xref: /openbmc/u-boot/fs/ubifs/super.c (revision 474e9312)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11 
12 /*
13  * This file implements UBIFS initialization and VFS superblock operations. Some
14  * initialization stuff which is rather large and complex is placed at
15  * corresponding subsystems, but most of it is here.
16  */
17 
18 #ifndef __UBOOT__
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/kthread.h>
24 #include <linux/parser.h>
25 #include <linux/seq_file.h>
26 #include <linux/mount.h>
27 #include <linux/math64.h>
28 #include <linux/writeback.h>
29 #else
30 
31 #include <common.h>
32 #include <malloc.h>
33 #include <memalign.h>
34 #include <linux/bug.h>
35 #include <linux/log2.h>
36 #include <linux/stat.h>
37 #include <linux/err.h>
38 #include "ubifs.h"
39 #include <ubi_uboot.h>
40 #include <mtd/ubi-user.h>
41 
42 struct dentry;
43 struct file;
44 struct iattr;
45 struct kstat;
46 struct vfsmount;
47 
48 #define INODE_LOCKED_MAX	64
49 
50 struct super_block *ubifs_sb;
51 
52 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
53 
54 int set_anon_super(struct super_block *s, void *data)
55 {
56 	return 0;
57 }
58 
59 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
60 {
61 	struct inode *inode;
62 
63 	inode = (struct inode *)malloc_cache_aligned(
64 			sizeof(struct ubifs_inode));
65 	if (inode) {
66 		inode->i_ino = ino;
67 		inode->i_sb = sb;
68 		list_add(&inode->i_sb_list, &sb->s_inodes);
69 		inode->i_state = I_LOCK | I_NEW;
70 	}
71 
72 	return inode;
73 }
74 
75 void iget_failed(struct inode *inode)
76 {
77 }
78 
79 int ubifs_iput(struct inode *inode)
80 {
81 	list_del_init(&inode->i_sb_list);
82 
83 	free(inode);
84 	return 0;
85 }
86 
87 /*
88  * Lock (save) inode in inode array for readback after recovery
89  */
90 void iput(struct inode *inode)
91 {
92 	int i;
93 	struct inode *ino;
94 
95 	/*
96 	 * Search end of list
97 	 */
98 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
99 		if (inodes_locked_down[i] == NULL)
100 			break;
101 	}
102 
103 	if (i >= INODE_LOCKED_MAX) {
104 		dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
105 		return;
106 	}
107 
108 	/*
109 	 * Allocate and use new inode
110 	 */
111 	ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
112 	memcpy(ino, inode, sizeof(struct ubifs_inode));
113 
114 	/*
115 	 * Finally save inode in array
116 	 */
117 	inodes_locked_down[i] = ino;
118 }
119 
120 /* from fs/inode.c */
121 /**
122  * clear_nlink - directly zero an inode's link count
123  * @inode: inode
124  *
125  * This is a low-level filesystem helper to replace any
126  * direct filesystem manipulation of i_nlink.  See
127  * drop_nlink() for why we care about i_nlink hitting zero.
128  */
129 void clear_nlink(struct inode *inode)
130 {
131 	if (inode->i_nlink) {
132 		inode->__i_nlink = 0;
133 		atomic_long_inc(&inode->i_sb->s_remove_count);
134 	}
135 }
136 EXPORT_SYMBOL(clear_nlink);
137 
138 /**
139  * set_nlink - directly set an inode's link count
140  * @inode: inode
141  * @nlink: new nlink (should be non-zero)
142  *
143  * This is a low-level filesystem helper to replace any
144  * direct filesystem manipulation of i_nlink.
145  */
146 void set_nlink(struct inode *inode, unsigned int nlink)
147 {
148 	if (!nlink) {
149 		clear_nlink(inode);
150 	} else {
151 		/* Yes, some filesystems do change nlink from zero to one */
152 		if (inode->i_nlink == 0)
153 			atomic_long_dec(&inode->i_sb->s_remove_count);
154 
155 		inode->__i_nlink = nlink;
156 	}
157 }
158 EXPORT_SYMBOL(set_nlink);
159 
160 /* from include/linux/fs.h */
161 static inline void i_uid_write(struct inode *inode, uid_t uid)
162 {
163 	inode->i_uid.val = uid;
164 }
165 
166 static inline void i_gid_write(struct inode *inode, gid_t gid)
167 {
168 	inode->i_gid.val = gid;
169 }
170 
171 void unlock_new_inode(struct inode *inode)
172 {
173 	return;
174 }
175 #endif
176 
177 /*
178  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
179  * allocating too much.
180  */
181 #define UBIFS_KMALLOC_OK (128*1024)
182 
183 /* Slab cache for UBIFS inodes */
184 struct kmem_cache *ubifs_inode_slab;
185 
186 #ifndef __UBOOT__
187 /* UBIFS TNC shrinker description */
188 static struct shrinker ubifs_shrinker_info = {
189 	.scan_objects = ubifs_shrink_scan,
190 	.count_objects = ubifs_shrink_count,
191 	.seeks = DEFAULT_SEEKS,
192 };
193 #endif
194 
195 /**
196  * validate_inode - validate inode.
197  * @c: UBIFS file-system description object
198  * @inode: the inode to validate
199  *
200  * This is a helper function for 'ubifs_iget()' which validates various fields
201  * of a newly built inode to make sure they contain sane values and prevent
202  * possible vulnerabilities. Returns zero if the inode is all right and
203  * a non-zero error code if not.
204  */
205 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
206 {
207 	int err;
208 	const struct ubifs_inode *ui = ubifs_inode(inode);
209 
210 	if (inode->i_size > c->max_inode_sz) {
211 		ubifs_err(c, "inode is too large (%lld)",
212 			  (long long)inode->i_size);
213 		return 1;
214 	}
215 
216 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
217 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
218 		return 2;
219 	}
220 
221 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
222 		return 3;
223 
224 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
225 		return 4;
226 
227 	if (ui->xattr && !S_ISREG(inode->i_mode))
228 		return 5;
229 
230 	if (!ubifs_compr_present(ui->compr_type)) {
231 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
232 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
233 	}
234 
235 	err = dbg_check_dir(c, inode);
236 	return err;
237 }
238 
239 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
240 {
241 	int err;
242 	union ubifs_key key;
243 	struct ubifs_ino_node *ino;
244 	struct ubifs_info *c = sb->s_fs_info;
245 	struct inode *inode;
246 	struct ubifs_inode *ui;
247 #ifdef __UBOOT__
248 	int i;
249 #endif
250 
251 	dbg_gen("inode %lu", inum);
252 
253 #ifdef __UBOOT__
254 	/*
255 	 * U-Boot special handling of locked down inodes via recovery
256 	 * e.g. ubifs_recover_size()
257 	 */
258 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
259 		/*
260 		 * Exit on last entry (NULL), inode not found in list
261 		 */
262 		if (inodes_locked_down[i] == NULL)
263 			break;
264 
265 		if (inodes_locked_down[i]->i_ino == inum) {
266 			/*
267 			 * We found the locked down inode in our array,
268 			 * so just return this pointer instead of creating
269 			 * a new one.
270 			 */
271 			return inodes_locked_down[i];
272 		}
273 	}
274 #endif
275 
276 	inode = iget_locked(sb, inum);
277 	if (!inode)
278 		return ERR_PTR(-ENOMEM);
279 	if (!(inode->i_state & I_NEW))
280 		return inode;
281 	ui = ubifs_inode(inode);
282 
283 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
284 	if (!ino) {
285 		err = -ENOMEM;
286 		goto out;
287 	}
288 
289 	ino_key_init(c, &key, inode->i_ino);
290 
291 	err = ubifs_tnc_lookup(c, &key, ino);
292 	if (err)
293 		goto out_ino;
294 
295 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
296 	set_nlink(inode, le32_to_cpu(ino->nlink));
297 	i_uid_write(inode, le32_to_cpu(ino->uid));
298 	i_gid_write(inode, le32_to_cpu(ino->gid));
299 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
300 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
301 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
302 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
303 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
304 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
305 	inode->i_mode = le32_to_cpu(ino->mode);
306 	inode->i_size = le64_to_cpu(ino->size);
307 
308 	ui->data_len    = le32_to_cpu(ino->data_len);
309 	ui->flags       = le32_to_cpu(ino->flags);
310 	ui->compr_type  = le16_to_cpu(ino->compr_type);
311 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
312 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
313 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
314 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
315 	ui->synced_i_size = ui->ui_size = inode->i_size;
316 
317 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
318 
319 	err = validate_inode(c, inode);
320 	if (err)
321 		goto out_invalid;
322 
323 #ifndef __UBOOT__
324 	switch (inode->i_mode & S_IFMT) {
325 	case S_IFREG:
326 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
327 		inode->i_op = &ubifs_file_inode_operations;
328 		inode->i_fop = &ubifs_file_operations;
329 		if (ui->xattr) {
330 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
331 			if (!ui->data) {
332 				err = -ENOMEM;
333 				goto out_ino;
334 			}
335 			memcpy(ui->data, ino->data, ui->data_len);
336 			((char *)ui->data)[ui->data_len] = '\0';
337 		} else if (ui->data_len != 0) {
338 			err = 10;
339 			goto out_invalid;
340 		}
341 		break;
342 	case S_IFDIR:
343 		inode->i_op  = &ubifs_dir_inode_operations;
344 		inode->i_fop = &ubifs_dir_operations;
345 		if (ui->data_len != 0) {
346 			err = 11;
347 			goto out_invalid;
348 		}
349 		break;
350 	case S_IFLNK:
351 		inode->i_op = &ubifs_symlink_inode_operations;
352 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
353 			err = 12;
354 			goto out_invalid;
355 		}
356 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
357 		if (!ui->data) {
358 			err = -ENOMEM;
359 			goto out_ino;
360 		}
361 		memcpy(ui->data, ino->data, ui->data_len);
362 		((char *)ui->data)[ui->data_len] = '\0';
363 		inode->i_link = ui->data;
364 		break;
365 	case S_IFBLK:
366 	case S_IFCHR:
367 	{
368 		dev_t rdev;
369 		union ubifs_dev_desc *dev;
370 
371 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
372 		if (!ui->data) {
373 			err = -ENOMEM;
374 			goto out_ino;
375 		}
376 
377 		dev = (union ubifs_dev_desc *)ino->data;
378 		if (ui->data_len == sizeof(dev->new))
379 			rdev = new_decode_dev(le32_to_cpu(dev->new));
380 		else if (ui->data_len == sizeof(dev->huge))
381 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
382 		else {
383 			err = 13;
384 			goto out_invalid;
385 		}
386 		memcpy(ui->data, ino->data, ui->data_len);
387 		inode->i_op = &ubifs_file_inode_operations;
388 		init_special_inode(inode, inode->i_mode, rdev);
389 		break;
390 	}
391 	case S_IFSOCK:
392 	case S_IFIFO:
393 		inode->i_op = &ubifs_file_inode_operations;
394 		init_special_inode(inode, inode->i_mode, 0);
395 		if (ui->data_len != 0) {
396 			err = 14;
397 			goto out_invalid;
398 		}
399 		break;
400 	default:
401 		err = 15;
402 		goto out_invalid;
403 	}
404 #else
405 	if ((inode->i_mode & S_IFMT) == S_IFLNK) {
406 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
407 			err = 12;
408 			goto out_invalid;
409 		}
410 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
411 		if (!ui->data) {
412 			err = -ENOMEM;
413 			goto out_ino;
414 		}
415 		memcpy(ui->data, ino->data, ui->data_len);
416 		((char *)ui->data)[ui->data_len] = '\0';
417 	}
418 #endif
419 
420 	kfree(ino);
421 #ifndef __UBOOT__
422 	ubifs_set_inode_flags(inode);
423 #endif
424 	unlock_new_inode(inode);
425 	return inode;
426 
427 out_invalid:
428 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
429 	ubifs_dump_node(c, ino);
430 	ubifs_dump_inode(c, inode);
431 	err = -EINVAL;
432 out_ino:
433 	kfree(ino);
434 out:
435 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
436 	iget_failed(inode);
437 	return ERR_PTR(err);
438 }
439 
440 static struct inode *ubifs_alloc_inode(struct super_block *sb)
441 {
442 	struct ubifs_inode *ui;
443 
444 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
445 	if (!ui)
446 		return NULL;
447 
448 	memset((void *)ui + sizeof(struct inode), 0,
449 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
450 	mutex_init(&ui->ui_mutex);
451 	spin_lock_init(&ui->ui_lock);
452 	return &ui->vfs_inode;
453 };
454 
455 #ifndef __UBOOT__
456 static void ubifs_i_callback(struct rcu_head *head)
457 {
458 	struct inode *inode = container_of(head, struct inode, i_rcu);
459 	struct ubifs_inode *ui = ubifs_inode(inode);
460 	kmem_cache_free(ubifs_inode_slab, ui);
461 }
462 
463 static void ubifs_destroy_inode(struct inode *inode)
464 {
465 	struct ubifs_inode *ui = ubifs_inode(inode);
466 
467 	kfree(ui->data);
468 	call_rcu(&inode->i_rcu, ubifs_i_callback);
469 }
470 
471 /*
472  * Note, Linux write-back code calls this without 'i_mutex'.
473  */
474 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
475 {
476 	int err = 0;
477 	struct ubifs_info *c = inode->i_sb->s_fs_info;
478 	struct ubifs_inode *ui = ubifs_inode(inode);
479 
480 	ubifs_assert(!ui->xattr);
481 	if (is_bad_inode(inode))
482 		return 0;
483 
484 	mutex_lock(&ui->ui_mutex);
485 	/*
486 	 * Due to races between write-back forced by budgeting
487 	 * (see 'sync_some_inodes()') and background write-back, the inode may
488 	 * have already been synchronized, do not do this again. This might
489 	 * also happen if it was synchronized in an VFS operation, e.g.
490 	 * 'ubifs_link()'.
491 	 */
492 	if (!ui->dirty) {
493 		mutex_unlock(&ui->ui_mutex);
494 		return 0;
495 	}
496 
497 	/*
498 	 * As an optimization, do not write orphan inodes to the media just
499 	 * because this is not needed.
500 	 */
501 	dbg_gen("inode %lu, mode %#x, nlink %u",
502 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
503 	if (inode->i_nlink) {
504 		err = ubifs_jnl_write_inode(c, inode);
505 		if (err)
506 			ubifs_err(c, "can't write inode %lu, error %d",
507 				  inode->i_ino, err);
508 		else
509 			err = dbg_check_inode_size(c, inode, ui->ui_size);
510 	}
511 
512 	ui->dirty = 0;
513 	mutex_unlock(&ui->ui_mutex);
514 	ubifs_release_dirty_inode_budget(c, ui);
515 	return err;
516 }
517 
518 static void ubifs_evict_inode(struct inode *inode)
519 {
520 	int err;
521 	struct ubifs_info *c = inode->i_sb->s_fs_info;
522 	struct ubifs_inode *ui = ubifs_inode(inode);
523 
524 	if (ui->xattr)
525 		/*
526 		 * Extended attribute inode deletions are fully handled in
527 		 * 'ubifs_removexattr()'. These inodes are special and have
528 		 * limited usage, so there is nothing to do here.
529 		 */
530 		goto out;
531 
532 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
533 	ubifs_assert(!atomic_read(&inode->i_count));
534 
535 	truncate_inode_pages_final(&inode->i_data);
536 
537 	if (inode->i_nlink)
538 		goto done;
539 
540 	if (is_bad_inode(inode))
541 		goto out;
542 
543 	ui->ui_size = inode->i_size = 0;
544 	err = ubifs_jnl_delete_inode(c, inode);
545 	if (err)
546 		/*
547 		 * Worst case we have a lost orphan inode wasting space, so a
548 		 * simple error message is OK here.
549 		 */
550 		ubifs_err(c, "can't delete inode %lu, error %d",
551 			  inode->i_ino, err);
552 
553 out:
554 	if (ui->dirty)
555 		ubifs_release_dirty_inode_budget(c, ui);
556 	else {
557 		/* We've deleted something - clean the "no space" flags */
558 		c->bi.nospace = c->bi.nospace_rp = 0;
559 		smp_wmb();
560 	}
561 done:
562 	clear_inode(inode);
563 }
564 #endif
565 
566 static void ubifs_dirty_inode(struct inode *inode, int flags)
567 {
568 	struct ubifs_inode *ui = ubifs_inode(inode);
569 
570 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
571 	if (!ui->dirty) {
572 		ui->dirty = 1;
573 		dbg_gen("inode %lu",  inode->i_ino);
574 	}
575 }
576 
577 #ifndef __UBOOT__
578 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
579 {
580 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
581 	unsigned long long free;
582 	__le32 *uuid = (__le32 *)c->uuid;
583 
584 	free = ubifs_get_free_space(c);
585 	dbg_gen("free space %lld bytes (%lld blocks)",
586 		free, free >> UBIFS_BLOCK_SHIFT);
587 
588 	buf->f_type = UBIFS_SUPER_MAGIC;
589 	buf->f_bsize = UBIFS_BLOCK_SIZE;
590 	buf->f_blocks = c->block_cnt;
591 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
592 	if (free > c->report_rp_size)
593 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
594 	else
595 		buf->f_bavail = 0;
596 	buf->f_files = 0;
597 	buf->f_ffree = 0;
598 	buf->f_namelen = UBIFS_MAX_NLEN;
599 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
600 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
601 	ubifs_assert(buf->f_bfree <= c->block_cnt);
602 	return 0;
603 }
604 
605 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
606 {
607 	struct ubifs_info *c = root->d_sb->s_fs_info;
608 
609 	if (c->mount_opts.unmount_mode == 2)
610 		seq_puts(s, ",fast_unmount");
611 	else if (c->mount_opts.unmount_mode == 1)
612 		seq_puts(s, ",norm_unmount");
613 
614 	if (c->mount_opts.bulk_read == 2)
615 		seq_puts(s, ",bulk_read");
616 	else if (c->mount_opts.bulk_read == 1)
617 		seq_puts(s, ",no_bulk_read");
618 
619 	if (c->mount_opts.chk_data_crc == 2)
620 		seq_puts(s, ",chk_data_crc");
621 	else if (c->mount_opts.chk_data_crc == 1)
622 		seq_puts(s, ",no_chk_data_crc");
623 
624 	if (c->mount_opts.override_compr) {
625 		seq_printf(s, ",compr=%s",
626 			   ubifs_compr_name(c->mount_opts.compr_type));
627 	}
628 
629 	return 0;
630 }
631 
632 static int ubifs_sync_fs(struct super_block *sb, int wait)
633 {
634 	int i, err;
635 	struct ubifs_info *c = sb->s_fs_info;
636 
637 	/*
638 	 * Zero @wait is just an advisory thing to help the file system shove
639 	 * lots of data into the queues, and there will be the second
640 	 * '->sync_fs()' call, with non-zero @wait.
641 	 */
642 	if (!wait)
643 		return 0;
644 
645 	/*
646 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
647 	 * do this if it waits for an already running commit.
648 	 */
649 	for (i = 0; i < c->jhead_cnt; i++) {
650 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
651 		if (err)
652 			return err;
653 	}
654 
655 	/*
656 	 * Strictly speaking, it is not necessary to commit the journal here,
657 	 * synchronizing write-buffers would be enough. But committing makes
658 	 * UBIFS free space predictions much more accurate, so we want to let
659 	 * the user be able to get more accurate results of 'statfs()' after
660 	 * they synchronize the file system.
661 	 */
662 	err = ubifs_run_commit(c);
663 	if (err)
664 		return err;
665 
666 	return ubi_sync(c->vi.ubi_num);
667 }
668 #endif
669 
670 /**
671  * init_constants_early - initialize UBIFS constants.
672  * @c: UBIFS file-system description object
673  *
674  * This function initialize UBIFS constants which do not need the superblock to
675  * be read. It also checks that the UBI volume satisfies basic UBIFS
676  * requirements. Returns zero in case of success and a negative error code in
677  * case of failure.
678  */
679 static int init_constants_early(struct ubifs_info *c)
680 {
681 	if (c->vi.corrupted) {
682 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
683 		c->ro_media = 1;
684 	}
685 
686 	if (c->di.ro_mode) {
687 		ubifs_msg(c, "read-only UBI device");
688 		c->ro_media = 1;
689 	}
690 
691 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
692 		ubifs_msg(c, "static UBI volume - read-only mode");
693 		c->ro_media = 1;
694 	}
695 
696 	c->leb_cnt = c->vi.size;
697 	c->leb_size = c->vi.usable_leb_size;
698 	c->leb_start = c->di.leb_start;
699 	c->half_leb_size = c->leb_size / 2;
700 	c->min_io_size = c->di.min_io_size;
701 	c->min_io_shift = fls(c->min_io_size) - 1;
702 	c->max_write_size = c->di.max_write_size;
703 	c->max_write_shift = fls(c->max_write_size) - 1;
704 
705 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
706 		ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
707 			  c->leb_size, UBIFS_MIN_LEB_SZ);
708 		return -EINVAL;
709 	}
710 
711 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
712 		ubifs_err(c, "too few LEBs (%d), min. is %d",
713 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
714 		return -EINVAL;
715 	}
716 
717 	if (!is_power_of_2(c->min_io_size)) {
718 		ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
719 		return -EINVAL;
720 	}
721 
722 	/*
723 	 * Maximum write size has to be greater or equivalent to min. I/O
724 	 * size, and be multiple of min. I/O size.
725 	 */
726 	if (c->max_write_size < c->min_io_size ||
727 	    c->max_write_size % c->min_io_size ||
728 	    !is_power_of_2(c->max_write_size)) {
729 		ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
730 			  c->max_write_size, c->min_io_size);
731 		return -EINVAL;
732 	}
733 
734 	/*
735 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
736 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
737 	 * less than 8.
738 	 */
739 	if (c->min_io_size < 8) {
740 		c->min_io_size = 8;
741 		c->min_io_shift = 3;
742 		if (c->max_write_size < c->min_io_size) {
743 			c->max_write_size = c->min_io_size;
744 			c->max_write_shift = c->min_io_shift;
745 		}
746 	}
747 
748 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
749 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
750 
751 	/*
752 	 * Initialize node length ranges which are mostly needed for node
753 	 * length validation.
754 	 */
755 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
756 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
757 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
758 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
759 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
760 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
761 
762 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
763 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
764 	c->ranges[UBIFS_ORPH_NODE].min_len =
765 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
766 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
767 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
768 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
769 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
770 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
771 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
772 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
773 	/*
774 	 * Minimum indexing node size is amended later when superblock is
775 	 * read and the key length is known.
776 	 */
777 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
778 	/*
779 	 * Maximum indexing node size is amended later when superblock is
780 	 * read and the fanout is known.
781 	 */
782 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
783 
784 	/*
785 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
786 	 * about these values.
787 	 */
788 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
789 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
790 
791 	/*
792 	 * Calculate how many bytes would be wasted at the end of LEB if it was
793 	 * fully filled with data nodes of maximum size. This is used in
794 	 * calculations when reporting free space.
795 	 */
796 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
797 
798 	/* Buffer size for bulk-reads */
799 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
800 	if (c->max_bu_buf_len > c->leb_size)
801 		c->max_bu_buf_len = c->leb_size;
802 	return 0;
803 }
804 
805 /**
806  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
807  * @c: UBIFS file-system description object
808  * @lnum: LEB the write-buffer was synchronized to
809  * @free: how many free bytes left in this LEB
810  * @pad: how many bytes were padded
811  *
812  * This is a callback function which is called by the I/O unit when the
813  * write-buffer is synchronized. We need this to correctly maintain space
814  * accounting in bud logical eraseblocks. This function returns zero in case of
815  * success and a negative error code in case of failure.
816  *
817  * This function actually belongs to the journal, but we keep it here because
818  * we want to keep it static.
819  */
820 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
821 {
822 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
823 }
824 
825 /*
826  * init_constants_sb - initialize UBIFS constants.
827  * @c: UBIFS file-system description object
828  *
829  * This is a helper function which initializes various UBIFS constants after
830  * the superblock has been read. It also checks various UBIFS parameters and
831  * makes sure they are all right. Returns zero in case of success and a
832  * negative error code in case of failure.
833  */
834 static int init_constants_sb(struct ubifs_info *c)
835 {
836 	int tmp, err;
837 	long long tmp64;
838 
839 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
840 	c->max_znode_sz = sizeof(struct ubifs_znode) +
841 				c->fanout * sizeof(struct ubifs_zbranch);
842 
843 	tmp = ubifs_idx_node_sz(c, 1);
844 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
845 	c->min_idx_node_sz = ALIGN(tmp, 8);
846 
847 	tmp = ubifs_idx_node_sz(c, c->fanout);
848 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
849 	c->max_idx_node_sz = ALIGN(tmp, 8);
850 
851 	/* Make sure LEB size is large enough to fit full commit */
852 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
853 	tmp = ALIGN(tmp, c->min_io_size);
854 	if (tmp > c->leb_size) {
855 		ubifs_err(c, "too small LEB size %d, at least %d needed",
856 			  c->leb_size, tmp);
857 		return -EINVAL;
858 	}
859 
860 	/*
861 	 * Make sure that the log is large enough to fit reference nodes for
862 	 * all buds plus one reserved LEB.
863 	 */
864 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
865 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
866 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
867 	tmp /= c->leb_size;
868 	tmp += 1;
869 	if (c->log_lebs < tmp) {
870 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
871 			  c->log_lebs, tmp);
872 		return -EINVAL;
873 	}
874 
875 	/*
876 	 * When budgeting we assume worst-case scenarios when the pages are not
877 	 * be compressed and direntries are of the maximum size.
878 	 *
879 	 * Note, data, which may be stored in inodes is budgeted separately, so
880 	 * it is not included into 'c->bi.inode_budget'.
881 	 */
882 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
883 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
884 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
885 
886 	/*
887 	 * When the amount of flash space used by buds becomes
888 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
889 	 * The writers are unblocked when the commit is finished. To avoid
890 	 * writers to be blocked UBIFS initiates background commit in advance,
891 	 * when number of bud bytes becomes above the limit defined below.
892 	 */
893 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
894 
895 	/*
896 	 * Ensure minimum journal size. All the bytes in the journal heads are
897 	 * considered to be used, when calculating the current journal usage.
898 	 * Consequently, if the journal is too small, UBIFS will treat it as
899 	 * always full.
900 	 */
901 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
902 	if (c->bg_bud_bytes < tmp64)
903 		c->bg_bud_bytes = tmp64;
904 	if (c->max_bud_bytes < tmp64 + c->leb_size)
905 		c->max_bud_bytes = tmp64 + c->leb_size;
906 
907 	err = ubifs_calc_lpt_geom(c);
908 	if (err)
909 		return err;
910 
911 	/* Initialize effective LEB size used in budgeting calculations */
912 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
913 	return 0;
914 }
915 
916 /*
917  * init_constants_master - initialize UBIFS constants.
918  * @c: UBIFS file-system description object
919  *
920  * This is a helper function which initializes various UBIFS constants after
921  * the master node has been read. It also checks various UBIFS parameters and
922  * makes sure they are all right.
923  */
924 static void init_constants_master(struct ubifs_info *c)
925 {
926 	long long tmp64;
927 
928 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
929 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
930 
931 	/*
932 	 * Calculate total amount of FS blocks. This number is not used
933 	 * internally because it does not make much sense for UBIFS, but it is
934 	 * necessary to report something for the 'statfs()' call.
935 	 *
936 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
937 	 * deletions, minimum LEBs for the index, and assume only one journal
938 	 * head is available.
939 	 */
940 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
941 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
942 	tmp64 = ubifs_reported_space(c, tmp64);
943 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
944 }
945 
946 /**
947  * take_gc_lnum - reserve GC LEB.
948  * @c: UBIFS file-system description object
949  *
950  * This function ensures that the LEB reserved for garbage collection is marked
951  * as "taken" in lprops. We also have to set free space to LEB size and dirty
952  * space to zero, because lprops may contain out-of-date information if the
953  * file-system was un-mounted before it has been committed. This function
954  * returns zero in case of success and a negative error code in case of
955  * failure.
956  */
957 static int take_gc_lnum(struct ubifs_info *c)
958 {
959 	int err;
960 
961 	if (c->gc_lnum == -1) {
962 		ubifs_err(c, "no LEB for GC");
963 		return -EINVAL;
964 	}
965 
966 	/* And we have to tell lprops that this LEB is taken */
967 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
968 				  LPROPS_TAKEN, 0, 0);
969 	return err;
970 }
971 
972 /**
973  * alloc_wbufs - allocate write-buffers.
974  * @c: UBIFS file-system description object
975  *
976  * This helper function allocates and initializes UBIFS write-buffers. Returns
977  * zero in case of success and %-ENOMEM in case of failure.
978  */
979 static int alloc_wbufs(struct ubifs_info *c)
980 {
981 	int i, err;
982 
983 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
984 			    GFP_KERNEL);
985 	if (!c->jheads)
986 		return -ENOMEM;
987 
988 	/* Initialize journal heads */
989 	for (i = 0; i < c->jhead_cnt; i++) {
990 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
991 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
992 		if (err)
993 			return err;
994 
995 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
996 		c->jheads[i].wbuf.jhead = i;
997 		c->jheads[i].grouped = 1;
998 	}
999 
1000 	/*
1001 	 * Garbage Collector head does not need to be synchronized by timer.
1002 	 * Also GC head nodes are not grouped.
1003 	 */
1004 	c->jheads[GCHD].wbuf.no_timer = 1;
1005 	c->jheads[GCHD].grouped = 0;
1006 
1007 	return 0;
1008 }
1009 
1010 /**
1011  * free_wbufs - free write-buffers.
1012  * @c: UBIFS file-system description object
1013  */
1014 static void free_wbufs(struct ubifs_info *c)
1015 {
1016 	int i;
1017 
1018 	if (c->jheads) {
1019 		for (i = 0; i < c->jhead_cnt; i++) {
1020 			kfree(c->jheads[i].wbuf.buf);
1021 			kfree(c->jheads[i].wbuf.inodes);
1022 		}
1023 		kfree(c->jheads);
1024 		c->jheads = NULL;
1025 	}
1026 }
1027 
1028 /**
1029  * free_orphans - free orphans.
1030  * @c: UBIFS file-system description object
1031  */
1032 static void free_orphans(struct ubifs_info *c)
1033 {
1034 	struct ubifs_orphan *orph;
1035 
1036 	while (c->orph_dnext) {
1037 		orph = c->orph_dnext;
1038 		c->orph_dnext = orph->dnext;
1039 		list_del(&orph->list);
1040 		kfree(orph);
1041 	}
1042 
1043 	while (!list_empty(&c->orph_list)) {
1044 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1045 		list_del(&orph->list);
1046 		kfree(orph);
1047 		ubifs_err(c, "orphan list not empty at unmount");
1048 	}
1049 
1050 	vfree(c->orph_buf);
1051 	c->orph_buf = NULL;
1052 }
1053 
1054 /**
1055  * free_buds - free per-bud objects.
1056  * @c: UBIFS file-system description object
1057  */
1058 static void free_buds(struct ubifs_info *c)
1059 {
1060 	struct ubifs_bud *bud, *n;
1061 
1062 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1063 		kfree(bud);
1064 }
1065 
1066 /**
1067  * check_volume_empty - check if the UBI volume is empty.
1068  * @c: UBIFS file-system description object
1069  *
1070  * This function checks if the UBIFS volume is empty by looking if its LEBs are
1071  * mapped or not. The result of checking is stored in the @c->empty variable.
1072  * Returns zero in case of success and a negative error code in case of
1073  * failure.
1074  */
1075 static int check_volume_empty(struct ubifs_info *c)
1076 {
1077 	int lnum, err;
1078 
1079 	c->empty = 1;
1080 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1081 		err = ubifs_is_mapped(c, lnum);
1082 		if (unlikely(err < 0))
1083 			return err;
1084 		if (err == 1) {
1085 			c->empty = 0;
1086 			break;
1087 		}
1088 
1089 		cond_resched();
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * UBIFS mount options.
1097  *
1098  * Opt_fast_unmount: do not run a journal commit before un-mounting
1099  * Opt_norm_unmount: run a journal commit before un-mounting
1100  * Opt_bulk_read: enable bulk-reads
1101  * Opt_no_bulk_read: disable bulk-reads
1102  * Opt_chk_data_crc: check CRCs when reading data nodes
1103  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1104  * Opt_override_compr: override default compressor
1105  * Opt_err: just end of array marker
1106  */
1107 enum {
1108 	Opt_fast_unmount,
1109 	Opt_norm_unmount,
1110 	Opt_bulk_read,
1111 	Opt_no_bulk_read,
1112 	Opt_chk_data_crc,
1113 	Opt_no_chk_data_crc,
1114 	Opt_override_compr,
1115 	Opt_err,
1116 };
1117 
1118 #ifndef __UBOOT__
1119 static const match_table_t tokens = {
1120 	{Opt_fast_unmount, "fast_unmount"},
1121 	{Opt_norm_unmount, "norm_unmount"},
1122 	{Opt_bulk_read, "bulk_read"},
1123 	{Opt_no_bulk_read, "no_bulk_read"},
1124 	{Opt_chk_data_crc, "chk_data_crc"},
1125 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
1126 	{Opt_override_compr, "compr=%s"},
1127 	{Opt_err, NULL},
1128 };
1129 
1130 /**
1131  * parse_standard_option - parse a standard mount option.
1132  * @option: the option to parse
1133  *
1134  * Normally, standard mount options like "sync" are passed to file-systems as
1135  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1136  * be present in the options string. This function tries to deal with this
1137  * situation and parse standard options. Returns 0 if the option was not
1138  * recognized, and the corresponding integer flag if it was.
1139  *
1140  * UBIFS is only interested in the "sync" option, so do not check for anything
1141  * else.
1142  */
1143 static int parse_standard_option(const char *option)
1144 {
1145 
1146 	pr_notice("UBIFS: parse %s\n", option);
1147 	if (!strcmp(option, "sync"))
1148 		return MS_SYNCHRONOUS;
1149 	return 0;
1150 }
1151 
1152 /**
1153  * ubifs_parse_options - parse mount parameters.
1154  * @c: UBIFS file-system description object
1155  * @options: parameters to parse
1156  * @is_remount: non-zero if this is FS re-mount
1157  *
1158  * This function parses UBIFS mount options and returns zero in case success
1159  * and a negative error code in case of failure.
1160  */
1161 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1162 			       int is_remount)
1163 {
1164 	char *p;
1165 	substring_t args[MAX_OPT_ARGS];
1166 
1167 	if (!options)
1168 		return 0;
1169 
1170 	while ((p = strsep(&options, ","))) {
1171 		int token;
1172 
1173 		if (!*p)
1174 			continue;
1175 
1176 		token = match_token(p, tokens, args);
1177 		switch (token) {
1178 		/*
1179 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1180 		 * We accept them in order to be backward-compatible. But this
1181 		 * should be removed at some point.
1182 		 */
1183 		case Opt_fast_unmount:
1184 			c->mount_opts.unmount_mode = 2;
1185 			break;
1186 		case Opt_norm_unmount:
1187 			c->mount_opts.unmount_mode = 1;
1188 			break;
1189 		case Opt_bulk_read:
1190 			c->mount_opts.bulk_read = 2;
1191 			c->bulk_read = 1;
1192 			break;
1193 		case Opt_no_bulk_read:
1194 			c->mount_opts.bulk_read = 1;
1195 			c->bulk_read = 0;
1196 			break;
1197 		case Opt_chk_data_crc:
1198 			c->mount_opts.chk_data_crc = 2;
1199 			c->no_chk_data_crc = 0;
1200 			break;
1201 		case Opt_no_chk_data_crc:
1202 			c->mount_opts.chk_data_crc = 1;
1203 			c->no_chk_data_crc = 1;
1204 			break;
1205 		case Opt_override_compr:
1206 		{
1207 			char *name = match_strdup(&args[0]);
1208 
1209 			if (!name)
1210 				return -ENOMEM;
1211 			if (!strcmp(name, "none"))
1212 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1213 			else if (!strcmp(name, "lzo"))
1214 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1215 			else if (!strcmp(name, "zlib"))
1216 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1217 			else {
1218 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1219 				kfree(name);
1220 				return -EINVAL;
1221 			}
1222 			kfree(name);
1223 			c->mount_opts.override_compr = 1;
1224 			c->default_compr = c->mount_opts.compr_type;
1225 			break;
1226 		}
1227 		default:
1228 		{
1229 			unsigned long flag;
1230 			struct super_block *sb = c->vfs_sb;
1231 
1232 			flag = parse_standard_option(p);
1233 			if (!flag) {
1234 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1235 					  p);
1236 				return -EINVAL;
1237 			}
1238 			sb->s_flags |= flag;
1239 			break;
1240 		}
1241 		}
1242 	}
1243 
1244 	return 0;
1245 }
1246 #endif
1247 
1248 /**
1249  * destroy_journal - destroy journal data structures.
1250  * @c: UBIFS file-system description object
1251  *
1252  * This function destroys journal data structures including those that may have
1253  * been created by recovery functions.
1254  */
1255 static void destroy_journal(struct ubifs_info *c)
1256 {
1257 	while (!list_empty(&c->unclean_leb_list)) {
1258 		struct ubifs_unclean_leb *ucleb;
1259 
1260 		ucleb = list_entry(c->unclean_leb_list.next,
1261 				   struct ubifs_unclean_leb, list);
1262 		list_del(&ucleb->list);
1263 		kfree(ucleb);
1264 	}
1265 	while (!list_empty(&c->old_buds)) {
1266 		struct ubifs_bud *bud;
1267 
1268 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1269 		list_del(&bud->list);
1270 		kfree(bud);
1271 	}
1272 	ubifs_destroy_idx_gc(c);
1273 	ubifs_destroy_size_tree(c);
1274 	ubifs_tnc_close(c);
1275 	free_buds(c);
1276 }
1277 
1278 /**
1279  * bu_init - initialize bulk-read information.
1280  * @c: UBIFS file-system description object
1281  */
1282 static void bu_init(struct ubifs_info *c)
1283 {
1284 	ubifs_assert(c->bulk_read == 1);
1285 
1286 	if (c->bu.buf)
1287 		return; /* Already initialized */
1288 
1289 again:
1290 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1291 	if (!c->bu.buf) {
1292 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1293 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1294 			goto again;
1295 		}
1296 
1297 		/* Just disable bulk-read */
1298 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1299 			   c->max_bu_buf_len);
1300 		c->mount_opts.bulk_read = 1;
1301 		c->bulk_read = 0;
1302 		return;
1303 	}
1304 }
1305 
1306 #ifndef __UBOOT__
1307 /**
1308  * check_free_space - check if there is enough free space to mount.
1309  * @c: UBIFS file-system description object
1310  *
1311  * This function makes sure UBIFS has enough free space to be mounted in
1312  * read/write mode. UBIFS must always have some free space to allow deletions.
1313  */
1314 static int check_free_space(struct ubifs_info *c)
1315 {
1316 	ubifs_assert(c->dark_wm > 0);
1317 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1318 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1319 		ubifs_dump_budg(c, &c->bi);
1320 		ubifs_dump_lprops(c);
1321 		return -ENOSPC;
1322 	}
1323 	return 0;
1324 }
1325 #endif
1326 
1327 /**
1328  * mount_ubifs - mount UBIFS file-system.
1329  * @c: UBIFS file-system description object
1330  *
1331  * This function mounts UBIFS file system. Returns zero in case of success and
1332  * a negative error code in case of failure.
1333  */
1334 static int mount_ubifs(struct ubifs_info *c)
1335 {
1336 	int err;
1337 	long long x;
1338 #ifndef CONFIG_UBIFS_SILENCE_MSG
1339 	long long y;
1340 #endif
1341 	size_t sz;
1342 
1343 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1344 	/* Suppress error messages while probing if MS_SILENT is set */
1345 	c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1346 #ifdef __UBOOT__
1347 	if (!c->ro_mount) {
1348 		printf("UBIFS: only ro mode in U-Boot allowed.\n");
1349 		return -EACCES;
1350 	}
1351 #endif
1352 
1353 	err = init_constants_early(c);
1354 	if (err)
1355 		return err;
1356 
1357 	err = ubifs_debugging_init(c);
1358 	if (err)
1359 		return err;
1360 
1361 	err = check_volume_empty(c);
1362 	if (err)
1363 		goto out_free;
1364 
1365 	if (c->empty && (c->ro_mount || c->ro_media)) {
1366 		/*
1367 		 * This UBI volume is empty, and read-only, or the file system
1368 		 * is mounted read-only - we cannot format it.
1369 		 */
1370 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1371 			  c->ro_media ? "UBI volume" : "mount");
1372 		err = -EROFS;
1373 		goto out_free;
1374 	}
1375 
1376 	if (c->ro_media && !c->ro_mount) {
1377 		ubifs_err(c, "cannot mount read-write - read-only media");
1378 		err = -EROFS;
1379 		goto out_free;
1380 	}
1381 
1382 	/*
1383 	 * The requirement for the buffer is that it should fit indexing B-tree
1384 	 * height amount of integers. We assume the height if the TNC tree will
1385 	 * never exceed 64.
1386 	 */
1387 	err = -ENOMEM;
1388 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1389 	if (!c->bottom_up_buf)
1390 		goto out_free;
1391 
1392 	c->sbuf = vmalloc(c->leb_size);
1393 	if (!c->sbuf)
1394 		goto out_free;
1395 
1396 #ifndef __UBOOT__
1397 	if (!c->ro_mount) {
1398 		c->ileb_buf = vmalloc(c->leb_size);
1399 		if (!c->ileb_buf)
1400 			goto out_free;
1401 	}
1402 #endif
1403 
1404 	if (c->bulk_read == 1)
1405 		bu_init(c);
1406 
1407 #ifndef __UBOOT__
1408 	if (!c->ro_mount) {
1409 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1410 					       GFP_KERNEL);
1411 		if (!c->write_reserve_buf)
1412 			goto out_free;
1413 	}
1414 #endif
1415 
1416 	c->mounting = 1;
1417 
1418 	err = ubifs_read_superblock(c);
1419 	if (err)
1420 		goto out_free;
1421 
1422 	c->probing = 0;
1423 
1424 	/*
1425 	 * Make sure the compressor which is set as default in the superblock
1426 	 * or overridden by mount options is actually compiled in.
1427 	 */
1428 	if (!ubifs_compr_present(c->default_compr)) {
1429 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1430 			  ubifs_compr_name(c->default_compr));
1431 		err = -ENOTSUPP;
1432 		goto out_free;
1433 	}
1434 
1435 	err = init_constants_sb(c);
1436 	if (err)
1437 		goto out_free;
1438 
1439 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1440 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1441 	c->cbuf = kmalloc(sz, GFP_NOFS);
1442 	if (!c->cbuf) {
1443 		err = -ENOMEM;
1444 		goto out_free;
1445 	}
1446 
1447 	err = alloc_wbufs(c);
1448 	if (err)
1449 		goto out_cbuf;
1450 
1451 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1452 #ifndef __UBOOT__
1453 	if (!c->ro_mount) {
1454 		/* Create background thread */
1455 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1456 		if (IS_ERR(c->bgt)) {
1457 			err = PTR_ERR(c->bgt);
1458 			c->bgt = NULL;
1459 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1460 				  c->bgt_name, err);
1461 			goto out_wbufs;
1462 		}
1463 		wake_up_process(c->bgt);
1464 	}
1465 #endif
1466 
1467 	err = ubifs_read_master(c);
1468 	if (err)
1469 		goto out_master;
1470 
1471 	init_constants_master(c);
1472 
1473 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1474 		ubifs_msg(c, "recovery needed");
1475 		c->need_recovery = 1;
1476 	}
1477 
1478 #ifndef __UBOOT__
1479 	if (c->need_recovery && !c->ro_mount) {
1480 		err = ubifs_recover_inl_heads(c, c->sbuf);
1481 		if (err)
1482 			goto out_master;
1483 	}
1484 #endif
1485 
1486 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1487 	if (err)
1488 		goto out_master;
1489 
1490 #ifndef __UBOOT__
1491 	if (!c->ro_mount && c->space_fixup) {
1492 		err = ubifs_fixup_free_space(c);
1493 		if (err)
1494 			goto out_lpt;
1495 	}
1496 
1497 	if (!c->ro_mount && !c->need_recovery) {
1498 		/*
1499 		 * Set the "dirty" flag so that if we reboot uncleanly we
1500 		 * will notice this immediately on the next mount.
1501 		 */
1502 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1503 		err = ubifs_write_master(c);
1504 		if (err)
1505 			goto out_lpt;
1506 	}
1507 #endif
1508 
1509 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1510 	if (err)
1511 		goto out_lpt;
1512 
1513 	err = ubifs_replay_journal(c);
1514 	if (err)
1515 		goto out_journal;
1516 
1517 	/* Calculate 'min_idx_lebs' after journal replay */
1518 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1519 
1520 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1521 	if (err)
1522 		goto out_orphans;
1523 
1524 	if (!c->ro_mount) {
1525 #ifndef __UBOOT__
1526 		int lnum;
1527 
1528 		err = check_free_space(c);
1529 		if (err)
1530 			goto out_orphans;
1531 
1532 		/* Check for enough log space */
1533 		lnum = c->lhead_lnum + 1;
1534 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1535 			lnum = UBIFS_LOG_LNUM;
1536 		if (lnum == c->ltail_lnum) {
1537 			err = ubifs_consolidate_log(c);
1538 			if (err)
1539 				goto out_orphans;
1540 		}
1541 
1542 		if (c->need_recovery) {
1543 			err = ubifs_recover_size(c);
1544 			if (err)
1545 				goto out_orphans;
1546 			err = ubifs_rcvry_gc_commit(c);
1547 			if (err)
1548 				goto out_orphans;
1549 		} else {
1550 			err = take_gc_lnum(c);
1551 			if (err)
1552 				goto out_orphans;
1553 
1554 			/*
1555 			 * GC LEB may contain garbage if there was an unclean
1556 			 * reboot, and it should be un-mapped.
1557 			 */
1558 			err = ubifs_leb_unmap(c, c->gc_lnum);
1559 			if (err)
1560 				goto out_orphans;
1561 		}
1562 
1563 		err = dbg_check_lprops(c);
1564 		if (err)
1565 			goto out_orphans;
1566 #endif
1567 	} else if (c->need_recovery) {
1568 		err = ubifs_recover_size(c);
1569 		if (err)
1570 			goto out_orphans;
1571 	} else {
1572 		/*
1573 		 * Even if we mount read-only, we have to set space in GC LEB
1574 		 * to proper value because this affects UBIFS free space
1575 		 * reporting. We do not want to have a situation when
1576 		 * re-mounting from R/O to R/W changes amount of free space.
1577 		 */
1578 		err = take_gc_lnum(c);
1579 		if (err)
1580 			goto out_orphans;
1581 	}
1582 
1583 #ifndef __UBOOT__
1584 	spin_lock(&ubifs_infos_lock);
1585 	list_add_tail(&c->infos_list, &ubifs_infos);
1586 	spin_unlock(&ubifs_infos_lock);
1587 #endif
1588 
1589 	if (c->need_recovery) {
1590 		if (c->ro_mount)
1591 			ubifs_msg(c, "recovery deferred");
1592 		else {
1593 			c->need_recovery = 0;
1594 			ubifs_msg(c, "recovery completed");
1595 			/*
1596 			 * GC LEB has to be empty and taken at this point. But
1597 			 * the journal head LEBs may also be accounted as
1598 			 * "empty taken" if they are empty.
1599 			 */
1600 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1601 		}
1602 	} else
1603 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1604 
1605 	err = dbg_check_filesystem(c);
1606 	if (err)
1607 		goto out_infos;
1608 
1609 	err = dbg_debugfs_init_fs(c);
1610 	if (err)
1611 		goto out_infos;
1612 
1613 	c->mounting = 0;
1614 
1615 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1616 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1617 		  c->ro_mount ? ", R/O mode" : "");
1618 	x = (long long)c->main_lebs * c->leb_size;
1619 #ifndef CONFIG_UBIFS_SILENCE_MSG
1620 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1621 #endif
1622 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1623 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1624 		  c->max_write_size);
1625 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1626 		  x, x >> 20, c->main_lebs,
1627 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1628 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1629 		  c->report_rp_size, c->report_rp_size >> 10);
1630 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1631 		  c->fmt_version, c->ro_compat_version,
1632 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1633 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1634 
1635 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1636 	dbg_gen("data journal heads:  %d",
1637 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1638 	dbg_gen("log LEBs:            %d (%d - %d)",
1639 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1640 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1641 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1642 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1643 		c->orph_lebs, c->orph_first, c->orph_last);
1644 	dbg_gen("main area LEBs:      %d (%d - %d)",
1645 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1646 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1647 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1648 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1649 		c->bi.old_idx_sz >> 20);
1650 	dbg_gen("key hash type:       %d", c->key_hash_type);
1651 	dbg_gen("tree fanout:         %d", c->fanout);
1652 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1653 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1654 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1655 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1656 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1657 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1658 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1659 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1660 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1661 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1662 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1663 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1664 	dbg_gen("dead watermark:      %d", c->dead_wm);
1665 	dbg_gen("dark watermark:      %d", c->dark_wm);
1666 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1667 	x = (long long)c->main_lebs * c->dark_wm;
1668 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1669 		x, x >> 10, x >> 20);
1670 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1671 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1672 		c->max_bud_bytes >> 20);
1673 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1674 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1675 		c->bg_bud_bytes >> 20);
1676 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1677 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1678 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1679 	dbg_gen("commit number:       %llu", c->cmt_no);
1680 
1681 	return 0;
1682 
1683 out_infos:
1684 	spin_lock(&ubifs_infos_lock);
1685 	list_del(&c->infos_list);
1686 	spin_unlock(&ubifs_infos_lock);
1687 out_orphans:
1688 	free_orphans(c);
1689 out_journal:
1690 	destroy_journal(c);
1691 out_lpt:
1692 	ubifs_lpt_free(c, 0);
1693 out_master:
1694 	kfree(c->mst_node);
1695 	kfree(c->rcvrd_mst_node);
1696 	if (c->bgt)
1697 		kthread_stop(c->bgt);
1698 #ifndef __UBOOT__
1699 out_wbufs:
1700 #endif
1701 	free_wbufs(c);
1702 out_cbuf:
1703 	kfree(c->cbuf);
1704 out_free:
1705 	kfree(c->write_reserve_buf);
1706 	kfree(c->bu.buf);
1707 	vfree(c->ileb_buf);
1708 	vfree(c->sbuf);
1709 	kfree(c->bottom_up_buf);
1710 	ubifs_debugging_exit(c);
1711 	return err;
1712 }
1713 
1714 /**
1715  * ubifs_umount - un-mount UBIFS file-system.
1716  * @c: UBIFS file-system description object
1717  *
1718  * Note, this function is called to free allocated resourced when un-mounting,
1719  * as well as free resources when an error occurred while we were half way
1720  * through mounting (error path cleanup function). So it has to make sure the
1721  * resource was actually allocated before freeing it.
1722  */
1723 #ifndef __UBOOT__
1724 static void ubifs_umount(struct ubifs_info *c)
1725 #else
1726 void ubifs_umount(struct ubifs_info *c)
1727 #endif
1728 {
1729 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1730 		c->vi.vol_id);
1731 
1732 	dbg_debugfs_exit_fs(c);
1733 	spin_lock(&ubifs_infos_lock);
1734 	list_del(&c->infos_list);
1735 	spin_unlock(&ubifs_infos_lock);
1736 
1737 #ifndef __UBOOT__
1738 	if (c->bgt)
1739 		kthread_stop(c->bgt);
1740 
1741 	destroy_journal(c);
1742 #endif
1743 	free_wbufs(c);
1744 	free_orphans(c);
1745 	ubifs_lpt_free(c, 0);
1746 
1747 	kfree(c->cbuf);
1748 	kfree(c->rcvrd_mst_node);
1749 	kfree(c->mst_node);
1750 	kfree(c->write_reserve_buf);
1751 	kfree(c->bu.buf);
1752 	vfree(c->ileb_buf);
1753 	vfree(c->sbuf);
1754 	kfree(c->bottom_up_buf);
1755 	ubifs_debugging_exit(c);
1756 #ifdef __UBOOT__
1757 	/* Finally free U-Boot's global copy of superblock */
1758 	if (ubifs_sb != NULL) {
1759 		free(ubifs_sb->s_fs_info);
1760 		free(ubifs_sb);
1761 	}
1762 #endif
1763 }
1764 
1765 #ifndef __UBOOT__
1766 /**
1767  * ubifs_remount_rw - re-mount in read-write mode.
1768  * @c: UBIFS file-system description object
1769  *
1770  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1771  * mode. This function allocates the needed resources and re-mounts UBIFS in
1772  * read-write mode.
1773  */
1774 static int ubifs_remount_rw(struct ubifs_info *c)
1775 {
1776 	int err, lnum;
1777 
1778 	if (c->rw_incompat) {
1779 		ubifs_err(c, "the file-system is not R/W-compatible");
1780 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1781 			  c->fmt_version, c->ro_compat_version,
1782 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1783 		return -EROFS;
1784 	}
1785 
1786 	mutex_lock(&c->umount_mutex);
1787 	dbg_save_space_info(c);
1788 	c->remounting_rw = 1;
1789 	c->ro_mount = 0;
1790 
1791 	if (c->space_fixup) {
1792 		err = ubifs_fixup_free_space(c);
1793 		if (err)
1794 			goto out;
1795 	}
1796 
1797 	err = check_free_space(c);
1798 	if (err)
1799 		goto out;
1800 
1801 	if (c->old_leb_cnt != c->leb_cnt) {
1802 		struct ubifs_sb_node *sup;
1803 
1804 		sup = ubifs_read_sb_node(c);
1805 		if (IS_ERR(sup)) {
1806 			err = PTR_ERR(sup);
1807 			goto out;
1808 		}
1809 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1810 		err = ubifs_write_sb_node(c, sup);
1811 		kfree(sup);
1812 		if (err)
1813 			goto out;
1814 	}
1815 
1816 	if (c->need_recovery) {
1817 		ubifs_msg(c, "completing deferred recovery");
1818 		err = ubifs_write_rcvrd_mst_node(c);
1819 		if (err)
1820 			goto out;
1821 		err = ubifs_recover_size(c);
1822 		if (err)
1823 			goto out;
1824 		err = ubifs_clean_lebs(c, c->sbuf);
1825 		if (err)
1826 			goto out;
1827 		err = ubifs_recover_inl_heads(c, c->sbuf);
1828 		if (err)
1829 			goto out;
1830 	} else {
1831 		/* A readonly mount is not allowed to have orphans */
1832 		ubifs_assert(c->tot_orphans == 0);
1833 		err = ubifs_clear_orphans(c);
1834 		if (err)
1835 			goto out;
1836 	}
1837 
1838 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1839 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1840 		err = ubifs_write_master(c);
1841 		if (err)
1842 			goto out;
1843 	}
1844 
1845 	c->ileb_buf = vmalloc(c->leb_size);
1846 	if (!c->ileb_buf) {
1847 		err = -ENOMEM;
1848 		goto out;
1849 	}
1850 
1851 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1852 	if (!c->write_reserve_buf) {
1853 		err = -ENOMEM;
1854 		goto out;
1855 	}
1856 
1857 	err = ubifs_lpt_init(c, 0, 1);
1858 	if (err)
1859 		goto out;
1860 
1861 	/* Create background thread */
1862 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1863 	if (IS_ERR(c->bgt)) {
1864 		err = PTR_ERR(c->bgt);
1865 		c->bgt = NULL;
1866 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1867 			  c->bgt_name, err);
1868 		goto out;
1869 	}
1870 	wake_up_process(c->bgt);
1871 
1872 	c->orph_buf = vmalloc(c->leb_size);
1873 	if (!c->orph_buf) {
1874 		err = -ENOMEM;
1875 		goto out;
1876 	}
1877 
1878 	/* Check for enough log space */
1879 	lnum = c->lhead_lnum + 1;
1880 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1881 		lnum = UBIFS_LOG_LNUM;
1882 	if (lnum == c->ltail_lnum) {
1883 		err = ubifs_consolidate_log(c);
1884 		if (err)
1885 			goto out;
1886 	}
1887 
1888 	if (c->need_recovery)
1889 		err = ubifs_rcvry_gc_commit(c);
1890 	else
1891 		err = ubifs_leb_unmap(c, c->gc_lnum);
1892 	if (err)
1893 		goto out;
1894 
1895 	dbg_gen("re-mounted read-write");
1896 	c->remounting_rw = 0;
1897 
1898 	if (c->need_recovery) {
1899 		c->need_recovery = 0;
1900 		ubifs_msg(c, "deferred recovery completed");
1901 	} else {
1902 		/*
1903 		 * Do not run the debugging space check if the were doing
1904 		 * recovery, because when we saved the information we had the
1905 		 * file-system in a state where the TNC and lprops has been
1906 		 * modified in memory, but all the I/O operations (including a
1907 		 * commit) were deferred. So the file-system was in
1908 		 * "non-committed" state. Now the file-system is in committed
1909 		 * state, and of course the amount of free space will change
1910 		 * because, for example, the old index size was imprecise.
1911 		 */
1912 		err = dbg_check_space_info(c);
1913 	}
1914 
1915 	mutex_unlock(&c->umount_mutex);
1916 	return err;
1917 
1918 out:
1919 	c->ro_mount = 1;
1920 	vfree(c->orph_buf);
1921 	c->orph_buf = NULL;
1922 	if (c->bgt) {
1923 		kthread_stop(c->bgt);
1924 		c->bgt = NULL;
1925 	}
1926 	free_wbufs(c);
1927 	kfree(c->write_reserve_buf);
1928 	c->write_reserve_buf = NULL;
1929 	vfree(c->ileb_buf);
1930 	c->ileb_buf = NULL;
1931 	ubifs_lpt_free(c, 1);
1932 	c->remounting_rw = 0;
1933 	mutex_unlock(&c->umount_mutex);
1934 	return err;
1935 }
1936 
1937 /**
1938  * ubifs_remount_ro - re-mount in read-only mode.
1939  * @c: UBIFS file-system description object
1940  *
1941  * We assume VFS has stopped writing. Possibly the background thread could be
1942  * running a commit, however kthread_stop will wait in that case.
1943  */
1944 static void ubifs_remount_ro(struct ubifs_info *c)
1945 {
1946 	int i, err;
1947 
1948 	ubifs_assert(!c->need_recovery);
1949 	ubifs_assert(!c->ro_mount);
1950 
1951 	mutex_lock(&c->umount_mutex);
1952 	if (c->bgt) {
1953 		kthread_stop(c->bgt);
1954 		c->bgt = NULL;
1955 	}
1956 
1957 	dbg_save_space_info(c);
1958 
1959 	for (i = 0; i < c->jhead_cnt; i++)
1960 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1961 
1962 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1963 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1964 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1965 	err = ubifs_write_master(c);
1966 	if (err)
1967 		ubifs_ro_mode(c, err);
1968 
1969 	vfree(c->orph_buf);
1970 	c->orph_buf = NULL;
1971 	kfree(c->write_reserve_buf);
1972 	c->write_reserve_buf = NULL;
1973 	vfree(c->ileb_buf);
1974 	c->ileb_buf = NULL;
1975 	ubifs_lpt_free(c, 1);
1976 	c->ro_mount = 1;
1977 	err = dbg_check_space_info(c);
1978 	if (err)
1979 		ubifs_ro_mode(c, err);
1980 	mutex_unlock(&c->umount_mutex);
1981 }
1982 
1983 static void ubifs_put_super(struct super_block *sb)
1984 {
1985 	int i;
1986 	struct ubifs_info *c = sb->s_fs_info;
1987 
1988 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1989 
1990 	/*
1991 	 * The following asserts are only valid if there has not been a failure
1992 	 * of the media. For example, there will be dirty inodes if we failed
1993 	 * to write them back because of I/O errors.
1994 	 */
1995 	if (!c->ro_error) {
1996 		ubifs_assert(c->bi.idx_growth == 0);
1997 		ubifs_assert(c->bi.dd_growth == 0);
1998 		ubifs_assert(c->bi.data_growth == 0);
1999 	}
2000 
2001 	/*
2002 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
2003 	 * and file system un-mount. Namely, it prevents the shrinker from
2004 	 * picking this superblock for shrinking - it will be just skipped if
2005 	 * the mutex is locked.
2006 	 */
2007 	mutex_lock(&c->umount_mutex);
2008 	if (!c->ro_mount) {
2009 		/*
2010 		 * First of all kill the background thread to make sure it does
2011 		 * not interfere with un-mounting and freeing resources.
2012 		 */
2013 		if (c->bgt) {
2014 			kthread_stop(c->bgt);
2015 			c->bgt = NULL;
2016 		}
2017 
2018 		/*
2019 		 * On fatal errors c->ro_error is set to 1, in which case we do
2020 		 * not write the master node.
2021 		 */
2022 		if (!c->ro_error) {
2023 			int err;
2024 
2025 			/* Synchronize write-buffers */
2026 			for (i = 0; i < c->jhead_cnt; i++)
2027 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
2028 
2029 			/*
2030 			 * We are being cleanly unmounted which means the
2031 			 * orphans were killed - indicate this in the master
2032 			 * node. Also save the reserved GC LEB number.
2033 			 */
2034 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2035 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2036 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2037 			err = ubifs_write_master(c);
2038 			if (err)
2039 				/*
2040 				 * Recovery will attempt to fix the master area
2041 				 * next mount, so we just print a message and
2042 				 * continue to unmount normally.
2043 				 */
2044 				ubifs_err(c, "failed to write master node, error %d",
2045 					  err);
2046 		} else {
2047 #ifndef __UBOOT__
2048 			for (i = 0; i < c->jhead_cnt; i++)
2049 				/* Make sure write-buffer timers are canceled */
2050 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
2051 #endif
2052 		}
2053 	}
2054 
2055 	ubifs_umount(c);
2056 #ifndef __UBOOT__
2057 	bdi_destroy(&c->bdi);
2058 #endif
2059 	ubi_close_volume(c->ubi);
2060 	mutex_unlock(&c->umount_mutex);
2061 }
2062 #endif
2063 
2064 #ifndef __UBOOT__
2065 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2066 {
2067 	int err;
2068 	struct ubifs_info *c = sb->s_fs_info;
2069 
2070 	sync_filesystem(sb);
2071 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2072 
2073 	err = ubifs_parse_options(c, data, 1);
2074 	if (err) {
2075 		ubifs_err(c, "invalid or unknown remount parameter");
2076 		return err;
2077 	}
2078 
2079 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
2080 		if (c->ro_error) {
2081 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2082 			return -EROFS;
2083 		}
2084 		if (c->ro_media) {
2085 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2086 			return -EROFS;
2087 		}
2088 		err = ubifs_remount_rw(c);
2089 		if (err)
2090 			return err;
2091 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2092 		if (c->ro_error) {
2093 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2094 			return -EROFS;
2095 		}
2096 		ubifs_remount_ro(c);
2097 	}
2098 
2099 	if (c->bulk_read == 1)
2100 		bu_init(c);
2101 	else {
2102 		dbg_gen("disable bulk-read");
2103 		kfree(c->bu.buf);
2104 		c->bu.buf = NULL;
2105 	}
2106 
2107 	ubifs_assert(c->lst.taken_empty_lebs > 0);
2108 	return 0;
2109 }
2110 #endif
2111 
2112 const struct super_operations ubifs_super_operations = {
2113 	.alloc_inode   = ubifs_alloc_inode,
2114 #ifndef __UBOOT__
2115 	.destroy_inode = ubifs_destroy_inode,
2116 	.put_super     = ubifs_put_super,
2117 	.write_inode   = ubifs_write_inode,
2118 	.evict_inode   = ubifs_evict_inode,
2119 	.statfs        = ubifs_statfs,
2120 #endif
2121 	.dirty_inode   = ubifs_dirty_inode,
2122 #ifndef __UBOOT__
2123 	.remount_fs    = ubifs_remount_fs,
2124 	.show_options  = ubifs_show_options,
2125 	.sync_fs       = ubifs_sync_fs,
2126 #endif
2127 };
2128 
2129 /**
2130  * open_ubi - parse UBI device name string and open the UBI device.
2131  * @name: UBI volume name
2132  * @mode: UBI volume open mode
2133  *
2134  * The primary method of mounting UBIFS is by specifying the UBI volume
2135  * character device node path. However, UBIFS may also be mounted withoug any
2136  * character device node using one of the following methods:
2137  *
2138  * o ubiX_Y    - mount UBI device number X, volume Y;
2139  * o ubiY      - mount UBI device number 0, volume Y;
2140  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2141  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2142  *
2143  * Alternative '!' separator may be used instead of ':' (because some shells
2144  * like busybox may interpret ':' as an NFS host name separator). This function
2145  * returns UBI volume description object in case of success and a negative
2146  * error code in case of failure.
2147  */
2148 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2149 {
2150 #ifndef __UBOOT__
2151 	struct ubi_volume_desc *ubi;
2152 #endif
2153 	int dev, vol;
2154 	char *endptr;
2155 
2156 #ifndef __UBOOT__
2157 	/* First, try to open using the device node path method */
2158 	ubi = ubi_open_volume_path(name, mode);
2159 	if (!IS_ERR(ubi))
2160 		return ubi;
2161 #endif
2162 
2163 	/* Try the "nodev" method */
2164 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2165 		return ERR_PTR(-EINVAL);
2166 
2167 	/* ubi:NAME method */
2168 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2169 		return ubi_open_volume_nm(0, name + 4, mode);
2170 
2171 	if (!isdigit(name[3]))
2172 		return ERR_PTR(-EINVAL);
2173 
2174 	dev = simple_strtoul(name + 3, &endptr, 0);
2175 
2176 	/* ubiY method */
2177 	if (*endptr == '\0')
2178 		return ubi_open_volume(0, dev, mode);
2179 
2180 	/* ubiX_Y method */
2181 	if (*endptr == '_' && isdigit(endptr[1])) {
2182 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2183 		if (*endptr != '\0')
2184 			return ERR_PTR(-EINVAL);
2185 		return ubi_open_volume(dev, vol, mode);
2186 	}
2187 
2188 	/* ubiX:NAME method */
2189 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2190 		return ubi_open_volume_nm(dev, ++endptr, mode);
2191 
2192 	return ERR_PTR(-EINVAL);
2193 }
2194 
2195 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2196 {
2197 	struct ubifs_info *c;
2198 
2199 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2200 	if (c) {
2201 		spin_lock_init(&c->cnt_lock);
2202 		spin_lock_init(&c->cs_lock);
2203 		spin_lock_init(&c->buds_lock);
2204 		spin_lock_init(&c->space_lock);
2205 		spin_lock_init(&c->orphan_lock);
2206 		init_rwsem(&c->commit_sem);
2207 		mutex_init(&c->lp_mutex);
2208 		mutex_init(&c->tnc_mutex);
2209 		mutex_init(&c->log_mutex);
2210 		mutex_init(&c->umount_mutex);
2211 		mutex_init(&c->bu_mutex);
2212 		mutex_init(&c->write_reserve_mutex);
2213 		init_waitqueue_head(&c->cmt_wq);
2214 		c->buds = RB_ROOT;
2215 		c->old_idx = RB_ROOT;
2216 		c->size_tree = RB_ROOT;
2217 		c->orph_tree = RB_ROOT;
2218 		INIT_LIST_HEAD(&c->infos_list);
2219 		INIT_LIST_HEAD(&c->idx_gc);
2220 		INIT_LIST_HEAD(&c->replay_list);
2221 		INIT_LIST_HEAD(&c->replay_buds);
2222 		INIT_LIST_HEAD(&c->uncat_list);
2223 		INIT_LIST_HEAD(&c->empty_list);
2224 		INIT_LIST_HEAD(&c->freeable_list);
2225 		INIT_LIST_HEAD(&c->frdi_idx_list);
2226 		INIT_LIST_HEAD(&c->unclean_leb_list);
2227 		INIT_LIST_HEAD(&c->old_buds);
2228 		INIT_LIST_HEAD(&c->orph_list);
2229 		INIT_LIST_HEAD(&c->orph_new);
2230 		c->no_chk_data_crc = 1;
2231 
2232 		c->highest_inum = UBIFS_FIRST_INO;
2233 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2234 
2235 		ubi_get_volume_info(ubi, &c->vi);
2236 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2237 	}
2238 	return c;
2239 }
2240 
2241 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2242 {
2243 	struct ubifs_info *c = sb->s_fs_info;
2244 	struct inode *root;
2245 	int err;
2246 
2247 	c->vfs_sb = sb;
2248 #ifndef __UBOOT__
2249 	/* Re-open the UBI device in read-write mode */
2250 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2251 #else
2252 	/* U-Boot read only mode */
2253 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2254 #endif
2255 
2256 	if (IS_ERR(c->ubi)) {
2257 		err = PTR_ERR(c->ubi);
2258 		goto out;
2259 	}
2260 
2261 #ifndef __UBOOT__
2262 	/*
2263 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2264 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2265 	 * which means the user would have to wait not just for their own I/O
2266 	 * but the read-ahead I/O as well i.e. completely pointless.
2267 	 *
2268 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2269 	 */
2270 	c->bdi.name = "ubifs",
2271 	c->bdi.capabilities = 0;
2272 	err  = bdi_init(&c->bdi);
2273 	if (err)
2274 		goto out_close;
2275 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2276 			   c->vi.ubi_num, c->vi.vol_id);
2277 	if (err)
2278 		goto out_bdi;
2279 
2280 	err = ubifs_parse_options(c, data, 0);
2281 	if (err)
2282 		goto out_bdi;
2283 
2284 	sb->s_bdi = &c->bdi;
2285 #endif
2286 	sb->s_fs_info = c;
2287 	sb->s_magic = UBIFS_SUPER_MAGIC;
2288 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2289 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2290 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2291 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2292 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2293 	sb->s_op = &ubifs_super_operations;
2294 #ifndef __UBOOT__
2295 	sb->s_xattr = ubifs_xattr_handlers;
2296 #endif
2297 
2298 	mutex_lock(&c->umount_mutex);
2299 	err = mount_ubifs(c);
2300 	if (err) {
2301 		ubifs_assert(err < 0);
2302 		goto out_unlock;
2303 	}
2304 
2305 	/* Read the root inode */
2306 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2307 	if (IS_ERR(root)) {
2308 		err = PTR_ERR(root);
2309 		goto out_umount;
2310 	}
2311 
2312 #ifndef __UBOOT__
2313 	sb->s_root = d_make_root(root);
2314 	if (!sb->s_root) {
2315 		err = -ENOMEM;
2316 		goto out_umount;
2317 	}
2318 #else
2319 	sb->s_root = NULL;
2320 #endif
2321 
2322 	mutex_unlock(&c->umount_mutex);
2323 	return 0;
2324 
2325 out_umount:
2326 	ubifs_umount(c);
2327 out_unlock:
2328 	mutex_unlock(&c->umount_mutex);
2329 #ifndef __UBOOT__
2330 out_bdi:
2331 	bdi_destroy(&c->bdi);
2332 out_close:
2333 #endif
2334 	ubi_close_volume(c->ubi);
2335 out:
2336 	return err;
2337 }
2338 
2339 static int sb_test(struct super_block *sb, void *data)
2340 {
2341 	struct ubifs_info *c1 = data;
2342 	struct ubifs_info *c = sb->s_fs_info;
2343 
2344 	return c->vi.cdev == c1->vi.cdev;
2345 }
2346 
2347 static int sb_set(struct super_block *sb, void *data)
2348 {
2349 	sb->s_fs_info = data;
2350 	return set_anon_super(sb, NULL);
2351 }
2352 
2353 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2354 {
2355 	struct super_block *s;
2356 	int err;
2357 
2358 	s = kzalloc(sizeof(struct super_block),  GFP_USER);
2359 	if (!s) {
2360 		err = -ENOMEM;
2361 		return ERR_PTR(err);
2362 	}
2363 
2364 	INIT_HLIST_NODE(&s->s_instances);
2365 	INIT_LIST_HEAD(&s->s_inodes);
2366 	s->s_time_gran = 1000000000;
2367 	s->s_flags = flags;
2368 
2369 	return s;
2370 }
2371 
2372 /**
2373  *	sget	-	find or create a superblock
2374  *	@type:	filesystem type superblock should belong to
2375  *	@test:	comparison callback
2376  *	@set:	setup callback
2377  *	@flags:	mount flags
2378  *	@data:	argument to each of them
2379  */
2380 struct super_block *sget(struct file_system_type *type,
2381 			int (*test)(struct super_block *,void *),
2382 			int (*set)(struct super_block *,void *),
2383 			int flags,
2384 			void *data)
2385 {
2386 	struct super_block *s = NULL;
2387 #ifndef __UBOOT__
2388 	struct super_block *old;
2389 #endif
2390 	int err;
2391 
2392 #ifndef __UBOOT__
2393 retry:
2394 	spin_lock(&sb_lock);
2395 	if (test) {
2396 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2397 			if (!test(old, data))
2398 				continue;
2399 			if (!grab_super(old))
2400 				goto retry;
2401 			if (s) {
2402 				up_write(&s->s_umount);
2403 				destroy_super(s);
2404 				s = NULL;
2405 			}
2406 			return old;
2407 		}
2408 	}
2409 #endif
2410 	if (!s) {
2411 		spin_unlock(&sb_lock);
2412 		s = alloc_super(type, flags);
2413 		if (!s)
2414 			return ERR_PTR(-ENOMEM);
2415 #ifndef __UBOOT__
2416 		goto retry;
2417 #endif
2418 	}
2419 
2420 	err = set(s, data);
2421 	if (err) {
2422 #ifndef __UBOOT__
2423 		spin_unlock(&sb_lock);
2424 		up_write(&s->s_umount);
2425 		destroy_super(s);
2426 #endif
2427 		return ERR_PTR(err);
2428 	}
2429 	s->s_type = type;
2430 #ifndef __UBOOT__
2431 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
2432 	list_add_tail(&s->s_list, &super_blocks);
2433 #else
2434 	strncpy(s->s_id, type->name, sizeof(s->s_id));
2435 #endif
2436 	hlist_add_head(&s->s_instances, &type->fs_supers);
2437 #ifndef __UBOOT__
2438 	spin_unlock(&sb_lock);
2439 	get_filesystem(type);
2440 	register_shrinker(&s->s_shrink);
2441 #endif
2442 	return s;
2443 }
2444 
2445 EXPORT_SYMBOL(sget);
2446 
2447 
2448 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2449 			const char *name, void *data)
2450 {
2451 	struct ubi_volume_desc *ubi;
2452 	struct ubifs_info *c;
2453 	struct super_block *sb;
2454 	int err;
2455 
2456 	dbg_gen("name %s, flags %#x", name, flags);
2457 
2458 	/*
2459 	 * Get UBI device number and volume ID. Mount it read-only so far
2460 	 * because this might be a new mount point, and UBI allows only one
2461 	 * read-write user at a time.
2462 	 */
2463 	ubi = open_ubi(name, UBI_READONLY);
2464 	if (IS_ERR(ubi)) {
2465 		pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2466 		       current->pid, name, (int)PTR_ERR(ubi));
2467 		return ERR_CAST(ubi);
2468 	}
2469 
2470 	c = alloc_ubifs_info(ubi);
2471 	if (!c) {
2472 		err = -ENOMEM;
2473 		goto out_close;
2474 	}
2475 
2476 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2477 
2478 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2479 	if (IS_ERR(sb)) {
2480 		err = PTR_ERR(sb);
2481 		kfree(c);
2482 		goto out_close;
2483 	}
2484 
2485 	if (sb->s_root) {
2486 		struct ubifs_info *c1 = sb->s_fs_info;
2487 		kfree(c);
2488 		/* A new mount point for already mounted UBIFS */
2489 		dbg_gen("this ubi volume is already mounted");
2490 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2491 			err = -EBUSY;
2492 			goto out_deact;
2493 		}
2494 	} else {
2495 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2496 		if (err)
2497 			goto out_deact;
2498 		/* We do not support atime */
2499 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2500 	}
2501 
2502 	/* 'fill_super()' opens ubi again so we must close it here */
2503 	ubi_close_volume(ubi);
2504 
2505 #ifdef __UBOOT__
2506 	ubifs_sb = sb;
2507 	return 0;
2508 #else
2509 	return dget(sb->s_root);
2510 #endif
2511 
2512 out_deact:
2513 #ifndef __UBOOT__
2514 	deactivate_locked_super(sb);
2515 #endif
2516 out_close:
2517 	ubi_close_volume(ubi);
2518 	return ERR_PTR(err);
2519 }
2520 
2521 static void kill_ubifs_super(struct super_block *s)
2522 {
2523 	struct ubifs_info *c = s->s_fs_info;
2524 #ifndef __UBOOT__
2525 	kill_anon_super(s);
2526 #endif
2527 	kfree(c);
2528 }
2529 
2530 static struct file_system_type ubifs_fs_type = {
2531 	.name    = "ubifs",
2532 	.owner   = THIS_MODULE,
2533 	.mount   = ubifs_mount,
2534 	.kill_sb = kill_ubifs_super,
2535 };
2536 #ifndef __UBOOT__
2537 MODULE_ALIAS_FS("ubifs");
2538 
2539 /*
2540  * Inode slab cache constructor.
2541  */
2542 static void inode_slab_ctor(void *obj)
2543 {
2544 	struct ubifs_inode *ui = obj;
2545 	inode_init_once(&ui->vfs_inode);
2546 }
2547 
2548 static int __init ubifs_init(void)
2549 #else
2550 int ubifs_init(void)
2551 #endif
2552 {
2553 	int err;
2554 
2555 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2556 
2557 	/* Make sure node sizes are 8-byte aligned */
2558 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2559 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2560 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2561 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2562 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2563 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2564 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2565 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2566 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2567 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2568 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2569 
2570 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2571 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2572 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2573 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2574 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2575 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2576 
2577 	/* Check min. node size */
2578 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2579 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2580 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2581 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2582 
2583 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2584 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2585 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2586 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2587 
2588 	/* Defined node sizes */
2589 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2590 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2591 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2592 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2593 
2594 	/*
2595 	 * We use 2 bit wide bit-fields to store compression type, which should
2596 	 * be amended if more compressors are added. The bit-fields are:
2597 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2598 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2599 	 */
2600 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2601 
2602 	/*
2603 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2604 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2605 	 */
2606 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2607 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2608 		       current->pid, (unsigned int)PAGE_CACHE_SIZE);
2609 		return -EINVAL;
2610 	}
2611 
2612 #ifndef __UBOOT__
2613 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2614 				sizeof(struct ubifs_inode), 0,
2615 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2616 				&inode_slab_ctor);
2617 	if (!ubifs_inode_slab)
2618 		return -ENOMEM;
2619 
2620 	err = register_shrinker(&ubifs_shrinker_info);
2621 	if (err)
2622 		goto out_slab;
2623 #endif
2624 
2625 	err = ubifs_compressors_init();
2626 	if (err)
2627 		goto out_shrinker;
2628 
2629 #ifndef __UBOOT__
2630 	err = dbg_debugfs_init();
2631 	if (err)
2632 		goto out_compr;
2633 
2634 	err = register_filesystem(&ubifs_fs_type);
2635 	if (err) {
2636 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2637 		       current->pid, err);
2638 		goto out_dbg;
2639 	}
2640 #endif
2641 	return 0;
2642 
2643 #ifndef __UBOOT__
2644 out_dbg:
2645 	dbg_debugfs_exit();
2646 out_compr:
2647 	ubifs_compressors_exit();
2648 #endif
2649 out_shrinker:
2650 #ifndef __UBOOT__
2651 	unregister_shrinker(&ubifs_shrinker_info);
2652 out_slab:
2653 #endif
2654 	kmem_cache_destroy(ubifs_inode_slab);
2655 	return err;
2656 }
2657 /* late_initcall to let compressors initialize first */
2658 late_initcall(ubifs_init);
2659 
2660 #ifndef __UBOOT__
2661 static void __exit ubifs_exit(void)
2662 {
2663 	ubifs_assert(list_empty(&ubifs_infos));
2664 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2665 
2666 	dbg_debugfs_exit();
2667 	ubifs_compressors_exit();
2668 	unregister_shrinker(&ubifs_shrinker_info);
2669 
2670 	/*
2671 	 * Make sure all delayed rcu free inodes are flushed before we
2672 	 * destroy cache.
2673 	 */
2674 	rcu_barrier();
2675 	kmem_cache_destroy(ubifs_inode_slab);
2676 	unregister_filesystem(&ubifs_fs_type);
2677 }
2678 module_exit(ubifs_exit);
2679 
2680 MODULE_LICENSE("GPL");
2681 MODULE_VERSION(__stringify(UBIFS_VERSION));
2682 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2683 MODULE_DESCRIPTION("UBIFS - UBI File System");
2684 #else
2685 int uboot_ubifs_mount(char *vol_name)
2686 {
2687 	struct dentry *ret;
2688 	int flags;
2689 
2690 	/*
2691 	 * First unmount if allready mounted
2692 	 */
2693 	if (ubifs_sb)
2694 		ubifs_umount(ubifs_sb->s_fs_info);
2695 
2696 	/*
2697 	 * Mount in read-only mode
2698 	 */
2699 	flags = MS_RDONLY;
2700 	ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2701 	if (IS_ERR(ret)) {
2702 		printf("Error reading superblock on volume '%s' " \
2703 			"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2704 		return -1;
2705 	}
2706 
2707 	return 0;
2708 }
2709 #endif
2710