xref: /openbmc/u-boot/fs/ubifs/super.c (revision 643ad899f545fd101aa7a67771e74d582a1829b2)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11 
12 /*
13  * This file implements UBIFS initialization and VFS superblock operations. Some
14  * initialization stuff which is rather large and complex is placed at
15  * corresponding subsystems, but most of it is here.
16  */
17 
18 #ifndef __UBOOT__
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/kthread.h>
24 #include <linux/parser.h>
25 #include <linux/seq_file.h>
26 #include <linux/mount.h>
27 #include <linux/math64.h>
28 #include <linux/writeback.h>
29 #else
30 
31 #include <linux/compat.h>
32 #include <linux/stat.h>
33 #include <linux/err.h>
34 #include "ubifs.h"
35 #include <ubi_uboot.h>
36 #include <mtd/ubi-user.h>
37 
38 struct dentry;
39 struct file;
40 struct iattr;
41 struct kstat;
42 struct vfsmount;
43 
44 #define INODE_LOCKED_MAX	64
45 
46 struct super_block *ubifs_sb;
47 LIST_HEAD(super_blocks);
48 
49 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
50 
51 int set_anon_super(struct super_block *s, void *data)
52 {
53 	return 0;
54 }
55 
56 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
57 {
58 	struct inode *inode;
59 
60 	inode = (struct inode *)malloc(sizeof(struct ubifs_inode));
61 	if (inode) {
62 		inode->i_ino = ino;
63 		inode->i_sb = sb;
64 		list_add(&inode->i_sb_list, &sb->s_inodes);
65 		inode->i_state = I_LOCK | I_NEW;
66 	}
67 
68 	return inode;
69 }
70 
71 void iget_failed(struct inode *inode)
72 {
73 }
74 
75 int ubifs_iput(struct inode *inode)
76 {
77 	list_del_init(&inode->i_sb_list);
78 
79 	free(inode);
80 	return 0;
81 }
82 
83 /*
84  * Lock (save) inode in inode array for readback after recovery
85  */
86 void iput(struct inode *inode)
87 {
88 	int i;
89 	struct inode *ino;
90 
91 	/*
92 	 * Search end of list
93 	 */
94 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
95 		if (inodes_locked_down[i] == NULL)
96 			break;
97 	}
98 
99 	if (i >= INODE_LOCKED_MAX) {
100 		ubifs_err("Error, can't lock (save) more inodes while recovery!!!");
101 		return;
102 	}
103 
104 	/*
105 	 * Allocate and use new inode
106 	 */
107 	ino = (struct inode *)malloc(sizeof(struct ubifs_inode));
108 	memcpy(ino, inode, sizeof(struct ubifs_inode));
109 
110 	/*
111 	 * Finally save inode in array
112 	 */
113 	inodes_locked_down[i] = ino;
114 }
115 
116 /* from fs/inode.c */
117 /**
118  * clear_nlink - directly zero an inode's link count
119  * @inode: inode
120  *
121  * This is a low-level filesystem helper to replace any
122  * direct filesystem manipulation of i_nlink.  See
123  * drop_nlink() for why we care about i_nlink hitting zero.
124  */
125 void clear_nlink(struct inode *inode)
126 {
127 	if (inode->i_nlink) {
128 		inode->__i_nlink = 0;
129 		atomic_long_inc(&inode->i_sb->s_remove_count);
130 	}
131 }
132 EXPORT_SYMBOL(clear_nlink);
133 
134 /**
135  * set_nlink - directly set an inode's link count
136  * @inode: inode
137  * @nlink: new nlink (should be non-zero)
138  *
139  * This is a low-level filesystem helper to replace any
140  * direct filesystem manipulation of i_nlink.
141  */
142 void set_nlink(struct inode *inode, unsigned int nlink)
143 {
144 	if (!nlink) {
145 		clear_nlink(inode);
146 	} else {
147 		/* Yes, some filesystems do change nlink from zero to one */
148 		if (inode->i_nlink == 0)
149 			atomic_long_dec(&inode->i_sb->s_remove_count);
150 
151 		inode->__i_nlink = nlink;
152 	}
153 }
154 EXPORT_SYMBOL(set_nlink);
155 
156 /* from include/linux/fs.h */
157 static inline void i_uid_write(struct inode *inode, uid_t uid)
158 {
159 	inode->i_uid.val = uid;
160 }
161 
162 static inline void i_gid_write(struct inode *inode, gid_t gid)
163 {
164 	inode->i_gid.val = gid;
165 }
166 
167 void unlock_new_inode(struct inode *inode)
168 {
169 	return;
170 }
171 #endif
172 
173 /*
174  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
175  * allocating too much.
176  */
177 #define UBIFS_KMALLOC_OK (128*1024)
178 
179 /* Slab cache for UBIFS inodes */
180 struct kmem_cache *ubifs_inode_slab;
181 
182 #ifndef __UBOOT__
183 /* UBIFS TNC shrinker description */
184 static struct shrinker ubifs_shrinker_info = {
185 	.scan_objects = ubifs_shrink_scan,
186 	.count_objects = ubifs_shrink_count,
187 	.seeks = DEFAULT_SEEKS,
188 };
189 #endif
190 
191 /**
192  * validate_inode - validate inode.
193  * @c: UBIFS file-system description object
194  * @inode: the inode to validate
195  *
196  * This is a helper function for 'ubifs_iget()' which validates various fields
197  * of a newly built inode to make sure they contain sane values and prevent
198  * possible vulnerabilities. Returns zero if the inode is all right and
199  * a non-zero error code if not.
200  */
201 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
202 {
203 	int err;
204 	const struct ubifs_inode *ui = ubifs_inode(inode);
205 
206 	if (inode->i_size > c->max_inode_sz) {
207 		ubifs_err("inode is too large (%lld)",
208 			  (long long)inode->i_size);
209 		return 1;
210 	}
211 
212 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
213 		ubifs_err("unknown compression type %d", ui->compr_type);
214 		return 2;
215 	}
216 
217 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
218 		return 3;
219 
220 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
221 		return 4;
222 
223 	if (ui->xattr && !S_ISREG(inode->i_mode))
224 		return 5;
225 
226 	if (!ubifs_compr_present(ui->compr_type)) {
227 		ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
228 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
229 	}
230 
231 	err = dbg_check_dir(c, inode);
232 	return err;
233 }
234 
235 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
236 {
237 	int err;
238 	union ubifs_key key;
239 	struct ubifs_ino_node *ino;
240 	struct ubifs_info *c = sb->s_fs_info;
241 	struct inode *inode;
242 	struct ubifs_inode *ui;
243 #ifdef __UBOOT__
244 	int i;
245 #endif
246 
247 	dbg_gen("inode %lu", inum);
248 
249 #ifdef __UBOOT__
250 	/*
251 	 * U-Boot special handling of locked down inodes via recovery
252 	 * e.g. ubifs_recover_size()
253 	 */
254 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
255 		/*
256 		 * Exit on last entry (NULL), inode not found in list
257 		 */
258 		if (inodes_locked_down[i] == NULL)
259 			break;
260 
261 		if (inodes_locked_down[i]->i_ino == inum) {
262 			/*
263 			 * We found the locked down inode in our array,
264 			 * so just return this pointer instead of creating
265 			 * a new one.
266 			 */
267 			return inodes_locked_down[i];
268 		}
269 	}
270 #endif
271 
272 	inode = iget_locked(sb, inum);
273 	if (!inode)
274 		return ERR_PTR(-ENOMEM);
275 	if (!(inode->i_state & I_NEW))
276 		return inode;
277 	ui = ubifs_inode(inode);
278 
279 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
280 	if (!ino) {
281 		err = -ENOMEM;
282 		goto out;
283 	}
284 
285 	ino_key_init(c, &key, inode->i_ino);
286 
287 	err = ubifs_tnc_lookup(c, &key, ino);
288 	if (err)
289 		goto out_ino;
290 
291 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
292 	set_nlink(inode, le32_to_cpu(ino->nlink));
293 	i_uid_write(inode, le32_to_cpu(ino->uid));
294 	i_gid_write(inode, le32_to_cpu(ino->gid));
295 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
296 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
297 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
298 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
299 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
300 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
301 	inode->i_mode = le32_to_cpu(ino->mode);
302 	inode->i_size = le64_to_cpu(ino->size);
303 
304 	ui->data_len    = le32_to_cpu(ino->data_len);
305 	ui->flags       = le32_to_cpu(ino->flags);
306 	ui->compr_type  = le16_to_cpu(ino->compr_type);
307 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
308 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
309 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
310 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
311 	ui->synced_i_size = ui->ui_size = inode->i_size;
312 
313 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
314 
315 	err = validate_inode(c, inode);
316 	if (err)
317 		goto out_invalid;
318 
319 #ifndef __UBOOT__
320 	/* Disable read-ahead */
321 	inode->i_mapping->backing_dev_info = &c->bdi;
322 
323 	switch (inode->i_mode & S_IFMT) {
324 	case S_IFREG:
325 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
326 		inode->i_op = &ubifs_file_inode_operations;
327 		inode->i_fop = &ubifs_file_operations;
328 		if (ui->xattr) {
329 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
330 			if (!ui->data) {
331 				err = -ENOMEM;
332 				goto out_ino;
333 			}
334 			memcpy(ui->data, ino->data, ui->data_len);
335 			((char *)ui->data)[ui->data_len] = '\0';
336 		} else if (ui->data_len != 0) {
337 			err = 10;
338 			goto out_invalid;
339 		}
340 		break;
341 	case S_IFDIR:
342 		inode->i_op  = &ubifs_dir_inode_operations;
343 		inode->i_fop = &ubifs_dir_operations;
344 		if (ui->data_len != 0) {
345 			err = 11;
346 			goto out_invalid;
347 		}
348 		break;
349 	case S_IFLNK:
350 		inode->i_op = &ubifs_symlink_inode_operations;
351 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
352 			err = 12;
353 			goto out_invalid;
354 		}
355 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
356 		if (!ui->data) {
357 			err = -ENOMEM;
358 			goto out_ino;
359 		}
360 		memcpy(ui->data, ino->data, ui->data_len);
361 		((char *)ui->data)[ui->data_len] = '\0';
362 		break;
363 	case S_IFBLK:
364 	case S_IFCHR:
365 	{
366 		dev_t rdev;
367 		union ubifs_dev_desc *dev;
368 
369 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
370 		if (!ui->data) {
371 			err = -ENOMEM;
372 			goto out_ino;
373 		}
374 
375 		dev = (union ubifs_dev_desc *)ino->data;
376 		if (ui->data_len == sizeof(dev->new))
377 			rdev = new_decode_dev(le32_to_cpu(dev->new));
378 		else if (ui->data_len == sizeof(dev->huge))
379 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
380 		else {
381 			err = 13;
382 			goto out_invalid;
383 		}
384 		memcpy(ui->data, ino->data, ui->data_len);
385 		inode->i_op = &ubifs_file_inode_operations;
386 		init_special_inode(inode, inode->i_mode, rdev);
387 		break;
388 	}
389 	case S_IFSOCK:
390 	case S_IFIFO:
391 		inode->i_op = &ubifs_file_inode_operations;
392 		init_special_inode(inode, inode->i_mode, 0);
393 		if (ui->data_len != 0) {
394 			err = 14;
395 			goto out_invalid;
396 		}
397 		break;
398 	default:
399 		err = 15;
400 		goto out_invalid;
401 	}
402 #else
403 	if ((inode->i_mode & S_IFMT) == S_IFLNK) {
404 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
405 			err = 12;
406 			goto out_invalid;
407 		}
408 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
409 		if (!ui->data) {
410 			err = -ENOMEM;
411 			goto out_ino;
412 		}
413 		memcpy(ui->data, ino->data, ui->data_len);
414 		((char *)ui->data)[ui->data_len] = '\0';
415 	}
416 #endif
417 
418 	kfree(ino);
419 #ifndef __UBOOT__
420 	ubifs_set_inode_flags(inode);
421 #endif
422 	unlock_new_inode(inode);
423 	return inode;
424 
425 out_invalid:
426 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
427 	ubifs_dump_node(c, ino);
428 	ubifs_dump_inode(c, inode);
429 	err = -EINVAL;
430 out_ino:
431 	kfree(ino);
432 out:
433 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
434 	iget_failed(inode);
435 	return ERR_PTR(err);
436 }
437 
438 static struct inode *ubifs_alloc_inode(struct super_block *sb)
439 {
440 	struct ubifs_inode *ui;
441 
442 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
443 	if (!ui)
444 		return NULL;
445 
446 	memset((void *)ui + sizeof(struct inode), 0,
447 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
448 	mutex_init(&ui->ui_mutex);
449 	spin_lock_init(&ui->ui_lock);
450 	return &ui->vfs_inode;
451 };
452 
453 #ifndef __UBOOT__
454 static void ubifs_i_callback(struct rcu_head *head)
455 {
456 	struct inode *inode = container_of(head, struct inode, i_rcu);
457 	struct ubifs_inode *ui = ubifs_inode(inode);
458 	kmem_cache_free(ubifs_inode_slab, ui);
459 }
460 
461 static void ubifs_destroy_inode(struct inode *inode)
462 {
463 	struct ubifs_inode *ui = ubifs_inode(inode);
464 
465 	kfree(ui->data);
466 	call_rcu(&inode->i_rcu, ubifs_i_callback);
467 }
468 
469 /*
470  * Note, Linux write-back code calls this without 'i_mutex'.
471  */
472 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
473 {
474 	int err = 0;
475 	struct ubifs_info *c = inode->i_sb->s_fs_info;
476 	struct ubifs_inode *ui = ubifs_inode(inode);
477 
478 	ubifs_assert(!ui->xattr);
479 	if (is_bad_inode(inode))
480 		return 0;
481 
482 	mutex_lock(&ui->ui_mutex);
483 	/*
484 	 * Due to races between write-back forced by budgeting
485 	 * (see 'sync_some_inodes()') and background write-back, the inode may
486 	 * have already been synchronized, do not do this again. This might
487 	 * also happen if it was synchronized in an VFS operation, e.g.
488 	 * 'ubifs_link()'.
489 	 */
490 	if (!ui->dirty) {
491 		mutex_unlock(&ui->ui_mutex);
492 		return 0;
493 	}
494 
495 	/*
496 	 * As an optimization, do not write orphan inodes to the media just
497 	 * because this is not needed.
498 	 */
499 	dbg_gen("inode %lu, mode %#x, nlink %u",
500 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
501 	if (inode->i_nlink) {
502 		err = ubifs_jnl_write_inode(c, inode);
503 		if (err)
504 			ubifs_err("can't write inode %lu, error %d",
505 				  inode->i_ino, err);
506 		else
507 			err = dbg_check_inode_size(c, inode, ui->ui_size);
508 	}
509 
510 	ui->dirty = 0;
511 	mutex_unlock(&ui->ui_mutex);
512 	ubifs_release_dirty_inode_budget(c, ui);
513 	return err;
514 }
515 
516 static void ubifs_evict_inode(struct inode *inode)
517 {
518 	int err;
519 	struct ubifs_info *c = inode->i_sb->s_fs_info;
520 	struct ubifs_inode *ui = ubifs_inode(inode);
521 
522 	if (ui->xattr)
523 		/*
524 		 * Extended attribute inode deletions are fully handled in
525 		 * 'ubifs_removexattr()'. These inodes are special and have
526 		 * limited usage, so there is nothing to do here.
527 		 */
528 		goto out;
529 
530 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
531 	ubifs_assert(!atomic_read(&inode->i_count));
532 
533 	truncate_inode_pages_final(&inode->i_data);
534 
535 	if (inode->i_nlink)
536 		goto done;
537 
538 	if (is_bad_inode(inode))
539 		goto out;
540 
541 	ui->ui_size = inode->i_size = 0;
542 	err = ubifs_jnl_delete_inode(c, inode);
543 	if (err)
544 		/*
545 		 * Worst case we have a lost orphan inode wasting space, so a
546 		 * simple error message is OK here.
547 		 */
548 		ubifs_err("can't delete inode %lu, error %d",
549 			  inode->i_ino, err);
550 
551 out:
552 	if (ui->dirty)
553 		ubifs_release_dirty_inode_budget(c, ui);
554 	else {
555 		/* We've deleted something - clean the "no space" flags */
556 		c->bi.nospace = c->bi.nospace_rp = 0;
557 		smp_wmb();
558 	}
559 done:
560 	clear_inode(inode);
561 }
562 #endif
563 
564 static void ubifs_dirty_inode(struct inode *inode, int flags)
565 {
566 	struct ubifs_inode *ui = ubifs_inode(inode);
567 
568 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
569 	if (!ui->dirty) {
570 		ui->dirty = 1;
571 		dbg_gen("inode %lu",  inode->i_ino);
572 	}
573 }
574 
575 #ifndef __UBOOT__
576 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
577 {
578 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
579 	unsigned long long free;
580 	__le32 *uuid = (__le32 *)c->uuid;
581 
582 	free = ubifs_get_free_space(c);
583 	dbg_gen("free space %lld bytes (%lld blocks)",
584 		free, free >> UBIFS_BLOCK_SHIFT);
585 
586 	buf->f_type = UBIFS_SUPER_MAGIC;
587 	buf->f_bsize = UBIFS_BLOCK_SIZE;
588 	buf->f_blocks = c->block_cnt;
589 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
590 	if (free > c->report_rp_size)
591 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
592 	else
593 		buf->f_bavail = 0;
594 	buf->f_files = 0;
595 	buf->f_ffree = 0;
596 	buf->f_namelen = UBIFS_MAX_NLEN;
597 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
598 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
599 	ubifs_assert(buf->f_bfree <= c->block_cnt);
600 	return 0;
601 }
602 
603 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
604 {
605 	struct ubifs_info *c = root->d_sb->s_fs_info;
606 
607 	if (c->mount_opts.unmount_mode == 2)
608 		seq_printf(s, ",fast_unmount");
609 	else if (c->mount_opts.unmount_mode == 1)
610 		seq_printf(s, ",norm_unmount");
611 
612 	if (c->mount_opts.bulk_read == 2)
613 		seq_printf(s, ",bulk_read");
614 	else if (c->mount_opts.bulk_read == 1)
615 		seq_printf(s, ",no_bulk_read");
616 
617 	if (c->mount_opts.chk_data_crc == 2)
618 		seq_printf(s, ",chk_data_crc");
619 	else if (c->mount_opts.chk_data_crc == 1)
620 		seq_printf(s, ",no_chk_data_crc");
621 
622 	if (c->mount_opts.override_compr) {
623 		seq_printf(s, ",compr=%s",
624 			   ubifs_compr_name(c->mount_opts.compr_type));
625 	}
626 
627 	return 0;
628 }
629 
630 static int ubifs_sync_fs(struct super_block *sb, int wait)
631 {
632 	int i, err;
633 	struct ubifs_info *c = sb->s_fs_info;
634 
635 	/*
636 	 * Zero @wait is just an advisory thing to help the file system shove
637 	 * lots of data into the queues, and there will be the second
638 	 * '->sync_fs()' call, with non-zero @wait.
639 	 */
640 	if (!wait)
641 		return 0;
642 
643 	/*
644 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
645 	 * do this if it waits for an already running commit.
646 	 */
647 	for (i = 0; i < c->jhead_cnt; i++) {
648 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
649 		if (err)
650 			return err;
651 	}
652 
653 	/*
654 	 * Strictly speaking, it is not necessary to commit the journal here,
655 	 * synchronizing write-buffers would be enough. But committing makes
656 	 * UBIFS free space predictions much more accurate, so we want to let
657 	 * the user be able to get more accurate results of 'statfs()' after
658 	 * they synchronize the file system.
659 	 */
660 	err = ubifs_run_commit(c);
661 	if (err)
662 		return err;
663 
664 	return ubi_sync(c->vi.ubi_num);
665 }
666 #endif
667 
668 /**
669  * init_constants_early - initialize UBIFS constants.
670  * @c: UBIFS file-system description object
671  *
672  * This function initialize UBIFS constants which do not need the superblock to
673  * be read. It also checks that the UBI volume satisfies basic UBIFS
674  * requirements. Returns zero in case of success and a negative error code in
675  * case of failure.
676  */
677 static int init_constants_early(struct ubifs_info *c)
678 {
679 	if (c->vi.corrupted) {
680 		ubifs_warn("UBI volume is corrupted - read-only mode");
681 		c->ro_media = 1;
682 	}
683 
684 	if (c->di.ro_mode) {
685 		ubifs_msg("read-only UBI device");
686 		c->ro_media = 1;
687 	}
688 
689 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
690 		ubifs_msg("static UBI volume - read-only mode");
691 		c->ro_media = 1;
692 	}
693 
694 	c->leb_cnt = c->vi.size;
695 	c->leb_size = c->vi.usable_leb_size;
696 	c->leb_start = c->di.leb_start;
697 	c->half_leb_size = c->leb_size / 2;
698 	c->min_io_size = c->di.min_io_size;
699 	c->min_io_shift = fls(c->min_io_size) - 1;
700 	c->max_write_size = c->di.max_write_size;
701 	c->max_write_shift = fls(c->max_write_size) - 1;
702 
703 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
704 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
705 			  c->leb_size, UBIFS_MIN_LEB_SZ);
706 		return -EINVAL;
707 	}
708 
709 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
710 		ubifs_err("too few LEBs (%d), min. is %d",
711 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
712 		return -EINVAL;
713 	}
714 
715 	if (!is_power_of_2(c->min_io_size)) {
716 		ubifs_err("bad min. I/O size %d", c->min_io_size);
717 		return -EINVAL;
718 	}
719 
720 	/*
721 	 * Maximum write size has to be greater or equivalent to min. I/O
722 	 * size, and be multiple of min. I/O size.
723 	 */
724 	if (c->max_write_size < c->min_io_size ||
725 	    c->max_write_size % c->min_io_size ||
726 	    !is_power_of_2(c->max_write_size)) {
727 		ubifs_err("bad write buffer size %d for %d min. I/O unit",
728 			  c->max_write_size, c->min_io_size);
729 		return -EINVAL;
730 	}
731 
732 	/*
733 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
734 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
735 	 * less than 8.
736 	 */
737 	if (c->min_io_size < 8) {
738 		c->min_io_size = 8;
739 		c->min_io_shift = 3;
740 		if (c->max_write_size < c->min_io_size) {
741 			c->max_write_size = c->min_io_size;
742 			c->max_write_shift = c->min_io_shift;
743 		}
744 	}
745 
746 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
747 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
748 
749 	/*
750 	 * Initialize node length ranges which are mostly needed for node
751 	 * length validation.
752 	 */
753 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
754 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
755 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
756 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
757 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
758 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
759 
760 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
761 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
762 	c->ranges[UBIFS_ORPH_NODE].min_len =
763 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
764 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
765 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
766 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
767 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
768 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
769 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
770 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
771 	/*
772 	 * Minimum indexing node size is amended later when superblock is
773 	 * read and the key length is known.
774 	 */
775 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
776 	/*
777 	 * Maximum indexing node size is amended later when superblock is
778 	 * read and the fanout is known.
779 	 */
780 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
781 
782 	/*
783 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
784 	 * about these values.
785 	 */
786 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
787 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
788 
789 	/*
790 	 * Calculate how many bytes would be wasted at the end of LEB if it was
791 	 * fully filled with data nodes of maximum size. This is used in
792 	 * calculations when reporting free space.
793 	 */
794 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
795 
796 	/* Buffer size for bulk-reads */
797 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
798 	if (c->max_bu_buf_len > c->leb_size)
799 		c->max_bu_buf_len = c->leb_size;
800 	return 0;
801 }
802 
803 /**
804  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
805  * @c: UBIFS file-system description object
806  * @lnum: LEB the write-buffer was synchronized to
807  * @free: how many free bytes left in this LEB
808  * @pad: how many bytes were padded
809  *
810  * This is a callback function which is called by the I/O unit when the
811  * write-buffer is synchronized. We need this to correctly maintain space
812  * accounting in bud logical eraseblocks. This function returns zero in case of
813  * success and a negative error code in case of failure.
814  *
815  * This function actually belongs to the journal, but we keep it here because
816  * we want to keep it static.
817  */
818 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
819 {
820 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
821 }
822 
823 /*
824  * init_constants_sb - initialize UBIFS constants.
825  * @c: UBIFS file-system description object
826  *
827  * This is a helper function which initializes various UBIFS constants after
828  * the superblock has been read. It also checks various UBIFS parameters and
829  * makes sure they are all right. Returns zero in case of success and a
830  * negative error code in case of failure.
831  */
832 static int init_constants_sb(struct ubifs_info *c)
833 {
834 	int tmp, err;
835 	long long tmp64;
836 
837 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
838 	c->max_znode_sz = sizeof(struct ubifs_znode) +
839 				c->fanout * sizeof(struct ubifs_zbranch);
840 
841 	tmp = ubifs_idx_node_sz(c, 1);
842 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
843 	c->min_idx_node_sz = ALIGN(tmp, 8);
844 
845 	tmp = ubifs_idx_node_sz(c, c->fanout);
846 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
847 	c->max_idx_node_sz = ALIGN(tmp, 8);
848 
849 	/* Make sure LEB size is large enough to fit full commit */
850 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
851 	tmp = ALIGN(tmp, c->min_io_size);
852 	if (tmp > c->leb_size) {
853 		ubifs_err("too small LEB size %d, at least %d needed",
854 			  c->leb_size, tmp);
855 		return -EINVAL;
856 	}
857 
858 	/*
859 	 * Make sure that the log is large enough to fit reference nodes for
860 	 * all buds plus one reserved LEB.
861 	 */
862 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
863 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
864 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
865 	tmp /= c->leb_size;
866 	tmp += 1;
867 	if (c->log_lebs < tmp) {
868 		ubifs_err("too small log %d LEBs, required min. %d LEBs",
869 			  c->log_lebs, tmp);
870 		return -EINVAL;
871 	}
872 
873 	/*
874 	 * When budgeting we assume worst-case scenarios when the pages are not
875 	 * be compressed and direntries are of the maximum size.
876 	 *
877 	 * Note, data, which may be stored in inodes is budgeted separately, so
878 	 * it is not included into 'c->bi.inode_budget'.
879 	 */
880 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
881 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
882 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
883 
884 	/*
885 	 * When the amount of flash space used by buds becomes
886 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
887 	 * The writers are unblocked when the commit is finished. To avoid
888 	 * writers to be blocked UBIFS initiates background commit in advance,
889 	 * when number of bud bytes becomes above the limit defined below.
890 	 */
891 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
892 
893 	/*
894 	 * Ensure minimum journal size. All the bytes in the journal heads are
895 	 * considered to be used, when calculating the current journal usage.
896 	 * Consequently, if the journal is too small, UBIFS will treat it as
897 	 * always full.
898 	 */
899 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
900 	if (c->bg_bud_bytes < tmp64)
901 		c->bg_bud_bytes = tmp64;
902 	if (c->max_bud_bytes < tmp64 + c->leb_size)
903 		c->max_bud_bytes = tmp64 + c->leb_size;
904 
905 	err = ubifs_calc_lpt_geom(c);
906 	if (err)
907 		return err;
908 
909 	/* Initialize effective LEB size used in budgeting calculations */
910 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
911 	return 0;
912 }
913 
914 /*
915  * init_constants_master - initialize UBIFS constants.
916  * @c: UBIFS file-system description object
917  *
918  * This is a helper function which initializes various UBIFS constants after
919  * the master node has been read. It also checks various UBIFS parameters and
920  * makes sure they are all right.
921  */
922 static void init_constants_master(struct ubifs_info *c)
923 {
924 	long long tmp64;
925 
926 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
927 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
928 
929 	/*
930 	 * Calculate total amount of FS blocks. This number is not used
931 	 * internally because it does not make much sense for UBIFS, but it is
932 	 * necessary to report something for the 'statfs()' call.
933 	 *
934 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
935 	 * deletions, minimum LEBs for the index, and assume only one journal
936 	 * head is available.
937 	 */
938 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
939 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
940 	tmp64 = ubifs_reported_space(c, tmp64);
941 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
942 }
943 
944 /**
945  * take_gc_lnum - reserve GC LEB.
946  * @c: UBIFS file-system description object
947  *
948  * This function ensures that the LEB reserved for garbage collection is marked
949  * as "taken" in lprops. We also have to set free space to LEB size and dirty
950  * space to zero, because lprops may contain out-of-date information if the
951  * file-system was un-mounted before it has been committed. This function
952  * returns zero in case of success and a negative error code in case of
953  * failure.
954  */
955 static int take_gc_lnum(struct ubifs_info *c)
956 {
957 	int err;
958 
959 	if (c->gc_lnum == -1) {
960 		ubifs_err("no LEB for GC");
961 		return -EINVAL;
962 	}
963 
964 	/* And we have to tell lprops that this LEB is taken */
965 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
966 				  LPROPS_TAKEN, 0, 0);
967 	return err;
968 }
969 
970 /**
971  * alloc_wbufs - allocate write-buffers.
972  * @c: UBIFS file-system description object
973  *
974  * This helper function allocates and initializes UBIFS write-buffers. Returns
975  * zero in case of success and %-ENOMEM in case of failure.
976  */
977 static int alloc_wbufs(struct ubifs_info *c)
978 {
979 	int i, err;
980 
981 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
982 			   GFP_KERNEL);
983 	if (!c->jheads)
984 		return -ENOMEM;
985 
986 	/* Initialize journal heads */
987 	for (i = 0; i < c->jhead_cnt; i++) {
988 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
989 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
990 		if (err)
991 			return err;
992 
993 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
994 		c->jheads[i].wbuf.jhead = i;
995 		c->jheads[i].grouped = 1;
996 	}
997 
998 	/*
999 	 * Garbage Collector head does not need to be synchronized by timer.
1000 	 * Also GC head nodes are not grouped.
1001 	 */
1002 	c->jheads[GCHD].wbuf.no_timer = 1;
1003 	c->jheads[GCHD].grouped = 0;
1004 
1005 	return 0;
1006 }
1007 
1008 /**
1009  * free_wbufs - free write-buffers.
1010  * @c: UBIFS file-system description object
1011  */
1012 static void free_wbufs(struct ubifs_info *c)
1013 {
1014 	int i;
1015 
1016 	if (c->jheads) {
1017 		for (i = 0; i < c->jhead_cnt; i++) {
1018 			kfree(c->jheads[i].wbuf.buf);
1019 			kfree(c->jheads[i].wbuf.inodes);
1020 		}
1021 		kfree(c->jheads);
1022 		c->jheads = NULL;
1023 	}
1024 }
1025 
1026 /**
1027  * free_orphans - free orphans.
1028  * @c: UBIFS file-system description object
1029  */
1030 static void free_orphans(struct ubifs_info *c)
1031 {
1032 	struct ubifs_orphan *orph;
1033 
1034 	while (c->orph_dnext) {
1035 		orph = c->orph_dnext;
1036 		c->orph_dnext = orph->dnext;
1037 		list_del(&orph->list);
1038 		kfree(orph);
1039 	}
1040 
1041 	while (!list_empty(&c->orph_list)) {
1042 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1043 		list_del(&orph->list);
1044 		kfree(orph);
1045 		ubifs_err("orphan list not empty at unmount");
1046 	}
1047 
1048 	vfree(c->orph_buf);
1049 	c->orph_buf = NULL;
1050 }
1051 
1052 #ifndef __UBOOT__
1053 /**
1054  * free_buds - free per-bud objects.
1055  * @c: UBIFS file-system description object
1056  */
1057 static void free_buds(struct ubifs_info *c)
1058 {
1059 	struct ubifs_bud *bud, *n;
1060 
1061 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1062 		kfree(bud);
1063 }
1064 #endif
1065 
1066 /**
1067  * check_volume_empty - check if the UBI volume is empty.
1068  * @c: UBIFS file-system description object
1069  *
1070  * This function checks if the UBIFS volume is empty by looking if its LEBs are
1071  * mapped or not. The result of checking is stored in the @c->empty variable.
1072  * Returns zero in case of success and a negative error code in case of
1073  * failure.
1074  */
1075 static int check_volume_empty(struct ubifs_info *c)
1076 {
1077 	int lnum, err;
1078 
1079 	c->empty = 1;
1080 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1081 		err = ubifs_is_mapped(c, lnum);
1082 		if (unlikely(err < 0))
1083 			return err;
1084 		if (err == 1) {
1085 			c->empty = 0;
1086 			break;
1087 		}
1088 
1089 		cond_resched();
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * UBIFS mount options.
1097  *
1098  * Opt_fast_unmount: do not run a journal commit before un-mounting
1099  * Opt_norm_unmount: run a journal commit before un-mounting
1100  * Opt_bulk_read: enable bulk-reads
1101  * Opt_no_bulk_read: disable bulk-reads
1102  * Opt_chk_data_crc: check CRCs when reading data nodes
1103  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1104  * Opt_override_compr: override default compressor
1105  * Opt_err: just end of array marker
1106  */
1107 enum {
1108 	Opt_fast_unmount,
1109 	Opt_norm_unmount,
1110 	Opt_bulk_read,
1111 	Opt_no_bulk_read,
1112 	Opt_chk_data_crc,
1113 	Opt_no_chk_data_crc,
1114 	Opt_override_compr,
1115 	Opt_err,
1116 };
1117 
1118 #ifndef __UBOOT__
1119 static const match_table_t tokens = {
1120 	{Opt_fast_unmount, "fast_unmount"},
1121 	{Opt_norm_unmount, "norm_unmount"},
1122 	{Opt_bulk_read, "bulk_read"},
1123 	{Opt_no_bulk_read, "no_bulk_read"},
1124 	{Opt_chk_data_crc, "chk_data_crc"},
1125 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
1126 	{Opt_override_compr, "compr=%s"},
1127 	{Opt_err, NULL},
1128 };
1129 
1130 /**
1131  * parse_standard_option - parse a standard mount option.
1132  * @option: the option to parse
1133  *
1134  * Normally, standard mount options like "sync" are passed to file-systems as
1135  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1136  * be present in the options string. This function tries to deal with this
1137  * situation and parse standard options. Returns 0 if the option was not
1138  * recognized, and the corresponding integer flag if it was.
1139  *
1140  * UBIFS is only interested in the "sync" option, so do not check for anything
1141  * else.
1142  */
1143 static int parse_standard_option(const char *option)
1144 {
1145 	ubifs_msg("parse %s", option);
1146 	if (!strcmp(option, "sync"))
1147 		return MS_SYNCHRONOUS;
1148 	return 0;
1149 }
1150 
1151 /**
1152  * ubifs_parse_options - parse mount parameters.
1153  * @c: UBIFS file-system description object
1154  * @options: parameters to parse
1155  * @is_remount: non-zero if this is FS re-mount
1156  *
1157  * This function parses UBIFS mount options and returns zero in case success
1158  * and a negative error code in case of failure.
1159  */
1160 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1161 			       int is_remount)
1162 {
1163 	char *p;
1164 	substring_t args[MAX_OPT_ARGS];
1165 
1166 	if (!options)
1167 		return 0;
1168 
1169 	while ((p = strsep(&options, ","))) {
1170 		int token;
1171 
1172 		if (!*p)
1173 			continue;
1174 
1175 		token = match_token(p, tokens, args);
1176 		switch (token) {
1177 		/*
1178 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1179 		 * We accept them in order to be backward-compatible. But this
1180 		 * should be removed at some point.
1181 		 */
1182 		case Opt_fast_unmount:
1183 			c->mount_opts.unmount_mode = 2;
1184 			break;
1185 		case Opt_norm_unmount:
1186 			c->mount_opts.unmount_mode = 1;
1187 			break;
1188 		case Opt_bulk_read:
1189 			c->mount_opts.bulk_read = 2;
1190 			c->bulk_read = 1;
1191 			break;
1192 		case Opt_no_bulk_read:
1193 			c->mount_opts.bulk_read = 1;
1194 			c->bulk_read = 0;
1195 			break;
1196 		case Opt_chk_data_crc:
1197 			c->mount_opts.chk_data_crc = 2;
1198 			c->no_chk_data_crc = 0;
1199 			break;
1200 		case Opt_no_chk_data_crc:
1201 			c->mount_opts.chk_data_crc = 1;
1202 			c->no_chk_data_crc = 1;
1203 			break;
1204 		case Opt_override_compr:
1205 		{
1206 			char *name = match_strdup(&args[0]);
1207 
1208 			if (!name)
1209 				return -ENOMEM;
1210 			if (!strcmp(name, "none"))
1211 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1212 			else if (!strcmp(name, "lzo"))
1213 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1214 			else if (!strcmp(name, "zlib"))
1215 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1216 			else {
1217 				ubifs_err("unknown compressor \"%s\"", name);
1218 				kfree(name);
1219 				return -EINVAL;
1220 			}
1221 			kfree(name);
1222 			c->mount_opts.override_compr = 1;
1223 			c->default_compr = c->mount_opts.compr_type;
1224 			break;
1225 		}
1226 		default:
1227 		{
1228 			unsigned long flag;
1229 			struct super_block *sb = c->vfs_sb;
1230 
1231 			flag = parse_standard_option(p);
1232 			if (!flag) {
1233 				ubifs_err("unrecognized mount option \"%s\" or missing value",
1234 					  p);
1235 				return -EINVAL;
1236 			}
1237 			sb->s_flags |= flag;
1238 			break;
1239 		}
1240 		}
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 /**
1247  * destroy_journal - destroy journal data structures.
1248  * @c: UBIFS file-system description object
1249  *
1250  * This function destroys journal data structures including those that may have
1251  * been created by recovery functions.
1252  */
1253 static void destroy_journal(struct ubifs_info *c)
1254 {
1255 	while (!list_empty(&c->unclean_leb_list)) {
1256 		struct ubifs_unclean_leb *ucleb;
1257 
1258 		ucleb = list_entry(c->unclean_leb_list.next,
1259 				   struct ubifs_unclean_leb, list);
1260 		list_del(&ucleb->list);
1261 		kfree(ucleb);
1262 	}
1263 	while (!list_empty(&c->old_buds)) {
1264 		struct ubifs_bud *bud;
1265 
1266 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1267 		list_del(&bud->list);
1268 		kfree(bud);
1269 	}
1270 	ubifs_destroy_idx_gc(c);
1271 	ubifs_destroy_size_tree(c);
1272 	ubifs_tnc_close(c);
1273 	free_buds(c);
1274 }
1275 #endif
1276 
1277 /**
1278  * bu_init - initialize bulk-read information.
1279  * @c: UBIFS file-system description object
1280  */
1281 static void bu_init(struct ubifs_info *c)
1282 {
1283 	ubifs_assert(c->bulk_read == 1);
1284 
1285 	if (c->bu.buf)
1286 		return; /* Already initialized */
1287 
1288 again:
1289 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1290 	if (!c->bu.buf) {
1291 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1292 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1293 			goto again;
1294 		}
1295 
1296 		/* Just disable bulk-read */
1297 		ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1298 			   c->max_bu_buf_len);
1299 		c->mount_opts.bulk_read = 1;
1300 		c->bulk_read = 0;
1301 		return;
1302 	}
1303 }
1304 
1305 #ifndef __UBOOT__
1306 /**
1307  * check_free_space - check if there is enough free space to mount.
1308  * @c: UBIFS file-system description object
1309  *
1310  * This function makes sure UBIFS has enough free space to be mounted in
1311  * read/write mode. UBIFS must always have some free space to allow deletions.
1312  */
1313 static int check_free_space(struct ubifs_info *c)
1314 {
1315 	ubifs_assert(c->dark_wm > 0);
1316 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1317 		ubifs_err("insufficient free space to mount in R/W mode");
1318 		ubifs_dump_budg(c, &c->bi);
1319 		ubifs_dump_lprops(c);
1320 		return -ENOSPC;
1321 	}
1322 	return 0;
1323 }
1324 #endif
1325 
1326 /**
1327  * mount_ubifs - mount UBIFS file-system.
1328  * @c: UBIFS file-system description object
1329  *
1330  * This function mounts UBIFS file system. Returns zero in case of success and
1331  * a negative error code in case of failure.
1332  */
1333 static int mount_ubifs(struct ubifs_info *c)
1334 {
1335 	int err;
1336 	long long x, y;
1337 	size_t sz;
1338 
1339 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1340 #ifdef __UBOOT__
1341 	if (!c->ro_mount) {
1342 		printf("UBIFS: only ro mode in U-Boot allowed.\n");
1343 		return -EACCES;
1344 	}
1345 #endif
1346 
1347 	err = init_constants_early(c);
1348 	if (err)
1349 		return err;
1350 
1351 	err = ubifs_debugging_init(c);
1352 	if (err)
1353 		return err;
1354 
1355 	err = check_volume_empty(c);
1356 	if (err)
1357 		goto out_free;
1358 
1359 	if (c->empty && (c->ro_mount || c->ro_media)) {
1360 		/*
1361 		 * This UBI volume is empty, and read-only, or the file system
1362 		 * is mounted read-only - we cannot format it.
1363 		 */
1364 		ubifs_err("can't format empty UBI volume: read-only %s",
1365 			  c->ro_media ? "UBI volume" : "mount");
1366 		err = -EROFS;
1367 		goto out_free;
1368 	}
1369 
1370 	if (c->ro_media && !c->ro_mount) {
1371 		ubifs_err("cannot mount read-write - read-only media");
1372 		err = -EROFS;
1373 		goto out_free;
1374 	}
1375 
1376 	/*
1377 	 * The requirement for the buffer is that it should fit indexing B-tree
1378 	 * height amount of integers. We assume the height if the TNC tree will
1379 	 * never exceed 64.
1380 	 */
1381 	err = -ENOMEM;
1382 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1383 	if (!c->bottom_up_buf)
1384 		goto out_free;
1385 
1386 	c->sbuf = vmalloc(c->leb_size);
1387 	if (!c->sbuf)
1388 		goto out_free;
1389 
1390 #ifndef __UBOOT__
1391 	if (!c->ro_mount) {
1392 		c->ileb_buf = vmalloc(c->leb_size);
1393 		if (!c->ileb_buf)
1394 			goto out_free;
1395 	}
1396 #endif
1397 
1398 	if (c->bulk_read == 1)
1399 		bu_init(c);
1400 
1401 #ifndef __UBOOT__
1402 	if (!c->ro_mount) {
1403 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1404 					       GFP_KERNEL);
1405 		if (!c->write_reserve_buf)
1406 			goto out_free;
1407 	}
1408 #endif
1409 
1410 	c->mounting = 1;
1411 
1412 	err = ubifs_read_superblock(c);
1413 	if (err)
1414 		goto out_free;
1415 
1416 	/*
1417 	 * Make sure the compressor which is set as default in the superblock
1418 	 * or overridden by mount options is actually compiled in.
1419 	 */
1420 	if (!ubifs_compr_present(c->default_compr)) {
1421 		ubifs_err("'compressor \"%s\" is not compiled in",
1422 			  ubifs_compr_name(c->default_compr));
1423 		err = -ENOTSUPP;
1424 		goto out_free;
1425 	}
1426 
1427 	err = init_constants_sb(c);
1428 	if (err)
1429 		goto out_free;
1430 
1431 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1432 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1433 	c->cbuf = kmalloc(sz, GFP_NOFS);
1434 	if (!c->cbuf) {
1435 		err = -ENOMEM;
1436 		goto out_free;
1437 	}
1438 
1439 	err = alloc_wbufs(c);
1440 	if (err)
1441 		goto out_cbuf;
1442 
1443 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1444 #ifndef __UBOOT__
1445 	if (!c->ro_mount) {
1446 		/* Create background thread */
1447 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1448 		if (IS_ERR(c->bgt)) {
1449 			err = PTR_ERR(c->bgt);
1450 			c->bgt = NULL;
1451 			ubifs_err("cannot spawn \"%s\", error %d",
1452 				  c->bgt_name, err);
1453 			goto out_wbufs;
1454 		}
1455 		wake_up_process(c->bgt);
1456 	}
1457 #endif
1458 
1459 	err = ubifs_read_master(c);
1460 	if (err)
1461 		goto out_master;
1462 
1463 	init_constants_master(c);
1464 
1465 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1466 		ubifs_msg("recovery needed");
1467 		c->need_recovery = 1;
1468 	}
1469 
1470 #ifndef __UBOOT__
1471 	if (c->need_recovery && !c->ro_mount) {
1472 		err = ubifs_recover_inl_heads(c, c->sbuf);
1473 		if (err)
1474 			goto out_master;
1475 	}
1476 #endif
1477 
1478 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1479 	if (err)
1480 		goto out_master;
1481 
1482 #ifndef __UBOOT__
1483 	if (!c->ro_mount && c->space_fixup) {
1484 		err = ubifs_fixup_free_space(c);
1485 		if (err)
1486 			goto out_lpt;
1487 	}
1488 
1489 	if (!c->ro_mount) {
1490 		/*
1491 		 * Set the "dirty" flag so that if we reboot uncleanly we
1492 		 * will notice this immediately on the next mount.
1493 		 */
1494 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1495 		err = ubifs_write_master(c);
1496 		if (err)
1497 			goto out_lpt;
1498 	}
1499 #endif
1500 
1501 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1502 	if (err)
1503 		goto out_lpt;
1504 
1505 #ifndef __UBOOT__
1506 	err = ubifs_replay_journal(c);
1507 	if (err)
1508 		goto out_journal;
1509 #endif
1510 
1511 	/* Calculate 'min_idx_lebs' after journal replay */
1512 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1513 
1514 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1515 	if (err)
1516 		goto out_orphans;
1517 
1518 	if (!c->ro_mount) {
1519 #ifndef __UBOOT__
1520 		int lnum;
1521 
1522 		err = check_free_space(c);
1523 		if (err)
1524 			goto out_orphans;
1525 
1526 		/* Check for enough log space */
1527 		lnum = c->lhead_lnum + 1;
1528 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1529 			lnum = UBIFS_LOG_LNUM;
1530 		if (lnum == c->ltail_lnum) {
1531 			err = ubifs_consolidate_log(c);
1532 			if (err)
1533 				goto out_orphans;
1534 		}
1535 
1536 		if (c->need_recovery) {
1537 			err = ubifs_recover_size(c);
1538 			if (err)
1539 				goto out_orphans;
1540 			err = ubifs_rcvry_gc_commit(c);
1541 			if (err)
1542 				goto out_orphans;
1543 		} else {
1544 			err = take_gc_lnum(c);
1545 			if (err)
1546 				goto out_orphans;
1547 
1548 			/*
1549 			 * GC LEB may contain garbage if there was an unclean
1550 			 * reboot, and it should be un-mapped.
1551 			 */
1552 			err = ubifs_leb_unmap(c, c->gc_lnum);
1553 			if (err)
1554 				goto out_orphans;
1555 		}
1556 
1557 		err = dbg_check_lprops(c);
1558 		if (err)
1559 			goto out_orphans;
1560 #endif
1561 	} else if (c->need_recovery) {
1562 		err = ubifs_recover_size(c);
1563 		if (err)
1564 			goto out_orphans;
1565 	} else {
1566 		/*
1567 		 * Even if we mount read-only, we have to set space in GC LEB
1568 		 * to proper value because this affects UBIFS free space
1569 		 * reporting. We do not want to have a situation when
1570 		 * re-mounting from R/O to R/W changes amount of free space.
1571 		 */
1572 		err = take_gc_lnum(c);
1573 		if (err)
1574 			goto out_orphans;
1575 	}
1576 
1577 #ifndef __UBOOT__
1578 	spin_lock(&ubifs_infos_lock);
1579 	list_add_tail(&c->infos_list, &ubifs_infos);
1580 	spin_unlock(&ubifs_infos_lock);
1581 #endif
1582 
1583 	if (c->need_recovery) {
1584 		if (c->ro_mount)
1585 			ubifs_msg("recovery deferred");
1586 		else {
1587 			c->need_recovery = 0;
1588 			ubifs_msg("recovery completed");
1589 			/*
1590 			 * GC LEB has to be empty and taken at this point. But
1591 			 * the journal head LEBs may also be accounted as
1592 			 * "empty taken" if they are empty.
1593 			 */
1594 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1595 		}
1596 	} else
1597 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1598 
1599 	err = dbg_check_filesystem(c);
1600 	if (err)
1601 		goto out_infos;
1602 
1603 	err = dbg_debugfs_init_fs(c);
1604 	if (err)
1605 		goto out_infos;
1606 
1607 	c->mounting = 0;
1608 
1609 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1610 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1611 		  c->ro_mount ? ", R/O mode" : "");
1612 	x = (long long)c->main_lebs * c->leb_size;
1613 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1614 	ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1615 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1616 		  c->max_write_size);
1617 	ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1618 		  x, x >> 20, c->main_lebs,
1619 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1620 	ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1621 		  c->report_rp_size, c->report_rp_size >> 10);
1622 	ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1623 		  c->fmt_version, c->ro_compat_version,
1624 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1625 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1626 
1627 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1628 	dbg_gen("data journal heads:  %d",
1629 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1630 	dbg_gen("log LEBs:            %d (%d - %d)",
1631 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1632 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1633 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1634 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1635 		c->orph_lebs, c->orph_first, c->orph_last);
1636 	dbg_gen("main area LEBs:      %d (%d - %d)",
1637 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1638 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1639 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1640 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1641 		c->bi.old_idx_sz >> 20);
1642 	dbg_gen("key hash type:       %d", c->key_hash_type);
1643 	dbg_gen("tree fanout:         %d", c->fanout);
1644 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1645 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1646 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1647 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1648 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1649 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1650 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1651 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1652 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1653 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1654 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1655 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1656 	dbg_gen("dead watermark:      %d", c->dead_wm);
1657 	dbg_gen("dark watermark:      %d", c->dark_wm);
1658 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1659 	x = (long long)c->main_lebs * c->dark_wm;
1660 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1661 		x, x >> 10, x >> 20);
1662 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1663 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1664 		c->max_bud_bytes >> 20);
1665 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1666 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1667 		c->bg_bud_bytes >> 20);
1668 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1669 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1670 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1671 	dbg_gen("commit number:       %llu", c->cmt_no);
1672 
1673 	return 0;
1674 
1675 out_infos:
1676 	spin_lock(&ubifs_infos_lock);
1677 	list_del(&c->infos_list);
1678 	spin_unlock(&ubifs_infos_lock);
1679 out_orphans:
1680 	free_orphans(c);
1681 #ifndef __UBOOT__
1682 out_journal:
1683 	destroy_journal(c);
1684 #endif
1685 out_lpt:
1686 	ubifs_lpt_free(c, 0);
1687 out_master:
1688 	kfree(c->mst_node);
1689 	kfree(c->rcvrd_mst_node);
1690 	if (c->bgt)
1691 		kthread_stop(c->bgt);
1692 #ifndef __UBOOT__
1693 out_wbufs:
1694 #endif
1695 	free_wbufs(c);
1696 out_cbuf:
1697 	kfree(c->cbuf);
1698 out_free:
1699 	kfree(c->write_reserve_buf);
1700 	kfree(c->bu.buf);
1701 	vfree(c->ileb_buf);
1702 	vfree(c->sbuf);
1703 	kfree(c->bottom_up_buf);
1704 	ubifs_debugging_exit(c);
1705 	return err;
1706 }
1707 
1708 /**
1709  * ubifs_umount - un-mount UBIFS file-system.
1710  * @c: UBIFS file-system description object
1711  *
1712  * Note, this function is called to free allocated resourced when un-mounting,
1713  * as well as free resources when an error occurred while we were half way
1714  * through mounting (error path cleanup function). So it has to make sure the
1715  * resource was actually allocated before freeing it.
1716  */
1717 #ifndef __UBOOT__
1718 static void ubifs_umount(struct ubifs_info *c)
1719 #else
1720 void ubifs_umount(struct ubifs_info *c)
1721 #endif
1722 {
1723 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1724 		c->vi.vol_id);
1725 
1726 	dbg_debugfs_exit_fs(c);
1727 	spin_lock(&ubifs_infos_lock);
1728 	list_del(&c->infos_list);
1729 	spin_unlock(&ubifs_infos_lock);
1730 
1731 #ifndef __UBOOT__
1732 	if (c->bgt)
1733 		kthread_stop(c->bgt);
1734 
1735 	destroy_journal(c);
1736 #endif
1737 	free_wbufs(c);
1738 	free_orphans(c);
1739 	ubifs_lpt_free(c, 0);
1740 
1741 	kfree(c->cbuf);
1742 	kfree(c->rcvrd_mst_node);
1743 	kfree(c->mst_node);
1744 	kfree(c->write_reserve_buf);
1745 	kfree(c->bu.buf);
1746 	vfree(c->ileb_buf);
1747 	vfree(c->sbuf);
1748 	kfree(c->bottom_up_buf);
1749 	ubifs_debugging_exit(c);
1750 #ifdef __UBOOT__
1751 	/* Finally free U-Boot's global copy of superblock */
1752 	if (ubifs_sb != NULL) {
1753 		free(ubifs_sb->s_fs_info);
1754 		free(ubifs_sb);
1755 	}
1756 #endif
1757 }
1758 
1759 #ifndef __UBOOT__
1760 /**
1761  * ubifs_remount_rw - re-mount in read-write mode.
1762  * @c: UBIFS file-system description object
1763  *
1764  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1765  * mode. This function allocates the needed resources and re-mounts UBIFS in
1766  * read-write mode.
1767  */
1768 static int ubifs_remount_rw(struct ubifs_info *c)
1769 {
1770 	int err, lnum;
1771 
1772 	if (c->rw_incompat) {
1773 		ubifs_err("the file-system is not R/W-compatible");
1774 		ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1775 			  c->fmt_version, c->ro_compat_version,
1776 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1777 		return -EROFS;
1778 	}
1779 
1780 	mutex_lock(&c->umount_mutex);
1781 	dbg_save_space_info(c);
1782 	c->remounting_rw = 1;
1783 	c->ro_mount = 0;
1784 
1785 	if (c->space_fixup) {
1786 		err = ubifs_fixup_free_space(c);
1787 		if (err)
1788 			goto out;
1789 	}
1790 
1791 	err = check_free_space(c);
1792 	if (err)
1793 		goto out;
1794 
1795 	if (c->old_leb_cnt != c->leb_cnt) {
1796 		struct ubifs_sb_node *sup;
1797 
1798 		sup = ubifs_read_sb_node(c);
1799 		if (IS_ERR(sup)) {
1800 			err = PTR_ERR(sup);
1801 			goto out;
1802 		}
1803 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1804 		err = ubifs_write_sb_node(c, sup);
1805 		kfree(sup);
1806 		if (err)
1807 			goto out;
1808 	}
1809 
1810 	if (c->need_recovery) {
1811 		ubifs_msg("completing deferred recovery");
1812 		err = ubifs_write_rcvrd_mst_node(c);
1813 		if (err)
1814 			goto out;
1815 		err = ubifs_recover_size(c);
1816 		if (err)
1817 			goto out;
1818 		err = ubifs_clean_lebs(c, c->sbuf);
1819 		if (err)
1820 			goto out;
1821 		err = ubifs_recover_inl_heads(c, c->sbuf);
1822 		if (err)
1823 			goto out;
1824 	} else {
1825 		/* A readonly mount is not allowed to have orphans */
1826 		ubifs_assert(c->tot_orphans == 0);
1827 		err = ubifs_clear_orphans(c);
1828 		if (err)
1829 			goto out;
1830 	}
1831 
1832 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1833 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1834 		err = ubifs_write_master(c);
1835 		if (err)
1836 			goto out;
1837 	}
1838 
1839 	c->ileb_buf = vmalloc(c->leb_size);
1840 	if (!c->ileb_buf) {
1841 		err = -ENOMEM;
1842 		goto out;
1843 	}
1844 
1845 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1846 	if (!c->write_reserve_buf) {
1847 		err = -ENOMEM;
1848 		goto out;
1849 	}
1850 
1851 	err = ubifs_lpt_init(c, 0, 1);
1852 	if (err)
1853 		goto out;
1854 
1855 	/* Create background thread */
1856 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1857 	if (IS_ERR(c->bgt)) {
1858 		err = PTR_ERR(c->bgt);
1859 		c->bgt = NULL;
1860 		ubifs_err("cannot spawn \"%s\", error %d",
1861 			  c->bgt_name, err);
1862 		goto out;
1863 	}
1864 	wake_up_process(c->bgt);
1865 
1866 	c->orph_buf = vmalloc(c->leb_size);
1867 	if (!c->orph_buf) {
1868 		err = -ENOMEM;
1869 		goto out;
1870 	}
1871 
1872 	/* Check for enough log space */
1873 	lnum = c->lhead_lnum + 1;
1874 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1875 		lnum = UBIFS_LOG_LNUM;
1876 	if (lnum == c->ltail_lnum) {
1877 		err = ubifs_consolidate_log(c);
1878 		if (err)
1879 			goto out;
1880 	}
1881 
1882 	if (c->need_recovery)
1883 		err = ubifs_rcvry_gc_commit(c);
1884 	else
1885 		err = ubifs_leb_unmap(c, c->gc_lnum);
1886 	if (err)
1887 		goto out;
1888 
1889 	dbg_gen("re-mounted read-write");
1890 	c->remounting_rw = 0;
1891 
1892 	if (c->need_recovery) {
1893 		c->need_recovery = 0;
1894 		ubifs_msg("deferred recovery completed");
1895 	} else {
1896 		/*
1897 		 * Do not run the debugging space check if the were doing
1898 		 * recovery, because when we saved the information we had the
1899 		 * file-system in a state where the TNC and lprops has been
1900 		 * modified in memory, but all the I/O operations (including a
1901 		 * commit) were deferred. So the file-system was in
1902 		 * "non-committed" state. Now the file-system is in committed
1903 		 * state, and of course the amount of free space will change
1904 		 * because, for example, the old index size was imprecise.
1905 		 */
1906 		err = dbg_check_space_info(c);
1907 	}
1908 
1909 	mutex_unlock(&c->umount_mutex);
1910 	return err;
1911 
1912 out:
1913 	c->ro_mount = 1;
1914 	vfree(c->orph_buf);
1915 	c->orph_buf = NULL;
1916 	if (c->bgt) {
1917 		kthread_stop(c->bgt);
1918 		c->bgt = NULL;
1919 	}
1920 	free_wbufs(c);
1921 	kfree(c->write_reserve_buf);
1922 	c->write_reserve_buf = NULL;
1923 	vfree(c->ileb_buf);
1924 	c->ileb_buf = NULL;
1925 	ubifs_lpt_free(c, 1);
1926 	c->remounting_rw = 0;
1927 	mutex_unlock(&c->umount_mutex);
1928 	return err;
1929 }
1930 
1931 /**
1932  * ubifs_remount_ro - re-mount in read-only mode.
1933  * @c: UBIFS file-system description object
1934  *
1935  * We assume VFS has stopped writing. Possibly the background thread could be
1936  * running a commit, however kthread_stop will wait in that case.
1937  */
1938 static void ubifs_remount_ro(struct ubifs_info *c)
1939 {
1940 	int i, err;
1941 
1942 	ubifs_assert(!c->need_recovery);
1943 	ubifs_assert(!c->ro_mount);
1944 
1945 	mutex_lock(&c->umount_mutex);
1946 	if (c->bgt) {
1947 		kthread_stop(c->bgt);
1948 		c->bgt = NULL;
1949 	}
1950 
1951 	dbg_save_space_info(c);
1952 
1953 	for (i = 0; i < c->jhead_cnt; i++)
1954 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1955 
1956 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1957 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1958 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1959 	err = ubifs_write_master(c);
1960 	if (err)
1961 		ubifs_ro_mode(c, err);
1962 
1963 	vfree(c->orph_buf);
1964 	c->orph_buf = NULL;
1965 	kfree(c->write_reserve_buf);
1966 	c->write_reserve_buf = NULL;
1967 	vfree(c->ileb_buf);
1968 	c->ileb_buf = NULL;
1969 	ubifs_lpt_free(c, 1);
1970 	c->ro_mount = 1;
1971 	err = dbg_check_space_info(c);
1972 	if (err)
1973 		ubifs_ro_mode(c, err);
1974 	mutex_unlock(&c->umount_mutex);
1975 }
1976 
1977 static void ubifs_put_super(struct super_block *sb)
1978 {
1979 	int i;
1980 	struct ubifs_info *c = sb->s_fs_info;
1981 
1982 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1983 		  c->vi.vol_id);
1984 
1985 	/*
1986 	 * The following asserts are only valid if there has not been a failure
1987 	 * of the media. For example, there will be dirty inodes if we failed
1988 	 * to write them back because of I/O errors.
1989 	 */
1990 	if (!c->ro_error) {
1991 		ubifs_assert(c->bi.idx_growth == 0);
1992 		ubifs_assert(c->bi.dd_growth == 0);
1993 		ubifs_assert(c->bi.data_growth == 0);
1994 	}
1995 
1996 	/*
1997 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1998 	 * and file system un-mount. Namely, it prevents the shrinker from
1999 	 * picking this superblock for shrinking - it will be just skipped if
2000 	 * the mutex is locked.
2001 	 */
2002 	mutex_lock(&c->umount_mutex);
2003 	if (!c->ro_mount) {
2004 		/*
2005 		 * First of all kill the background thread to make sure it does
2006 		 * not interfere with un-mounting and freeing resources.
2007 		 */
2008 		if (c->bgt) {
2009 			kthread_stop(c->bgt);
2010 			c->bgt = NULL;
2011 		}
2012 
2013 		/*
2014 		 * On fatal errors c->ro_error is set to 1, in which case we do
2015 		 * not write the master node.
2016 		 */
2017 		if (!c->ro_error) {
2018 			int err;
2019 
2020 			/* Synchronize write-buffers */
2021 			for (i = 0; i < c->jhead_cnt; i++)
2022 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
2023 
2024 			/*
2025 			 * We are being cleanly unmounted which means the
2026 			 * orphans were killed - indicate this in the master
2027 			 * node. Also save the reserved GC LEB number.
2028 			 */
2029 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2030 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2031 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2032 			err = ubifs_write_master(c);
2033 			if (err)
2034 				/*
2035 				 * Recovery will attempt to fix the master area
2036 				 * next mount, so we just print a message and
2037 				 * continue to unmount normally.
2038 				 */
2039 				ubifs_err("failed to write master node, error %d",
2040 					  err);
2041 		} else {
2042 #ifndef __UBOOT__
2043 			for (i = 0; i < c->jhead_cnt; i++)
2044 				/* Make sure write-buffer timers are canceled */
2045 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
2046 #endif
2047 		}
2048 	}
2049 
2050 	ubifs_umount(c);
2051 #ifndef __UBOOT__
2052 	bdi_destroy(&c->bdi);
2053 #endif
2054 	ubi_close_volume(c->ubi);
2055 	mutex_unlock(&c->umount_mutex);
2056 }
2057 #endif
2058 
2059 #ifndef __UBOOT__
2060 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2061 {
2062 	int err;
2063 	struct ubifs_info *c = sb->s_fs_info;
2064 
2065 	sync_filesystem(sb);
2066 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2067 
2068 	err = ubifs_parse_options(c, data, 1);
2069 	if (err) {
2070 		ubifs_err("invalid or unknown remount parameter");
2071 		return err;
2072 	}
2073 
2074 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
2075 		if (c->ro_error) {
2076 			ubifs_msg("cannot re-mount R/W due to prior errors");
2077 			return -EROFS;
2078 		}
2079 		if (c->ro_media) {
2080 			ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
2081 			return -EROFS;
2082 		}
2083 		err = ubifs_remount_rw(c);
2084 		if (err)
2085 			return err;
2086 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2087 		if (c->ro_error) {
2088 			ubifs_msg("cannot re-mount R/O due to prior errors");
2089 			return -EROFS;
2090 		}
2091 		ubifs_remount_ro(c);
2092 	}
2093 
2094 	if (c->bulk_read == 1)
2095 		bu_init(c);
2096 	else {
2097 		dbg_gen("disable bulk-read");
2098 		kfree(c->bu.buf);
2099 		c->bu.buf = NULL;
2100 	}
2101 
2102 	ubifs_assert(c->lst.taken_empty_lebs > 0);
2103 	return 0;
2104 }
2105 #endif
2106 
2107 const struct super_operations ubifs_super_operations = {
2108 	.alloc_inode   = ubifs_alloc_inode,
2109 #ifndef __UBOOT__
2110 	.destroy_inode = ubifs_destroy_inode,
2111 	.put_super     = ubifs_put_super,
2112 	.write_inode   = ubifs_write_inode,
2113 	.evict_inode   = ubifs_evict_inode,
2114 	.statfs        = ubifs_statfs,
2115 #endif
2116 	.dirty_inode   = ubifs_dirty_inode,
2117 #ifndef __UBOOT__
2118 	.remount_fs    = ubifs_remount_fs,
2119 	.show_options  = ubifs_show_options,
2120 	.sync_fs       = ubifs_sync_fs,
2121 #endif
2122 };
2123 
2124 /**
2125  * open_ubi - parse UBI device name string and open the UBI device.
2126  * @name: UBI volume name
2127  * @mode: UBI volume open mode
2128  *
2129  * The primary method of mounting UBIFS is by specifying the UBI volume
2130  * character device node path. However, UBIFS may also be mounted withoug any
2131  * character device node using one of the following methods:
2132  *
2133  * o ubiX_Y    - mount UBI device number X, volume Y;
2134  * o ubiY      - mount UBI device number 0, volume Y;
2135  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2136  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2137  *
2138  * Alternative '!' separator may be used instead of ':' (because some shells
2139  * like busybox may interpret ':' as an NFS host name separator). This function
2140  * returns UBI volume description object in case of success and a negative
2141  * error code in case of failure.
2142  */
2143 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2144 {
2145 #ifndef __UBOOT__
2146 	struct ubi_volume_desc *ubi;
2147 #endif
2148 	int dev, vol;
2149 	char *endptr;
2150 
2151 #ifndef __UBOOT__
2152 	/* First, try to open using the device node path method */
2153 	ubi = ubi_open_volume_path(name, mode);
2154 	if (!IS_ERR(ubi))
2155 		return ubi;
2156 #endif
2157 
2158 	/* Try the "nodev" method */
2159 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2160 		return ERR_PTR(-EINVAL);
2161 
2162 	/* ubi:NAME method */
2163 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2164 		return ubi_open_volume_nm(0, name + 4, mode);
2165 
2166 	if (!isdigit(name[3]))
2167 		return ERR_PTR(-EINVAL);
2168 
2169 	dev = simple_strtoul(name + 3, &endptr, 0);
2170 
2171 	/* ubiY method */
2172 	if (*endptr == '\0')
2173 		return ubi_open_volume(0, dev, mode);
2174 
2175 	/* ubiX_Y method */
2176 	if (*endptr == '_' && isdigit(endptr[1])) {
2177 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2178 		if (*endptr != '\0')
2179 			return ERR_PTR(-EINVAL);
2180 		return ubi_open_volume(dev, vol, mode);
2181 	}
2182 
2183 	/* ubiX:NAME method */
2184 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2185 		return ubi_open_volume_nm(dev, ++endptr, mode);
2186 
2187 	return ERR_PTR(-EINVAL);
2188 }
2189 
2190 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2191 {
2192 	struct ubifs_info *c;
2193 
2194 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2195 	if (c) {
2196 		spin_lock_init(&c->cnt_lock);
2197 		spin_lock_init(&c->cs_lock);
2198 		spin_lock_init(&c->buds_lock);
2199 		spin_lock_init(&c->space_lock);
2200 		spin_lock_init(&c->orphan_lock);
2201 		init_rwsem(&c->commit_sem);
2202 		mutex_init(&c->lp_mutex);
2203 		mutex_init(&c->tnc_mutex);
2204 		mutex_init(&c->log_mutex);
2205 		mutex_init(&c->mst_mutex);
2206 		mutex_init(&c->umount_mutex);
2207 		mutex_init(&c->bu_mutex);
2208 		mutex_init(&c->write_reserve_mutex);
2209 		init_waitqueue_head(&c->cmt_wq);
2210 		c->buds = RB_ROOT;
2211 		c->old_idx = RB_ROOT;
2212 		c->size_tree = RB_ROOT;
2213 		c->orph_tree = RB_ROOT;
2214 		INIT_LIST_HEAD(&c->infos_list);
2215 		INIT_LIST_HEAD(&c->idx_gc);
2216 		INIT_LIST_HEAD(&c->replay_list);
2217 		INIT_LIST_HEAD(&c->replay_buds);
2218 		INIT_LIST_HEAD(&c->uncat_list);
2219 		INIT_LIST_HEAD(&c->empty_list);
2220 		INIT_LIST_HEAD(&c->freeable_list);
2221 		INIT_LIST_HEAD(&c->frdi_idx_list);
2222 		INIT_LIST_HEAD(&c->unclean_leb_list);
2223 		INIT_LIST_HEAD(&c->old_buds);
2224 		INIT_LIST_HEAD(&c->orph_list);
2225 		INIT_LIST_HEAD(&c->orph_new);
2226 		c->no_chk_data_crc = 1;
2227 
2228 		c->highest_inum = UBIFS_FIRST_INO;
2229 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2230 
2231 		ubi_get_volume_info(ubi, &c->vi);
2232 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2233 	}
2234 	return c;
2235 }
2236 
2237 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2238 {
2239 	struct ubifs_info *c = sb->s_fs_info;
2240 	struct inode *root;
2241 	int err;
2242 
2243 	c->vfs_sb = sb;
2244 #ifndef __UBOOT__
2245 	/* Re-open the UBI device in read-write mode */
2246 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2247 #else
2248 	/* U-Boot read only mode */
2249 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2250 #endif
2251 
2252 	if (IS_ERR(c->ubi)) {
2253 		err = PTR_ERR(c->ubi);
2254 		goto out;
2255 	}
2256 
2257 #ifndef __UBOOT__
2258 	/*
2259 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2260 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2261 	 * which means the user would have to wait not just for their own I/O
2262 	 * but the read-ahead I/O as well i.e. completely pointless.
2263 	 *
2264 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2265 	 */
2266 	co>bdi.name = "ubifs",
2267 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
2268 	err  = bdi_init(&c->bdi);
2269 	if (err)
2270 		goto out_close;
2271 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2272 			   c->vi.ubi_num, c->vi.vol_id);
2273 	if (err)
2274 		goto out_bdi;
2275 
2276 	err = ubifs_parse_options(c, data, 0);
2277 	if (err)
2278 		goto out_bdi;
2279 
2280 	sb->s_bdi = &c->bdi;
2281 #endif
2282 	sb->s_fs_info = c;
2283 	sb->s_magic = UBIFS_SUPER_MAGIC;
2284 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2285 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2286 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2287 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2288 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2289 	sb->s_op = &ubifs_super_operations;
2290 
2291 	mutex_lock(&c->umount_mutex);
2292 	err = mount_ubifs(c);
2293 	if (err) {
2294 		ubifs_assert(err < 0);
2295 		goto out_unlock;
2296 	}
2297 
2298 	/* Read the root inode */
2299 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2300 	if (IS_ERR(root)) {
2301 		err = PTR_ERR(root);
2302 		goto out_umount;
2303 	}
2304 
2305 #ifndef __UBOOT__
2306 	sb->s_root = d_make_root(root);
2307 	if (!sb->s_root) {
2308 		err = -ENOMEM;
2309 		goto out_umount;
2310 	}
2311 #else
2312 	sb->s_root = NULL;
2313 #endif
2314 
2315 	mutex_unlock(&c->umount_mutex);
2316 	return 0;
2317 
2318 out_umount:
2319 	ubifs_umount(c);
2320 out_unlock:
2321 	mutex_unlock(&c->umount_mutex);
2322 #ifndef __UBOOT__
2323 out_bdi:
2324 	bdi_destroy(&c->bdi);
2325 out_close:
2326 #endif
2327 	ubi_close_volume(c->ubi);
2328 out:
2329 	return err;
2330 }
2331 
2332 static int sb_test(struct super_block *sb, void *data)
2333 {
2334 	struct ubifs_info *c1 = data;
2335 	struct ubifs_info *c = sb->s_fs_info;
2336 
2337 	return c->vi.cdev == c1->vi.cdev;
2338 }
2339 
2340 static int sb_set(struct super_block *sb, void *data)
2341 {
2342 	sb->s_fs_info = data;
2343 	return set_anon_super(sb, NULL);
2344 }
2345 
2346 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2347 {
2348 	struct super_block *s;
2349 	int err;
2350 
2351 	s = kzalloc(sizeof(struct super_block),  GFP_USER);
2352 	if (!s) {
2353 		err = -ENOMEM;
2354 		return ERR_PTR(err);
2355 	}
2356 
2357 	INIT_HLIST_NODE(&s->s_instances);
2358 	INIT_LIST_HEAD(&s->s_inodes);
2359 	s->s_time_gran = 1000000000;
2360 	s->s_flags = flags;
2361 
2362 	return s;
2363 }
2364 
2365 /**
2366  *	sget	-	find or create a superblock
2367  *	@type:	filesystem type superblock should belong to
2368  *	@test:	comparison callback
2369  *	@set:	setup callback
2370  *	@flags:	mount flags
2371  *	@data:	argument to each of them
2372  */
2373 struct super_block *sget(struct file_system_type *type,
2374 			int (*test)(struct super_block *,void *),
2375 			int (*set)(struct super_block *,void *),
2376 			int flags,
2377 			void *data)
2378 {
2379 	struct super_block *s = NULL;
2380 #ifndef __UBOOT__
2381 	struct super_block *old;
2382 #endif
2383 	int err;
2384 
2385 #ifndef __UBOOT__
2386 retry:
2387 	spin_lock(&sb_lock);
2388 	if (test) {
2389 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2390 			if (!test(old, data))
2391 				continue;
2392 			if (!grab_super(old))
2393 				goto retry;
2394 			if (s) {
2395 				up_write(&s->s_umount);
2396 				destroy_super(s);
2397 				s = NULL;
2398 			}
2399 			return old;
2400 		}
2401 	}
2402 #endif
2403 	if (!s) {
2404 		spin_unlock(&sb_lock);
2405 		s = alloc_super(type, flags);
2406 		if (!s)
2407 			return ERR_PTR(-ENOMEM);
2408 #ifndef __UBOOT__
2409 		goto retry;
2410 #endif
2411 	}
2412 
2413 	err = set(s, data);
2414 	if (err) {
2415 #ifndef __UBOOT__
2416 		spin_unlock(&sb_lock);
2417 		up_write(&s->s_umount);
2418 		destroy_super(s);
2419 #endif
2420 		return ERR_PTR(err);
2421 	}
2422 	s->s_type = type;
2423 #ifndef __UBOOT__
2424 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
2425 #else
2426 	strncpy(s->s_id, type->name, sizeof(s->s_id));
2427 #endif
2428 	list_add_tail(&s->s_list, &super_blocks);
2429 	hlist_add_head(&s->s_instances, &type->fs_supers);
2430 #ifndef __UBOOT__
2431 	spin_unlock(&sb_lock);
2432 	get_filesystem(type);
2433 	register_shrinker(&s->s_shrink);
2434 #endif
2435 	return s;
2436 }
2437 
2438 EXPORT_SYMBOL(sget);
2439 
2440 
2441 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2442 			const char *name, void *data)
2443 {
2444 	struct ubi_volume_desc *ubi;
2445 	struct ubifs_info *c;
2446 	struct super_block *sb;
2447 	int err;
2448 
2449 	dbg_gen("name %s, flags %#x", name, flags);
2450 
2451 	/*
2452 	 * Get UBI device number and volume ID. Mount it read-only so far
2453 	 * because this might be a new mount point, and UBI allows only one
2454 	 * read-write user at a time.
2455 	 */
2456 	ubi = open_ubi(name, UBI_READONLY);
2457 	if (IS_ERR(ubi)) {
2458 		ubifs_err("cannot open \"%s\", error %d",
2459 			  name, (int)PTR_ERR(ubi));
2460 		return ERR_CAST(ubi);
2461 	}
2462 
2463 	c = alloc_ubifs_info(ubi);
2464 	if (!c) {
2465 		err = -ENOMEM;
2466 		goto out_close;
2467 	}
2468 
2469 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2470 
2471 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2472 	if (IS_ERR(sb)) {
2473 		err = PTR_ERR(sb);
2474 		kfree(c);
2475 		goto out_close;
2476 	}
2477 
2478 	if (sb->s_root) {
2479 		struct ubifs_info *c1 = sb->s_fs_info;
2480 		kfree(c);
2481 		/* A new mount point for already mounted UBIFS */
2482 		dbg_gen("this ubi volume is already mounted");
2483 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2484 			err = -EBUSY;
2485 			goto out_deact;
2486 		}
2487 	} else {
2488 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2489 		if (err)
2490 			goto out_deact;
2491 		/* We do not support atime */
2492 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2493 	}
2494 
2495 	/* 'fill_super()' opens ubi again so we must close it here */
2496 	ubi_close_volume(ubi);
2497 
2498 #ifdef __UBOOT__
2499 	ubifs_sb = sb;
2500 	return 0;
2501 #else
2502 	return dget(sb->s_root);
2503 #endif
2504 
2505 out_deact:
2506 #ifndef __UBOOT__
2507 	deactivate_locked_super(sb);
2508 #endif
2509 out_close:
2510 	ubi_close_volume(ubi);
2511 	return ERR_PTR(err);
2512 }
2513 
2514 static void kill_ubifs_super(struct super_block *s)
2515 {
2516 	struct ubifs_info *c = s->s_fs_info;
2517 #ifndef __UBOOT__
2518 	kill_anon_super(s);
2519 #endif
2520 	kfree(c);
2521 }
2522 
2523 static struct file_system_type ubifs_fs_type = {
2524 	.name    = "ubifs",
2525 	.owner   = THIS_MODULE,
2526 	.mount   = ubifs_mount,
2527 	.kill_sb = kill_ubifs_super,
2528 };
2529 #ifndef __UBOOT__
2530 MODULE_ALIAS_FS("ubifs");
2531 
2532 /*
2533  * Inode slab cache constructor.
2534  */
2535 static void inode_slab_ctor(void *obj)
2536 {
2537 	struct ubifs_inode *ui = obj;
2538 	inode_init_once(&ui->vfs_inode);
2539 }
2540 
2541 static int __init ubifs_init(void)
2542 #else
2543 int ubifs_init(void)
2544 #endif
2545 {
2546 	int err;
2547 
2548 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2549 
2550 	/* Make sure node sizes are 8-byte aligned */
2551 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2552 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2553 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2554 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2555 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2556 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2557 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2558 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2559 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2560 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2561 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2562 
2563 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2564 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2565 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2566 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2567 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2568 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2569 
2570 	/* Check min. node size */
2571 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2572 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2573 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2574 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2575 
2576 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2577 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2578 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2579 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2580 
2581 	/* Defined node sizes */
2582 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2583 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2584 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2585 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2586 
2587 	/*
2588 	 * We use 2 bit wide bit-fields to store compression type, which should
2589 	 * be amended if more compressors are added. The bit-fields are:
2590 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2591 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2592 	 */
2593 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2594 
2595 	/*
2596 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2597 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2598 	 */
2599 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2600 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2601 			  (unsigned int)PAGE_CACHE_SIZE);
2602 		return -EINVAL;
2603 	}
2604 
2605 #ifndef __UBOOT__
2606 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2607 				sizeof(struct ubifs_inode), 0,
2608 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2609 				&inode_slab_ctor);
2610 	if (!ubifs_inode_slab)
2611 		return -ENOMEM;
2612 
2613 	register_shrinker(&ubifs_shrinker_info);
2614 #endif
2615 
2616 	err = ubifs_compressors_init();
2617 	if (err)
2618 		goto out_shrinker;
2619 
2620 #ifndef __UBOOT__
2621 	err = dbg_debugfs_init();
2622 	if (err)
2623 		goto out_compr;
2624 
2625 	err = register_filesystem(&ubifs_fs_type);
2626 	if (err) {
2627 		ubifs_err("cannot register file system, error %d", err);
2628 		goto out_dbg;
2629 	}
2630 #endif
2631 	return 0;
2632 
2633 #ifndef __UBOOT__
2634 out_dbg:
2635 	dbg_debugfs_exit();
2636 out_compr:
2637 	ubifs_compressors_exit();
2638 #endif
2639 out_shrinker:
2640 #ifndef __UBOOT__
2641 	unregister_shrinker(&ubifs_shrinker_info);
2642 #endif
2643 	kmem_cache_destroy(ubifs_inode_slab);
2644 	return err;
2645 }
2646 /* late_initcall to let compressors initialize first */
2647 late_initcall(ubifs_init);
2648 
2649 #ifndef __UBOOT__
2650 static void __exit ubifs_exit(void)
2651 {
2652 	ubifs_assert(list_empty(&ubifs_infos));
2653 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2654 
2655 	dbg_debugfs_exit();
2656 	ubifs_compressors_exit();
2657 	unregister_shrinker(&ubifs_shrinker_info);
2658 
2659 	/*
2660 	 * Make sure all delayed rcu free inodes are flushed before we
2661 	 * destroy cache.
2662 	 */
2663 	rcu_barrier();
2664 	kmem_cache_destroy(ubifs_inode_slab);
2665 	unregister_filesystem(&ubifs_fs_type);
2666 }
2667 module_exit(ubifs_exit);
2668 
2669 MODULE_LICENSE("GPL");
2670 MODULE_VERSION(__stringify(UBIFS_VERSION));
2671 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2672 MODULE_DESCRIPTION("UBIFS - UBI File System");
2673 #else
2674 int uboot_ubifs_mount(char *vol_name)
2675 {
2676 	struct dentry *ret;
2677 	int flags;
2678 
2679 	/*
2680 	 * First unmount if allready mounted
2681 	 */
2682 	if (ubifs_sb)
2683 		ubifs_umount(ubifs_sb->s_fs_info);
2684 
2685 	/*
2686 	 * Mount in read-only mode
2687 	 */
2688 	flags = MS_RDONLY;
2689 	ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2690 	if (IS_ERR(ret)) {
2691 		printf("Error reading superblock on volume '%s' " \
2692 			"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2693 		return -1;
2694 	}
2695 
2696 	return 0;
2697 }
2698 #endif
2699