1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Adrian Hunter 9 * Artem Bityutskiy (Битюцкий Артём) 10 */ 11 12 /* 13 * This file contains journal replay code. It runs when the file-system is being 14 * mounted and requires no locking. 15 * 16 * The larger is the journal, the longer it takes to scan it, so the longer it 17 * takes to mount UBIFS. This is why the journal has limited size which may be 18 * changed depending on the system requirements. But a larger journal gives 19 * faster I/O speed because it writes the index less frequently. So this is a 20 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the 21 * larger is the journal, the more memory its index may consume. 22 */ 23 24 #ifdef __UBOOT__ 25 #include <linux/compat.h> 26 #include <linux/err.h> 27 #endif 28 #include "ubifs.h" 29 #include <linux/bug.h> 30 #include <linux/list_sort.h> 31 32 /** 33 * struct replay_entry - replay list entry. 34 * @lnum: logical eraseblock number of the node 35 * @offs: node offset 36 * @len: node length 37 * @deletion: non-zero if this entry corresponds to a node deletion 38 * @sqnum: node sequence number 39 * @list: links the replay list 40 * @key: node key 41 * @nm: directory entry name 42 * @old_size: truncation old size 43 * @new_size: truncation new size 44 * 45 * The replay process first scans all buds and builds the replay list, then 46 * sorts the replay list in nodes sequence number order, and then inserts all 47 * the replay entries to the TNC. 48 */ 49 struct replay_entry { 50 int lnum; 51 int offs; 52 int len; 53 unsigned int deletion:1; 54 unsigned long long sqnum; 55 struct list_head list; 56 union ubifs_key key; 57 union { 58 struct qstr nm; 59 struct { 60 loff_t old_size; 61 loff_t new_size; 62 }; 63 }; 64 }; 65 66 /** 67 * struct bud_entry - entry in the list of buds to replay. 68 * @list: next bud in the list 69 * @bud: bud description object 70 * @sqnum: reference node sequence number 71 * @free: free bytes in the bud 72 * @dirty: dirty bytes in the bud 73 */ 74 struct bud_entry { 75 struct list_head list; 76 struct ubifs_bud *bud; 77 unsigned long long sqnum; 78 int free; 79 int dirty; 80 }; 81 82 /** 83 * set_bud_lprops - set free and dirty space used by a bud. 84 * @c: UBIFS file-system description object 85 * @b: bud entry which describes the bud 86 * 87 * This function makes sure the LEB properties of bud @b are set correctly 88 * after the replay. Returns zero in case of success and a negative error code 89 * in case of failure. 90 */ 91 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) 92 { 93 const struct ubifs_lprops *lp; 94 int err = 0, dirty; 95 96 ubifs_get_lprops(c); 97 98 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); 99 if (IS_ERR(lp)) { 100 err = PTR_ERR(lp); 101 goto out; 102 } 103 104 dirty = lp->dirty; 105 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { 106 /* 107 * The LEB was added to the journal with a starting offset of 108 * zero which means the LEB must have been empty. The LEB 109 * property values should be @lp->free == @c->leb_size and 110 * @lp->dirty == 0, but that is not the case. The reason is that 111 * the LEB had been garbage collected before it became the bud, 112 * and there was not commit inbetween. The garbage collector 113 * resets the free and dirty space without recording it 114 * anywhere except lprops, so if there was no commit then 115 * lprops does not have that information. 116 * 117 * We do not need to adjust free space because the scan has told 118 * us the exact value which is recorded in the replay entry as 119 * @b->free. 120 * 121 * However we do need to subtract from the dirty space the 122 * amount of space that the garbage collector reclaimed, which 123 * is the whole LEB minus the amount of space that was free. 124 */ 125 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 126 lp->free, lp->dirty); 127 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 128 lp->free, lp->dirty); 129 dirty -= c->leb_size - lp->free; 130 /* 131 * If the replay order was perfect the dirty space would now be 132 * zero. The order is not perfect because the journal heads 133 * race with each other. This is not a problem but is does mean 134 * that the dirty space may temporarily exceed c->leb_size 135 * during the replay. 136 */ 137 if (dirty != 0) 138 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty", 139 b->bud->lnum, lp->free, lp->dirty, b->free, 140 b->dirty); 141 } 142 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, 143 lp->flags | LPROPS_TAKEN, 0); 144 if (IS_ERR(lp)) { 145 err = PTR_ERR(lp); 146 goto out; 147 } 148 149 /* Make sure the journal head points to the latest bud */ 150 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, 151 b->bud->lnum, c->leb_size - b->free); 152 153 out: 154 ubifs_release_lprops(c); 155 return err; 156 } 157 158 /** 159 * set_buds_lprops - set free and dirty space for all replayed buds. 160 * @c: UBIFS file-system description object 161 * 162 * This function sets LEB properties for all replayed buds. Returns zero in 163 * case of success and a negative error code in case of failure. 164 */ 165 static int set_buds_lprops(struct ubifs_info *c) 166 { 167 struct bud_entry *b; 168 int err; 169 170 list_for_each_entry(b, &c->replay_buds, list) { 171 err = set_bud_lprops(c, b); 172 if (err) 173 return err; 174 } 175 176 return 0; 177 } 178 179 /** 180 * trun_remove_range - apply a replay entry for a truncation to the TNC. 181 * @c: UBIFS file-system description object 182 * @r: replay entry of truncation 183 */ 184 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) 185 { 186 unsigned min_blk, max_blk; 187 union ubifs_key min_key, max_key; 188 ino_t ino; 189 190 min_blk = r->new_size / UBIFS_BLOCK_SIZE; 191 if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) 192 min_blk += 1; 193 194 max_blk = r->old_size / UBIFS_BLOCK_SIZE; 195 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) 196 max_blk -= 1; 197 198 ino = key_inum(c, &r->key); 199 200 data_key_init(c, &min_key, ino, min_blk); 201 data_key_init(c, &max_key, ino, max_blk); 202 203 return ubifs_tnc_remove_range(c, &min_key, &max_key); 204 } 205 206 /** 207 * apply_replay_entry - apply a replay entry to the TNC. 208 * @c: UBIFS file-system description object 209 * @r: replay entry to apply 210 * 211 * Apply a replay entry to the TNC. 212 */ 213 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) 214 { 215 int err; 216 217 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ", 218 r->lnum, r->offs, r->len, r->deletion, r->sqnum); 219 220 /* Set c->replay_sqnum to help deal with dangling branches. */ 221 c->replay_sqnum = r->sqnum; 222 223 if (is_hash_key(c, &r->key)) { 224 if (r->deletion) 225 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); 226 else 227 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, 228 r->len, &r->nm); 229 } else { 230 if (r->deletion) 231 switch (key_type(c, &r->key)) { 232 case UBIFS_INO_KEY: 233 { 234 ino_t inum = key_inum(c, &r->key); 235 236 err = ubifs_tnc_remove_ino(c, inum); 237 break; 238 } 239 case UBIFS_TRUN_KEY: 240 err = trun_remove_range(c, r); 241 break; 242 default: 243 err = ubifs_tnc_remove(c, &r->key); 244 break; 245 } 246 else 247 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, 248 r->len); 249 if (err) 250 return err; 251 252 if (c->need_recovery) 253 err = ubifs_recover_size_accum(c, &r->key, r->deletion, 254 r->new_size); 255 } 256 257 return err; 258 } 259 260 /** 261 * replay_entries_cmp - compare 2 replay entries. 262 * @priv: UBIFS file-system description object 263 * @a: first replay entry 264 * @a: second replay entry 265 * 266 * This is a comparios function for 'list_sort()' which compares 2 replay 267 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has 268 * greater sequence number and %-1 otherwise. 269 */ 270 static int replay_entries_cmp(void *priv, struct list_head *a, 271 struct list_head *b) 272 { 273 struct replay_entry *ra, *rb; 274 275 cond_resched(); 276 if (a == b) 277 return 0; 278 279 ra = list_entry(a, struct replay_entry, list); 280 rb = list_entry(b, struct replay_entry, list); 281 ubifs_assert(ra->sqnum != rb->sqnum); 282 if (ra->sqnum > rb->sqnum) 283 return 1; 284 return -1; 285 } 286 287 /** 288 * apply_replay_list - apply the replay list to the TNC. 289 * @c: UBIFS file-system description object 290 * 291 * Apply all entries in the replay list to the TNC. Returns zero in case of 292 * success and a negative error code in case of failure. 293 */ 294 static int apply_replay_list(struct ubifs_info *c) 295 { 296 struct replay_entry *r; 297 int err; 298 299 list_sort(c, &c->replay_list, &replay_entries_cmp); 300 301 list_for_each_entry(r, &c->replay_list, list) { 302 cond_resched(); 303 304 err = apply_replay_entry(c, r); 305 if (err) 306 return err; 307 } 308 309 return 0; 310 } 311 312 /** 313 * destroy_replay_list - destroy the replay. 314 * @c: UBIFS file-system description object 315 * 316 * Destroy the replay list. 317 */ 318 static void destroy_replay_list(struct ubifs_info *c) 319 { 320 struct replay_entry *r, *tmp; 321 322 list_for_each_entry_safe(r, tmp, &c->replay_list, list) { 323 if (is_hash_key(c, &r->key)) 324 kfree(r->nm.name); 325 list_del(&r->list); 326 kfree(r); 327 } 328 } 329 330 /** 331 * insert_node - insert a node to the replay list 332 * @c: UBIFS file-system description object 333 * @lnum: node logical eraseblock number 334 * @offs: node offset 335 * @len: node length 336 * @key: node key 337 * @sqnum: sequence number 338 * @deletion: non-zero if this is a deletion 339 * @used: number of bytes in use in a LEB 340 * @old_size: truncation old size 341 * @new_size: truncation new size 342 * 343 * This function inserts a scanned non-direntry node to the replay list. The 344 * replay list contains @struct replay_entry elements, and we sort this list in 345 * sequence number order before applying it. The replay list is applied at the 346 * very end of the replay process. Since the list is sorted in sequence number 347 * order, the older modifications are applied first. This function returns zero 348 * in case of success and a negative error code in case of failure. 349 */ 350 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, 351 union ubifs_key *key, unsigned long long sqnum, 352 int deletion, int *used, loff_t old_size, 353 loff_t new_size) 354 { 355 struct replay_entry *r; 356 357 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 358 359 if (key_inum(c, key) >= c->highest_inum) 360 c->highest_inum = key_inum(c, key); 361 362 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 363 if (!r) 364 return -ENOMEM; 365 366 if (!deletion) 367 *used += ALIGN(len, 8); 368 r->lnum = lnum; 369 r->offs = offs; 370 r->len = len; 371 r->deletion = !!deletion; 372 r->sqnum = sqnum; 373 key_copy(c, key, &r->key); 374 r->old_size = old_size; 375 r->new_size = new_size; 376 377 list_add_tail(&r->list, &c->replay_list); 378 return 0; 379 } 380 381 /** 382 * insert_dent - insert a directory entry node into the replay list. 383 * @c: UBIFS file-system description object 384 * @lnum: node logical eraseblock number 385 * @offs: node offset 386 * @len: node length 387 * @key: node key 388 * @name: directory entry name 389 * @nlen: directory entry name length 390 * @sqnum: sequence number 391 * @deletion: non-zero if this is a deletion 392 * @used: number of bytes in use in a LEB 393 * 394 * This function inserts a scanned directory entry node or an extended 395 * attribute entry to the replay list. Returns zero in case of success and a 396 * negative error code in case of failure. 397 */ 398 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, 399 union ubifs_key *key, const char *name, int nlen, 400 unsigned long long sqnum, int deletion, int *used) 401 { 402 struct replay_entry *r; 403 char *nbuf; 404 405 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 406 if (key_inum(c, key) >= c->highest_inum) 407 c->highest_inum = key_inum(c, key); 408 409 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 410 if (!r) 411 return -ENOMEM; 412 413 nbuf = kmalloc(nlen + 1, GFP_KERNEL); 414 if (!nbuf) { 415 kfree(r); 416 return -ENOMEM; 417 } 418 419 if (!deletion) 420 *used += ALIGN(len, 8); 421 r->lnum = lnum; 422 r->offs = offs; 423 r->len = len; 424 r->deletion = !!deletion; 425 r->sqnum = sqnum; 426 key_copy(c, key, &r->key); 427 r->nm.len = nlen; 428 memcpy(nbuf, name, nlen); 429 nbuf[nlen] = '\0'; 430 r->nm.name = nbuf; 431 432 list_add_tail(&r->list, &c->replay_list); 433 return 0; 434 } 435 436 /** 437 * ubifs_validate_entry - validate directory or extended attribute entry node. 438 * @c: UBIFS file-system description object 439 * @dent: the node to validate 440 * 441 * This function validates directory or extended attribute entry node @dent. 442 * Returns zero if the node is all right and a %-EINVAL if not. 443 */ 444 int ubifs_validate_entry(struct ubifs_info *c, 445 const struct ubifs_dent_node *dent) 446 { 447 int key_type = key_type_flash(c, dent->key); 448 int nlen = le16_to_cpu(dent->nlen); 449 450 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || 451 dent->type >= UBIFS_ITYPES_CNT || 452 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || 453 strnlen(dent->name, nlen) != nlen || 454 le64_to_cpu(dent->inum) > MAX_INUM) { 455 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ? 456 "directory entry" : "extended attribute entry"); 457 return -EINVAL; 458 } 459 460 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { 461 ubifs_err(c, "bad key type %d", key_type); 462 return -EINVAL; 463 } 464 465 return 0; 466 } 467 468 /** 469 * is_last_bud - check if the bud is the last in the journal head. 470 * @c: UBIFS file-system description object 471 * @bud: bud description object 472 * 473 * This function checks if bud @bud is the last bud in its journal head. This 474 * information is then used by 'replay_bud()' to decide whether the bud can 475 * have corruptions or not. Indeed, only last buds can be corrupted by power 476 * cuts. Returns %1 if this is the last bud, and %0 if not. 477 */ 478 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) 479 { 480 struct ubifs_jhead *jh = &c->jheads[bud->jhead]; 481 struct ubifs_bud *next; 482 uint32_t data; 483 int err; 484 485 if (list_is_last(&bud->list, &jh->buds_list)) 486 return 1; 487 488 /* 489 * The following is a quirk to make sure we work correctly with UBIFS 490 * images used with older UBIFS. 491 * 492 * Normally, the last bud will be the last in the journal head's list 493 * of bud. However, there is one exception if the UBIFS image belongs 494 * to older UBIFS. This is fairly unlikely: one would need to use old 495 * UBIFS, then have a power cut exactly at the right point, and then 496 * try to mount this image with new UBIFS. 497 * 498 * The exception is: it is possible to have 2 buds A and B, A goes 499 * before B, and B is the last, bud B is contains no data, and bud A is 500 * corrupted at the end. The reason is that in older versions when the 501 * journal code switched the next bud (from A to B), it first added a 502 * log reference node for the new bud (B), and only after this it 503 * synchronized the write-buffer of current bud (A). But later this was 504 * changed and UBIFS started to always synchronize the write-buffer of 505 * the bud (A) before writing the log reference for the new bud (B). 506 * 507 * But because older UBIFS always synchronized A's write-buffer before 508 * writing to B, we can recognize this exceptional situation but 509 * checking the contents of bud B - if it is empty, then A can be 510 * treated as the last and we can recover it. 511 * 512 * TODO: remove this piece of code in a couple of years (today it is 513 * 16.05.2011). 514 */ 515 next = list_entry(bud->list.next, struct ubifs_bud, list); 516 if (!list_is_last(&next->list, &jh->buds_list)) 517 return 0; 518 519 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1); 520 if (err) 521 return 0; 522 523 return data == 0xFFFFFFFF; 524 } 525 526 /** 527 * replay_bud - replay a bud logical eraseblock. 528 * @c: UBIFS file-system description object 529 * @b: bud entry which describes the bud 530 * 531 * This function replays bud @bud, recovers it if needed, and adds all nodes 532 * from this bud to the replay list. Returns zero in case of success and a 533 * negative error code in case of failure. 534 */ 535 static int replay_bud(struct ubifs_info *c, struct bud_entry *b) 536 { 537 int is_last = is_last_bud(c, b->bud); 538 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; 539 struct ubifs_scan_leb *sleb; 540 struct ubifs_scan_node *snod; 541 542 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", 543 lnum, b->bud->jhead, offs, is_last); 544 545 if (c->need_recovery && is_last) 546 /* 547 * Recover only last LEBs in the journal heads, because power 548 * cuts may cause corruptions only in these LEBs, because only 549 * these LEBs could possibly be written to at the power cut 550 * time. 551 */ 552 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); 553 else 554 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); 555 if (IS_ERR(sleb)) 556 return PTR_ERR(sleb); 557 558 /* 559 * The bud does not have to start from offset zero - the beginning of 560 * the 'lnum' LEB may contain previously committed data. One of the 561 * things we have to do in replay is to correctly update lprops with 562 * newer information about this LEB. 563 * 564 * At this point lprops thinks that this LEB has 'c->leb_size - offs' 565 * bytes of free space because it only contain information about 566 * committed data. 567 * 568 * But we know that real amount of free space is 'c->leb_size - 569 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and 570 * 'sleb->endpt' is used by bud data. We have to correctly calculate 571 * how much of these data are dirty and update lprops with this 572 * information. 573 * 574 * The dirt in that LEB region is comprised of padding nodes, deletion 575 * nodes, truncation nodes and nodes which are obsoleted by subsequent 576 * nodes in this LEB. So instead of calculating clean space, we 577 * calculate used space ('used' variable). 578 */ 579 580 list_for_each_entry(snod, &sleb->nodes, list) { 581 int deletion = 0; 582 583 cond_resched(); 584 585 if (snod->sqnum >= SQNUM_WATERMARK) { 586 ubifs_err(c, "file system's life ended"); 587 goto out_dump; 588 } 589 590 if (snod->sqnum > c->max_sqnum) 591 c->max_sqnum = snod->sqnum; 592 593 switch (snod->type) { 594 case UBIFS_INO_NODE: 595 { 596 struct ubifs_ino_node *ino = snod->node; 597 loff_t new_size = le64_to_cpu(ino->size); 598 599 if (le32_to_cpu(ino->nlink) == 0) 600 deletion = 1; 601 err = insert_node(c, lnum, snod->offs, snod->len, 602 &snod->key, snod->sqnum, deletion, 603 &used, 0, new_size); 604 break; 605 } 606 case UBIFS_DATA_NODE: 607 { 608 struct ubifs_data_node *dn = snod->node; 609 loff_t new_size = le32_to_cpu(dn->size) + 610 key_block(c, &snod->key) * 611 UBIFS_BLOCK_SIZE; 612 613 err = insert_node(c, lnum, snod->offs, snod->len, 614 &snod->key, snod->sqnum, deletion, 615 &used, 0, new_size); 616 break; 617 } 618 case UBIFS_DENT_NODE: 619 case UBIFS_XENT_NODE: 620 { 621 struct ubifs_dent_node *dent = snod->node; 622 623 err = ubifs_validate_entry(c, dent); 624 if (err) 625 goto out_dump; 626 627 err = insert_dent(c, lnum, snod->offs, snod->len, 628 &snod->key, dent->name, 629 le16_to_cpu(dent->nlen), snod->sqnum, 630 !le64_to_cpu(dent->inum), &used); 631 break; 632 } 633 case UBIFS_TRUN_NODE: 634 { 635 struct ubifs_trun_node *trun = snod->node; 636 loff_t old_size = le64_to_cpu(trun->old_size); 637 loff_t new_size = le64_to_cpu(trun->new_size); 638 union ubifs_key key; 639 640 /* Validate truncation node */ 641 if (old_size < 0 || old_size > c->max_inode_sz || 642 new_size < 0 || new_size > c->max_inode_sz || 643 old_size <= new_size) { 644 ubifs_err(c, "bad truncation node"); 645 goto out_dump; 646 } 647 648 /* 649 * Create a fake truncation key just to use the same 650 * functions which expect nodes to have keys. 651 */ 652 trun_key_init(c, &key, le32_to_cpu(trun->inum)); 653 err = insert_node(c, lnum, snod->offs, snod->len, 654 &key, snod->sqnum, 1, &used, 655 old_size, new_size); 656 break; 657 } 658 default: 659 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d", 660 snod->type, lnum, snod->offs); 661 err = -EINVAL; 662 goto out_dump; 663 } 664 if (err) 665 goto out; 666 } 667 668 ubifs_assert(ubifs_search_bud(c, lnum)); 669 ubifs_assert(sleb->endpt - offs >= used); 670 ubifs_assert(sleb->endpt % c->min_io_size == 0); 671 672 b->dirty = sleb->endpt - offs - used; 673 b->free = c->leb_size - sleb->endpt; 674 dbg_mnt("bud LEB %d replied: dirty %d, free %d", 675 lnum, b->dirty, b->free); 676 677 out: 678 ubifs_scan_destroy(sleb); 679 return err; 680 681 out_dump: 682 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs); 683 ubifs_dump_node(c, snod->node); 684 ubifs_scan_destroy(sleb); 685 return -EINVAL; 686 } 687 688 /** 689 * replay_buds - replay all buds. 690 * @c: UBIFS file-system description object 691 * 692 * This function returns zero in case of success and a negative error code in 693 * case of failure. 694 */ 695 static int replay_buds(struct ubifs_info *c) 696 { 697 struct bud_entry *b; 698 int err; 699 unsigned long long prev_sqnum = 0; 700 701 list_for_each_entry(b, &c->replay_buds, list) { 702 err = replay_bud(c, b); 703 if (err) 704 return err; 705 706 ubifs_assert(b->sqnum > prev_sqnum); 707 prev_sqnum = b->sqnum; 708 } 709 710 return 0; 711 } 712 713 /** 714 * destroy_bud_list - destroy the list of buds to replay. 715 * @c: UBIFS file-system description object 716 */ 717 static void destroy_bud_list(struct ubifs_info *c) 718 { 719 struct bud_entry *b; 720 721 while (!list_empty(&c->replay_buds)) { 722 b = list_entry(c->replay_buds.next, struct bud_entry, list); 723 list_del(&b->list); 724 kfree(b); 725 } 726 } 727 728 /** 729 * add_replay_bud - add a bud to the list of buds to replay. 730 * @c: UBIFS file-system description object 731 * @lnum: bud logical eraseblock number to replay 732 * @offs: bud start offset 733 * @jhead: journal head to which this bud belongs 734 * @sqnum: reference node sequence number 735 * 736 * This function returns zero in case of success and a negative error code in 737 * case of failure. 738 */ 739 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, 740 unsigned long long sqnum) 741 { 742 struct ubifs_bud *bud; 743 struct bud_entry *b; 744 745 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); 746 747 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); 748 if (!bud) 749 return -ENOMEM; 750 751 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); 752 if (!b) { 753 kfree(bud); 754 return -ENOMEM; 755 } 756 757 bud->lnum = lnum; 758 bud->start = offs; 759 bud->jhead = jhead; 760 ubifs_add_bud(c, bud); 761 762 b->bud = bud; 763 b->sqnum = sqnum; 764 list_add_tail(&b->list, &c->replay_buds); 765 766 return 0; 767 } 768 769 /** 770 * validate_ref - validate a reference node. 771 * @c: UBIFS file-system description object 772 * @ref: the reference node to validate 773 * @ref_lnum: LEB number of the reference node 774 * @ref_offs: reference node offset 775 * 776 * This function returns %1 if a bud reference already exists for the LEB. %0 is 777 * returned if the reference node is new, otherwise %-EINVAL is returned if 778 * validation failed. 779 */ 780 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) 781 { 782 struct ubifs_bud *bud; 783 int lnum = le32_to_cpu(ref->lnum); 784 unsigned int offs = le32_to_cpu(ref->offs); 785 unsigned int jhead = le32_to_cpu(ref->jhead); 786 787 /* 788 * ref->offs may point to the end of LEB when the journal head points 789 * to the end of LEB and we write reference node for it during commit. 790 * So this is why we require 'offs > c->leb_size'. 791 */ 792 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || 793 lnum < c->main_first || offs > c->leb_size || 794 offs & (c->min_io_size - 1)) 795 return -EINVAL; 796 797 /* Make sure we have not already looked at this bud */ 798 bud = ubifs_search_bud(c, lnum); 799 if (bud) { 800 if (bud->jhead == jhead && bud->start <= offs) 801 return 1; 802 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs); 803 return -EINVAL; 804 } 805 806 return 0; 807 } 808 809 /** 810 * replay_log_leb - replay a log logical eraseblock. 811 * @c: UBIFS file-system description object 812 * @lnum: log logical eraseblock to replay 813 * @offs: offset to start replaying from 814 * @sbuf: scan buffer 815 * 816 * This function replays a log LEB and returns zero in case of success, %1 if 817 * this is the last LEB in the log, and a negative error code in case of 818 * failure. 819 */ 820 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) 821 { 822 int err; 823 struct ubifs_scan_leb *sleb; 824 struct ubifs_scan_node *snod; 825 const struct ubifs_cs_node *node; 826 827 dbg_mnt("replay log LEB %d:%d", lnum, offs); 828 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); 829 if (IS_ERR(sleb)) { 830 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) 831 return PTR_ERR(sleb); 832 /* 833 * Note, the below function will recover this log LEB only if 834 * it is the last, because unclean reboots can possibly corrupt 835 * only the tail of the log. 836 */ 837 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); 838 if (IS_ERR(sleb)) 839 return PTR_ERR(sleb); 840 } 841 842 if (sleb->nodes_cnt == 0) { 843 err = 1; 844 goto out; 845 } 846 847 node = sleb->buf; 848 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 849 if (c->cs_sqnum == 0) { 850 /* 851 * This is the first log LEB we are looking at, make sure that 852 * the first node is a commit start node. Also record its 853 * sequence number so that UBIFS can determine where the log 854 * ends, because all nodes which were have higher sequence 855 * numbers. 856 */ 857 if (snod->type != UBIFS_CS_NODE) { 858 ubifs_err(c, "first log node at LEB %d:%d is not CS node", 859 lnum, offs); 860 goto out_dump; 861 } 862 if (le64_to_cpu(node->cmt_no) != c->cmt_no) { 863 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu", 864 lnum, offs, 865 (unsigned long long)le64_to_cpu(node->cmt_no), 866 c->cmt_no); 867 goto out_dump; 868 } 869 870 c->cs_sqnum = le64_to_cpu(node->ch.sqnum); 871 dbg_mnt("commit start sqnum %llu", c->cs_sqnum); 872 } 873 874 if (snod->sqnum < c->cs_sqnum) { 875 /* 876 * This means that we reached end of log and now 877 * look to the older log data, which was already 878 * committed but the eraseblock was not erased (UBIFS 879 * only un-maps it). So this basically means we have to 880 * exit with "end of log" code. 881 */ 882 err = 1; 883 goto out; 884 } 885 886 /* Make sure the first node sits at offset zero of the LEB */ 887 if (snod->offs != 0) { 888 ubifs_err(c, "first node is not at zero offset"); 889 goto out_dump; 890 } 891 892 list_for_each_entry(snod, &sleb->nodes, list) { 893 cond_resched(); 894 895 if (snod->sqnum >= SQNUM_WATERMARK) { 896 ubifs_err(c, "file system's life ended"); 897 goto out_dump; 898 } 899 900 if (snod->sqnum < c->cs_sqnum) { 901 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu", 902 snod->sqnum, c->cs_sqnum); 903 goto out_dump; 904 } 905 906 if (snod->sqnum > c->max_sqnum) 907 c->max_sqnum = snod->sqnum; 908 909 switch (snod->type) { 910 case UBIFS_REF_NODE: { 911 const struct ubifs_ref_node *ref = snod->node; 912 913 err = validate_ref(c, ref); 914 if (err == 1) 915 break; /* Already have this bud */ 916 if (err) 917 goto out_dump; 918 919 err = add_replay_bud(c, le32_to_cpu(ref->lnum), 920 le32_to_cpu(ref->offs), 921 le32_to_cpu(ref->jhead), 922 snod->sqnum); 923 if (err) 924 goto out; 925 926 break; 927 } 928 case UBIFS_CS_NODE: 929 /* Make sure it sits at the beginning of LEB */ 930 if (snod->offs != 0) { 931 ubifs_err(c, "unexpected node in log"); 932 goto out_dump; 933 } 934 break; 935 default: 936 ubifs_err(c, "unexpected node in log"); 937 goto out_dump; 938 } 939 } 940 941 if (sleb->endpt || c->lhead_offs >= c->leb_size) { 942 c->lhead_lnum = lnum; 943 c->lhead_offs = sleb->endpt; 944 } 945 946 err = !sleb->endpt; 947 out: 948 ubifs_scan_destroy(sleb); 949 return err; 950 951 out_dump: 952 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d", 953 lnum, offs + snod->offs); 954 ubifs_dump_node(c, snod->node); 955 ubifs_scan_destroy(sleb); 956 return -EINVAL; 957 } 958 959 /** 960 * take_ihead - update the status of the index head in lprops to 'taken'. 961 * @c: UBIFS file-system description object 962 * 963 * This function returns the amount of free space in the index head LEB or a 964 * negative error code. 965 */ 966 static int take_ihead(struct ubifs_info *c) 967 { 968 const struct ubifs_lprops *lp; 969 int err, free; 970 971 ubifs_get_lprops(c); 972 973 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); 974 if (IS_ERR(lp)) { 975 err = PTR_ERR(lp); 976 goto out; 977 } 978 979 free = lp->free; 980 981 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 982 lp->flags | LPROPS_TAKEN, 0); 983 if (IS_ERR(lp)) { 984 err = PTR_ERR(lp); 985 goto out; 986 } 987 988 err = free; 989 out: 990 ubifs_release_lprops(c); 991 return err; 992 } 993 994 /** 995 * ubifs_replay_journal - replay journal. 996 * @c: UBIFS file-system description object 997 * 998 * This function scans the journal, replays and cleans it up. It makes sure all 999 * memory data structures related to uncommitted journal are built (dirty TNC 1000 * tree, tree of buds, modified lprops, etc). 1001 */ 1002 int ubifs_replay_journal(struct ubifs_info *c) 1003 { 1004 int err, lnum, free; 1005 1006 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); 1007 1008 /* Update the status of the index head in lprops to 'taken' */ 1009 free = take_ihead(c); 1010 if (free < 0) 1011 return free; /* Error code */ 1012 1013 if (c->ihead_offs != c->leb_size - free) { 1014 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum, 1015 c->ihead_offs); 1016 return -EINVAL; 1017 } 1018 1019 dbg_mnt("start replaying the journal"); 1020 c->replaying = 1; 1021 lnum = c->ltail_lnum = c->lhead_lnum; 1022 1023 do { 1024 err = replay_log_leb(c, lnum, 0, c->sbuf); 1025 if (err == 1) { 1026 if (lnum != c->lhead_lnum) 1027 /* We hit the end of the log */ 1028 break; 1029 1030 /* 1031 * The head of the log must always start with the 1032 * "commit start" node on a properly formatted UBIFS. 1033 * But we found no nodes at all, which means that 1034 * someting went wrong and we cannot proceed mounting 1035 * the file-system. 1036 */ 1037 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted", 1038 lnum, 0); 1039 err = -EINVAL; 1040 } 1041 if (err) 1042 goto out; 1043 lnum = ubifs_next_log_lnum(c, lnum); 1044 } while (lnum != c->ltail_lnum); 1045 1046 err = replay_buds(c); 1047 if (err) 1048 goto out; 1049 1050 err = apply_replay_list(c); 1051 if (err) 1052 goto out; 1053 1054 err = set_buds_lprops(c); 1055 if (err) 1056 goto out; 1057 1058 /* 1059 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable 1060 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs 1061 * depend on it. This means we have to initialize it to make sure 1062 * budgeting works properly. 1063 */ 1064 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); 1065 c->bi.uncommitted_idx *= c->max_idx_node_sz; 1066 1067 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery); 1068 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu", 1069 c->lhead_lnum, c->lhead_offs, c->max_sqnum, 1070 (unsigned long)c->highest_inum); 1071 out: 1072 destroy_replay_list(c); 1073 destroy_bud_list(c); 1074 c->replaying = 0; 1075 return err; 1076 } 1077