1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements functions needed to recover from unclean un-mounts. 13 * When UBIFS is mounted, it checks a flag on the master node to determine if 14 * an un-mount was completed successfully. If not, the process of mounting 15 * incorporates additional checking and fixing of on-flash data structures. 16 * UBIFS always cleans away all remnants of an unclean un-mount, so that 17 * errors do not accumulate. However UBIFS defers recovery if it is mounted 18 * read-only, and the flash is not modified in that case. 19 * 20 * The general UBIFS approach to the recovery is that it recovers from 21 * corruptions which could be caused by power cuts, but it refuses to recover 22 * from corruption caused by other reasons. And UBIFS tries to distinguish 23 * between these 2 reasons of corruptions and silently recover in the former 24 * case and loudly complain in the latter case. 25 * 26 * UBIFS writes only to erased LEBs, so it writes only to the flash space 27 * containing only 0xFFs. UBIFS also always writes strictly from the beginning 28 * of the LEB to the end. And UBIFS assumes that the underlying flash media 29 * writes in @c->max_write_size bytes at a time. 30 * 31 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min. 32 * I/O unit corresponding to offset X to contain corrupted data, all the 33 * following min. I/O units have to contain empty space (all 0xFFs). If this is 34 * not true, the corruption cannot be the result of a power cut, and UBIFS 35 * refuses to mount. 36 */ 37 38 #ifndef __UBOOT__ 39 #include <linux/crc32.h> 40 #include <linux/slab.h> 41 #else 42 #include <linux/err.h> 43 #endif 44 #include "ubifs.h" 45 46 /** 47 * is_empty - determine whether a buffer is empty (contains all 0xff). 48 * @buf: buffer to clean 49 * @len: length of buffer 50 * 51 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise 52 * %0 is returned. 53 */ 54 static int is_empty(void *buf, int len) 55 { 56 uint8_t *p = buf; 57 int i; 58 59 for (i = 0; i < len; i++) 60 if (*p++ != 0xff) 61 return 0; 62 return 1; 63 } 64 65 /** 66 * first_non_ff - find offset of the first non-0xff byte. 67 * @buf: buffer to search in 68 * @len: length of buffer 69 * 70 * This function returns offset of the first non-0xff byte in @buf or %-1 if 71 * the buffer contains only 0xff bytes. 72 */ 73 static int first_non_ff(void *buf, int len) 74 { 75 uint8_t *p = buf; 76 int i; 77 78 for (i = 0; i < len; i++) 79 if (*p++ != 0xff) 80 return i; 81 return -1; 82 } 83 84 /** 85 * get_master_node - get the last valid master node allowing for corruption. 86 * @c: UBIFS file-system description object 87 * @lnum: LEB number 88 * @pbuf: buffer containing the LEB read, is returned here 89 * @mst: master node, if found, is returned here 90 * @cor: corruption, if found, is returned here 91 * 92 * This function allocates a buffer, reads the LEB into it, and finds and 93 * returns the last valid master node allowing for one area of corruption. 94 * The corrupt area, if there is one, must be consistent with the assumption 95 * that it is the result of an unclean unmount while the master node was being 96 * written. Under those circumstances, it is valid to use the previously written 97 * master node. 98 * 99 * This function returns %0 on success and a negative error code on failure. 100 */ 101 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, 102 struct ubifs_mst_node **mst, void **cor) 103 { 104 const int sz = c->mst_node_alsz; 105 int err, offs, len; 106 void *sbuf, *buf; 107 108 sbuf = vmalloc(c->leb_size); 109 if (!sbuf) 110 return -ENOMEM; 111 112 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0); 113 if (err && err != -EBADMSG) 114 goto out_free; 115 116 /* Find the first position that is definitely not a node */ 117 offs = 0; 118 buf = sbuf; 119 len = c->leb_size; 120 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { 121 struct ubifs_ch *ch = buf; 122 123 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 124 break; 125 offs += sz; 126 buf += sz; 127 len -= sz; 128 } 129 /* See if there was a valid master node before that */ 130 if (offs) { 131 int ret; 132 133 offs -= sz; 134 buf -= sz; 135 len += sz; 136 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 137 if (ret != SCANNED_A_NODE && offs) { 138 /* Could have been corruption so check one place back */ 139 offs -= sz; 140 buf -= sz; 141 len += sz; 142 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 143 if (ret != SCANNED_A_NODE) 144 /* 145 * We accept only one area of corruption because 146 * we are assuming that it was caused while 147 * trying to write a master node. 148 */ 149 goto out_err; 150 } 151 if (ret == SCANNED_A_NODE) { 152 struct ubifs_ch *ch = buf; 153 154 if (ch->node_type != UBIFS_MST_NODE) 155 goto out_err; 156 dbg_rcvry("found a master node at %d:%d", lnum, offs); 157 *mst = buf; 158 offs += sz; 159 buf += sz; 160 len -= sz; 161 } 162 } 163 /* Check for corruption */ 164 if (offs < c->leb_size) { 165 if (!is_empty(buf, min_t(int, len, sz))) { 166 *cor = buf; 167 dbg_rcvry("found corruption at %d:%d", lnum, offs); 168 } 169 offs += sz; 170 buf += sz; 171 len -= sz; 172 } 173 /* Check remaining empty space */ 174 if (offs < c->leb_size) 175 if (!is_empty(buf, len)) 176 goto out_err; 177 *pbuf = sbuf; 178 return 0; 179 180 out_err: 181 err = -EINVAL; 182 out_free: 183 vfree(sbuf); 184 *mst = NULL; 185 *cor = NULL; 186 return err; 187 } 188 189 /** 190 * write_rcvrd_mst_node - write recovered master node. 191 * @c: UBIFS file-system description object 192 * @mst: master node 193 * 194 * This function returns %0 on success and a negative error code on failure. 195 */ 196 static int write_rcvrd_mst_node(struct ubifs_info *c, 197 struct ubifs_mst_node *mst) 198 { 199 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; 200 __le32 save_flags; 201 202 dbg_rcvry("recovery"); 203 204 save_flags = mst->flags; 205 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); 206 207 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); 208 err = ubifs_leb_change(c, lnum, mst, sz); 209 if (err) 210 goto out; 211 err = ubifs_leb_change(c, lnum + 1, mst, sz); 212 if (err) 213 goto out; 214 out: 215 mst->flags = save_flags; 216 return err; 217 } 218 219 /** 220 * ubifs_recover_master_node - recover the master node. 221 * @c: UBIFS file-system description object 222 * 223 * This function recovers the master node from corruption that may occur due to 224 * an unclean unmount. 225 * 226 * This function returns %0 on success and a negative error code on failure. 227 */ 228 int ubifs_recover_master_node(struct ubifs_info *c) 229 { 230 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; 231 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; 232 const int sz = c->mst_node_alsz; 233 int err, offs1, offs2; 234 235 dbg_rcvry("recovery"); 236 237 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); 238 if (err) 239 goto out_free; 240 241 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); 242 if (err) 243 goto out_free; 244 245 if (mst1) { 246 offs1 = (void *)mst1 - buf1; 247 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && 248 (offs1 == 0 && !cor1)) { 249 /* 250 * mst1 was written by recovery at offset 0 with no 251 * corruption. 252 */ 253 dbg_rcvry("recovery recovery"); 254 mst = mst1; 255 } else if (mst2) { 256 offs2 = (void *)mst2 - buf2; 257 if (offs1 == offs2) { 258 /* Same offset, so must be the same */ 259 if (memcmp((void *)mst1 + UBIFS_CH_SZ, 260 (void *)mst2 + UBIFS_CH_SZ, 261 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) 262 goto out_err; 263 mst = mst1; 264 } else if (offs2 + sz == offs1) { 265 /* 1st LEB was written, 2nd was not */ 266 if (cor1) 267 goto out_err; 268 mst = mst1; 269 } else if (offs1 == 0 && 270 c->leb_size - offs2 - sz < sz) { 271 /* 1st LEB was unmapped and written, 2nd not */ 272 if (cor1) 273 goto out_err; 274 mst = mst1; 275 } else 276 goto out_err; 277 } else { 278 /* 279 * 2nd LEB was unmapped and about to be written, so 280 * there must be only one master node in the first LEB 281 * and no corruption. 282 */ 283 if (offs1 != 0 || cor1) 284 goto out_err; 285 mst = mst1; 286 } 287 } else { 288 if (!mst2) 289 goto out_err; 290 /* 291 * 1st LEB was unmapped and about to be written, so there must 292 * be no room left in 2nd LEB. 293 */ 294 offs2 = (void *)mst2 - buf2; 295 if (offs2 + sz + sz <= c->leb_size) 296 goto out_err; 297 mst = mst2; 298 } 299 300 ubifs_msg(c, "recovered master node from LEB %d", 301 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); 302 303 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); 304 305 if (c->ro_mount) { 306 /* Read-only mode. Keep a copy for switching to rw mode */ 307 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); 308 if (!c->rcvrd_mst_node) { 309 err = -ENOMEM; 310 goto out_free; 311 } 312 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); 313 314 /* 315 * We had to recover the master node, which means there was an 316 * unclean reboot. However, it is possible that the master node 317 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set. 318 * E.g., consider the following chain of events: 319 * 320 * 1. UBIFS was cleanly unmounted, so the master node is clean 321 * 2. UBIFS is being mounted R/W and starts changing the master 322 * node in the first (%UBIFS_MST_LNUM). A power cut happens, 323 * so this LEB ends up with some amount of garbage at the 324 * end. 325 * 3. UBIFS is being mounted R/O. We reach this place and 326 * recover the master node from the second LEB 327 * (%UBIFS_MST_LNUM + 1). But we cannot update the media 328 * because we are being mounted R/O. We have to defer the 329 * operation. 330 * 4. However, this master node (@c->mst_node) is marked as 331 * clean (since the step 1). And if we just return, the 332 * mount code will be confused and won't recover the master 333 * node when it is re-mounter R/W later. 334 * 335 * Thus, to force the recovery by marking the master node as 336 * dirty. 337 */ 338 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 339 #ifndef __UBOOT__ 340 } else { 341 /* Write the recovered master node */ 342 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; 343 err = write_rcvrd_mst_node(c, c->mst_node); 344 if (err) 345 goto out_free; 346 #endif 347 } 348 349 vfree(buf2); 350 vfree(buf1); 351 352 return 0; 353 354 out_err: 355 err = -EINVAL; 356 out_free: 357 ubifs_err(c, "failed to recover master node"); 358 if (mst1) { 359 ubifs_err(c, "dumping first master node"); 360 ubifs_dump_node(c, mst1); 361 } 362 if (mst2) { 363 ubifs_err(c, "dumping second master node"); 364 ubifs_dump_node(c, mst2); 365 } 366 vfree(buf2); 367 vfree(buf1); 368 return err; 369 } 370 371 /** 372 * ubifs_write_rcvrd_mst_node - write the recovered master node. 373 * @c: UBIFS file-system description object 374 * 375 * This function writes the master node that was recovered during mounting in 376 * read-only mode and must now be written because we are remounting rw. 377 * 378 * This function returns %0 on success and a negative error code on failure. 379 */ 380 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) 381 { 382 int err; 383 384 if (!c->rcvrd_mst_node) 385 return 0; 386 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 387 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 388 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); 389 if (err) 390 return err; 391 kfree(c->rcvrd_mst_node); 392 c->rcvrd_mst_node = NULL; 393 return 0; 394 } 395 396 /** 397 * is_last_write - determine if an offset was in the last write to a LEB. 398 * @c: UBIFS file-system description object 399 * @buf: buffer to check 400 * @offs: offset to check 401 * 402 * This function returns %1 if @offs was in the last write to the LEB whose data 403 * is in @buf, otherwise %0 is returned. The determination is made by checking 404 * for subsequent empty space starting from the next @c->max_write_size 405 * boundary. 406 */ 407 static int is_last_write(const struct ubifs_info *c, void *buf, int offs) 408 { 409 int empty_offs, check_len; 410 uint8_t *p; 411 412 /* 413 * Round up to the next @c->max_write_size boundary i.e. @offs is in 414 * the last wbuf written. After that should be empty space. 415 */ 416 empty_offs = ALIGN(offs + 1, c->max_write_size); 417 check_len = c->leb_size - empty_offs; 418 p = buf + empty_offs - offs; 419 return is_empty(p, check_len); 420 } 421 422 /** 423 * clean_buf - clean the data from an LEB sitting in a buffer. 424 * @c: UBIFS file-system description object 425 * @buf: buffer to clean 426 * @lnum: LEB number to clean 427 * @offs: offset from which to clean 428 * @len: length of buffer 429 * 430 * This function pads up to the next min_io_size boundary (if there is one) and 431 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next 432 * @c->min_io_size boundary. 433 */ 434 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, 435 int *offs, int *len) 436 { 437 int empty_offs, pad_len; 438 439 lnum = lnum; 440 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); 441 442 ubifs_assert(!(*offs & 7)); 443 empty_offs = ALIGN(*offs, c->min_io_size); 444 pad_len = empty_offs - *offs; 445 ubifs_pad(c, *buf, pad_len); 446 *offs += pad_len; 447 *buf += pad_len; 448 *len -= pad_len; 449 memset(*buf, 0xff, c->leb_size - empty_offs); 450 } 451 452 /** 453 * no_more_nodes - determine if there are no more nodes in a buffer. 454 * @c: UBIFS file-system description object 455 * @buf: buffer to check 456 * @len: length of buffer 457 * @lnum: LEB number of the LEB from which @buf was read 458 * @offs: offset from which @buf was read 459 * 460 * This function ensures that the corrupted node at @offs is the last thing 461 * written to a LEB. This function returns %1 if more data is not found and 462 * %0 if more data is found. 463 */ 464 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, 465 int lnum, int offs) 466 { 467 struct ubifs_ch *ch = buf; 468 int skip, dlen = le32_to_cpu(ch->len); 469 470 /* Check for empty space after the corrupt node's common header */ 471 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs; 472 if (is_empty(buf + skip, len - skip)) 473 return 1; 474 /* 475 * The area after the common header size is not empty, so the common 476 * header must be intact. Check it. 477 */ 478 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { 479 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); 480 return 0; 481 } 482 /* Now we know the corrupt node's length we can skip over it */ 483 skip = ALIGN(offs + dlen, c->max_write_size) - offs; 484 /* After which there should be empty space */ 485 if (is_empty(buf + skip, len - skip)) 486 return 1; 487 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); 488 return 0; 489 } 490 491 /** 492 * fix_unclean_leb - fix an unclean LEB. 493 * @c: UBIFS file-system description object 494 * @sleb: scanned LEB information 495 * @start: offset where scan started 496 */ 497 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 498 int start) 499 { 500 int lnum = sleb->lnum, endpt = start; 501 502 /* Get the end offset of the last node we are keeping */ 503 if (!list_empty(&sleb->nodes)) { 504 struct ubifs_scan_node *snod; 505 506 snod = list_entry(sleb->nodes.prev, 507 struct ubifs_scan_node, list); 508 endpt = snod->offs + snod->len; 509 } 510 511 if (c->ro_mount && !c->remounting_rw) { 512 /* Add to recovery list */ 513 struct ubifs_unclean_leb *ucleb; 514 515 dbg_rcvry("need to fix LEB %d start %d endpt %d", 516 lnum, start, sleb->endpt); 517 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); 518 if (!ucleb) 519 return -ENOMEM; 520 ucleb->lnum = lnum; 521 ucleb->endpt = endpt; 522 list_add_tail(&ucleb->list, &c->unclean_leb_list); 523 #ifndef __UBOOT__ 524 } else { 525 /* Write the fixed LEB back to flash */ 526 int err; 527 528 dbg_rcvry("fixing LEB %d start %d endpt %d", 529 lnum, start, sleb->endpt); 530 if (endpt == 0) { 531 err = ubifs_leb_unmap(c, lnum); 532 if (err) 533 return err; 534 } else { 535 int len = ALIGN(endpt, c->min_io_size); 536 537 if (start) { 538 err = ubifs_leb_read(c, lnum, sleb->buf, 0, 539 start, 1); 540 if (err) 541 return err; 542 } 543 /* Pad to min_io_size */ 544 if (len > endpt) { 545 int pad_len = len - ALIGN(endpt, 8); 546 547 if (pad_len > 0) { 548 void *buf = sleb->buf + len - pad_len; 549 550 ubifs_pad(c, buf, pad_len); 551 } 552 } 553 err = ubifs_leb_change(c, lnum, sleb->buf, len); 554 if (err) 555 return err; 556 } 557 #endif 558 } 559 return 0; 560 } 561 562 /** 563 * drop_last_group - drop the last group of nodes. 564 * @sleb: scanned LEB information 565 * @offs: offset of dropped nodes is returned here 566 * 567 * This is a helper function for 'ubifs_recover_leb()' which drops the last 568 * group of nodes of the scanned LEB. 569 */ 570 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs) 571 { 572 while (!list_empty(&sleb->nodes)) { 573 struct ubifs_scan_node *snod; 574 struct ubifs_ch *ch; 575 576 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 577 list); 578 ch = snod->node; 579 if (ch->group_type != UBIFS_IN_NODE_GROUP) 580 break; 581 582 dbg_rcvry("dropping grouped node at %d:%d", 583 sleb->lnum, snod->offs); 584 *offs = snod->offs; 585 list_del(&snod->list); 586 kfree(snod); 587 sleb->nodes_cnt -= 1; 588 } 589 } 590 591 /** 592 * drop_last_node - drop the last node. 593 * @sleb: scanned LEB information 594 * @offs: offset of dropped nodes is returned here 595 * 596 * This is a helper function for 'ubifs_recover_leb()' which drops the last 597 * node of the scanned LEB. 598 */ 599 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs) 600 { 601 struct ubifs_scan_node *snod; 602 603 if (!list_empty(&sleb->nodes)) { 604 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 605 list); 606 607 dbg_rcvry("dropping last node at %d:%d", 608 sleb->lnum, snod->offs); 609 *offs = snod->offs; 610 list_del(&snod->list); 611 kfree(snod); 612 sleb->nodes_cnt -= 1; 613 } 614 } 615 616 /** 617 * ubifs_recover_leb - scan and recover a LEB. 618 * @c: UBIFS file-system description object 619 * @lnum: LEB number 620 * @offs: offset 621 * @sbuf: LEB-sized buffer to use 622 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not 623 * belong to any journal head) 624 * 625 * This function does a scan of a LEB, but caters for errors that might have 626 * been caused by the unclean unmount from which we are attempting to recover. 627 * Returns the scanned information on success and a negative error code on 628 * failure. 629 */ 630 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, 631 int offs, void *sbuf, int jhead) 632 { 633 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; 634 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; 635 struct ubifs_scan_leb *sleb; 636 void *buf = sbuf + offs; 637 638 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); 639 640 sleb = ubifs_start_scan(c, lnum, offs, sbuf); 641 if (IS_ERR(sleb)) 642 return sleb; 643 644 ubifs_assert(len >= 8); 645 while (len >= 8) { 646 dbg_scan("look at LEB %d:%d (%d bytes left)", 647 lnum, offs, len); 648 649 cond_resched(); 650 651 /* 652 * Scan quietly until there is an error from which we cannot 653 * recover 654 */ 655 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 656 if (ret == SCANNED_A_NODE) { 657 /* A valid node, and not a padding node */ 658 struct ubifs_ch *ch = buf; 659 int node_len; 660 661 err = ubifs_add_snod(c, sleb, buf, offs); 662 if (err) 663 goto error; 664 node_len = ALIGN(le32_to_cpu(ch->len), 8); 665 offs += node_len; 666 buf += node_len; 667 len -= node_len; 668 } else if (ret > 0) { 669 /* Padding bytes or a valid padding node */ 670 offs += ret; 671 buf += ret; 672 len -= ret; 673 } else if (ret == SCANNED_EMPTY_SPACE || 674 ret == SCANNED_GARBAGE || 675 ret == SCANNED_A_BAD_PAD_NODE || 676 ret == SCANNED_A_CORRUPT_NODE) { 677 dbg_rcvry("found corruption (%d) at %d:%d", 678 ret, lnum, offs); 679 break; 680 } else { 681 ubifs_err(c, "unexpected return value %d", ret); 682 err = -EINVAL; 683 goto error; 684 } 685 } 686 687 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { 688 if (!is_last_write(c, buf, offs)) 689 goto corrupted_rescan; 690 } else if (ret == SCANNED_A_CORRUPT_NODE) { 691 if (!no_more_nodes(c, buf, len, lnum, offs)) 692 goto corrupted_rescan; 693 } else if (!is_empty(buf, len)) { 694 if (!is_last_write(c, buf, offs)) { 695 int corruption = first_non_ff(buf, len); 696 697 /* 698 * See header comment for this file for more 699 * explanations about the reasons we have this check. 700 */ 701 ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d", 702 lnum, offs, corruption); 703 /* Make sure we dump interesting non-0xFF data */ 704 offs += corruption; 705 buf += corruption; 706 goto corrupted; 707 } 708 } 709 710 min_io_unit = round_down(offs, c->min_io_size); 711 if (grouped) 712 /* 713 * If nodes are grouped, always drop the incomplete group at 714 * the end. 715 */ 716 drop_last_group(sleb, &offs); 717 718 if (jhead == GCHD) { 719 /* 720 * If this LEB belongs to the GC head then while we are in the 721 * middle of the same min. I/O unit keep dropping nodes. So 722 * basically, what we want is to make sure that the last min. 723 * I/O unit where we saw the corruption is dropped completely 724 * with all the uncorrupted nodes which may possibly sit there. 725 * 726 * In other words, let's name the min. I/O unit where the 727 * corruption starts B, and the previous min. I/O unit A. The 728 * below code tries to deal with a situation when half of B 729 * contains valid nodes or the end of a valid node, and the 730 * second half of B contains corrupted data or garbage. This 731 * means that UBIFS had been writing to B just before the power 732 * cut happened. I do not know how realistic is this scenario 733 * that half of the min. I/O unit had been written successfully 734 * and the other half not, but this is possible in our 'failure 735 * mode emulation' infrastructure at least. 736 * 737 * So what is the problem, why we need to drop those nodes? Why 738 * can't we just clean-up the second half of B by putting a 739 * padding node there? We can, and this works fine with one 740 * exception which was reproduced with power cut emulation 741 * testing and happens extremely rarely. 742 * 743 * Imagine the file-system is full, we run GC which starts 744 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is 745 * the current GC head LEB). The @c->gc_lnum is -1, which means 746 * that GC will retain LEB X and will try to continue. Imagine 747 * that LEB X is currently the dirtiest LEB, and the amount of 748 * used space in LEB Y is exactly the same as amount of free 749 * space in LEB X. 750 * 751 * And a power cut happens when nodes are moved from LEB X to 752 * LEB Y. We are here trying to recover LEB Y which is the GC 753 * head LEB. We find the min. I/O unit B as described above. 754 * Then we clean-up LEB Y by padding min. I/O unit. And later 755 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot 756 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X 757 * does not match because the amount of valid nodes there does 758 * not fit the free space in LEB Y any more! And this is 759 * because of the padding node which we added to LEB Y. The 760 * user-visible effect of this which I once observed and 761 * analysed is that we cannot mount the file-system with 762 * -ENOSPC error. 763 * 764 * So obviously, to make sure that situation does not happen we 765 * should free min. I/O unit B in LEB Y completely and the last 766 * used min. I/O unit in LEB Y should be A. This is basically 767 * what the below code tries to do. 768 */ 769 while (offs > min_io_unit) 770 drop_last_node(sleb, &offs); 771 } 772 773 buf = sbuf + offs; 774 len = c->leb_size - offs; 775 776 clean_buf(c, &buf, lnum, &offs, &len); 777 ubifs_end_scan(c, sleb, lnum, offs); 778 779 err = fix_unclean_leb(c, sleb, start); 780 if (err) 781 goto error; 782 783 return sleb; 784 785 corrupted_rescan: 786 /* Re-scan the corrupted data with verbose messages */ 787 ubifs_err(c, "corruption %d", ret); 788 ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 789 corrupted: 790 ubifs_scanned_corruption(c, lnum, offs, buf); 791 err = -EUCLEAN; 792 error: 793 ubifs_err(c, "LEB %d scanning failed", lnum); 794 ubifs_scan_destroy(sleb); 795 return ERR_PTR(err); 796 } 797 798 /** 799 * get_cs_sqnum - get commit start sequence number. 800 * @c: UBIFS file-system description object 801 * @lnum: LEB number of commit start node 802 * @offs: offset of commit start node 803 * @cs_sqnum: commit start sequence number is returned here 804 * 805 * This function returns %0 on success and a negative error code on failure. 806 */ 807 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, 808 unsigned long long *cs_sqnum) 809 { 810 struct ubifs_cs_node *cs_node = NULL; 811 int err, ret; 812 813 dbg_rcvry("at %d:%d", lnum, offs); 814 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); 815 if (!cs_node) 816 return -ENOMEM; 817 if (c->leb_size - offs < UBIFS_CS_NODE_SZ) 818 goto out_err; 819 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs, 820 UBIFS_CS_NODE_SZ, 0); 821 if (err && err != -EBADMSG) 822 goto out_free; 823 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); 824 if (ret != SCANNED_A_NODE) { 825 ubifs_err(c, "Not a valid node"); 826 goto out_err; 827 } 828 if (cs_node->ch.node_type != UBIFS_CS_NODE) { 829 ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type); 830 goto out_err; 831 } 832 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { 833 ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu", 834 (unsigned long long)le64_to_cpu(cs_node->cmt_no), 835 c->cmt_no); 836 goto out_err; 837 } 838 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); 839 dbg_rcvry("commit start sqnum %llu", *cs_sqnum); 840 kfree(cs_node); 841 return 0; 842 843 out_err: 844 err = -EINVAL; 845 out_free: 846 ubifs_err(c, "failed to get CS sqnum"); 847 kfree(cs_node); 848 return err; 849 } 850 851 /** 852 * ubifs_recover_log_leb - scan and recover a log LEB. 853 * @c: UBIFS file-system description object 854 * @lnum: LEB number 855 * @offs: offset 856 * @sbuf: LEB-sized buffer to use 857 * 858 * This function does a scan of a LEB, but caters for errors that might have 859 * been caused by unclean reboots from which we are attempting to recover 860 * (assume that only the last log LEB can be corrupted by an unclean reboot). 861 * 862 * This function returns %0 on success and a negative error code on failure. 863 */ 864 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, 865 int offs, void *sbuf) 866 { 867 struct ubifs_scan_leb *sleb; 868 int next_lnum; 869 870 dbg_rcvry("LEB %d", lnum); 871 next_lnum = lnum + 1; 872 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) 873 next_lnum = UBIFS_LOG_LNUM; 874 if (next_lnum != c->ltail_lnum) { 875 /* 876 * We can only recover at the end of the log, so check that the 877 * next log LEB is empty or out of date. 878 */ 879 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); 880 if (IS_ERR(sleb)) 881 return sleb; 882 if (sleb->nodes_cnt) { 883 struct ubifs_scan_node *snod; 884 unsigned long long cs_sqnum = c->cs_sqnum; 885 886 snod = list_entry(sleb->nodes.next, 887 struct ubifs_scan_node, list); 888 if (cs_sqnum == 0) { 889 int err; 890 891 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); 892 if (err) { 893 ubifs_scan_destroy(sleb); 894 return ERR_PTR(err); 895 } 896 } 897 if (snod->sqnum > cs_sqnum) { 898 ubifs_err(c, "unrecoverable log corruption in LEB %d", 899 lnum); 900 ubifs_scan_destroy(sleb); 901 return ERR_PTR(-EUCLEAN); 902 } 903 } 904 ubifs_scan_destroy(sleb); 905 } 906 return ubifs_recover_leb(c, lnum, offs, sbuf, -1); 907 } 908 909 /** 910 * recover_head - recover a head. 911 * @c: UBIFS file-system description object 912 * @lnum: LEB number of head to recover 913 * @offs: offset of head to recover 914 * @sbuf: LEB-sized buffer to use 915 * 916 * This function ensures that there is no data on the flash at a head location. 917 * 918 * This function returns %0 on success and a negative error code on failure. 919 */ 920 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf) 921 { 922 int len = c->max_write_size, err; 923 924 if (offs + len > c->leb_size) 925 len = c->leb_size - offs; 926 927 if (!len) 928 return 0; 929 930 /* Read at the head location and check it is empty flash */ 931 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1); 932 if (err || !is_empty(sbuf, len)) { 933 dbg_rcvry("cleaning head at %d:%d", lnum, offs); 934 if (offs == 0) 935 return ubifs_leb_unmap(c, lnum); 936 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1); 937 if (err) 938 return err; 939 return ubifs_leb_change(c, lnum, sbuf, offs); 940 } 941 942 return 0; 943 } 944 945 /** 946 * ubifs_recover_inl_heads - recover index and LPT heads. 947 * @c: UBIFS file-system description object 948 * @sbuf: LEB-sized buffer to use 949 * 950 * This function ensures that there is no data on the flash at the index and 951 * LPT head locations. 952 * 953 * This deals with the recovery of a half-completed journal commit. UBIFS is 954 * careful never to overwrite the last version of the index or the LPT. Because 955 * the index and LPT are wandering trees, data from a half-completed commit will 956 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are 957 * assumed to be empty and will be unmapped anyway before use, or in the index 958 * and LPT heads. 959 * 960 * This function returns %0 on success and a negative error code on failure. 961 */ 962 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf) 963 { 964 int err; 965 966 ubifs_assert(!c->ro_mount || c->remounting_rw); 967 968 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); 969 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); 970 if (err) 971 return err; 972 973 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); 974 975 return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); 976 } 977 978 /** 979 * clean_an_unclean_leb - read and write a LEB to remove corruption. 980 * @c: UBIFS file-system description object 981 * @ucleb: unclean LEB information 982 * @sbuf: LEB-sized buffer to use 983 * 984 * This function reads a LEB up to a point pre-determined by the mount recovery, 985 * checks the nodes, and writes the result back to the flash, thereby cleaning 986 * off any following corruption, or non-fatal ECC errors. 987 * 988 * This function returns %0 on success and a negative error code on failure. 989 */ 990 static int clean_an_unclean_leb(struct ubifs_info *c, 991 struct ubifs_unclean_leb *ucleb, void *sbuf) 992 { 993 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; 994 void *buf = sbuf; 995 996 dbg_rcvry("LEB %d len %d", lnum, len); 997 998 if (len == 0) { 999 /* Nothing to read, just unmap it */ 1000 return ubifs_leb_unmap(c, lnum); 1001 } 1002 1003 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 1004 if (err && err != -EBADMSG) 1005 return err; 1006 1007 while (len >= 8) { 1008 int ret; 1009 1010 cond_resched(); 1011 1012 /* Scan quietly until there is an error */ 1013 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 1014 1015 if (ret == SCANNED_A_NODE) { 1016 /* A valid node, and not a padding node */ 1017 struct ubifs_ch *ch = buf; 1018 int node_len; 1019 1020 node_len = ALIGN(le32_to_cpu(ch->len), 8); 1021 offs += node_len; 1022 buf += node_len; 1023 len -= node_len; 1024 continue; 1025 } 1026 1027 if (ret > 0) { 1028 /* Padding bytes or a valid padding node */ 1029 offs += ret; 1030 buf += ret; 1031 len -= ret; 1032 continue; 1033 } 1034 1035 if (ret == SCANNED_EMPTY_SPACE) { 1036 ubifs_err(c, "unexpected empty space at %d:%d", 1037 lnum, offs); 1038 return -EUCLEAN; 1039 } 1040 1041 if (quiet) { 1042 /* Redo the last scan but noisily */ 1043 quiet = 0; 1044 continue; 1045 } 1046 1047 ubifs_scanned_corruption(c, lnum, offs, buf); 1048 return -EUCLEAN; 1049 } 1050 1051 /* Pad to min_io_size */ 1052 len = ALIGN(ucleb->endpt, c->min_io_size); 1053 if (len > ucleb->endpt) { 1054 int pad_len = len - ALIGN(ucleb->endpt, 8); 1055 1056 if (pad_len > 0) { 1057 buf = c->sbuf + len - pad_len; 1058 ubifs_pad(c, buf, pad_len); 1059 } 1060 } 1061 1062 /* Write back the LEB atomically */ 1063 err = ubifs_leb_change(c, lnum, sbuf, len); 1064 if (err) 1065 return err; 1066 1067 dbg_rcvry("cleaned LEB %d", lnum); 1068 1069 return 0; 1070 } 1071 1072 /** 1073 * ubifs_clean_lebs - clean LEBs recovered during read-only mount. 1074 * @c: UBIFS file-system description object 1075 * @sbuf: LEB-sized buffer to use 1076 * 1077 * This function cleans a LEB identified during recovery that needs to be 1078 * written but was not because UBIFS was mounted read-only. This happens when 1079 * remounting to read-write mode. 1080 * 1081 * This function returns %0 on success and a negative error code on failure. 1082 */ 1083 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf) 1084 { 1085 dbg_rcvry("recovery"); 1086 while (!list_empty(&c->unclean_leb_list)) { 1087 struct ubifs_unclean_leb *ucleb; 1088 int err; 1089 1090 ucleb = list_entry(c->unclean_leb_list.next, 1091 struct ubifs_unclean_leb, list); 1092 err = clean_an_unclean_leb(c, ucleb, sbuf); 1093 if (err) 1094 return err; 1095 list_del(&ucleb->list); 1096 kfree(ucleb); 1097 } 1098 return 0; 1099 } 1100 1101 #ifndef __UBOOT__ 1102 /** 1103 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit. 1104 * @c: UBIFS file-system description object 1105 * 1106 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty 1107 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns 1108 * zero in case of success and a negative error code in case of failure. 1109 */ 1110 static int grab_empty_leb(struct ubifs_info *c) 1111 { 1112 int lnum, err; 1113 1114 /* 1115 * Note, it is very important to first search for an empty LEB and then 1116 * run the commit, not vice-versa. The reason is that there might be 1117 * only one empty LEB at the moment, the one which has been the 1118 * @c->gc_lnum just before the power cut happened. During the regular 1119 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no 1120 * one but GC can grab it. But at this moment this single empty LEB is 1121 * not marked as taken, so if we run commit - what happens? Right, the 1122 * commit will grab it and write the index there. Remember that the 1123 * index always expands as long as there is free space, and it only 1124 * starts consolidating when we run out of space. 1125 * 1126 * IOW, if we run commit now, we might not be able to find a free LEB 1127 * after this. 1128 */ 1129 lnum = ubifs_find_free_leb_for_idx(c); 1130 if (lnum < 0) { 1131 ubifs_err(c, "could not find an empty LEB"); 1132 ubifs_dump_lprops(c); 1133 ubifs_dump_budg(c, &c->bi); 1134 return lnum; 1135 } 1136 1137 /* Reset the index flag */ 1138 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 1139 LPROPS_INDEX, 0); 1140 if (err) 1141 return err; 1142 1143 c->gc_lnum = lnum; 1144 dbg_rcvry("found empty LEB %d, run commit", lnum); 1145 1146 return ubifs_run_commit(c); 1147 } 1148 1149 /** 1150 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. 1151 * @c: UBIFS file-system description object 1152 * 1153 * Out-of-place garbage collection requires always one empty LEB with which to 1154 * start garbage collection. The LEB number is recorded in c->gc_lnum and is 1155 * written to the master node on unmounting. In the case of an unclean unmount 1156 * the value of gc_lnum recorded in the master node is out of date and cannot 1157 * be used. Instead, recovery must allocate an empty LEB for this purpose. 1158 * However, there may not be enough empty space, in which case it must be 1159 * possible to GC the dirtiest LEB into the GC head LEB. 1160 * 1161 * This function also runs the commit which causes the TNC updates from 1162 * size-recovery and orphans to be written to the flash. That is important to 1163 * ensure correct replay order for subsequent mounts. 1164 * 1165 * This function returns %0 on success and a negative error code on failure. 1166 */ 1167 int ubifs_rcvry_gc_commit(struct ubifs_info *c) 1168 { 1169 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 1170 struct ubifs_lprops lp; 1171 int err; 1172 1173 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs); 1174 1175 c->gc_lnum = -1; 1176 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size) 1177 return grab_empty_leb(c); 1178 1179 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); 1180 if (err) { 1181 if (err != -ENOSPC) 1182 return err; 1183 1184 dbg_rcvry("could not find a dirty LEB"); 1185 return grab_empty_leb(c); 1186 } 1187 1188 ubifs_assert(!(lp.flags & LPROPS_INDEX)); 1189 ubifs_assert(lp.free + lp.dirty >= wbuf->offs); 1190 1191 /* 1192 * We run the commit before garbage collection otherwise subsequent 1193 * mounts will see the GC and orphan deletion in a different order. 1194 */ 1195 dbg_rcvry("committing"); 1196 err = ubifs_run_commit(c); 1197 if (err) 1198 return err; 1199 1200 dbg_rcvry("GC'ing LEB %d", lp.lnum); 1201 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1202 err = ubifs_garbage_collect_leb(c, &lp); 1203 if (err >= 0) { 1204 int err2 = ubifs_wbuf_sync_nolock(wbuf); 1205 1206 if (err2) 1207 err = err2; 1208 } 1209 mutex_unlock(&wbuf->io_mutex); 1210 if (err < 0) { 1211 ubifs_err(c, "GC failed, error %d", err); 1212 if (err == -EAGAIN) 1213 err = -EINVAL; 1214 return err; 1215 } 1216 1217 ubifs_assert(err == LEB_RETAINED); 1218 if (err != LEB_RETAINED) 1219 return -EINVAL; 1220 1221 err = ubifs_leb_unmap(c, c->gc_lnum); 1222 if (err) 1223 return err; 1224 1225 dbg_rcvry("allocated LEB %d for GC", lp.lnum); 1226 return 0; 1227 } 1228 #else 1229 int ubifs_rcvry_gc_commit(struct ubifs_info *c) 1230 { 1231 return 0; 1232 } 1233 #endif 1234 1235 /** 1236 * struct size_entry - inode size information for recovery. 1237 * @rb: link in the RB-tree of sizes 1238 * @inum: inode number 1239 * @i_size: size on inode 1240 * @d_size: maximum size based on data nodes 1241 * @exists: indicates whether the inode exists 1242 * @inode: inode if pinned in memory awaiting rw mode to fix it 1243 */ 1244 struct size_entry { 1245 struct rb_node rb; 1246 ino_t inum; 1247 loff_t i_size; 1248 loff_t d_size; 1249 int exists; 1250 struct inode *inode; 1251 }; 1252 1253 /** 1254 * add_ino - add an entry to the size tree. 1255 * @c: UBIFS file-system description object 1256 * @inum: inode number 1257 * @i_size: size on inode 1258 * @d_size: maximum size based on data nodes 1259 * @exists: indicates whether the inode exists 1260 */ 1261 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, 1262 loff_t d_size, int exists) 1263 { 1264 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; 1265 struct size_entry *e; 1266 1267 while (*p) { 1268 parent = *p; 1269 e = rb_entry(parent, struct size_entry, rb); 1270 if (inum < e->inum) 1271 p = &(*p)->rb_left; 1272 else 1273 p = &(*p)->rb_right; 1274 } 1275 1276 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); 1277 if (!e) 1278 return -ENOMEM; 1279 1280 e->inum = inum; 1281 e->i_size = i_size; 1282 e->d_size = d_size; 1283 e->exists = exists; 1284 1285 rb_link_node(&e->rb, parent, p); 1286 rb_insert_color(&e->rb, &c->size_tree); 1287 1288 return 0; 1289 } 1290 1291 /** 1292 * find_ino - find an entry on the size tree. 1293 * @c: UBIFS file-system description object 1294 * @inum: inode number 1295 */ 1296 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) 1297 { 1298 struct rb_node *p = c->size_tree.rb_node; 1299 struct size_entry *e; 1300 1301 while (p) { 1302 e = rb_entry(p, struct size_entry, rb); 1303 if (inum < e->inum) 1304 p = p->rb_left; 1305 else if (inum > e->inum) 1306 p = p->rb_right; 1307 else 1308 return e; 1309 } 1310 return NULL; 1311 } 1312 1313 /** 1314 * remove_ino - remove an entry from the size tree. 1315 * @c: UBIFS file-system description object 1316 * @inum: inode number 1317 */ 1318 static void remove_ino(struct ubifs_info *c, ino_t inum) 1319 { 1320 struct size_entry *e = find_ino(c, inum); 1321 1322 if (!e) 1323 return; 1324 rb_erase(&e->rb, &c->size_tree); 1325 kfree(e); 1326 } 1327 1328 /** 1329 * ubifs_destroy_size_tree - free resources related to the size tree. 1330 * @c: UBIFS file-system description object 1331 */ 1332 void ubifs_destroy_size_tree(struct ubifs_info *c) 1333 { 1334 struct size_entry *e, *n; 1335 1336 rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) { 1337 if (e->inode) 1338 iput(e->inode); 1339 kfree(e); 1340 } 1341 1342 c->size_tree = RB_ROOT; 1343 } 1344 1345 /** 1346 * ubifs_recover_size_accum - accumulate inode sizes for recovery. 1347 * @c: UBIFS file-system description object 1348 * @key: node key 1349 * @deletion: node is for a deletion 1350 * @new_size: inode size 1351 * 1352 * This function has two purposes: 1353 * 1) to ensure there are no data nodes that fall outside the inode size 1354 * 2) to ensure there are no data nodes for inodes that do not exist 1355 * To accomplish those purposes, a rb-tree is constructed containing an entry 1356 * for each inode number in the journal that has not been deleted, and recording 1357 * the size from the inode node, the maximum size of any data node (also altered 1358 * by truncations) and a flag indicating a inode number for which no inode node 1359 * was present in the journal. 1360 * 1361 * Note that there is still the possibility that there are data nodes that have 1362 * been committed that are beyond the inode size, however the only way to find 1363 * them would be to scan the entire index. Alternatively, some provision could 1364 * be made to record the size of inodes at the start of commit, which would seem 1365 * very cumbersome for a scenario that is quite unlikely and the only negative 1366 * consequence of which is wasted space. 1367 * 1368 * This functions returns %0 on success and a negative error code on failure. 1369 */ 1370 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, 1371 int deletion, loff_t new_size) 1372 { 1373 ino_t inum = key_inum(c, key); 1374 struct size_entry *e; 1375 int err; 1376 1377 switch (key_type(c, key)) { 1378 case UBIFS_INO_KEY: 1379 if (deletion) 1380 remove_ino(c, inum); 1381 else { 1382 e = find_ino(c, inum); 1383 if (e) { 1384 e->i_size = new_size; 1385 e->exists = 1; 1386 } else { 1387 err = add_ino(c, inum, new_size, 0, 1); 1388 if (err) 1389 return err; 1390 } 1391 } 1392 break; 1393 case UBIFS_DATA_KEY: 1394 e = find_ino(c, inum); 1395 if (e) { 1396 if (new_size > e->d_size) 1397 e->d_size = new_size; 1398 } else { 1399 err = add_ino(c, inum, 0, new_size, 0); 1400 if (err) 1401 return err; 1402 } 1403 break; 1404 case UBIFS_TRUN_KEY: 1405 e = find_ino(c, inum); 1406 if (e) 1407 e->d_size = new_size; 1408 break; 1409 } 1410 return 0; 1411 } 1412 1413 #ifndef __UBOOT__ 1414 /** 1415 * fix_size_in_place - fix inode size in place on flash. 1416 * @c: UBIFS file-system description object 1417 * @e: inode size information for recovery 1418 */ 1419 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) 1420 { 1421 struct ubifs_ino_node *ino = c->sbuf; 1422 unsigned char *p; 1423 union ubifs_key key; 1424 int err, lnum, offs, len; 1425 loff_t i_size; 1426 uint32_t crc; 1427 1428 /* Locate the inode node LEB number and offset */ 1429 ino_key_init(c, &key, e->inum); 1430 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); 1431 if (err) 1432 goto out; 1433 /* 1434 * If the size recorded on the inode node is greater than the size that 1435 * was calculated from nodes in the journal then don't change the inode. 1436 */ 1437 i_size = le64_to_cpu(ino->size); 1438 if (i_size >= e->d_size) 1439 return 0; 1440 /* Read the LEB */ 1441 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1); 1442 if (err) 1443 goto out; 1444 /* Change the size field and recalculate the CRC */ 1445 ino = c->sbuf + offs; 1446 ino->size = cpu_to_le64(e->d_size); 1447 len = le32_to_cpu(ino->ch.len); 1448 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); 1449 ino->ch.crc = cpu_to_le32(crc); 1450 /* Work out where data in the LEB ends and free space begins */ 1451 p = c->sbuf; 1452 len = c->leb_size - 1; 1453 while (p[len] == 0xff) 1454 len -= 1; 1455 len = ALIGN(len + 1, c->min_io_size); 1456 /* Atomically write the fixed LEB back again */ 1457 err = ubifs_leb_change(c, lnum, c->sbuf, len); 1458 if (err) 1459 goto out; 1460 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld", 1461 (unsigned long)e->inum, lnum, offs, i_size, e->d_size); 1462 return 0; 1463 1464 out: 1465 ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d", 1466 (unsigned long)e->inum, e->i_size, e->d_size, err); 1467 return err; 1468 } 1469 #endif 1470 1471 /** 1472 * ubifs_recover_size - recover inode size. 1473 * @c: UBIFS file-system description object 1474 * 1475 * This function attempts to fix inode size discrepancies identified by the 1476 * 'ubifs_recover_size_accum()' function. 1477 * 1478 * This functions returns %0 on success and a negative error code on failure. 1479 */ 1480 int ubifs_recover_size(struct ubifs_info *c) 1481 { 1482 struct rb_node *this = rb_first(&c->size_tree); 1483 1484 while (this) { 1485 struct size_entry *e; 1486 int err; 1487 1488 e = rb_entry(this, struct size_entry, rb); 1489 if (!e->exists) { 1490 union ubifs_key key; 1491 1492 ino_key_init(c, &key, e->inum); 1493 err = ubifs_tnc_lookup(c, &key, c->sbuf); 1494 if (err && err != -ENOENT) 1495 return err; 1496 if (err == -ENOENT) { 1497 /* Remove data nodes that have no inode */ 1498 dbg_rcvry("removing ino %lu", 1499 (unsigned long)e->inum); 1500 err = ubifs_tnc_remove_ino(c, e->inum); 1501 if (err) 1502 return err; 1503 } else { 1504 struct ubifs_ino_node *ino = c->sbuf; 1505 1506 e->exists = 1; 1507 e->i_size = le64_to_cpu(ino->size); 1508 } 1509 } 1510 1511 if (e->exists && e->i_size < e->d_size) { 1512 if (c->ro_mount) { 1513 /* Fix the inode size and pin it in memory */ 1514 struct inode *inode; 1515 struct ubifs_inode *ui; 1516 1517 ubifs_assert(!e->inode); 1518 1519 inode = ubifs_iget(c->vfs_sb, e->inum); 1520 if (IS_ERR(inode)) 1521 return PTR_ERR(inode); 1522 1523 ui = ubifs_inode(inode); 1524 if (inode->i_size < e->d_size) { 1525 dbg_rcvry("ino %lu size %lld -> %lld", 1526 (unsigned long)e->inum, 1527 inode->i_size, e->d_size); 1528 inode->i_size = e->d_size; 1529 ui->ui_size = e->d_size; 1530 ui->synced_i_size = e->d_size; 1531 e->inode = inode; 1532 this = rb_next(this); 1533 continue; 1534 } 1535 iput(inode); 1536 #ifndef __UBOOT__ 1537 } else { 1538 /* Fix the size in place */ 1539 err = fix_size_in_place(c, e); 1540 if (err) 1541 return err; 1542 if (e->inode) 1543 iput(e->inode); 1544 #endif 1545 } 1546 } 1547 1548 this = rb_next(this); 1549 rb_erase(&e->rb, &c->size_tree); 1550 kfree(e); 1551 } 1552 1553 return 0; 1554 } 1555