1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements functions needed to recover from unclean un-mounts. 25 * When UBIFS is mounted, it checks a flag on the master node to determine if 26 * an un-mount was completed sucessfully. If not, the process of mounting 27 * incorparates additional checking and fixing of on-flash data structures. 28 * UBIFS always cleans away all remnants of an unclean un-mount, so that 29 * errors do not accumulate. However UBIFS defers recovery if it is mounted 30 * read-only, and the flash is not modified in that case. 31 */ 32 33 #include "ubifs.h" 34 35 /** 36 * is_empty - determine whether a buffer is empty (contains all 0xff). 37 * @buf: buffer to clean 38 * @len: length of buffer 39 * 40 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise 41 * %0 is returned. 42 */ 43 static int is_empty(void *buf, int len) 44 { 45 uint8_t *p = buf; 46 int i; 47 48 for (i = 0; i < len; i++) 49 if (*p++ != 0xff) 50 return 0; 51 return 1; 52 } 53 54 /** 55 * get_master_node - get the last valid master node allowing for corruption. 56 * @c: UBIFS file-system description object 57 * @lnum: LEB number 58 * @pbuf: buffer containing the LEB read, is returned here 59 * @mst: master node, if found, is returned here 60 * @cor: corruption, if found, is returned here 61 * 62 * This function allocates a buffer, reads the LEB into it, and finds and 63 * returns the last valid master node allowing for one area of corruption. 64 * The corrupt area, if there is one, must be consistent with the assumption 65 * that it is the result of an unclean unmount while the master node was being 66 * written. Under those circumstances, it is valid to use the previously written 67 * master node. 68 * 69 * This function returns %0 on success and a negative error code on failure. 70 */ 71 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, 72 struct ubifs_mst_node **mst, void **cor) 73 { 74 const int sz = c->mst_node_alsz; 75 int err, offs, len; 76 void *sbuf, *buf; 77 78 sbuf = vmalloc(c->leb_size); 79 if (!sbuf) 80 return -ENOMEM; 81 82 err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); 83 if (err && err != -EBADMSG) 84 goto out_free; 85 86 /* Find the first position that is definitely not a node */ 87 offs = 0; 88 buf = sbuf; 89 len = c->leb_size; 90 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { 91 struct ubifs_ch *ch = buf; 92 93 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 94 break; 95 offs += sz; 96 buf += sz; 97 len -= sz; 98 } 99 /* See if there was a valid master node before that */ 100 if (offs) { 101 int ret; 102 103 offs -= sz; 104 buf -= sz; 105 len += sz; 106 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 107 if (ret != SCANNED_A_NODE && offs) { 108 /* Could have been corruption so check one place back */ 109 offs -= sz; 110 buf -= sz; 111 len += sz; 112 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 113 if (ret != SCANNED_A_NODE) 114 /* 115 * We accept only one area of corruption because 116 * we are assuming that it was caused while 117 * trying to write a master node. 118 */ 119 goto out_err; 120 } 121 if (ret == SCANNED_A_NODE) { 122 struct ubifs_ch *ch = buf; 123 124 if (ch->node_type != UBIFS_MST_NODE) 125 goto out_err; 126 dbg_rcvry("found a master node at %d:%d", lnum, offs); 127 *mst = buf; 128 offs += sz; 129 buf += sz; 130 len -= sz; 131 } 132 } 133 /* Check for corruption */ 134 if (offs < c->leb_size) { 135 if (!is_empty(buf, min_t(int, len, sz))) { 136 *cor = buf; 137 dbg_rcvry("found corruption at %d:%d", lnum, offs); 138 } 139 offs += sz; 140 buf += sz; 141 len -= sz; 142 } 143 /* Check remaining empty space */ 144 if (offs < c->leb_size) 145 if (!is_empty(buf, len)) 146 goto out_err; 147 *pbuf = sbuf; 148 return 0; 149 150 out_err: 151 err = -EINVAL; 152 out_free: 153 vfree(sbuf); 154 *mst = NULL; 155 *cor = NULL; 156 return err; 157 } 158 159 /** 160 * write_rcvrd_mst_node - write recovered master node. 161 * @c: UBIFS file-system description object 162 * @mst: master node 163 * 164 * This function returns %0 on success and a negative error code on failure. 165 */ 166 static int write_rcvrd_mst_node(struct ubifs_info *c, 167 struct ubifs_mst_node *mst) 168 { 169 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; 170 __le32 save_flags; 171 172 dbg_rcvry("recovery"); 173 174 save_flags = mst->flags; 175 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); 176 177 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); 178 err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); 179 if (err) 180 goto out; 181 err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); 182 if (err) 183 goto out; 184 out: 185 mst->flags = save_flags; 186 return err; 187 } 188 189 /** 190 * ubifs_recover_master_node - recover the master node. 191 * @c: UBIFS file-system description object 192 * 193 * This function recovers the master node from corruption that may occur due to 194 * an unclean unmount. 195 * 196 * This function returns %0 on success and a negative error code on failure. 197 */ 198 int ubifs_recover_master_node(struct ubifs_info *c) 199 { 200 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; 201 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; 202 const int sz = c->mst_node_alsz; 203 int err, offs1, offs2; 204 205 dbg_rcvry("recovery"); 206 207 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); 208 if (err) 209 goto out_free; 210 211 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); 212 if (err) 213 goto out_free; 214 215 if (mst1) { 216 offs1 = (void *)mst1 - buf1; 217 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && 218 (offs1 == 0 && !cor1)) { 219 /* 220 * mst1 was written by recovery at offset 0 with no 221 * corruption. 222 */ 223 dbg_rcvry("recovery recovery"); 224 mst = mst1; 225 } else if (mst2) { 226 offs2 = (void *)mst2 - buf2; 227 if (offs1 == offs2) { 228 /* Same offset, so must be the same */ 229 if (memcmp((void *)mst1 + UBIFS_CH_SZ, 230 (void *)mst2 + UBIFS_CH_SZ, 231 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) 232 goto out_err; 233 mst = mst1; 234 } else if (offs2 + sz == offs1) { 235 /* 1st LEB was written, 2nd was not */ 236 if (cor1) 237 goto out_err; 238 mst = mst1; 239 } else if (offs1 == 0 && offs2 + sz >= c->leb_size) { 240 /* 1st LEB was unmapped and written, 2nd not */ 241 if (cor1) 242 goto out_err; 243 mst = mst1; 244 } else 245 goto out_err; 246 } else { 247 /* 248 * 2nd LEB was unmapped and about to be written, so 249 * there must be only one master node in the first LEB 250 * and no corruption. 251 */ 252 if (offs1 != 0 || cor1) 253 goto out_err; 254 mst = mst1; 255 } 256 } else { 257 if (!mst2) 258 goto out_err; 259 /* 260 * 1st LEB was unmapped and about to be written, so there must 261 * be no room left in 2nd LEB. 262 */ 263 offs2 = (void *)mst2 - buf2; 264 if (offs2 + sz + sz <= c->leb_size) 265 goto out_err; 266 mst = mst2; 267 } 268 269 dbg_rcvry("recovered master node from LEB %d", 270 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); 271 272 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); 273 274 if ((c->vfs_sb->s_flags & MS_RDONLY)) { 275 /* Read-only mode. Keep a copy for switching to rw mode */ 276 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); 277 if (!c->rcvrd_mst_node) { 278 err = -ENOMEM; 279 goto out_free; 280 } 281 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); 282 } 283 284 vfree(buf2); 285 vfree(buf1); 286 287 return 0; 288 289 out_err: 290 err = -EINVAL; 291 out_free: 292 ubifs_err("failed to recover master node"); 293 if (mst1) { 294 dbg_err("dumping first master node"); 295 dbg_dump_node(c, mst1); 296 } 297 if (mst2) { 298 dbg_err("dumping second master node"); 299 dbg_dump_node(c, mst2); 300 } 301 vfree(buf2); 302 vfree(buf1); 303 return err; 304 } 305 306 /** 307 * ubifs_write_rcvrd_mst_node - write the recovered master node. 308 * @c: UBIFS file-system description object 309 * 310 * This function writes the master node that was recovered during mounting in 311 * read-only mode and must now be written because we are remounting rw. 312 * 313 * This function returns %0 on success and a negative error code on failure. 314 */ 315 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) 316 { 317 int err; 318 319 if (!c->rcvrd_mst_node) 320 return 0; 321 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 322 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 323 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); 324 if (err) 325 return err; 326 kfree(c->rcvrd_mst_node); 327 c->rcvrd_mst_node = NULL; 328 return 0; 329 } 330 331 /** 332 * is_last_write - determine if an offset was in the last write to a LEB. 333 * @c: UBIFS file-system description object 334 * @buf: buffer to check 335 * @offs: offset to check 336 * 337 * This function returns %1 if @offs was in the last write to the LEB whose data 338 * is in @buf, otherwise %0 is returned. The determination is made by checking 339 * for subsequent empty space starting from the next min_io_size boundary (or a 340 * bit less than the common header size if min_io_size is one). 341 */ 342 static int is_last_write(const struct ubifs_info *c, void *buf, int offs) 343 { 344 int empty_offs; 345 int check_len; 346 uint8_t *p; 347 348 if (c->min_io_size == 1) { 349 check_len = c->leb_size - offs; 350 p = buf + check_len; 351 for (; check_len > 0; check_len--) 352 if (*--p != 0xff) 353 break; 354 /* 355 * 'check_len' is the size of the corruption which cannot be 356 * more than the size of 1 node if it was caused by an unclean 357 * unmount. 358 */ 359 if (check_len > UBIFS_MAX_NODE_SZ) 360 return 0; 361 return 1; 362 } 363 364 /* 365 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the 366 * last wbuf written. After that should be empty space. 367 */ 368 empty_offs = ALIGN(offs + 1, c->min_io_size); 369 check_len = c->leb_size - empty_offs; 370 p = buf + empty_offs - offs; 371 372 for (; check_len > 0; check_len--) 373 if (*p++ != 0xff) 374 return 0; 375 return 1; 376 } 377 378 /** 379 * clean_buf - clean the data from an LEB sitting in a buffer. 380 * @c: UBIFS file-system description object 381 * @buf: buffer to clean 382 * @lnum: LEB number to clean 383 * @offs: offset from which to clean 384 * @len: length of buffer 385 * 386 * This function pads up to the next min_io_size boundary (if there is one) and 387 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next 388 * min_io_size boundary (if there is one). 389 */ 390 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, 391 int *offs, int *len) 392 { 393 int empty_offs, pad_len; 394 395 lnum = lnum; 396 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); 397 398 if (c->min_io_size == 1) { 399 memset(*buf, 0xff, c->leb_size - *offs); 400 return; 401 } 402 403 ubifs_assert(!(*offs & 7)); 404 empty_offs = ALIGN(*offs, c->min_io_size); 405 pad_len = empty_offs - *offs; 406 ubifs_pad(c, *buf, pad_len); 407 *offs += pad_len; 408 *buf += pad_len; 409 *len -= pad_len; 410 memset(*buf, 0xff, c->leb_size - empty_offs); 411 } 412 413 /** 414 * no_more_nodes - determine if there are no more nodes in a buffer. 415 * @c: UBIFS file-system description object 416 * @buf: buffer to check 417 * @len: length of buffer 418 * @lnum: LEB number of the LEB from which @buf was read 419 * @offs: offset from which @buf was read 420 * 421 * This function scans @buf for more nodes and returns %0 is a node is found and 422 * %1 if no more nodes are found. 423 */ 424 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, 425 int lnum, int offs) 426 { 427 int skip, next_offs = 0; 428 429 if (len > UBIFS_DATA_NODE_SZ) { 430 struct ubifs_ch *ch = buf; 431 int dlen = le32_to_cpu(ch->len); 432 433 if (ch->node_type == UBIFS_DATA_NODE && dlen >= UBIFS_CH_SZ && 434 dlen <= UBIFS_MAX_DATA_NODE_SZ) 435 /* The corrupt node looks like a data node */ 436 next_offs = ALIGN(offs + dlen, 8); 437 } 438 439 if (c->min_io_size == 1) 440 skip = 8; 441 else 442 skip = ALIGN(offs + 1, c->min_io_size) - offs; 443 444 offs += skip; 445 buf += skip; 446 len -= skip; 447 while (len > 8) { 448 struct ubifs_ch *ch = buf; 449 uint32_t magic = le32_to_cpu(ch->magic); 450 int ret; 451 452 if (magic == UBIFS_NODE_MAGIC) { 453 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 454 if (ret == SCANNED_A_NODE || ret > 0) { 455 /* 456 * There is a small chance this is just data in 457 * a data node, so check that possibility. e.g. 458 * this is part of a file that itself contains 459 * a UBIFS image. 460 */ 461 if (next_offs && offs + le32_to_cpu(ch->len) <= 462 next_offs) 463 continue; 464 dbg_rcvry("unexpected node at %d:%d", lnum, 465 offs); 466 return 0; 467 } 468 } 469 offs += 8; 470 buf += 8; 471 len -= 8; 472 } 473 return 1; 474 } 475 476 /** 477 * fix_unclean_leb - fix an unclean LEB. 478 * @c: UBIFS file-system description object 479 * @sleb: scanned LEB information 480 * @start: offset where scan started 481 */ 482 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 483 int start) 484 { 485 int lnum = sleb->lnum, endpt = start; 486 487 /* Get the end offset of the last node we are keeping */ 488 if (!list_empty(&sleb->nodes)) { 489 struct ubifs_scan_node *snod; 490 491 snod = list_entry(sleb->nodes.prev, 492 struct ubifs_scan_node, list); 493 endpt = snod->offs + snod->len; 494 } 495 496 if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) { 497 /* Add to recovery list */ 498 struct ubifs_unclean_leb *ucleb; 499 500 dbg_rcvry("need to fix LEB %d start %d endpt %d", 501 lnum, start, sleb->endpt); 502 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); 503 if (!ucleb) 504 return -ENOMEM; 505 ucleb->lnum = lnum; 506 ucleb->endpt = endpt; 507 list_add_tail(&ucleb->list, &c->unclean_leb_list); 508 } 509 return 0; 510 } 511 512 /** 513 * drop_incomplete_group - drop nodes from an incomplete group. 514 * @sleb: scanned LEB information 515 * @offs: offset of dropped nodes is returned here 516 * 517 * This function returns %1 if nodes are dropped and %0 otherwise. 518 */ 519 static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) 520 { 521 int dropped = 0; 522 523 while (!list_empty(&sleb->nodes)) { 524 struct ubifs_scan_node *snod; 525 struct ubifs_ch *ch; 526 527 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 528 list); 529 ch = snod->node; 530 if (ch->group_type != UBIFS_IN_NODE_GROUP) 531 return dropped; 532 dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); 533 *offs = snod->offs; 534 list_del(&snod->list); 535 kfree(snod); 536 sleb->nodes_cnt -= 1; 537 dropped = 1; 538 } 539 return dropped; 540 } 541 542 /** 543 * ubifs_recover_leb - scan and recover a LEB. 544 * @c: UBIFS file-system description object 545 * @lnum: LEB number 546 * @offs: offset 547 * @sbuf: LEB-sized buffer to use 548 * @grouped: nodes may be grouped for recovery 549 * 550 * This function does a scan of a LEB, but caters for errors that might have 551 * been caused by the unclean unmount from which we are attempting to recover. 552 * 553 * This function returns %0 on success and a negative error code on failure. 554 */ 555 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, 556 int offs, void *sbuf, int grouped) 557 { 558 int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; 559 int empty_chkd = 0, start = offs; 560 struct ubifs_scan_leb *sleb; 561 void *buf = sbuf + offs; 562 563 dbg_rcvry("%d:%d", lnum, offs); 564 565 sleb = ubifs_start_scan(c, lnum, offs, sbuf); 566 if (IS_ERR(sleb)) 567 return sleb; 568 569 if (sleb->ecc) 570 need_clean = 1; 571 572 while (len >= 8) { 573 int ret; 574 575 dbg_scan("look at LEB %d:%d (%d bytes left)", 576 lnum, offs, len); 577 578 cond_resched(); 579 580 /* 581 * Scan quietly until there is an error from which we cannot 582 * recover 583 */ 584 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 585 586 if (ret == SCANNED_A_NODE) { 587 /* A valid node, and not a padding node */ 588 struct ubifs_ch *ch = buf; 589 int node_len; 590 591 err = ubifs_add_snod(c, sleb, buf, offs); 592 if (err) 593 goto error; 594 node_len = ALIGN(le32_to_cpu(ch->len), 8); 595 offs += node_len; 596 buf += node_len; 597 len -= node_len; 598 continue; 599 } 600 601 if (ret > 0) { 602 /* Padding bytes or a valid padding node */ 603 offs += ret; 604 buf += ret; 605 len -= ret; 606 continue; 607 } 608 609 if (ret == SCANNED_EMPTY_SPACE) { 610 if (!is_empty(buf, len)) { 611 if (!is_last_write(c, buf, offs)) 612 break; 613 clean_buf(c, &buf, lnum, &offs, &len); 614 need_clean = 1; 615 } 616 empty_chkd = 1; 617 break; 618 } 619 620 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) 621 if (is_last_write(c, buf, offs)) { 622 clean_buf(c, &buf, lnum, &offs, &len); 623 need_clean = 1; 624 empty_chkd = 1; 625 break; 626 } 627 628 if (ret == SCANNED_A_CORRUPT_NODE) 629 if (no_more_nodes(c, buf, len, lnum, offs)) { 630 clean_buf(c, &buf, lnum, &offs, &len); 631 need_clean = 1; 632 empty_chkd = 1; 633 break; 634 } 635 636 if (quiet) { 637 /* Redo the last scan but noisily */ 638 quiet = 0; 639 continue; 640 } 641 642 switch (ret) { 643 case SCANNED_GARBAGE: 644 dbg_err("garbage"); 645 goto corrupted; 646 case SCANNED_A_CORRUPT_NODE: 647 case SCANNED_A_BAD_PAD_NODE: 648 dbg_err("bad node"); 649 goto corrupted; 650 default: 651 dbg_err("unknown"); 652 goto corrupted; 653 } 654 } 655 656 if (!empty_chkd && !is_empty(buf, len)) { 657 if (is_last_write(c, buf, offs)) { 658 clean_buf(c, &buf, lnum, &offs, &len); 659 need_clean = 1; 660 } else { 661 ubifs_err("corrupt empty space at LEB %d:%d", 662 lnum, offs); 663 goto corrupted; 664 } 665 } 666 667 /* Drop nodes from incomplete group */ 668 if (grouped && drop_incomplete_group(sleb, &offs)) { 669 buf = sbuf + offs; 670 len = c->leb_size - offs; 671 clean_buf(c, &buf, lnum, &offs, &len); 672 need_clean = 1; 673 } 674 675 if (offs % c->min_io_size) { 676 clean_buf(c, &buf, lnum, &offs, &len); 677 need_clean = 1; 678 } 679 680 ubifs_end_scan(c, sleb, lnum, offs); 681 682 if (need_clean) { 683 err = fix_unclean_leb(c, sleb, start); 684 if (err) 685 goto error; 686 } 687 688 return sleb; 689 690 corrupted: 691 ubifs_scanned_corruption(c, lnum, offs, buf); 692 err = -EUCLEAN; 693 error: 694 ubifs_err("LEB %d scanning failed", lnum); 695 ubifs_scan_destroy(sleb); 696 return ERR_PTR(err); 697 } 698 699 /** 700 * get_cs_sqnum - get commit start sequence number. 701 * @c: UBIFS file-system description object 702 * @lnum: LEB number of commit start node 703 * @offs: offset of commit start node 704 * @cs_sqnum: commit start sequence number is returned here 705 * 706 * This function returns %0 on success and a negative error code on failure. 707 */ 708 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, 709 unsigned long long *cs_sqnum) 710 { 711 struct ubifs_cs_node *cs_node = NULL; 712 int err, ret; 713 714 dbg_rcvry("at %d:%d", lnum, offs); 715 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); 716 if (!cs_node) 717 return -ENOMEM; 718 if (c->leb_size - offs < UBIFS_CS_NODE_SZ) 719 goto out_err; 720 err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); 721 if (err && err != -EBADMSG) 722 goto out_free; 723 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); 724 if (ret != SCANNED_A_NODE) { 725 dbg_err("Not a valid node"); 726 goto out_err; 727 } 728 if (cs_node->ch.node_type != UBIFS_CS_NODE) { 729 dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); 730 goto out_err; 731 } 732 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { 733 dbg_err("CS node cmt_no %llu != current cmt_no %llu", 734 (unsigned long long)le64_to_cpu(cs_node->cmt_no), 735 c->cmt_no); 736 goto out_err; 737 } 738 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); 739 dbg_rcvry("commit start sqnum %llu", *cs_sqnum); 740 kfree(cs_node); 741 return 0; 742 743 out_err: 744 err = -EINVAL; 745 out_free: 746 ubifs_err("failed to get CS sqnum"); 747 kfree(cs_node); 748 return err; 749 } 750 751 /** 752 * ubifs_recover_log_leb - scan and recover a log LEB. 753 * @c: UBIFS file-system description object 754 * @lnum: LEB number 755 * @offs: offset 756 * @sbuf: LEB-sized buffer to use 757 * 758 * This function does a scan of a LEB, but caters for errors that might have 759 * been caused by the unclean unmount from which we are attempting to recover. 760 * 761 * This function returns %0 on success and a negative error code on failure. 762 */ 763 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, 764 int offs, void *sbuf) 765 { 766 struct ubifs_scan_leb *sleb; 767 int next_lnum; 768 769 dbg_rcvry("LEB %d", lnum); 770 next_lnum = lnum + 1; 771 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) 772 next_lnum = UBIFS_LOG_LNUM; 773 if (next_lnum != c->ltail_lnum) { 774 /* 775 * We can only recover at the end of the log, so check that the 776 * next log LEB is empty or out of date. 777 */ 778 sleb = ubifs_scan(c, next_lnum, 0, sbuf); 779 if (IS_ERR(sleb)) 780 return sleb; 781 if (sleb->nodes_cnt) { 782 struct ubifs_scan_node *snod; 783 unsigned long long cs_sqnum = c->cs_sqnum; 784 785 snod = list_entry(sleb->nodes.next, 786 struct ubifs_scan_node, list); 787 if (cs_sqnum == 0) { 788 int err; 789 790 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); 791 if (err) { 792 ubifs_scan_destroy(sleb); 793 return ERR_PTR(err); 794 } 795 } 796 if (snod->sqnum > cs_sqnum) { 797 ubifs_err("unrecoverable log corruption " 798 "in LEB %d", lnum); 799 ubifs_scan_destroy(sleb); 800 return ERR_PTR(-EUCLEAN); 801 } 802 } 803 ubifs_scan_destroy(sleb); 804 } 805 return ubifs_recover_leb(c, lnum, offs, sbuf, 0); 806 } 807 808 /** 809 * recover_head - recover a head. 810 * @c: UBIFS file-system description object 811 * @lnum: LEB number of head to recover 812 * @offs: offset of head to recover 813 * @sbuf: LEB-sized buffer to use 814 * 815 * This function ensures that there is no data on the flash at a head location. 816 * 817 * This function returns %0 on success and a negative error code on failure. 818 */ 819 static int recover_head(const struct ubifs_info *c, int lnum, int offs, 820 void *sbuf) 821 { 822 int len, err, need_clean = 0; 823 824 if (c->min_io_size > 1) 825 len = c->min_io_size; 826 else 827 len = 512; 828 if (offs + len > c->leb_size) 829 len = c->leb_size - offs; 830 831 if (!len) 832 return 0; 833 834 /* Read at the head location and check it is empty flash */ 835 err = ubi_read(c->ubi, lnum, sbuf, offs, len); 836 if (err) 837 need_clean = 1; 838 else { 839 uint8_t *p = sbuf; 840 841 while (len--) 842 if (*p++ != 0xff) { 843 need_clean = 1; 844 break; 845 } 846 } 847 848 if (need_clean) { 849 dbg_rcvry("cleaning head at %d:%d", lnum, offs); 850 if (offs == 0) 851 return ubifs_leb_unmap(c, lnum); 852 err = ubi_read(c->ubi, lnum, sbuf, 0, offs); 853 if (err) 854 return err; 855 return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); 856 } 857 858 return 0; 859 } 860 861 /** 862 * ubifs_recover_inl_heads - recover index and LPT heads. 863 * @c: UBIFS file-system description object 864 * @sbuf: LEB-sized buffer to use 865 * 866 * This function ensures that there is no data on the flash at the index and 867 * LPT head locations. 868 * 869 * This deals with the recovery of a half-completed journal commit. UBIFS is 870 * careful never to overwrite the last version of the index or the LPT. Because 871 * the index and LPT are wandering trees, data from a half-completed commit will 872 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are 873 * assumed to be empty and will be unmapped anyway before use, or in the index 874 * and LPT heads. 875 * 876 * This function returns %0 on success and a negative error code on failure. 877 */ 878 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) 879 { 880 int err; 881 882 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw); 883 884 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); 885 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); 886 if (err) 887 return err; 888 889 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); 890 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); 891 if (err) 892 return err; 893 894 return 0; 895 } 896 897 /** 898 * clean_an_unclean_leb - read and write a LEB to remove corruption. 899 * @c: UBIFS file-system description object 900 * @ucleb: unclean LEB information 901 * @sbuf: LEB-sized buffer to use 902 * 903 * This function reads a LEB up to a point pre-determined by the mount recovery, 904 * checks the nodes, and writes the result back to the flash, thereby cleaning 905 * off any following corruption, or non-fatal ECC errors. 906 * 907 * This function returns %0 on success and a negative error code on failure. 908 */ 909 static int clean_an_unclean_leb(const struct ubifs_info *c, 910 struct ubifs_unclean_leb *ucleb, void *sbuf) 911 { 912 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; 913 void *buf = sbuf; 914 915 dbg_rcvry("LEB %d len %d", lnum, len); 916 917 if (len == 0) { 918 /* Nothing to read, just unmap it */ 919 err = ubifs_leb_unmap(c, lnum); 920 if (err) 921 return err; 922 return 0; 923 } 924 925 err = ubi_read(c->ubi, lnum, buf, offs, len); 926 if (err && err != -EBADMSG) 927 return err; 928 929 while (len >= 8) { 930 int ret; 931 932 cond_resched(); 933 934 /* Scan quietly until there is an error */ 935 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 936 937 if (ret == SCANNED_A_NODE) { 938 /* A valid node, and not a padding node */ 939 struct ubifs_ch *ch = buf; 940 int node_len; 941 942 node_len = ALIGN(le32_to_cpu(ch->len), 8); 943 offs += node_len; 944 buf += node_len; 945 len -= node_len; 946 continue; 947 } 948 949 if (ret > 0) { 950 /* Padding bytes or a valid padding node */ 951 offs += ret; 952 buf += ret; 953 len -= ret; 954 continue; 955 } 956 957 if (ret == SCANNED_EMPTY_SPACE) { 958 ubifs_err("unexpected empty space at %d:%d", 959 lnum, offs); 960 return -EUCLEAN; 961 } 962 963 if (quiet) { 964 /* Redo the last scan but noisily */ 965 quiet = 0; 966 continue; 967 } 968 969 ubifs_scanned_corruption(c, lnum, offs, buf); 970 return -EUCLEAN; 971 } 972 973 /* Pad to min_io_size */ 974 len = ALIGN(ucleb->endpt, c->min_io_size); 975 if (len > ucleb->endpt) { 976 int pad_len = len - ALIGN(ucleb->endpt, 8); 977 978 if (pad_len > 0) { 979 buf = c->sbuf + len - pad_len; 980 ubifs_pad(c, buf, pad_len); 981 } 982 } 983 984 /* Write back the LEB atomically */ 985 err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); 986 if (err) 987 return err; 988 989 dbg_rcvry("cleaned LEB %d", lnum); 990 991 return 0; 992 } 993 994 /** 995 * ubifs_clean_lebs - clean LEBs recovered during read-only mount. 996 * @c: UBIFS file-system description object 997 * @sbuf: LEB-sized buffer to use 998 * 999 * This function cleans a LEB identified during recovery that needs to be 1000 * written but was not because UBIFS was mounted read-only. This happens when 1001 * remounting to read-write mode. 1002 * 1003 * This function returns %0 on success and a negative error code on failure. 1004 */ 1005 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) 1006 { 1007 dbg_rcvry("recovery"); 1008 while (!list_empty(&c->unclean_leb_list)) { 1009 struct ubifs_unclean_leb *ucleb; 1010 int err; 1011 1012 ucleb = list_entry(c->unclean_leb_list.next, 1013 struct ubifs_unclean_leb, list); 1014 err = clean_an_unclean_leb(c, ucleb, sbuf); 1015 if (err) 1016 return err; 1017 list_del(&ucleb->list); 1018 kfree(ucleb); 1019 } 1020 return 0; 1021 } 1022 1023 /** 1024 * struct size_entry - inode size information for recovery. 1025 * @rb: link in the RB-tree of sizes 1026 * @inum: inode number 1027 * @i_size: size on inode 1028 * @d_size: maximum size based on data nodes 1029 * @exists: indicates whether the inode exists 1030 * @inode: inode if pinned in memory awaiting rw mode to fix it 1031 */ 1032 struct size_entry { 1033 struct rb_node rb; 1034 ino_t inum; 1035 loff_t i_size; 1036 loff_t d_size; 1037 int exists; 1038 struct inode *inode; 1039 }; 1040 1041 /** 1042 * add_ino - add an entry to the size tree. 1043 * @c: UBIFS file-system description object 1044 * @inum: inode number 1045 * @i_size: size on inode 1046 * @d_size: maximum size based on data nodes 1047 * @exists: indicates whether the inode exists 1048 */ 1049 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, 1050 loff_t d_size, int exists) 1051 { 1052 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; 1053 struct size_entry *e; 1054 1055 while (*p) { 1056 parent = *p; 1057 e = rb_entry(parent, struct size_entry, rb); 1058 if (inum < e->inum) 1059 p = &(*p)->rb_left; 1060 else 1061 p = &(*p)->rb_right; 1062 } 1063 1064 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); 1065 if (!e) 1066 return -ENOMEM; 1067 1068 e->inum = inum; 1069 e->i_size = i_size; 1070 e->d_size = d_size; 1071 e->exists = exists; 1072 1073 rb_link_node(&e->rb, parent, p); 1074 rb_insert_color(&e->rb, &c->size_tree); 1075 1076 return 0; 1077 } 1078 1079 /** 1080 * find_ino - find an entry on the size tree. 1081 * @c: UBIFS file-system description object 1082 * @inum: inode number 1083 */ 1084 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) 1085 { 1086 struct rb_node *p = c->size_tree.rb_node; 1087 struct size_entry *e; 1088 1089 while (p) { 1090 e = rb_entry(p, struct size_entry, rb); 1091 if (inum < e->inum) 1092 p = p->rb_left; 1093 else if (inum > e->inum) 1094 p = p->rb_right; 1095 else 1096 return e; 1097 } 1098 return NULL; 1099 } 1100 1101 /** 1102 * remove_ino - remove an entry from the size tree. 1103 * @c: UBIFS file-system description object 1104 * @inum: inode number 1105 */ 1106 static void remove_ino(struct ubifs_info *c, ino_t inum) 1107 { 1108 struct size_entry *e = find_ino(c, inum); 1109 1110 if (!e) 1111 return; 1112 rb_erase(&e->rb, &c->size_tree); 1113 kfree(e); 1114 } 1115 1116 /** 1117 * ubifs_recover_size_accum - accumulate inode sizes for recovery. 1118 * @c: UBIFS file-system description object 1119 * @key: node key 1120 * @deletion: node is for a deletion 1121 * @new_size: inode size 1122 * 1123 * This function has two purposes: 1124 * 1) to ensure there are no data nodes that fall outside the inode size 1125 * 2) to ensure there are no data nodes for inodes that do not exist 1126 * To accomplish those purposes, a rb-tree is constructed containing an entry 1127 * for each inode number in the journal that has not been deleted, and recording 1128 * the size from the inode node, the maximum size of any data node (also altered 1129 * by truncations) and a flag indicating a inode number for which no inode node 1130 * was present in the journal. 1131 * 1132 * Note that there is still the possibility that there are data nodes that have 1133 * been committed that are beyond the inode size, however the only way to find 1134 * them would be to scan the entire index. Alternatively, some provision could 1135 * be made to record the size of inodes at the start of commit, which would seem 1136 * very cumbersome for a scenario that is quite unlikely and the only negative 1137 * consequence of which is wasted space. 1138 * 1139 * This functions returns %0 on success and a negative error code on failure. 1140 */ 1141 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, 1142 int deletion, loff_t new_size) 1143 { 1144 ino_t inum = key_inum(c, key); 1145 struct size_entry *e; 1146 int err; 1147 1148 switch (key_type(c, key)) { 1149 case UBIFS_INO_KEY: 1150 if (deletion) 1151 remove_ino(c, inum); 1152 else { 1153 e = find_ino(c, inum); 1154 if (e) { 1155 e->i_size = new_size; 1156 e->exists = 1; 1157 } else { 1158 err = add_ino(c, inum, new_size, 0, 1); 1159 if (err) 1160 return err; 1161 } 1162 } 1163 break; 1164 case UBIFS_DATA_KEY: 1165 e = find_ino(c, inum); 1166 if (e) { 1167 if (new_size > e->d_size) 1168 e->d_size = new_size; 1169 } else { 1170 err = add_ino(c, inum, 0, new_size, 0); 1171 if (err) 1172 return err; 1173 } 1174 break; 1175 case UBIFS_TRUN_KEY: 1176 e = find_ino(c, inum); 1177 if (e) 1178 e->d_size = new_size; 1179 break; 1180 } 1181 return 0; 1182 } 1183 1184 /** 1185 * ubifs_recover_size - recover inode size. 1186 * @c: UBIFS file-system description object 1187 * 1188 * This function attempts to fix inode size discrepancies identified by the 1189 * 'ubifs_recover_size_accum()' function. 1190 * 1191 * This functions returns %0 on success and a negative error code on failure. 1192 */ 1193 int ubifs_recover_size(struct ubifs_info *c) 1194 { 1195 struct rb_node *this = rb_first(&c->size_tree); 1196 1197 while (this) { 1198 struct size_entry *e; 1199 int err; 1200 1201 e = rb_entry(this, struct size_entry, rb); 1202 if (!e->exists) { 1203 union ubifs_key key; 1204 1205 ino_key_init(c, &key, e->inum); 1206 err = ubifs_tnc_lookup(c, &key, c->sbuf); 1207 if (err && err != -ENOENT) 1208 return err; 1209 if (err == -ENOENT) { 1210 /* Remove data nodes that have no inode */ 1211 dbg_rcvry("removing ino %lu", 1212 (unsigned long)e->inum); 1213 err = ubifs_tnc_remove_ino(c, e->inum); 1214 if (err) 1215 return err; 1216 } else { 1217 struct ubifs_ino_node *ino = c->sbuf; 1218 1219 e->exists = 1; 1220 e->i_size = le64_to_cpu(ino->size); 1221 } 1222 } 1223 if (e->exists && e->i_size < e->d_size) { 1224 if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) { 1225 /* Fix the inode size and pin it in memory */ 1226 struct inode *inode; 1227 1228 inode = ubifs_iget(c->vfs_sb, e->inum); 1229 if (IS_ERR(inode)) 1230 return PTR_ERR(inode); 1231 if (inode->i_size < e->d_size) { 1232 dbg_rcvry("ino %lu size %lld -> %lld", 1233 (unsigned long)e->inum, 1234 e->d_size, inode->i_size); 1235 inode->i_size = e->d_size; 1236 ubifs_inode(inode)->ui_size = e->d_size; 1237 e->inode = inode; 1238 this = rb_next(this); 1239 continue; 1240 } 1241 iput(inode); 1242 } 1243 } 1244 this = rb_next(this); 1245 rb_erase(&e->rb, &c->size_tree); 1246 kfree(e); 1247 } 1248 return 0; 1249 } 1250