;
294 
295 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
296 	set_nlink(inode, le32_to_cpu(ino->nlink));
297 	i_uid_write(inode, le32_to_cpu(ino->uid));
298 	i_gid_write(inode, le32_to_cpu(ino->gid));
299 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
300 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
301 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
302 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
303 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
304 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
305 	inode->i_mode = le32_to_cpu(ino->mode);
306 	inode->i_size = le64_to_cpu(ino->size);
307 
308 	ui->data_len    = le32_to_cpu(ino->data_len);
309 	ui->flags       = le32_to_cpu(ino->flags);
310 	ui->compr_type  = le16_to_cpu(ino->compr_type);
311 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
312 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
313 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
314 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
315 	ui->synced_i_size = ui->ui_size = inode->i_size;
316 
317 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
318 
319 	err = validate_inode(c, inode);
320 	if (err)
321 		goto out_invalid;
322 
323 #ifndef __UBOOT__
324 	/* Disable read-ahead */
325 	inode->i_mapping->backing_dev_info = &c->bdi;
326 
327 	switch (inode->i_mode & S_IFMT) {
328 	case S_IFREG:
329 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
330 		inode->i_op = &ubifs_file_inode_operations;
331 		inode->i_fop = &ubifs_file_operations;
332 		if (ui->xattr) {
333 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
334 			if (!ui->data) {
335 				err = -ENOMEM;
336 				goto out_ino;
337 			}
338 			memcpy(ui->data, ino->data, ui->data_len);
339 			((char *)ui->data)[ui->data_len] = '\0';
340 		} else if (ui->data_len != 0) {
341 			err = 10;
342 			goto out_invalid;
343 		}
344 		break;
345 	case S_IFDIR:
346 		inode->i_op  = &ubifs_dir_inode_operations;
347 		inode->i_fop = &ubifs_dir_operations;
348 		if (ui->data_len != 0) {
349 			err = 11;
350 			goto out_invalid;
351 		}
352 		break;
353 	case S_IFLNK:
354 		inode->i_op = &ubifs_symlink_inode_operations;
355 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
356 			err = 12;
357 			goto out_invalid;
358 		}
359 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
360 		if (!ui->data) {
361 			err = -ENOMEM;
362 			goto out_ino;
363 		}
364 		memcpy(ui->data, ino->data, ui->data_len);
365 		((char *)ui->data)[ui->data_len] = '\0';
366 		break;
367 	case S_IFBLK:
368 	case S_IFCHR:
369 	{
370 		dev_t rdev;
371 		union ubifs_dev_desc *dev;
372 
373 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
374 		if (!ui->data) {
375 			err = -ENOMEM;
376 			goto out_ino;
377 		}
378 
379 		dev = (union ubifs_dev_desc *)ino->data;
380 		if (ui->data_len == sizeof(dev->new))
381 			rdev = new_decode_dev(le32_to_cpu(dev->new));
382 		else if (ui->data_len == sizeof(dev->huge))
383 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
384 		else {
385 			err = 13;
386 			goto out_invalid;
387 		}
388 		memcpy(ui->data, ino->data, ui->data_len);
389 		inode->i_op = &ubifs_file_inode_operations;
390 		init_special_inode(inode, inode->i_mode, rdev);
391 		break;
392 	}
393 	case S_IFSOCK:
394 	case S_IFIFO:
395 		inode->i_op = &ubifs_file_inode_operations;
396 		init_special_inode(inode, inode->i_mode, 0);
397 		if (ui->data_len != 0) {
398 			err = 14;
399 			goto out_invalid;
400 		}
401 		break;
402 	default:
403 		err = 15;
404 		goto out_invalid;
405 	}
406 #else
407 	if ((inode->i_mode & S_IFMT) == S_IFLNK) {
408 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
409 			err = 12;
410 			goto out_invalid;
411 		}
412 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
413 		if (!ui->data) {
414 			err = -ENOMEM;
415 			goto out_ino;
416 		}
417 		memcpy(ui->data, ino->data, ui->data_len);
418 		((char *)ui->data)[ui->data_len] = '\0';
419 	}
420 #endif
421 
422 	kfree(ino);
423 #ifndef __UBOOT__
424 	ubifs_set_inode_flags(inode);
425 #endif
426 	unlock_new_inode(inode);
427 	return inode;
428 
429 out_invalid:
430 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
431 	ubifs_dump_node(c, ino);
432 	ubifs_dump_inode(c, inode);
433 	err = -EINVAL;
434 out_ino:
435 	kfree(ino);
436 out:
437 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
438 	iget_failed(inode);
439 	return ERR_PTR(err);
440 }
441 
442 static struct inode *ubifs_alloc_inode(struct super_block *sb)
443 {
444 	struct ubifs_inode *ui;
445 
446 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
447 	if (!ui)
448 		return NULL;
449 
450 	memset((void *)ui + sizeof(struct inode), 0,
451 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
452 	mutex_init(&ui->ui_mutex);
453 	spin_lock_init(&ui->ui_lock);
454 	return &ui->vfs_inode;
455 };
456 
457 #ifndef __UBOOT__
458 static void ubifs_i_callback(struct rcu_head *head)
459 {
460 	struct inode *inode = container_of(head, struct inode, i_rcu);
461 	struct ubifs_inode *ui = ubifs_inode(inode);
462 	kmem_cache_free(ubifs_inode_slab, ui);
463 }
464 
465 static void ubifs_destroy_inode(struct inode *inode)
466 {
467 	struct ubifs_inode *ui = ubifs_inode(inode);
468 
469 	kfree(ui->data);
470 	call_rcu(&inode->i_rcu, ubifs_i_callback);
471 }
472 
473 /*
474  * Note, Linux write-back code calls this without 'i_mutex'.
475  */
476 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
477 {
478 	int err = 0;
479 	struct ubifs_info *c = inode->i_sb->s_fs_info;
480 	struct ubifs_inode *ui = ubifs_inode(inode);
481 
482 	ubifs_assert(!ui->xattr);
483 	if (is_bad_inode(inode))
484 		return 0;
485 
486 	mutex_lock(&ui->ui_mutex);
487 	/*
488 	 * Due to races between write-back forced by budgeting
489 	 * (see 'sync_some_inodes()') and background write-back, the inode may
490 	 * have already been synchronized, do not do this again. This might
491 	 * also happen if it was synchronized in an VFS operation, e.g.
492 	 * 'ubifs_link()'.
493 	 */
494 	if (!ui->dirty) {
495 		mutex_unlock(&ui->ui_mutex);
496 		return 0;
497 	}
498 
499 	/*
500 	 * As an optimization, do not write orphan inodes to the media just
501 	 * because this is not needed.
502 	 */
503 	dbg_gen("inode %lu, mode %#x, nlink %u",
504 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
505 	if (inode->i_nlink) {
506 		err = ubifs_jnl_write_inode(c, inode);
507 		if (err)
508 			ubifs_err("can't write inode %lu, error %d",
509 				  inode->i_ino, err);
510 		else
511 			err = dbg_check_inode_size(c, inode, ui->ui_size);
512 	}
513 
514 	ui->dirty = 0;
515 	mutex_unlock(&ui->ui_mutex);
516 	ubifs_release_dirty_inode_budget(c, ui);
517 	return err;
518 }
519 
520 static void ubifs_evict_inode(struct inode *inode)
521 {
522 	int err;
523 	struct ubifs_info *c = inode->i_sb->s_fs_info;
524 	struct ubifs_inode *ui = ubifs_inode(inode);
525 
526 	if (ui->xattr)
527 		/*
528 		 * Extended attribute inode deletions are fully handled in
529 		 * 'ubifs_removexattr()'. These inodes are special and have
530 		 * limited usage, so there is nothing to do here.
531 		 */
532 		goto out;
533 
534 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
535 	ubifs_assert(!atomic_read(&inode->i_count));
536 
537 	truncate_inode_pages_final(&inode->i_data);
538 
539 	if (inode->i_nlink)
540 		goto done;
541 
542 	if (is_bad_inode(inode))
543 		goto out;
544 
545 	ui->ui_size = inode->i_size = 0;
546 	err = ubifs_jnl_delete_inode(c, inode);
547 	if (err)
548 		/*
549 		 * Worst case we have a lost orphan inode wasting space, so a
550 		 * simple error message is OK here.
551 		 */
552 		ubifs_err("can't delete inode %lu, error %d",
553 			  inode->i_ino, err);
554 
555 out:
556 	if (ui->dirty)
557 		ubifs_release_dirty_inode_budget(c, ui);
558 	else {
559 		/* We've deleted something - clean the "no space" flags */
560 		c->bi.nospace = c->bi.nospace_rp = 0;
561 		smp_wmb();
562 	}
563 done:
564 	clear_inode(inode);
565 }
566 #endif
567 
568 static void ubifs_dirty_inode(struct inode *inode, int flags)
569 {
570 	struct ubifs_inode *ui = ubifs_inode(inode);
571 
572 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
573 	if (!ui->dirty) {
574 		ui->dirty = 1;
575 		dbg_gen("inode %lu",  inode->i_ino);
576 	}
577 }
578 
579 #ifndef __UBOOT__
580 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
581 {
582 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
583 	unsigned long long free;
584 	__le32 *uuid = (__le32 *)c->uuid;
585 
586 	free = ubifs_get_free_space(c);
587 	dbg_gen("free space %lld bytes (%lld blocks)",
588 		free, free >> UBIFS_BLOCK_SHIFT);
589 
590 	buf->f_type = UBIFS_SUPER_MAGIC;
591 	buf->f_bsize = UBIFS_BLOCK_SIZE;
592 	buf->f_blocks = c->block_cnt;
593 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
594 	if (free > c->report_rp_size)
595 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
596 	else
597 		buf->f_bavail = 0;
598 	buf->f_files = 0;
599 	buf->f_ffree = 0;
600 	buf->f_namelen = UBIFS_MAX_NLEN;
601 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
602 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
603 	ubifs_assert(buf->f_bfree <= c->block_cnt);
604 	return 0;
605 }
606 
607 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
608 {
609 	struct ubifs_info *c = root->d_sb->s_fs_info;
610 
611 	if (c->mount_opts.unmount_mode == 2)
612 		seq_printf(s, ",fast_unmount");
613 	else if (c->mount_opts.unmount_mode == 1)
614 		seq_printf(s, ",norm_unmount");
615 
616 	if (c->mount_opts.bulk_read == 2)
617 		seq_printf(s, ",bulk_read");
618 	else if (c->mount_opts.bulk_read == 1)
619 		seq_printf(s, ",no_bulk_read");
620 
621 	if (c->mount_opts.chk_data_crc == 2)
622 		seq_printf(s, ",chk_data_crc");
623 	else if (c->mount_opts.chk_data_crc == 1)
624 		seq_printf(s, ",no_chk_data_crc");
625 
626 	if (c->mount_opts.override_compr) {
627 		seq_printf(s, ",compr=%s",
628 			   ubifs_compr_name(c->mount_opts.compr_type));
629 	}
630 
631 	return 0;
632 }
633 
634 static int ubifs_sync_fs(struct super_block *sb, int wait)
635 {
636 	int i, err;
637 	struct ubifs_info *c = sb->s_fs_info;
638 
639 	/*
640 	 * Zero @wait is just an advisory thing to help the file system shove
641 	 * lots of data into the queues, and there will be the second
642 	 * '->sync_fs()' call, with non-zero @wait.
643 	 */
644 	if (!wait)
645 		return 0;
646 
647 	/*
648 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
649 	 * do this if it waits for an already running commit.
650 	 */
651 	for (i = 0; i < c->jhead_cnt; i++) {
652 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
653 		if (err)
654 			return err;
655 	}
656 
657 	/*
658 	 * Strictly speaking, it is not necessary to commit the journal here,
659 	 * synchronizing write-buffers would be enough. But committing makes
660 	 * UBIFS free space predictions much more accurate, so we want to let
661 	 * the user be able to get more accurate results of 'statfs()' after
662 	 * they synchronize the file system.
663 	 */
664 	err = ubifs_run_commit(c);
665 	if (err)
666 		return err;
667 
668 	return ubi_sync(c->vi.ubi_num);
669 }
670 #endif
671 
672 /**
673  * init_constants_early - initialize UBIFS constants.
674  * @c: UBIFS file-system description object
675  *
676  * This function initialize UBIFS constants which do not need the superblock to
677  * be read. It also checks that the UBI volume satisfies basic UBIFS
678  * requirements. Returns zero in case of success and a negative error code in
679  * case of failure.
680  */
681 static int init_constants_early(struct ubifs_info *c)
682 {
683 	if (c->vi.corrupted) {
684 		ubifs_warn("UBI volume is corrupted - read-only mode");
685 		c->ro_media = 1;
686 	}
687 
688 	if (c->di.ro_mode) {
689 		ubifs_msg("read-only UBI device");
690 		c->ro_media = 1;
691 	}
692 
693 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
694 		ubifs_msg("static UBI volume - read-only mode");
695 		c->ro_media = 1;
696 	}
697 
698 	c->leb_cnt = c->vi.size;
699 	c->leb_size = c->vi.usable_leb_size;
700 	c->leb_start = c->di.leb_start;
701 	c->half_leb_size = c->leb_size / 2;
702 	c->min_io_size = c->di.min_io_size;
703 	c->min_io_shift = fls(c->min_io_size) - 1;
704 	c->max_write_size = c->di.max_write_size;
705 	c->max_write_shift = fls(c->max_write_size) - 1;
706 
707 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
708 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
709 			  c->leb_size, UBIFS_MIN_LEB_SZ);
710 		return -EINVAL;
711 	}
712 
713 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
714 		ubifs_err("too few LEBs (%d), min. is %d",
715 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
716 		return -EINVAL;
717 	}
718 
719 	if (!is_power_of_2(c->min_io_size)) {
720 		ubifs_err("bad min. I/O size %d", c->min_io_size);
721 		return -EINVAL;
722 	}
723 
724 	/*
725 	 * Maximum write size has to be greater or equivalent to min. I/O
726 	 * size, and be multiple of min. I/O size.
727 	 */
728 	if (c->max_write_size < c->min_io_size ||
729 	    c->max_write_size % c->min_io_size ||
730 	    !is_power_of_2(c->max_write_size)) {
731 		ubifs_err("bad write buffer size %d for %d min. I/O unit",
732 			  c->max_write_size, c->min_io_size);
733 		return -EINVAL;
734 	}
735 
736 	/*
737 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
738 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
739 	 * less than 8.
740 	 */
741 	if (c->min_io_size < 8) {
742 		c->min_io_size = 8;
743 		c->min_io_shift = 3;
744 		if (c->max_write_size < c->min_io_size) {
745 			c->max_write_size = c->min_io_size;
746 			c->max_write_shift = c->min_io_shift;
747 		}
748 	}
749 
750 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
751 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
752 
753 	/*
754 	 * Initialize node length ranges which are mostly needed for node
755 	 * length validation.
756 	 */
757 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
758 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
759 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
760 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
761 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
762 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
763 
764 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
765 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
766 	c->ranges[UBIFS_ORPH_NODE].min_len =
767 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
768 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
769 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
770 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
771 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
772 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
773 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
774 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
775 	/*
776 	 * Minimum indexing node size is amended later when superblock is
777 	 * read and the key length is known.
778 	 */
779 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
780 	/*
781 	 * Maximum indexing node size is amended later when superblock is
782 	 * read and the fanout is known.
783 	 */
784 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
785 
786 	/*
787 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
788 	 * about these values.
789 	 */
790 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
791 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
792 
793 	/*
794 	 * Calculate how many bytes would be wasted at the end of LEB if it was
795 	 * fully filled with data nodes of maximum size. This is used in
796 	 * calculations when reporting free space.
797 	 */
798 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
799 
800 	/* Buffer size for bulk-reads */
801 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
802 	if (c->max_bu_buf_len > c->leb_size)
803 		c->max_bu_buf_len = c->leb_size;
804 	return 0;
805 }
806 
807 /**
808  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
809  * @c: UBIFS file-system description object
810  * @lnum: LEB the write-buffer was synchronized to
811  * @free: how many free bytes left in this LEB
812  * @pad: how many bytes were padded
813  *
814  * This is a callback function which is called by the I/O unit when the
815  * write-buffer is synchronized. We need this to correctly maintain space
816  * accounting in bud logical eraseblocks. This function returns zero in case of
817  * success and a negative error code in case of failure.
818  *
819  * This function actually belongs to the journal, but we keep it here because
820  * we want to keep it static.
821  */
822 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
823 {
824 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
825 }
826 
827 /*
828  * init_constants_sb - initialize UBIFS constants.
829  * @c: UBIFS file-system description object
830  *
831  * This is a helper function which initializes various UBIFS constants after
832  * the superblock has been read. It also checks various UBIFS parameters and
833  * makes sure they are all right. Returns zero in case of success and a
834  * negative error code in case of failure.
835  */
836 static int init_constants_sb(struct ubifs_info *c)
837 {
838 	int tmp, err;
839 	long long tmp64;
840 
841 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
842 	c->max_znode_sz = sizeof(struct ubifs_znode) +
843 				c->fanout * sizeof(struct ubifs_zbranch);
844 
845 	tmp = ubifs_idx_node_sz(c, 1);
846 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
847 	c->min_idx_node_sz = ALIGN(tmp, 8);
848 
849 	tmp = ubifs_idx_node_sz(c, c->fanout);
850 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
851 	c->max_idx_node_sz = ALIGN(tmp, 8);
852 
853 	/* Make sure LEB size is large enough to fit full commit */
854 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
855 	tmp = ALIGN(tmp, c->min_io_size);
856 	if (tmp > c->leb_size) {
857 		ubifs_err("too small LEB size %d, at least %d needed",
858 			  c->leb_size, tmp);
859 		return -EINVAL;
860 	}
861 
862 	/*
863 	 * Make sure that the log is large enough to fit reference nodes for
864 	 * all buds plus one reserved LEB.
865 	 */
866 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
867 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
868 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
869 	tmp /= c->leb_size;
870 	tmp += 1;
871 	if (c->log_lebs < tmp) {
872 		ubifs_err("too small log %d LEBs, required min. %d LEBs",
873 			  c->log_lebs, tmp);
874 		return -EINVAL;
875 	}
876 
877 	/*
878 	 * When budgeting we assume worst-case scenarios when the pages are not
879 	 * be compressed and direntries are of the maximum size.
880 	 *
881 	 * Note, data, which may be stored in inodes is budgeted separately, so
882 	 * it is not included into 'c->bi.inode_budget'.
883 	 */
884 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
885 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
886 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
887 
888 	/*
889 	 * When the amount of flash space used by buds becomes
890 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
891 	 * The writers are unblocked when the commit is finished. To avoid
892 	 * writers to be blocked UBIFS initiates background commit in advance,
893 	 * when number of bud bytes becomes above the limit defined below.
894 	 */
895 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
896 
897 	/*
898 	 * Ensure minimum journal size. All the bytes in the journal heads are
899 	 * considered to be used, when calculating the current journal usage.
900 	 * Consequently, if the journal is too small, UBIFS will treat it as
901 	 * always full.
902 	 */
903 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
904 	if (c->bg_bud_bytes < tmp64)
905 		c->bg_bud_bytes = tmp64;
906 	if (c->max_bud_bytes < tmp64 + c->leb_size)
907 		c->max_bud_bytes = tmp64 + c->leb_size;
908 
909 	err = ubifs_calc_lpt_geom(c);
910 	if (err)
911 		return err;
912 
913 	/* Initialize effective LEB size used in budgeting calculations */
914 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
915 	return 0;
916 }
917 
918 /*
919  * init_constants_master - initialize UBIFS constants.
920  * @c: UBIFS file-system description object
921  *
922  * This is a helper function which initializes various UBIFS constants after
923  * the master node has been read. It also checks various UBIFS parameters and
924  * makes sure they are all right.
925  */
926 static void init_constants_master(struct ubifs_info *c)
927 {
928 	long long tmp64;
929 
930 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
931 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
932 
933 	/*
934 	 * Calculate total amount of FS blocks. This number is not used
935 	 * internally because it does not make much sense for UBIFS, but it is
936 	 * necessary to report something for the 'statfs()' call.
937 	 *
938 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
939 	 * deletions, minimum LEBs for the index, and assume only one journal
940 	 * head is available.
941 	 */
942 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
943 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
944 	tmp64 = ubifs_reported_space(c, tmp64);
945 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
946 }
947 
948 /**
949  * take_gc_lnum - reserve GC LEB.
950  * @c: UBIFS file-system description object
951  *
952  * This function ensures that the LEB reserved for garbage collection is marked
953  * as "taken" in lprops. We also have to set free space to LEB size and dirty
954  * space to zero, because lprops may contain out-of-date information if the
955  * file-system was un-mounted before it has been committed. This function
956  * returns zero in case of success and a negative error code in case of
957  * failure.
958  */
959 static int take_gc_lnum(struct ubifs_info *c)
960 {
961 	int err;
962 
963 	if (c->gc_lnum == -1) {
964 		ubifs_err("no LEB for GC");
965 		return -EINVAL;
966 	}
967 
968 	/* And we have to tell lprops that this LEB is taken */
969 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
970 				  LPROPS_TAKEN, 0, 0);
971 	return err;
972 }
973 
974 /**
975  * alloc_wbufs - allocate write-buffers.
976  * @c: UBIFS file-system description object
977  *
978  * This helper function allocates and initializes UBIFS write-buffers. Returns
979  * zero in case of success and %-ENOMEM in case of failure.
980  */
981 static int alloc_wbufs(struct ubifs_info *c)
982 {
983 	int i, err;
984 
985 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
986 			   GFP_KERNEL);
987 	if (!c->jheads)
988 		return -ENOMEM;
989 
990 	/* Initialize journal heads */
991 	for (i = 0; i < c->jhead_cnt; i++) {
992 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
993 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
994 		if (err)
995 			return err;
996 
997 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
998 		c->jheads[i].wbuf.jhead = i;
999 		c->jheads[i].grouped = 1;
1000 	}
1001 
1002 	/*
1003 	 * Garbage Collector head does not need to be synchronized by timer.
1004 	 * Also GC head nodes are not grouped.
1005 	 */
1006 	c->jheads[GCHD].wbuf.no_timer = 1;
1007 	c->jheads[GCHD].grouped = 0;
1008 
1009 	return 0;
1010 }
1011 
1012 /**
1013  * free_wbufs - free write-buffers.
1014  * @c: UBIFS file-system description object
1015  */
1016 static void free_wbufs(struct ubifs_info *c)
1017 {
1018 	int i;
1019 
1020 	if (c->jheads) {
1021 		for (i = 0; i < c->jhead_cnt; i++) {
1022 			kfree(c->jheads[i].wbuf.buf);
1023 			kfree(c->jheads[i].wbuf.inodes);
1024 		}
1025 		kfree(c->jheads);
1026 		c->jheads = NULL;
1027 	}
1028 }
1029 
1030 /**
1031  * free_orphans - free orphans.
1032  * @c: UBIFS file-system description object
1033  */
1034 static void free_orphans(struct ubifs_info *c)
1035 {
1036 	struct ubifs_orphan *orph;
1037 
1038 	while (c->orph_dnext) {
1039 		orph = c->orph_dnext;
1040 		c->orph_dnext = orph->dnext;
1041 		list_del(&orph->list);
1042 		kfree(orph);
1043 	}
1044 
1045 	while (!list_empty(&c->orph_list)) {
1046 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1047 		list_del(&orph->list);
1048 		kfree(orph);
1049 		ubifs_err("orphan list not empty at unmount");
1050 	}
1051 
1052 	vfree(c->orph_buf);
1053 	c->orph_buf = NULL;
1054 }
1055 
1056 /**
1057  * free_buds - free per-bud objects.
1058  * @c: UBIFS file-system description object
1059  */
1060 static void free_buds(struct ubifs_info *c)
1061 {
1062 	struct ubifs_bud *bud, *n;
1063 
1064 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1065 		kfree(bud);
1066 }
1067 
1068 /**
1069  * check_volume_empty - check if the UBI volume is empty.
1070  * @c: UBIFS file-system description object
1071  *
1072  * This function checks if the UBIFS volume is empty by looking if its LEBs are
1073  * mapped or not. The result of checking is stored in the @c->empty variable.
1074  * Returns zero in case of success and a negative error code in case of
1075  * failure.
1076  */
1077 static int check_volume_empty(struct ubifs_info *c)
1078 {
1079 	int lnum, err;
1080 
1081 	c->empty = 1;
1082 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1083 		err = ubifs_is_mapped(c, lnum);
1084 		if (unlikely(err < 0))
1085 			return err;
1086 		if (err == 1) {
1087 			c->empty = 0;
1088 			break;
1089 		}
1090 
1091 		cond_resched();
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 /*
1098  * UBIFS mount options.
1099  *
1100  * Opt_fast_unmount: do not run a journal commit before un-mounting
1101  * Opt_norm_unmount: run a journal commit before un-mounting
1102  * Opt_bulk_read: enable bulk-reads
1103  * Opt_no_bulk_read: disable bulk-reads
1104  * Opt_chk_data_crc: check CRCs when reading data nodes
1105  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1106  * Opt_override_compr: override default compressor
1107  * Opt_err: just end of array marker
1108  */
1109 enum {
1110 	Opt_fast_unmount,
1111 	Opt_norm_unmount,
1112 	Opt_bulk_read,
1113 	Opt_no_bulk_read,
1114 	Opt_chk_data_crc,
1115 	Opt_no_chk_data_crc,
1116 	Opt_override_compr,
1117 	Opt_err,
1118 };
1119 
1120 #ifndef __UBOOT__
1121 static const match_table_t tokens = {
1122 	{Opt_fast_unmount, "fast_unmount"},
1123 	{Opt_norm_unmount, "norm_unmount"},
1124 	{Opt_bulk_read, "bulk_read"},
1125 	{Opt_no_bulk_read, "no_bulk_read"},
1126 	{Opt_chk_data_crc, "chk_data_crc"},
1127 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
1128 	{Opt_override_compr, "compr=%s"},
1129 	{Opt_err, NULL},
1130 };
1131 
1132 /**
1133  * parse_standard_option - parse a standard mount option.
1134  * @option: the option to parse
1135  *
1136  * Normally, standard mount options like "sync" are passed to file-systems as
1137  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1138  * be present in the options string. This function tries to deal with this
1139  * situation and parse standard options. Returns 0 if the option was not
1140  * recognized, and the corresponding integer flag if it was.
1141  *
1142  * UBIFS is only interested in the "sync" option, so do not check for anything
1143  * else.
1144  */
1145 static int parse_standard_option(const char *option)
1146 {
1147 	ubifs_msg("parse %s", option);
1148 	if (!strcmp(option, "sync"))
1149 		return MS_SYNCHRONOUS;
1150 	return 0;
1151 }
1152 
1153 /**
1154  * ubifs_parse_options - parse mount parameters.
1155  * @c: UBIFS file-system description object
1156  * @options: parameters to parse
1157  * @is_remount: non-zero if this is FS re-mount
1158  *
1159  * This function parses UBIFS mount options and returns zero in case success
1160  * and a negative error code in case of failure.
1161  */
1162 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1163 			       int is_remount)
1164 {
1165 	char *p;
1166 	substring_t args[MAX_OPT_ARGS];
1167 
1168 	if (!options)
1169 		return 0;
1170 
1171 	while ((p = strsep(&options, ","))) {
1172 		int token;
1173 
1174 		if (!*p)
1175 			continue;
1176 
1177 		token = match_token(p, tokens, args);
1178 		switch (token) {
1179 		/*
1180 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1181 		 * We accept them in order to be backward-compatible. But this
1182 		 * should be removed at some point.
1183 		 */
1184 		case Opt_fast_unmount:
1185 			c->mount_opts.unmount_mode = 2;
1186 			break;
1187 		case Opt_norm_unmount:
1188 			c->mount_opts.unmount_mode = 1;
1189 			break;
1190 		case Opt_bulk_read:
1191 			c->mount_opts.bulk_read = 2;
1192 			c->bulk_read = 1;
1193 			break;
1194 		case Opt_no_bulk_read:
1195 			c->mount_opts.bulk_read = 1;
1196 			c->bulk_read = 0;
1197 			break;
1198 		case Opt_chk_data_crc:
1199 			c->mount_opts.chk_data_crc = 2;
1200 			c->no_chk_data_crc = 0;
1201 			break;
1202 		case Opt_no_chk_data_crc:
1203 			c->mount_opts.chk_data_crc = 1;
1204 			c->no_chk_data_crc = 1;
1205 			break;
1206 		case Opt_override_compr:
1207 		{
1208 			char *name = match_strdup(&args[0]);
1209 
1210 			if (!name)
1211 				return -ENOMEM;
1212 			if (!strcmp(name, "none"))
1213 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1214 			else if (!strcmp(name, "lzo"))
1215 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1216 			else if (!strcmp(name, "zlib"))
1217 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1218 			else {
1219 				ubifs_err("unknown compressor \"%s\"", name);
1220 				kfree(name);
1221 				return -EINVAL;
1222 			}
1223 			kfree(name);
1224 			c->mount_opts.override_compr = 1;
1225 			c->default_compr = c->mount_opts.compr_type;
1226 			break;
1227 		}
1228 		default:
1229 		{
1230 			unsigned long flag;
1231 			struct super_block *sb = c->vfs_sb;
1232 
1233 			flag = parse_standard_option(p);
1234 			if (!flag) {
1235 				ubifs_err("unrecognized mount option \"%s\" or missing value",
1236 					  p);
1237 				return -EINVAL;
1238 			}
1239 			sb->s_flags |= flag;
1240 			break;
1241 		}
1242 		}
1243 	}
1244 
1245 	return 0;
1246 }
1247 #endif
1248 
1249 /**
1250  * destroy_journal - destroy journal data structures.
1251  * @c: UBIFS file-system description object
1252  *
1253  * This function destroys journal data structures including those that may have
1254  * been created by recovery functions.
1255  */
1256 static void destroy_journal(struct ubifs_info *c)
1257 {
1258 	while (!list_empty(&c->unclean_leb_list)) {
1259 		struct ubifs_unclean_leb *ucleb;
1260 
1261 		ucleb = list_entry(c->unclean_leb_list.next,
1262 				   struct ubifs_unclean_leb, list);
1263 		list_del(&ucleb->list);
1264 		kfree(ucleb);
1265 	}
1266 	while (!list_empty(&c->old_buds)) {
1267 		struct ubifs_bud *bud;
1268 
1269 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1270 		list_del(&bud->list);
1271 		kfree(bud);
1272 	}
1273 	ubifs_destroy_idx_gc(c);
1274 	ubifs_destroy_size_tree(c);
1275 	ubifs_tnc_close(c);
1276 	free_buds(c);
1277 }
1278 
1279 /**
1280  * bu_init - initialize bulk-read information.
1281  * @c: UBIFS file-system description object
1282  */
1283 static void bu_init(struct ubifs_info *c)
1284 {
1285 	ubifs_assert(c->bulk_read == 1);
1286 
1287 	if (c->bu.buf)
1288 		return; /* Already initialized */
1289 
1290 again:
1291 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1292 	if (!c->bu.buf) {
1293 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1294 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1295 			goto again;
1296 		}
1297 
1298 		/* Just disable bulk-read */
1299 		ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1300 			   c->max_bu_buf_len);
1301 		c->mount_opts.bulk_read = 1;
1302 		c->bulk_read = 0;
1303 		return;
1304 	}
1305 }
1306 
1307 #ifndef __UBOOT__
1308 /**
1309  * check_free_space - check if there is enough free space to mount.
1310  * @c: UBIFS file-system description object
1311  *
1312  * This function makes sure UBIFS has enough free space to be mounted in
1313  * read/write mode. UBIFS must always have some free space to allow deletions.
1314  */
1315 static int check_free_space(struct ubifs_info *c)
1316 {
1317 	ubifs_assert(c->dark_wm > 0);
1318 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1319 		ubifs_err("insufficient free space to mount in R/W mode");
1320 		ubifs_dump_budg(c, &c->bi);
1321 		ubifs_dump_lprops(c);
1322 		return -ENOSPC;
1323 	}
1324 	return 0;
1325 }
1326 #endif
1327 
1328 /**
1329  * mount_ubifs - mount UBIFS file-system.
1330  * @c: UBIFS file-system description object
1331  *
1332  * This function mounts UBIFS file system. Returns zero in case of success and
1333  * a negative error code in case of failure.
1334  */
1335 static int mount_ubifs(struct ubifs_info *c)
1336 {
1337 	int err;
1338 	long long x, y;
1339 	size_t sz;
1340 
1341 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1342 #ifdef __UBOOT__
1343 	if (!c->ro_mount) {
1344 		printf("UBIFS: only ro mode in U-Boot allowed.\n");
1345 		return -EACCES;
1346 	}
1347 #endif
1348 
1349 	err = init_constants_early(c);
1350 	if (err)
1351 		return err;
1352 
1353 	err = ubifs_debugging_init(c);
1354 	if (err)
1355 		return err;
1356 
1357 	err = check_volume_empty(c);
1358 	if (err)
1359 		goto out_free;
1360 
1361 	if (c->empty && (c->ro_mount || c->ro_media)) {
1362 		/*
1363 		 * This UBI volume is empty, and read-only, or the file system
1364 		 * is mounted read-only - we cannot format it.
1365 		 */
1366 		ubifs_err("can't format empty UBI volume: read-only %s",
1367 			  c->ro_media ? "UBI volume" : "mount");
1368 		err = -EROFS;
1369 		goto out_free;
1370 	}
1371 
1372 	if (c->ro_media && !c->ro_mount) {
1373 		ubifs_err("cannot mount read-write - read-only media");
1374 		err = -EROFS;
1375 		goto out_free;
1376 	}
1377 
1378 	/*
1379 	 * The requirement for the buffer is that it should fit indexing B-tree
1380 	 * height amount of integers. We assume the height if the TNC tree will
1381 	 * never exceed 64.
1382 	 */
1383 	err = -ENOMEM;
1384 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1385 	if (!c->bottom_up_buf)
1386 		goto out_free;
1387 
1388 	c->sbuf = vmalloc(c->leb_size);
1389 	if (!c->sbuf)
1390 		goto out_free;
1391 
1392 #ifndef __UBOOT__
1393 	if (!c->ro_mount) {
1394 		c->ileb_buf = vmalloc(c->leb_size);
1395 		if (!c->ileb_buf)
1396 			goto out_free;
1397 	}
1398 #endif
1399 
1400 	if (c->bulk_read == 1)
1401 		bu_init(c);
1402 
1403 #ifndef __UBOOT__
1404 	if (!c->ro_mount) {
1405 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1406 					       GFP_KERNEL);
1407 		if (!c->write_reserve_buf)
1408 			goto out_free;
1409 	}
1410 #endif
1411 
1412 	c->mounting = 1;
1413 
1414 	err = ubifs_read_superblock(c);
1415 	if (err)
1416 		goto out_free;
1417 
1418 	/*
1419 	 * Make sure the compressor which is set as default in the superblock
1420 	 * or overridden by mount options is actually compiled in.
1421 	 */
1422 	if (!ubifs_compr_present(c->default_compr)) {
1423 		ubifs_err("'compressor \"%s\" is not compiled in",
1424 			  ubifs_compr_name(c->default_compr));
1425 		err = -ENOTSUPP;
1426 		goto out_free;
1427 	}
1428 
1429 	err = init_constants_sb(c);
1430 	if (err)
1431 		goto out_free;
1432 
1433 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1434 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1435 	c->cbuf = kmalloc(sz, GFP_NOFS);
1436 	if (!c->cbuf) {
1437 		err = -ENOMEM;
1438 		goto out_free;
1439 	}
1440 
1441 	err = alloc_wbufs(c);
1442 	if (err)
1443 		goto out_cbuf;
1444 
1445 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1446 #ifndef __UBOOT__
1447 	if (!c->ro_mount) {
1448 		/* Create background thread */
1449 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1450 		if (IS_ERR(c->bgt)) {
1451 			err = PTR_ERR(c->bgt);
1452 			c->bgt = NULL;
1453 			ubifs_err("cannot spawn \"%s\", error %d",
1454 				  c->bgt_name, err);
1455 			goto out_wbufs;
1456 		}
1457 		wake_up_process(c->bgt);
1458 	}
1459 #endif
1460 
1461 	err = ubifs_read_master(c);
1462 	if (err)
1463 		goto out_master;
1464 
1465 	init_constants_master(c);
1466 
1467 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1468 		ubifs_msg("recovery needed");
1469 		c->need_recovery = 1;
1470 	}
1471 
1472 #ifndef __UBOOT__
1473 	if (c->need_recovery && !c->ro_mount) {
1474 		err = ubifs_recover_inl_heads(c, c->sbuf);
1475 		if (err)
1476 			goto out_master;
1477 	}
1478 #endif
1479 
1480 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1481 	if (err)
1482 		goto out_master;
1483 
1484 #ifndef __UBOOT__
1485 	if (!c->ro_mount && c->space_fixup) {
1486 		err = ubifs_fixup_free_space(c);
1487 		if (err)
1488 			goto out_lpt;
1489 	}
1490 
1491 	if (!c->ro_mount) {
1492 		/*
1493 		 * Set the "dirty" flag so that if we reboot uncleanly we
1494 		 * will notice this immediately on the next mount.
1495 		 */
1496 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1497 		err = ubifs_write_master(c);
1498 		if (err)
1499 			goto out_lpt;
1500 	}
1501 #endif
1502 
1503 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1504 	if (err)
1505 		goto out_lpt;
1506 
1507 	err = ubifs_replay_journal(c);
1508 	if (err)
1509 		goto out_journal;
1510 
1511 	/* Calculate 'min_idx_lebs' after journal replay */
1512 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1513 
1514 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1515 	if (err)
1516 		goto out_orphans;
1517 
1518 	if (!c->ro_mount) {
1519 #ifndef __UBOOT__
1520 		int lnum;
1521 
1522 		err = check_free_space(c);
1523 		if (err)
1524 			goto out_orphans;
1525 
1526 		/* Check for enough log space */
1527 		lnum = c->lhead_lnum + 1;
1528 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1529 			lnum = UBIFS_LOG_LNUM;
1530 		if (lnum == c->ltail_lnum) {
1531 			err = ubifs_consolidate_log(c);
1532 			if (err)
1533 				goto out_orphans;
1534 		}
1535 
1536 		if (c->need_recovery) {
1537 			err = ubifs_recover_size(c);
1538 			if (err)
1539 				goto out_orphans;
1540 			err = ubifs_rcvry_gc_commit(c);
1541 			if (err)
1542 				goto out_orphans;
1543 		} else {
1544 			err = take_gc_lnum(c);
1545 			if (err)
1546 				goto out_orphans;
1547 
1548 			/*
1549 			 * GC LEB may contain garbage if there was an unclean
1550 			 * reboot, and it should be un-mapped.
1551 			 */
1552 			err = ubifs_leb_unmap(c, c->gc_lnum);
1553 			if (err)
1554 				goto out_orphans;
1555 		}
1556 
1557 		err = dbg_check_lprops(c);
1558 		if (err)
1559 			goto out_orphans;
1560 #endif
1561 	} else if (c->need_recovery) {
1562 		err = ubifs_recover_size(c);
1563 		if (err)
1564 			goto out_orphans;
1565 	} else {
1566 		/*
1567 		 * Even if we mount read-only, we have to set space in GC LEB
1568 		 * to proper value because this affects UBIFS free space
1569 		 * reporting. We do not want to have a situation when
1570 		 * re-mounting from R/O to R/W changes amount of free space.
1571 		 */
1572 		err = take_gc_lnum(c);
1573 		if (err)
1574 			goto out_orphans;
1575 	}
1576 
1577 #ifndef __UBOOT__
1578 	spin_lock(&ubifs_infos_lock);
1579 	list_add_tail(&c->infos_list, &ubifs_infos);
1580 	spin_unlock(&ubifs_infos_lock);
1581 #endif
1582 
1583 	if (c->need_recovery) {
1584 		if (c->ro_mount)
1585 			ubifs_msg("recovery deferred");
1586 		else {
1587 			c->need_recovery = 0;
1588 			ubifs_msg("recovery completed");
1589 			/*
1590 			 * GC LEB has to be empty and taken at this point. But
1591 			 * the journal head LEBs may also be accounted as
1592 			 * "empty taken" if they are empty.
1593 			 */
1594 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1595 		}
1596 	} else
1597 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1598 
1599 	err = dbg_check_filesystem(c);
1600 	if (err)
1601 		goto out_infos;
1602 
1603 	err = dbg_debugfs_init_fs(c);
1604 	if (err)
1605 		goto out_infos;
1606 
1607 	c->mounting = 0;
1608 
1609 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1610 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1611 		  c->ro_mount ? ", R/O mode" : "");
1612 	x = (long long)c->main_lebs * c->leb_size;
1613 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1614 	ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1615 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1616 		  c->max_write_size);
1617 	ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1618 		  x, x >> 20, c->main_lebs,
1619 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1620 	ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1621 		  c->report_rp_size, c->report_rp_size >> 10);
1622 	ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1623 		  c->fmt_version, c->ro_compat_version,
1624 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1625 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1626 
1627 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1628 	dbg_gen("data journal heads:  %d",
1629 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1630 	dbg_gen("log LEBs:            %d (%d - %d)",
1631 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1632 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1633 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1634 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1635 		c->orph_lebs, c->orph_first, c->orph_last);
1636 	dbg_gen("main area LEBs:      %d (%d - %d)",
1637 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1638 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1639 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1640 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1641 		c->bi.old_idx_sz >> 20);
1642 	dbg_gen("key hash type:       %d", c->key_hash_type);
1643 	dbg_gen("tree fanout:         %d", c->fanout);
1644 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1645 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1646 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1647 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1648 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1649 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1650 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1651 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1652 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1653 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1654 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1655 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1656 	dbg_gen("dead watermark:      %d", c->dead_wm);
1657 	dbg_gen("dark watermark:      %d", c->dark_wm);
1658 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1659 	x = (long long)c->main_lebs * c->dark_wm;
1660 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1661 		x, x >> 10, x >> 20);
1662 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1663 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1664 		c->max_bud_bytes >> 20);
1665 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1666 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1667 		c->bg_bud_bytes >> 20);
1668 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1669 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1670 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1671 	dbg_gen("commit number:       %llu", c->cmt_no);
1672 
1673 	return 0;
1674 
1675 out_infos:
1676 	spin_lock(&ubifs_infos_lock);
1677 	list_del(&c->infos_list);
1678 	spin_unlock(&ubifs_infos_lock);
1679 out_orphans:
1680 	free_orphans(c);
1681 out_journal:
1682 	destroy_journal(c);
1683 out_lpt:
1684 	ubifs_lpt_free(c, 0);
1685 out_master:
1686 	kfree(c->mst_node);
1687 	kfree(c->rcvrd_mst_node);
1688 	if (c->bgt)
1689 		kthread_stop(c->bgt);
1690 #ifndef __UBOOT__
1691 out_wbufs:
1692 #endif
1693 	free_wbufs(c);
1694 out_cbuf:
1695 	kfree(c->cbuf);
1696 out_free:
1697 	kfree(c->write_reserve_buf);
1698 	kfree(c->bu.buf);
1699 	vfree(c->ileb_buf);
1700 	vfree(c->sbuf);
1701 	kfree(c->bottom_up_buf);
1702 	ubifs_debugging_exit(c);
1703 	return err;
1704 }
1705 
1706 /**
1707  * ubifs_umount - un-mount UBIFS file-system.
1708  * @c: UBIFS file-system description object
1709  *
1710  * Note, this function is called to free allocated resourced when un-mounting,
1711  * as well as free resources when an error occurred while we were half way
1712  * through mounting (error path cleanup function). So it has to make sure the
1713  * resource was actually allocated before freeing it.
1714  */
1715 #ifndef __UBOOT__
1716 static void ubifs_umount(struct ubifs_info *c)
1717 #else
1718 void ubifs_umount(struct ubifs_info *c)
1719 #endif
1720 {
1721 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1722 		c->vi.vol_id);
1723 
1724 	dbg_debugfs_exit_fs(c);
1725 	spin_lock(&ubifs_infos_lock);
1726 	list_del(&c->infos_list);
1727 	spin_unlock(&ubifs_infos_lock);
1728 
1729 #ifndef __UBOOT__
1730 	if (c->bgt)
1731 		kthread_stop(c->bgt);
1732 
1733 	destroy_journal(c);
1734 #endif
1735 	free_wbufs(c);
1736 	free_orphans(c);
1737 	ubifs_lpt_free(c, 0);
1738 
1739 	kfree(c->cbuf);
1740 	kfree(c->rcvrd_mst_node);
1741 	kfree(c->mst_node);
1742 	kfree(c->write_reserve_buf);
1743 	kfree(c->bu.buf);
1744 	vfree(c->ileb_buf);
1745 	vfree(c->sbuf);
1746 	kfree(c->bottom_up_buf);
1747 	ubifs_debugging_exit(c);
1748 #ifdef __UBOOT__
1749 	/* Finally free U-Boot's global copy of superblock */
1750 	if (ubifs_sb != NULL) {
1751 		free(ubifs_sb->s_fs_info);
1752 		free(ubifs_sb);
1753 	}
1754 #endif
1755 }
1756 
1757 #ifndef __UBOOT__
1758 /**
1759  * ubifs_remount_rw - re-mount in read-write mode.
1760  * @c: UBIFS file-system description object
1761  *
1762  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1763  * mode. This function allocates the needed resources and re-mounts UBIFS in
1764  * read-write mode.
1765  */
1766 static int ubifs_remount_rw(struct ubifs_info *c)
1767 {
1768 	int err, lnum;
1769 
1770 	if (c->rw_incompat) {
1771 		ubifs_err("the file-system is not R/W-compatible");
1772 		ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1773 			  c->fmt_version, c->ro_compat_version,
1774 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1775 		return -EROFS;
1776 	}
1777 
1778 	mutex_lock(&c->umount_mutex);
1779 	dbg_save_space_info(c);
1780 	c->remounting_rw = 1;
1781 	c->ro_mount = 0;
1782 
1783 	if (c->space_fixup) {
1784 		err = ubifs_fixup_free_space(c);
1785 		if (err)
1786 			goto out;
1787 	}
1788 
1789 	err = check_free_space(c);
1790 	if (err)
1791 		goto out;
1792 
1793 	if (c->old_leb_cnt != c->leb_cnt) {
1794 		struct ubifs_sb_node *sup;
1795 
1796 		sup = ubifs_read_sb_node(c);
1797 		if (IS_ERR(sup)) {
1798 			err = PTR_ERR(sup);
1799 			goto out;
1800 		}
1801 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1802 		err = ubifs_write_sb_node(c, sup);
1803 		kfree(sup);
1804 		if (err)
1805 			goto out;
1806 	}
1807 
1808 	if (c->need_recovery) {
1809 		ubifs_msg("completing deferred recovery");
1810 		err = ubifs_write_rcvrd_mst_node(c);
1811 		if (err)
1812 			goto out;
1813 		err = ubifs_recover_size(c);
1814 		if (err)
1815 			goto out;
1816 		err = ubifs_clean_lebs(c, c->sbuf);
1817 		if (err)
1818 			goto out;
1819 		err = ubifs_recover_inl_heads(c, c->sbuf);
1820 		if (err)
1821 			goto out;
1822 	} else {
1823 		/* A readonly mount is not allowed to have orphans */
1824 		ubifs_assert(c->tot_orphans == 0);
1825 		err = ubifs_clear_orphans(c);
1826 		if (err)
1827 			goto out;
1828 	}
1829 
1830 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1831 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1832 		err = ubifs_write_master(c);
1833 		if (err)
1834 			goto out;
1835 	}
1836 
1837 	c->ileb_buf = vmalloc(c->leb_size);
1838 	if (!c->ileb_buf) {
1839 		err = -ENOMEM;
1840 		goto out;
1841 	}
1842 
1843 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1844 	if (!c->write_reserve_buf) {
1845 		err = -ENOMEM;
1846 		goto out;
1847 	}
1848 
1849 	err = ubifs_lpt_init(c, 0, 1);
1850 	if (err)
1851 		goto out;
1852 
1853 	/* Create background thread */
1854 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1855 	if (IS_ERR(c->bgt)) {
1856 		err = PTR_ERR(c->bgt);
1857 		c->bgt = NULL;
1858 		ubifs_err("cannot spawn \"%s\", error %d",
1859 			  c->bgt_name, err);
1860 		goto out;
1861 	}
1862 	wake_up_process(c->bgt);
1863 
1864 	c->orph_buf = vmalloc(c->leb_size);
1865 	if (!c->orph_buf) {
1866 		err = -ENOMEM;
1867 		goto out;
1868 	}
1869 
1870 	/* Check for enough log space */
1871 	lnum = c->lhead_lnum + 1;
1872 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1873 		lnum = UBIFS_LOG_LNUM;
1874 	if (lnum == c->ltail_lnum) {
1875 		err = ubifs_consolidate_log(c);
1876 		if (err)
1877 			goto out;
1878 	}
1879 
1880 	if (c->need_recovery)
1881 		err = ubifs_rcvry_gc_commit(c);
1882 	else
1883 		err = ubifs_leb_unmap(c, c->gc_lnum);
1884 	if (err)
1885 		goto out;
1886 
1887 	dbg_gen("re-mounted read-write");
1888 	c->remounting_rw = 0;
1889 
1890 	if (c->need_recovery) {
1891 		c->need_recovery = 0;
1892 		ubifs_msg("deferred recovery completed");
1893 	} else {
1894 		/*
1895 		 * Do not run the debugging space check if the were doing
1896 		 * recovery, because when we saved the information we had the
1897 		 * file-system in a state where the TNC and lprops has been
1898 		 * modified in memory, but all the I/O operations (including a
1899 		 * commit) were deferred. So the file-system was in
1900 		 * "non-committed" state. Now the file-system is in committed
1901 		 * state, and of course the amount of free space will change
1902 		 * because, for example, the old index size was imprecise.
1903 		 */
1904 		err = dbg_check_space_info(c);
1905 	}
1906 
1907 	mutex_unlock(&c->umount_mutex);
1908 	return err;
1909 
1910 out:
1911 	c->ro_mount = 1;
1912 	vfree(c->orph_buf);
1913 	c->orph_buf = NULL;
1914 	if (c->bgt) {
1915 		kthread_stop(c->bgt);
1916 		c->bgt = NULL;
1917 	}
1918 	free_wbufs(c);
1919 	kfree(c->write_reserve_buf);
1920 	c->write_reserve_buf = NULL;
1921 	vfree(c->ileb_buf);
1922 	c->ileb_buf = NULL;
1923 	ubifs_lpt_free(c, 1);
1924 	c->remounting_rw = 0;
1925 	mutex_unlock(&c->umount_mutex);
1926 	return err;
1927 }
1928 
1929 /**
1930  * ubifs_remount_ro - re-mount in read-only mode.
1931  * @c: UBIFS file-system description object
1932  *
1933  * We assume VFS has stopped writing. Possibly the background thread could be
1934  * running a commit, however kthread_stop will wait in that case.
1935  */
1936 static void ubifs_remount_ro(struct ubifs_info *c)
1937 {
1938 	int i, err;
1939 
1940 	ubifs_assert(!c->need_recovery);
1941 	ubifs_assert(!c->ro_mount);
1942 
1943 	mutex_lock(&c->umount_mutex);
1944 	if (c->bgt) {
1945 		kthread_stop(c->bgt);
1946 		c->bgt = NULL;
1947 	}
1948 
1949 	dbg_save_space_info(c);
1950 
1951 	for (i = 0; i < c->jhead_cnt; i++)
1952 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1953 
1954 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1955 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1956 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1957 	err = ubifs_write_master(c);
1958 	if (err)
1959 		ubifs_ro_mode(c, err);
1960 
1961 	vfree(c->orph_buf);
1962 	c->orph_buf = NULL;
1963 	kfree(c->write_reserve_buf);
1964 	c->write_reserve_buf = NULL;
1965 	vfree(c->ileb_buf);
1966 	c->ileb_buf = NULL;
1967 	ubifs_lpt_free(c, 1);
1968 	c->ro_mount = 1;
1969 	err = dbg_check_space_info(c);
1970 	if (err)
1971 		ubifs_ro_mode(c, err);
1972 	mutex_unlock(&c->umount_mutex);
1973 }
1974 
1975 static void ubifs_put_super(struct super_block *sb)
1976 {
1977 	int i;
1978 	struct ubifs_info *c = sb->s_fs_info;
1979 
1980 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1981 		  c->vi.vol_id);
1982 
1983 	/*
1984 	 * The following asserts are only valid if there has not been a failure
1985 	 * of the media. For example, there will be dirty inodes if we failed
1986 	 * to write them back because of I/O errors.
1987 	 */
1988 	if (!c->ro_error) {
1989 		ubifs_assert(c->bi.idx_growth == 0);
1990 		ubifs_assert(c->bi.dd_growth == 0);
1991 		ubifs_assert(c->bi.data_growth == 0);
1992 	}
1993 
1994 	/*
1995 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1996 	 * and file system un-mount. Namely, it prevents the shrinker from
1997 	 * picking this superblock for shrinking - it will be just skipped if
1998 	 * the mutex is locked.
1999 	 */
2000 	mutex_lock(&c->umount_mutex);
2001 	if (!c->ro_mount) {
2002 		/*
2003 		 * First of all kill the background thread to make sure it does
2004 		 * not interfere with un-mounting and freeing resources.
2005 		 */
2006 		if (c->bgt) {
2007 			kthread_stop(c->bgt);
2008 			c->bgt = NULL;
2009 		}
2010 
2011 		/*
2012 		 * On fatal errors c->ro_error is set to 1, in which case we do
2013 		 * not write the master node.
2014 		 */
2015 		if (!c->ro_error) {
2016 			int err;
2017 
2018 			/* Synchronize write-buffers */
2019 			for (i = 0; i < c->jhead_cnt; i++)
2020 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
2021 
2022 			/*
2023 			 * We are being cleanly unmounted which means the
2024 			 * orphans were killed - indicate this in the master
2025 			 * node. Also save the reserved GC LEB number.
2026 			 */
2027 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2028 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2029 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2030 			err = ubifs_write_master(c);
2031 			if (err)
2032 				/*
2033 				 * Recovery will attempt to fix the master area
2034 				 * next mount, so we just print a message and
2035 				 * continue to unmount normally.
2036 				 */
2037 				ubifs_err("failed to write master node, error %d",
2038 					  err);
2039 		} else {
2040 #ifndef __UBOOT__
2041 			for (i = 0; i < c->jhead_cnt; i++)
2042 				/* Make sure write-buffer timers are canceled */
2043 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
2044 #endif
2045 		}
2046 	}
2047 
2048 	ubifs_umount(c);
2049 #ifndef __UBOOT__
2050 	bdi_destroy(&c->bdi);
2051 #endif
2052 	ubi_close_volume(c->ubi);
2053 	mutex_unlock(&c->umount_mutex);
2054 }
2055 #endif
2056 
2057 #ifndef __UBOOT__
2058 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2059 {
2060 	int err;
2061 	struct ubifs_info *c = sb->s_fs_info;
2062 
2063 	sync_filesystem(sb);
2064 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2065 
2066 	err = ubifs_parse_options(c, data, 1);
2067 	if (err) {
2068 		ubifs_err("invalid or unknown remount parameter");
2069 		return err;
2070 	}
2071 
2072 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
2073 		if (c->ro_error) {
2074 			ubifs_msg("cannot re-mount R/W due to prior errors");
2075 			return -EROFS;
2076 		}
2077 		if (c->ro_media) {
2078 			ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
2079 			return -EROFS;
2080 		}
2081 		err = ubifs_remount_rw(c);
2082 		if (err)
2083 			return err;
2084 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2085 		if (c->ro_error) {
2086 			ubifs_msg("cannot re-mount R/O due to prior errors");
2087 			return -EROFS;
2088 		}
2089 		ubifs_remount_ro(c);
2090 	}
2091 
2092 	if (c->bulk_read == 1)
2093 		bu_init(c);
2094 	else {
2095 		dbg_gen("disable bulk-read");
2096 		kfree(c->bu.buf);
2097 		c->bu.buf = NULL;
2098 	}
2099 
2100 	ubifs_assert(c->lst.taken_empty_lebs > 0);
2101 	return 0;
2102 }
2103 #endif
2104 
2105 const struct super_operations ubifs_super_operations = {
2106 	.alloc_inode   = ubifs_alloc_inode,
2107 #ifndef __UBOOT__
2108 	.destroy_inode = ubifs_destroy_inode,
2109 	.put_super     = ubifs_put_super,
2110 	.write_inode   = ubifs_write_inode,
2111 	.evict_inode   = ubifs_evict_inode,
2112 	.statfs        = ubifs_statfs,
2113 #endif
2114 	.dirty_inode   = ubifs_dirty_inode,
2115 #ifndef __UBOOT__
2116 	.remount_fs    = ubifs_remount_fs,
2117 	.show_options  = ubifs_show_options,
2118 	.sync_fs       = ubifs_sync_fs,
2119 #endif
2120 };
2121 
2122 /**
2123  * open_ubi - parse UBI device name string and open the UBI device.
2124  * @name: UBI volume name
2125  * @mode: UBI volume open mode
2126  *
2127  * The primary method of mounting UBIFS is by specifying the UBI volume
2128  * character device node path. However, UBIFS may also be mounted withoug any
2129  * character device node using one of the following methods:
2130  *
2131  * o ubiX_Y    - mount UBI device number X, volume Y;
2132  * o ubiY      - mount UBI device number 0, volume Y;
2133  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2134  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2135  *
2136  * Alternative '!' separator may be used instead of ':' (because some shells
2137  * like busybox may interpret ':' as an NFS host name separator). This function
2138  * returns UBI volume description object in case of success and a negative
2139  * error code in case of failure.
2140  */
2141 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2142 {
2143 #ifndef __UBOOT__
2144 	struct ubi_volume_desc *ubi;
2145 #endif
2146 	int dev, vol;
2147 	char *endptr;
2148 
2149 #ifndef __UBOOT__
2150 	/* First, try to open using the device node path method */
2151 	ubi = ubi_open_volume_path(name, mode);
2152 	if (!IS_ERR(ubi))
2153 		return ubi;
2154 #endif
2155 
2156 	/* Try the "nodev" method */
2157 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2158 		return ERR_PTR(-EINVAL);
2159 
2160 	/* ubi:NAME method */
2161 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2162 		return ubi_open_volume_nm(0, name + 4, mode);
2163 
2164 	if (!isdigit(name[3]))
2165 		return ERR_PTR(-EINVAL);
2166 
2167 	dev = simple_strtoul(name + 3, &endptr, 0);
2168 
2169 	/* ubiY method */
2170 	if (*endptr == '\0')
2171 		return ubi_open_volume(0, dev, mode);
2172 
2173 	/* ubiX_Y method */
2174 	if (*endptr == '_' && isdigit(endptr[1])) {
2175 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2176 		if (*endptr != '\0')
2177 			return ERR_PTR(-EINVAL);
2178 		return ubi_open_volume(dev, vol, mode);
2179 	}
2180 
2181 	/* ubiX:NAME method */
2182 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2183 		return ubi_open_volume_nm(dev, ++endptr, mode);
2184 
2185 	return ERR_PTR(-EINVAL);
2186 }
2187 
2188 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2189 {
2190 	struct ubifs_info *c;
2191 
2192 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2193 	if (c) {
2194 		spin_lock_init(&c->cnt_lock);
2195 		spin_lock_init(&c->cs_lock);
2196 		spin_lock_init(&c->buds_lock);
2197 		spin_lock_init(&c->space_lock);
2198 		spin_lock_init(&c->orphan_lock);
2199 		init_rwsem(&c->commit_sem);
2200 		mutex_init(&c->lp_mutex);
2201 		mutex_init(&c->tnc_mutex);
2202 		mutex_init(&c->log_mutex);
2203 		mutex_init(&c->mst_mutex);
2204 		mutex_init(&c->umount_mutex);
2205 		mutex_init(&c->bu_mutex);
2206 		mutex_init(&c->write_reserve_mutex);
2207 		init_waitqueue_head(&c->cmt_wq);
2208 		c->buds = RB_ROOT;
2209 		c->old_idx = RB_ROOT;
2210 		c->size_tree = RB_ROOT;
2211 		c->orph_tree = RB_ROOT;
2212 		INIT_LIST_HEAD(&c->infos_list);
2213 		INIT_LIST_HEAD(&c->idx_gc);
2214 		INIT_LIST_HEAD(&c->replay_list);
2215 		INIT_LIST_HEAD(&c->replay_buds);
2216 		INIT_LIST_HEAD(&c->uncat_list);
2217 		INIT_LIST_HEAD(&c->empty_list);
2218 		INIT_LIST_HEAD(&c->freeable_list);
2219 		INIT_LIST_HEAD(&c->frdi_idx_list);
2220 		INIT_LIST_HEAD(&c->unclean_leb_list);
2221 		INIT_LIST_HEAD(&c->old_buds);
2222 		INIT_LIST_HEAD(&c->orph_list);
2223 		INIT_LIST_HEAD(&c->orph_new);
2224 		c->no_chk_data_crc = 1;
2225 
2226 		c->highest_inum = UBIFS_FIRST_INO;
2227 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2228 
2229 		ubi_get_volume_info(ubi, &c->vi);
2230 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2231 	}
2232 	return c;
2233 }
2234 
2235 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2236 {
2237 	struct ubifs_info *c = sb->s_fs_info;
2238 	struct inode *root;
2239 	int err;
2240 
2241 	c->vfs_sb = sb;
2242 #ifndef __UBOOT__
2243 	/* Re-open the UBI device in read-write mode */
2244 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2245 #else
2246 	/* U-Boot read only mode */
2247 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2248 #endif
2249 
2250 	if (IS_ERR(c->ubi)) {
2251 		err = PTR_ERR(c->ubi);
2252 		goto out;
2253 	}
2254 
2255 #ifndef __UBOOT__
2256 	/*
2257 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2258 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2259 	 * which means the user would have to wait not just for their own I/O
2260 	 * but the read-ahead I/O as well i.e. completely pointless.
2261 	 *
2262 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2263 	 */
2264 	co>bdi.name = "ubifs",
2265 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
2266 	err  = bdi_init(&c->bdi);
2267 	if (err)
2268 		goto out_close;
2269 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2270 			   c->vi.ubi_num, c->vi.vol_id);
2271 	if (err)
2272 		goto out_bdi;
2273 
2274 	err = ubifs_parse_options(c, data, 0);
2275 	if (err)
2276 		goto out_bdi;
2277 
2278 	sb->s_bdi = &c->bdi;
2279 #endif
2280 	sb->s_fs_info = c;
2281 	sb->s_magic = UBIFS_SUPER_MAGIC;
2282 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2283 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2284 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2285 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2286 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2287 	sb->s_op = &ubifs_super_operations;
2288 
2289 	mutex_lock(&c->umount_mutex);
2290 	err = mount_ubifs(c);
2291 	if (err) {
2292 		ubifs_assert(err < 0);
2293 		goto out_unlock;
2294 	}
2295 
2296 	/* Read the root inode */
2297 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2298 	if (IS_ERR(root)) {
2299 		err = PTR_ERR(root);
2300 		goto out_umount;
2301 	}
2302 
2303 #ifndef __UBOOT__
2304 	sb->s_root = d_make_root(root);
2305 	if (!sb->s_root) {
2306 		err = -ENOMEM;
2307 		goto out_umount;
2308 	}
2309 #else
2310 	sb->s_root = NULL;
2311 #endif
2312 
2313 	mutex_unlock(&c->umount_mutex);
2314 	return 0;
2315 
2316 out_umount:
2317 	ubifs_umount(c);
2318 out_unlock:
2319 	mutex_unlock(&c->umount_mutex);
2320 #ifndef __UBOOT__
2321 out_bdi:
2322 	bdi_destroy(&c->bdi);
2323 out_close:
2324 #endif
2325 	ubi_close_volume(c->ubi);
2326 out:
2327 	return err;
2328 }
2329 
2330 static int sb_test(struct super_block *sb, void *data)
2331 {
2332 	struct ubifs_info *c1 = data;
2333 	struct ubifs_info *c = sb->s_fs_info;
2334 
2335 	return c->vi.cdev == c1->vi.cdev;
2336 }
2337 
2338 static int sb_set(struct super_block *sb, void *data)
2339 {
2340 	sb->s_fs_info = data;
2341 	return set_anon_super(sb, NULL);
2342 }
2343 
2344 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2345 {
2346 	struct super_block *s;
2347 	int err;
2348 
2349 	s = kzalloc(sizeof(struct super_block),  GFP_USER);
2350 	if (!s) {
2351 		err = -ENOMEM;
2352 		return ERR_PTR(err);
2353 	}
2354 
2355 	INIT_HLIST_NODE(&s->s_instances);
2356 	INIT_LIST_HEAD(&s->s_inodes);
2357 	s->s_time_gran = 1000000000;
2358 	s->s_flags = flags;
2359 
2360 	return s;
2361 }
2362 
2363 /**
2364  *	sget	-	find or create a superblock
2365  *	@type:	filesystem type superblock should belong to
2366  *	@test:	comparison callback
2367  *	@set:	setup callback
2368  *	@flags:	mount flags
2369  *	@data:	argument to each of them
2370  */
2371 struct super_block *sget(struct file_system_type *type,
2372 			int (*test)(struct super_block *,void *),
2373 			int (*set)(struct super_block *,void *),
2374 			int flags,
2375 			void *data)
2376 {
2377 	struct super_block *s = NULL;
2378 #ifndef __UBOOT__
2379 	struct super_block *old;
2380 #endif
2381 	int err;
2382 
2383 #ifndef __UBOOT__
2384 retry:
2385 	spin_lock(&sb_lock);
2386 	if (test) {
2387 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2388 			if (!test(old, data))
2389 				continue;
2390 			if (!grab_super(old))
2391 				goto retry;
2392 			if (s) {
2393 				up_write(&s->s_umount);
2394 				destroy_super(s);
2395 				s = NULL;
2396 			}
2397 			return old;
2398 		}
2399 	}
2400 #endif
2401 	if (!s) {
2402 		spin_unlock(&sb_lock);
2403 		s = alloc_super(type, flags);
2404 		if (!s)
2405 			return ERR_PTR(-ENOMEM);
2406 #ifndef __UBOOT__
2407 		goto retry;
2408 #endif
2409 	}
2410 
2411 	err = set(s, data);
2412 	if (err) {
2413 #ifndef __UBOOT__
2414 		spin_unlock(&sb_lock);
2415 		up_write(&s->s_umount);
2416 		destroy_super(s);
2417 #endif
2418 		return ERR_PTR(err);
2419 	}
2420 	s->s_type = type;
2421 #ifndef __UBOOT__
2422 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
2423 #else
2424 	strncpy(s->s_id, type->name, sizeof(s->s_id));
2425 #endif
2426 	list_add_tail(&s->s_list, &super_blocks);
2427 	hlist_add_head(&s->s_instances, &type->fs_supers);
2428 #ifndef __UBOOT__
2429 	spin_unlock(&sb_lock);
2430 	get_filesystem(type);
2431 	register_shrinker(&s->s_shrink);
2432 #endif
2433 	return s;
2434 }
2435 
2436 EXPORT_SYMBOL(sget);
2437 
2438 
2439 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2440 			const char *name, void *data)
2441 {
2442 	struct ubi_volume_desc *ubi;
2443 	struct ubifs_info *c;
2444 	struct super_block *sb;
2445 	int err;
2446 
2447 	dbg_gen("name %s, flags %#x", name, flags);
2448 
2449 	/*
2450 	 * Get UBI device number and volume ID. Mount it read-only so far
2451 	 * because this might be a new mount point, and UBI allows only one
2452 	 * read-write user at a time.
2453 	 */
2454 	ubi = open_ubi(name, UBI_READONLY);
2455 	if (IS_ERR(ubi)) {
2456 		ubifs_err("cannot open \"%s\", error %d",
2457 			  name, (int)PTR_ERR(ubi));
2458 		return ERR_CAST(ubi);
2459 	}
2460 
2461 	c = alloc_ubifs_info(ubi);
2462 	if (!c) {
2463 		err = -ENOMEM;
2464 		goto out_close;
2465 	}
2466 
2467 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2468 
2469 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2470 	if (IS_ERR(sb)) {
2471 		err = PTR_ERR(sb);
2472 		kfree(c);
2473 		goto out_close;
2474 	}
2475 
2476 	if (sb->s_root) {
2477 		struct ubifs_info *c1 = sb->s_fs_info;
2478 		kfree(c);
2479 		/* A new mount point for already mounted UBIFS */
2480 		dbg_gen("this ubi volume is already mounted");
2481 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2482 			err = -EBUSY;
2483 			goto out_deact;
2484 		}
2485 	} else {
2486 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2487 		if (err)
2488 			goto out_deact;
2489 		/* We do not support atime */
2490 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2491 	}
2492 
2493 	/* 'fill_super()' opens ubi again so we must close it here */
2494 	ubi_close_volume(ubi);
2495 
2496 #ifdef __UBOOT__
2497 	ubifs_sb = sb;
2498 	return 0;
2499 #else
2500 	return dget(sb->s_root);
2501 #endif
2502 
2503 out_deact:
2504 #ifndef __UBOOT__
2505 	deactivate_locked_super(sb);
2506 #endif
2507 out_close:
2508 	ubi_close_volume(ubi);
2509 	return ERR_PTR(err);
2510 }
2511 
2512 static void kill_ubifs_super(struct super_block *s)
2513 {
2514 	struct ubifs_info *c = s->s_fs_info;
2515 #ifndef __UBOOT__
2516 	kill_anon_super(s);
2517 #endif
2518 	kfree(c);
2519 }
2520 
2521 static struct file_system_type ubifs_fs_type = {
2522 	.name    = "ubifs",
2523 	.owner   = THIS_MODULE,
2524 	.mount   = ubifs_mount,
2525 	.kill_sb = kill_ubifs_super,
2526 };
2527 #ifndef __UBOOT__
2528 MODULE_ALIAS_FS("ubifs");
2529 
2530 /*
2531  * Inode slab cache constructor.
2532  */
2533 static void inode_slab_ctor(void *obj)
2534 {
2535 	struct ubifs_inode *ui = obj;
2536 	inode_init_once(&ui->vfs_inode);
2537 }
2538 
2539 static int __init ubifs_init(void)
2540 #else
2541 int ubifs_init(void)
2542 #endif
2543 {
2544 	int err;
2545 
2546 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2547 
2548 	/* Make sure node sizes are 8-byte aligned */
2549 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2550 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2551 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2552 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2553 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2554 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2555 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2556 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2557 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2558 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2559 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2560 
2561 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2562 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2563 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2564 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2565 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2566 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2567 
2568 	/* Check min. node size */
2569 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2570 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2571 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2572 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2573 
2574 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2575 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2576 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2577 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2578 
2579 	/* Defined node sizes */
2580 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2581 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2582 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2583 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2584 
2585 	/*
2586 	 * We use 2 bit wide bit-fields to store compression type, which should
2587 	 * be amended if more compressors are added. The bit-fields are:
2588 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2589 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2590 	 */
2591 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2592 
2593 	/*
2594 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2595 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2596 	 */
2597 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2598 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2599 			  (unsigned int)PAGE_CACHE_SIZE);
2600 		return -EINVAL;
2601 	}
2602 
2603 #ifndef __UBOOT__
2604 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2605 				sizeof(struct ubifs_inode), 0,
2606 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2607 				&inode_slab_ctor);
2608 	if (!ubifs_inode_slab)
2609 		return -ENOMEM;
2610 
2611 	register_shrinker(&ubifs_shrinker_info);
2612 #endif
2613 
2614 	err = ubifs_compressors_init();
2615 	if (err)
2616 		goto out_shrinker;
2617 
2618 #ifndef __UBOOT__
2619 	err = dbg_debugfs_init();
2620 	if (err)
2621 		goto out_compr;
2622 
2623 	err = register_filesystem(&ubifs_fs_type);
2624 	if (err) {
2625 		ubifs_err("cannot register file system, error %d", err);
2626 		goto out_dbg;
2627 	}
2628 #endif
2629 	return 0;
2630 
2631 #ifndef __UBOOT__
2632 out_dbg:
2633 	dbg_debugfs_exit();
2634 out_compr:
2635 	ubifs_compressors_exit();
2636 #endif
2637 out_shrinker:
2638 #ifndef __UBOOT__
2639 	unregister_shrinker(&ubifs_shrinker_info);
2640 #endif
2641 	kmem_cache_destroy(ubifs_inode_slab);
2642 	return err;
2643 }
2644 /* late_initcall to let compressors initialize first */
2645 late_initcall(ubifs_init);
2646 
2647 #ifndef __UBOOT__
2648 static void __exit ubifs_exit(void)
2649 {
2650 	ubifs_assert(list_empty(&ubifs_infos));
2651 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2652 
2653 	dbg_debugfs_exit();
2654 	ubifs_compressors_exit();
2655 	unregister_shrinker(&ubifs_shrinker_info);
2656 
2657 	/*
2658 	 * Make sure all delayed rcu free inodes are flushed before we
2659 	 * destroy cache.
2660 	 */
2661 	rcu_barrier();
2662 	kmem_cache_destroy(ubifs_inode_slab);
2663 	unregister_filesystem(&ubifs_fs_type);
2664 }
2665 module_exit(ubifs_exit);
2666 
2667 MODULE_LICENSE("GPL");
2668 MODULE_VERSION(__stringify(UBIFS_VERSION));
2669 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2670 MODULE_DESCRIPTION("UBIFS - UBI File System");
2671 #else
2672 int uboot_ubifs_mount(char *vol_name)
2673 {
2674 	struct dentry *ret;
2675 	int flags;
2676 
2677 	/*
2678 	 * First unmount if allready mounted
2679 	 */
2680 	if (ubifs_sb)
2681 		ubifs_umount(ubifs_sb->s_fs_info);
2682 
2683 	/*
2684 	 * Mount in read-only mode
2685 	 */
2686 	flags = MS_RDONLY;
2687 	ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2688 	if (IS_ERR(ret)) {
2689 		printf("Error reading superblock on volume '%s' " \
2690 			"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2691 		return -1;
2692 	}
2693 
2694 	return 0;
2695 }
2696 #endif
2697