xref: /openbmc/u-boot/fs/ubifs/recovery.c (revision 76756e41)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions needed to recover from unclean un-mounts.
25  * When UBIFS is mounted, it checks a flag on the master node to determine if
26  * an un-mount was completed sucessfully. If not, the process of mounting
27  * incorparates additional checking and fixing of on-flash data structures.
28  * UBIFS always cleans away all remnants of an unclean un-mount, so that
29  * errors do not accumulate. However UBIFS defers recovery if it is mounted
30  * read-only, and the flash is not modified in that case.
31  */
32 
33 #include "ubifs.h"
34 
35 /**
36  * is_empty - determine whether a buffer is empty (contains all 0xff).
37  * @buf: buffer to clean
38  * @len: length of buffer
39  *
40  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
41  * %0 is returned.
42  */
43 static int is_empty(void *buf, int len)
44 {
45 	uint8_t *p = buf;
46 	int i;
47 
48 	for (i = 0; i < len; i++)
49 		if (*p++ != 0xff)
50 			return 0;
51 	return 1;
52 }
53 
54 /**
55  * get_master_node - get the last valid master node allowing for corruption.
56  * @c: UBIFS file-system description object
57  * @lnum: LEB number
58  * @pbuf: buffer containing the LEB read, is returned here
59  * @mst: master node, if found, is returned here
60  * @cor: corruption, if found, is returned here
61  *
62  * This function allocates a buffer, reads the LEB into it, and finds and
63  * returns the last valid master node allowing for one area of corruption.
64  * The corrupt area, if there is one, must be consistent with the assumption
65  * that it is the result of an unclean unmount while the master node was being
66  * written. Under those circumstances, it is valid to use the previously written
67  * master node.
68  *
69  * This function returns %0 on success and a negative error code on failure.
70  */
71 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
72 			   struct ubifs_mst_node **mst, void **cor)
73 {
74 	const int sz = c->mst_node_alsz;
75 	int err, offs, len;
76 	void *sbuf, *buf;
77 
78 	sbuf = vmalloc(c->leb_size);
79 	if (!sbuf)
80 		return -ENOMEM;
81 
82 	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
83 	if (err && err != -EBADMSG)
84 		goto out_free;
85 
86 	/* Find the first position that is definitely not a node */
87 	offs = 0;
88 	buf = sbuf;
89 	len = c->leb_size;
90 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
91 		struct ubifs_ch *ch = buf;
92 
93 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
94 			break;
95 		offs += sz;
96 		buf  += sz;
97 		len  -= sz;
98 	}
99 	/* See if there was a valid master node before that */
100 	if (offs) {
101 		int ret;
102 
103 		offs -= sz;
104 		buf  -= sz;
105 		len  += sz;
106 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
107 		if (ret != SCANNED_A_NODE && offs) {
108 			/* Could have been corruption so check one place back */
109 			offs -= sz;
110 			buf  -= sz;
111 			len  += sz;
112 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
113 			if (ret != SCANNED_A_NODE)
114 				/*
115 				 * We accept only one area of corruption because
116 				 * we are assuming that it was caused while
117 				 * trying to write a master node.
118 				 */
119 				goto out_err;
120 		}
121 		if (ret == SCANNED_A_NODE) {
122 			struct ubifs_ch *ch = buf;
123 
124 			if (ch->node_type != UBIFS_MST_NODE)
125 				goto out_err;
126 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
127 			*mst = buf;
128 			offs += sz;
129 			buf  += sz;
130 			len  -= sz;
131 		}
132 	}
133 	/* Check for corruption */
134 	if (offs < c->leb_size) {
135 		if (!is_empty(buf, min_t(int, len, sz))) {
136 			*cor = buf;
137 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
138 		}
139 		offs += sz;
140 		buf  += sz;
141 		len  -= sz;
142 	}
143 	/* Check remaining empty space */
144 	if (offs < c->leb_size)
145 		if (!is_empty(buf, len))
146 			goto out_err;
147 	*pbuf = sbuf;
148 	return 0;
149 
150 out_err:
151 	err = -EINVAL;
152 out_free:
153 	vfree(sbuf);
154 	*mst = NULL;
155 	*cor = NULL;
156 	return err;
157 }
158 
159 /**
160  * write_rcvrd_mst_node - write recovered master node.
161  * @c: UBIFS file-system description object
162  * @mst: master node
163  *
164  * This function returns %0 on success and a negative error code on failure.
165  */
166 static int write_rcvrd_mst_node(struct ubifs_info *c,
167 				struct ubifs_mst_node *mst)
168 {
169 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
170 	__le32 save_flags;
171 
172 	dbg_rcvry("recovery");
173 
174 	save_flags = mst->flags;
175 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
176 
177 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
178 	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
179 	if (err)
180 		goto out;
181 	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
182 	if (err)
183 		goto out;
184 out:
185 	mst->flags = save_flags;
186 	return err;
187 }
188 
189 /**
190  * ubifs_recover_master_node - recover the master node.
191  * @c: UBIFS file-system description object
192  *
193  * This function recovers the master node from corruption that may occur due to
194  * an unclean unmount.
195  *
196  * This function returns %0 on success and a negative error code on failure.
197  */
198 int ubifs_recover_master_node(struct ubifs_info *c)
199 {
200 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
201 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
202 	const int sz = c->mst_node_alsz;
203 	int err, offs1, offs2;
204 
205 	dbg_rcvry("recovery");
206 
207 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
208 	if (err)
209 		goto out_free;
210 
211 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
212 	if (err)
213 		goto out_free;
214 
215 	if (mst1) {
216 		offs1 = (void *)mst1 - buf1;
217 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
218 		    (offs1 == 0 && !cor1)) {
219 			/*
220 			 * mst1 was written by recovery at offset 0 with no
221 			 * corruption.
222 			 */
223 			dbg_rcvry("recovery recovery");
224 			mst = mst1;
225 		} else if (mst2) {
226 			offs2 = (void *)mst2 - buf2;
227 			if (offs1 == offs2) {
228 				/* Same offset, so must be the same */
229 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
230 					   (void *)mst2 + UBIFS_CH_SZ,
231 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
232 					goto out_err;
233 				mst = mst1;
234 			} else if (offs2 + sz == offs1) {
235 				/* 1st LEB was written, 2nd was not */
236 				if (cor1)
237 					goto out_err;
238 				mst = mst1;
239 			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
240 				/* 1st LEB was unmapped and written, 2nd not */
241 				if (cor1)
242 					goto out_err;
243 				mst = mst1;
244 			} else
245 				goto out_err;
246 		} else {
247 			/*
248 			 * 2nd LEB was unmapped and about to be written, so
249 			 * there must be only one master node in the first LEB
250 			 * and no corruption.
251 			 */
252 			if (offs1 != 0 || cor1)
253 				goto out_err;
254 			mst = mst1;
255 		}
256 	} else {
257 		if (!mst2)
258 			goto out_err;
259 		/*
260 		 * 1st LEB was unmapped and about to be written, so there must
261 		 * be no room left in 2nd LEB.
262 		 */
263 		offs2 = (void *)mst2 - buf2;
264 		if (offs2 + sz + sz <= c->leb_size)
265 			goto out_err;
266 		mst = mst2;
267 	}
268 
269 	dbg_rcvry("recovered master node from LEB %d",
270 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
271 
272 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
273 
274 	if ((c->vfs_sb->s_flags & MS_RDONLY)) {
275 		/* Read-only mode. Keep a copy for switching to rw mode */
276 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
277 		if (!c->rcvrd_mst_node) {
278 			err = -ENOMEM;
279 			goto out_free;
280 		}
281 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
282 	}
283 
284 	vfree(buf2);
285 	vfree(buf1);
286 
287 	return 0;
288 
289 out_err:
290 	err = -EINVAL;
291 out_free:
292 	ubifs_err("failed to recover master node");
293 	if (mst1) {
294 		dbg_err("dumping first master node");
295 		dbg_dump_node(c, mst1);
296 	}
297 	if (mst2) {
298 		dbg_err("dumping second master node");
299 		dbg_dump_node(c, mst2);
300 	}
301 	vfree(buf2);
302 	vfree(buf1);
303 	return err;
304 }
305 
306 /**
307  * ubifs_write_rcvrd_mst_node - write the recovered master node.
308  * @c: UBIFS file-system description object
309  *
310  * This function writes the master node that was recovered during mounting in
311  * read-only mode and must now be written because we are remounting rw.
312  *
313  * This function returns %0 on success and a negative error code on failure.
314  */
315 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
316 {
317 	int err;
318 
319 	if (!c->rcvrd_mst_node)
320 		return 0;
321 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
322 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
323 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
324 	if (err)
325 		return err;
326 	kfree(c->rcvrd_mst_node);
327 	c->rcvrd_mst_node = NULL;
328 	return 0;
329 }
330 
331 /**
332  * is_last_write - determine if an offset was in the last write to a LEB.
333  * @c: UBIFS file-system description object
334  * @buf: buffer to check
335  * @offs: offset to check
336  *
337  * This function returns %1 if @offs was in the last write to the LEB whose data
338  * is in @buf, otherwise %0 is returned.  The determination is made by checking
339  * for subsequent empty space starting from the next min_io_size boundary (or a
340  * bit less than the common header size if min_io_size is one).
341  */
342 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
343 {
344 	int empty_offs;
345 	int check_len;
346 	uint8_t *p;
347 
348 	if (c->min_io_size == 1) {
349 		check_len = c->leb_size - offs;
350 		p = buf + check_len;
351 		for (; check_len > 0; check_len--)
352 			if (*--p != 0xff)
353 				break;
354 		/*
355 		 * 'check_len' is the size of the corruption which cannot be
356 		 * more than the size of 1 node if it was caused by an unclean
357 		 * unmount.
358 		 */
359 		if (check_len > UBIFS_MAX_NODE_SZ)
360 			return 0;
361 		return 1;
362 	}
363 
364 	/*
365 	 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
366 	 * last wbuf written. After that should be empty space.
367 	 */
368 	empty_offs = ALIGN(offs + 1, c->min_io_size);
369 	check_len = c->leb_size - empty_offs;
370 	p = buf + empty_offs - offs;
371 
372 	for (; check_len > 0; check_len--)
373 		if (*p++ != 0xff)
374 			return 0;
375 	return 1;
376 }
377 
378 /**
379  * clean_buf - clean the data from an LEB sitting in a buffer.
380  * @c: UBIFS file-system description object
381  * @buf: buffer to clean
382  * @lnum: LEB number to clean
383  * @offs: offset from which to clean
384  * @len: length of buffer
385  *
386  * This function pads up to the next min_io_size boundary (if there is one) and
387  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
388  * min_io_size boundary (if there is one).
389  */
390 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
391 		      int *offs, int *len)
392 {
393 	int empty_offs, pad_len;
394 
395 	lnum = lnum;
396 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
397 
398 	if (c->min_io_size == 1) {
399 		memset(*buf, 0xff, c->leb_size - *offs);
400 		return;
401 	}
402 
403 	ubifs_assert(!(*offs & 7));
404 	empty_offs = ALIGN(*offs, c->min_io_size);
405 	pad_len = empty_offs - *offs;
406 	ubifs_pad(c, *buf, pad_len);
407 	*offs += pad_len;
408 	*buf += pad_len;
409 	*len -= pad_len;
410 	memset(*buf, 0xff, c->leb_size - empty_offs);
411 }
412 
413 /**
414  * no_more_nodes - determine if there are no more nodes in a buffer.
415  * @c: UBIFS file-system description object
416  * @buf: buffer to check
417  * @len: length of buffer
418  * @lnum: LEB number of the LEB from which @buf was read
419  * @offs: offset from which @buf was read
420  *
421  * This function scans @buf for more nodes and returns %0 is a node is found and
422  * %1 if no more nodes are found.
423  */
424 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
425 			int lnum, int offs)
426 {
427 	int skip, next_offs = 0;
428 
429 	if (len > UBIFS_DATA_NODE_SZ) {
430 		struct ubifs_ch *ch = buf;
431 		int dlen = le32_to_cpu(ch->len);
432 
433 		if (ch->node_type == UBIFS_DATA_NODE && dlen >= UBIFS_CH_SZ &&
434 		    dlen <= UBIFS_MAX_DATA_NODE_SZ)
435 			/* The corrupt node looks like a data node */
436 			next_offs = ALIGN(offs + dlen, 8);
437 	}
438 
439 	if (c->min_io_size == 1)
440 		skip = 8;
441 	else
442 		skip = ALIGN(offs + 1, c->min_io_size) - offs;
443 
444 	offs += skip;
445 	buf += skip;
446 	len -= skip;
447 	while (len > 8) {
448 		struct ubifs_ch *ch = buf;
449 		uint32_t magic = le32_to_cpu(ch->magic);
450 		int ret;
451 
452 		if (magic == UBIFS_NODE_MAGIC) {
453 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
454 			if (ret == SCANNED_A_NODE || ret > 0) {
455 				/*
456 				 * There is a small chance this is just data in
457 				 * a data node, so check that possibility. e.g.
458 				 * this is part of a file that itself contains
459 				 * a UBIFS image.
460 				 */
461 				if (next_offs && offs + le32_to_cpu(ch->len) <=
462 				    next_offs)
463 					continue;
464 				dbg_rcvry("unexpected node at %d:%d", lnum,
465 					  offs);
466 				return 0;
467 			}
468 		}
469 		offs += 8;
470 		buf += 8;
471 		len -= 8;
472 	}
473 	return 1;
474 }
475 
476 /**
477  * fix_unclean_leb - fix an unclean LEB.
478  * @c: UBIFS file-system description object
479  * @sleb: scanned LEB information
480  * @start: offset where scan started
481  */
482 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
483 			   int start)
484 {
485 	int lnum = sleb->lnum, endpt = start;
486 
487 	/* Get the end offset of the last node we are keeping */
488 	if (!list_empty(&sleb->nodes)) {
489 		struct ubifs_scan_node *snod;
490 
491 		snod = list_entry(sleb->nodes.prev,
492 				  struct ubifs_scan_node, list);
493 		endpt = snod->offs + snod->len;
494 	}
495 
496 	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
497 		/* Add to recovery list */
498 		struct ubifs_unclean_leb *ucleb;
499 
500 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
501 			  lnum, start, sleb->endpt);
502 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
503 		if (!ucleb)
504 			return -ENOMEM;
505 		ucleb->lnum = lnum;
506 		ucleb->endpt = endpt;
507 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
508 	}
509 	return 0;
510 }
511 
512 /**
513  * drop_incomplete_group - drop nodes from an incomplete group.
514  * @sleb: scanned LEB information
515  * @offs: offset of dropped nodes is returned here
516  *
517  * This function returns %1 if nodes are dropped and %0 otherwise.
518  */
519 static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
520 {
521 	int dropped = 0;
522 
523 	while (!list_empty(&sleb->nodes)) {
524 		struct ubifs_scan_node *snod;
525 		struct ubifs_ch *ch;
526 
527 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
528 				  list);
529 		ch = snod->node;
530 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
531 			return dropped;
532 		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
533 		*offs = snod->offs;
534 		list_del(&snod->list);
535 		kfree(snod);
536 		sleb->nodes_cnt -= 1;
537 		dropped = 1;
538 	}
539 	return dropped;
540 }
541 
542 /**
543  * ubifs_recover_leb - scan and recover a LEB.
544  * @c: UBIFS file-system description object
545  * @lnum: LEB number
546  * @offs: offset
547  * @sbuf: LEB-sized buffer to use
548  * @grouped: nodes may be grouped for recovery
549  *
550  * This function does a scan of a LEB, but caters for errors that might have
551  * been caused by the unclean unmount from which we are attempting to recover.
552  *
553  * This function returns %0 on success and a negative error code on failure.
554  */
555 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
556 					 int offs, void *sbuf, int grouped)
557 {
558 	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
559 	int empty_chkd = 0, start = offs;
560 	struct ubifs_scan_leb *sleb;
561 	void *buf = sbuf + offs;
562 
563 	dbg_rcvry("%d:%d", lnum, offs);
564 
565 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
566 	if (IS_ERR(sleb))
567 		return sleb;
568 
569 	if (sleb->ecc)
570 		need_clean = 1;
571 
572 	while (len >= 8) {
573 		int ret;
574 
575 		dbg_scan("look at LEB %d:%d (%d bytes left)",
576 			 lnum, offs, len);
577 
578 		cond_resched();
579 
580 		/*
581 		 * Scan quietly until there is an error from which we cannot
582 		 * recover
583 		 */
584 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
585 
586 		if (ret == SCANNED_A_NODE) {
587 			/* A valid node, and not a padding node */
588 			struct ubifs_ch *ch = buf;
589 			int node_len;
590 
591 			err = ubifs_add_snod(c, sleb, buf, offs);
592 			if (err)
593 				goto error;
594 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
595 			offs += node_len;
596 			buf += node_len;
597 			len -= node_len;
598 			continue;
599 		}
600 
601 		if (ret > 0) {
602 			/* Padding bytes or a valid padding node */
603 			offs += ret;
604 			buf += ret;
605 			len -= ret;
606 			continue;
607 		}
608 
609 		if (ret == SCANNED_EMPTY_SPACE) {
610 			if (!is_empty(buf, len)) {
611 				if (!is_last_write(c, buf, offs))
612 					break;
613 				clean_buf(c, &buf, lnum, &offs, &len);
614 				need_clean = 1;
615 			}
616 			empty_chkd = 1;
617 			break;
618 		}
619 
620 		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
621 			if (is_last_write(c, buf, offs)) {
622 				clean_buf(c, &buf, lnum, &offs, &len);
623 				need_clean = 1;
624 				empty_chkd = 1;
625 				break;
626 			}
627 
628 		if (ret == SCANNED_A_CORRUPT_NODE)
629 			if (no_more_nodes(c, buf, len, lnum, offs)) {
630 				clean_buf(c, &buf, lnum, &offs, &len);
631 				need_clean = 1;
632 				empty_chkd = 1;
633 				break;
634 			}
635 
636 		if (quiet) {
637 			/* Redo the last scan but noisily */
638 			quiet = 0;
639 			continue;
640 		}
641 
642 		switch (ret) {
643 		case SCANNED_GARBAGE:
644 			dbg_err("garbage");
645 			goto corrupted;
646 		case SCANNED_A_CORRUPT_NODE:
647 		case SCANNED_A_BAD_PAD_NODE:
648 			dbg_err("bad node");
649 			goto corrupted;
650 		default:
651 			dbg_err("unknown");
652 			goto corrupted;
653 		}
654 	}
655 
656 	if (!empty_chkd && !is_empty(buf, len)) {
657 		if (is_last_write(c, buf, offs)) {
658 			clean_buf(c, &buf, lnum, &offs, &len);
659 			need_clean = 1;
660 		} else {
661 			ubifs_err("corrupt empty space at LEB %d:%d",
662 				  lnum, offs);
663 			goto corrupted;
664 		}
665 	}
666 
667 	/* Drop nodes from incomplete group */
668 	if (grouped && drop_incomplete_group(sleb, &offs)) {
669 		buf = sbuf + offs;
670 		len = c->leb_size - offs;
671 		clean_buf(c, &buf, lnum, &offs, &len);
672 		need_clean = 1;
673 	}
674 
675 	if (offs % c->min_io_size) {
676 		clean_buf(c, &buf, lnum, &offs, &len);
677 		need_clean = 1;
678 	}
679 
680 	ubifs_end_scan(c, sleb, lnum, offs);
681 
682 	if (need_clean) {
683 		err = fix_unclean_leb(c, sleb, start);
684 		if (err)
685 			goto error;
686 	}
687 
688 	return sleb;
689 
690 corrupted:
691 	ubifs_scanned_corruption(c, lnum, offs, buf);
692 	err = -EUCLEAN;
693 error:
694 	ubifs_err("LEB %d scanning failed", lnum);
695 	ubifs_scan_destroy(sleb);
696 	return ERR_PTR(err);
697 }
698 
699 /**
700  * get_cs_sqnum - get commit start sequence number.
701  * @c: UBIFS file-system description object
702  * @lnum: LEB number of commit start node
703  * @offs: offset of commit start node
704  * @cs_sqnum: commit start sequence number is returned here
705  *
706  * This function returns %0 on success and a negative error code on failure.
707  */
708 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
709 			unsigned long long *cs_sqnum)
710 {
711 	struct ubifs_cs_node *cs_node = NULL;
712 	int err, ret;
713 
714 	dbg_rcvry("at %d:%d", lnum, offs);
715 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
716 	if (!cs_node)
717 		return -ENOMEM;
718 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
719 		goto out_err;
720 	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
721 	if (err && err != -EBADMSG)
722 		goto out_free;
723 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
724 	if (ret != SCANNED_A_NODE) {
725 		dbg_err("Not a valid node");
726 		goto out_err;
727 	}
728 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
729 		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
730 		goto out_err;
731 	}
732 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
733 		dbg_err("CS node cmt_no %llu != current cmt_no %llu",
734 			(unsigned long long)le64_to_cpu(cs_node->cmt_no),
735 			c->cmt_no);
736 		goto out_err;
737 	}
738 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
739 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
740 	kfree(cs_node);
741 	return 0;
742 
743 out_err:
744 	err = -EINVAL;
745 out_free:
746 	ubifs_err("failed to get CS sqnum");
747 	kfree(cs_node);
748 	return err;
749 }
750 
751 /**
752  * ubifs_recover_log_leb - scan and recover a log LEB.
753  * @c: UBIFS file-system description object
754  * @lnum: LEB number
755  * @offs: offset
756  * @sbuf: LEB-sized buffer to use
757  *
758  * This function does a scan of a LEB, but caters for errors that might have
759  * been caused by the unclean unmount from which we are attempting to recover.
760  *
761  * This function returns %0 on success and a negative error code on failure.
762  */
763 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
764 					     int offs, void *sbuf)
765 {
766 	struct ubifs_scan_leb *sleb;
767 	int next_lnum;
768 
769 	dbg_rcvry("LEB %d", lnum);
770 	next_lnum = lnum + 1;
771 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
772 		next_lnum = UBIFS_LOG_LNUM;
773 	if (next_lnum != c->ltail_lnum) {
774 		/*
775 		 * We can only recover at the end of the log, so check that the
776 		 * next log LEB is empty or out of date.
777 		 */
778 		sleb = ubifs_scan(c, next_lnum, 0, sbuf);
779 		if (IS_ERR(sleb))
780 			return sleb;
781 		if (sleb->nodes_cnt) {
782 			struct ubifs_scan_node *snod;
783 			unsigned long long cs_sqnum = c->cs_sqnum;
784 
785 			snod = list_entry(sleb->nodes.next,
786 					  struct ubifs_scan_node, list);
787 			if (cs_sqnum == 0) {
788 				int err;
789 
790 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
791 				if (err) {
792 					ubifs_scan_destroy(sleb);
793 					return ERR_PTR(err);
794 				}
795 			}
796 			if (snod->sqnum > cs_sqnum) {
797 				ubifs_err("unrecoverable log corruption "
798 					  "in LEB %d", lnum);
799 				ubifs_scan_destroy(sleb);
800 				return ERR_PTR(-EUCLEAN);
801 			}
802 		}
803 		ubifs_scan_destroy(sleb);
804 	}
805 	return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
806 }
807 
808 /**
809  * recover_head - recover a head.
810  * @c: UBIFS file-system description object
811  * @lnum: LEB number of head to recover
812  * @offs: offset of head to recover
813  * @sbuf: LEB-sized buffer to use
814  *
815  * This function ensures that there is no data on the flash at a head location.
816  *
817  * This function returns %0 on success and a negative error code on failure.
818  */
819 static int recover_head(const struct ubifs_info *c, int lnum, int offs,
820 			void *sbuf)
821 {
822 	int len, err, need_clean = 0;
823 
824 	if (c->min_io_size > 1)
825 		len = c->min_io_size;
826 	else
827 		len = 512;
828 	if (offs + len > c->leb_size)
829 		len = c->leb_size - offs;
830 
831 	if (!len)
832 		return 0;
833 
834 	/* Read at the head location and check it is empty flash */
835 	err = ubi_read(c->ubi, lnum, sbuf, offs, len);
836 	if (err)
837 		need_clean = 1;
838 	else {
839 		uint8_t *p = sbuf;
840 
841 		while (len--)
842 			if (*p++ != 0xff) {
843 				need_clean = 1;
844 				break;
845 			}
846 	}
847 
848 	if (need_clean) {
849 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
850 		if (offs == 0)
851 			return ubifs_leb_unmap(c, lnum);
852 		err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
853 		if (err)
854 			return err;
855 		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
856 	}
857 
858 	return 0;
859 }
860 
861 /**
862  * ubifs_recover_inl_heads - recover index and LPT heads.
863  * @c: UBIFS file-system description object
864  * @sbuf: LEB-sized buffer to use
865  *
866  * This function ensures that there is no data on the flash at the index and
867  * LPT head locations.
868  *
869  * This deals with the recovery of a half-completed journal commit. UBIFS is
870  * careful never to overwrite the last version of the index or the LPT. Because
871  * the index and LPT are wandering trees, data from a half-completed commit will
872  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
873  * assumed to be empty and will be unmapped anyway before use, or in the index
874  * and LPT heads.
875  *
876  * This function returns %0 on success and a negative error code on failure.
877  */
878 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
879 {
880 	int err;
881 
882 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
883 
884 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
885 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
886 	if (err)
887 		return err;
888 
889 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
890 	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
891 	if (err)
892 		return err;
893 
894 	return 0;
895 }
896 
897 /**
898  *  clean_an_unclean_leb - read and write a LEB to remove corruption.
899  * @c: UBIFS file-system description object
900  * @ucleb: unclean LEB information
901  * @sbuf: LEB-sized buffer to use
902  *
903  * This function reads a LEB up to a point pre-determined by the mount recovery,
904  * checks the nodes, and writes the result back to the flash, thereby cleaning
905  * off any following corruption, or non-fatal ECC errors.
906  *
907  * This function returns %0 on success and a negative error code on failure.
908  */
909 static int clean_an_unclean_leb(const struct ubifs_info *c,
910 				struct ubifs_unclean_leb *ucleb, void *sbuf)
911 {
912 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
913 	void *buf = sbuf;
914 
915 	dbg_rcvry("LEB %d len %d", lnum, len);
916 
917 	if (len == 0) {
918 		/* Nothing to read, just unmap it */
919 		err = ubifs_leb_unmap(c, lnum);
920 		if (err)
921 			return err;
922 		return 0;
923 	}
924 
925 	err = ubi_read(c->ubi, lnum, buf, offs, len);
926 	if (err && err != -EBADMSG)
927 		return err;
928 
929 	while (len >= 8) {
930 		int ret;
931 
932 		cond_resched();
933 
934 		/* Scan quietly until there is an error */
935 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
936 
937 		if (ret == SCANNED_A_NODE) {
938 			/* A valid node, and not a padding node */
939 			struct ubifs_ch *ch = buf;
940 			int node_len;
941 
942 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
943 			offs += node_len;
944 			buf += node_len;
945 			len -= node_len;
946 			continue;
947 		}
948 
949 		if (ret > 0) {
950 			/* Padding bytes or a valid padding node */
951 			offs += ret;
952 			buf += ret;
953 			len -= ret;
954 			continue;
955 		}
956 
957 		if (ret == SCANNED_EMPTY_SPACE) {
958 			ubifs_err("unexpected empty space at %d:%d",
959 				  lnum, offs);
960 			return -EUCLEAN;
961 		}
962 
963 		if (quiet) {
964 			/* Redo the last scan but noisily */
965 			quiet = 0;
966 			continue;
967 		}
968 
969 		ubifs_scanned_corruption(c, lnum, offs, buf);
970 		return -EUCLEAN;
971 	}
972 
973 	/* Pad to min_io_size */
974 	len = ALIGN(ucleb->endpt, c->min_io_size);
975 	if (len > ucleb->endpt) {
976 		int pad_len = len - ALIGN(ucleb->endpt, 8);
977 
978 		if (pad_len > 0) {
979 			buf = c->sbuf + len - pad_len;
980 			ubifs_pad(c, buf, pad_len);
981 		}
982 	}
983 
984 	/* Write back the LEB atomically */
985 	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
986 	if (err)
987 		return err;
988 
989 	dbg_rcvry("cleaned LEB %d", lnum);
990 
991 	return 0;
992 }
993 
994 /**
995  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
996  * @c: UBIFS file-system description object
997  * @sbuf: LEB-sized buffer to use
998  *
999  * This function cleans a LEB identified during recovery that needs to be
1000  * written but was not because UBIFS was mounted read-only. This happens when
1001  * remounting to read-write mode.
1002  *
1003  * This function returns %0 on success and a negative error code on failure.
1004  */
1005 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1006 {
1007 	dbg_rcvry("recovery");
1008 	while (!list_empty(&c->unclean_leb_list)) {
1009 		struct ubifs_unclean_leb *ucleb;
1010 		int err;
1011 
1012 		ucleb = list_entry(c->unclean_leb_list.next,
1013 				   struct ubifs_unclean_leb, list);
1014 		err = clean_an_unclean_leb(c, ucleb, sbuf);
1015 		if (err)
1016 			return err;
1017 		list_del(&ucleb->list);
1018 		kfree(ucleb);
1019 	}
1020 	return 0;
1021 }
1022 
1023 /**
1024  * struct size_entry - inode size information for recovery.
1025  * @rb: link in the RB-tree of sizes
1026  * @inum: inode number
1027  * @i_size: size on inode
1028  * @d_size: maximum size based on data nodes
1029  * @exists: indicates whether the inode exists
1030  * @inode: inode if pinned in memory awaiting rw mode to fix it
1031  */
1032 struct size_entry {
1033 	struct rb_node rb;
1034 	ino_t inum;
1035 	loff_t i_size;
1036 	loff_t d_size;
1037 	int exists;
1038 	struct inode *inode;
1039 };
1040 
1041 /**
1042  * add_ino - add an entry to the size tree.
1043  * @c: UBIFS file-system description object
1044  * @inum: inode number
1045  * @i_size: size on inode
1046  * @d_size: maximum size based on data nodes
1047  * @exists: indicates whether the inode exists
1048  */
1049 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1050 		   loff_t d_size, int exists)
1051 {
1052 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1053 	struct size_entry *e;
1054 
1055 	while (*p) {
1056 		parent = *p;
1057 		e = rb_entry(parent, struct size_entry, rb);
1058 		if (inum < e->inum)
1059 			p = &(*p)->rb_left;
1060 		else
1061 			p = &(*p)->rb_right;
1062 	}
1063 
1064 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1065 	if (!e)
1066 		return -ENOMEM;
1067 
1068 	e->inum = inum;
1069 	e->i_size = i_size;
1070 	e->d_size = d_size;
1071 	e->exists = exists;
1072 
1073 	rb_link_node(&e->rb, parent, p);
1074 	rb_insert_color(&e->rb, &c->size_tree);
1075 
1076 	return 0;
1077 }
1078 
1079 /**
1080  * find_ino - find an entry on the size tree.
1081  * @c: UBIFS file-system description object
1082  * @inum: inode number
1083  */
1084 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1085 {
1086 	struct rb_node *p = c->size_tree.rb_node;
1087 	struct size_entry *e;
1088 
1089 	while (p) {
1090 		e = rb_entry(p, struct size_entry, rb);
1091 		if (inum < e->inum)
1092 			p = p->rb_left;
1093 		else if (inum > e->inum)
1094 			p = p->rb_right;
1095 		else
1096 			return e;
1097 	}
1098 	return NULL;
1099 }
1100 
1101 /**
1102  * remove_ino - remove an entry from the size tree.
1103  * @c: UBIFS file-system description object
1104  * @inum: inode number
1105  */
1106 static void remove_ino(struct ubifs_info *c, ino_t inum)
1107 {
1108 	struct size_entry *e = find_ino(c, inum);
1109 
1110 	if (!e)
1111 		return;
1112 	rb_erase(&e->rb, &c->size_tree);
1113 	kfree(e);
1114 }
1115 
1116 /**
1117  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1118  * @c: UBIFS file-system description object
1119  * @key: node key
1120  * @deletion: node is for a deletion
1121  * @new_size: inode size
1122  *
1123  * This function has two purposes:
1124  *     1) to ensure there are no data nodes that fall outside the inode size
1125  *     2) to ensure there are no data nodes for inodes that do not exist
1126  * To accomplish those purposes, a rb-tree is constructed containing an entry
1127  * for each inode number in the journal that has not been deleted, and recording
1128  * the size from the inode node, the maximum size of any data node (also altered
1129  * by truncations) and a flag indicating a inode number for which no inode node
1130  * was present in the journal.
1131  *
1132  * Note that there is still the possibility that there are data nodes that have
1133  * been committed that are beyond the inode size, however the only way to find
1134  * them would be to scan the entire index. Alternatively, some provision could
1135  * be made to record the size of inodes at the start of commit, which would seem
1136  * very cumbersome for a scenario that is quite unlikely and the only negative
1137  * consequence of which is wasted space.
1138  *
1139  * This functions returns %0 on success and a negative error code on failure.
1140  */
1141 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1142 			     int deletion, loff_t new_size)
1143 {
1144 	ino_t inum = key_inum(c, key);
1145 	struct size_entry *e;
1146 	int err;
1147 
1148 	switch (key_type(c, key)) {
1149 	case UBIFS_INO_KEY:
1150 		if (deletion)
1151 			remove_ino(c, inum);
1152 		else {
1153 			e = find_ino(c, inum);
1154 			if (e) {
1155 				e->i_size = new_size;
1156 				e->exists = 1;
1157 			} else {
1158 				err = add_ino(c, inum, new_size, 0, 1);
1159 				if (err)
1160 					return err;
1161 			}
1162 		}
1163 		break;
1164 	case UBIFS_DATA_KEY:
1165 		e = find_ino(c, inum);
1166 		if (e) {
1167 			if (new_size > e->d_size)
1168 				e->d_size = new_size;
1169 		} else {
1170 			err = add_ino(c, inum, 0, new_size, 0);
1171 			if (err)
1172 				return err;
1173 		}
1174 		break;
1175 	case UBIFS_TRUN_KEY:
1176 		e = find_ino(c, inum);
1177 		if (e)
1178 			e->d_size = new_size;
1179 		break;
1180 	}
1181 	return 0;
1182 }
1183 
1184 /**
1185  * ubifs_recover_size - recover inode size.
1186  * @c: UBIFS file-system description object
1187  *
1188  * This function attempts to fix inode size discrepancies identified by the
1189  * 'ubifs_recover_size_accum()' function.
1190  *
1191  * This functions returns %0 on success and a negative error code on failure.
1192  */
1193 int ubifs_recover_size(struct ubifs_info *c)
1194 {
1195 	struct rb_node *this = rb_first(&c->size_tree);
1196 
1197 	while (this) {
1198 		struct size_entry *e;
1199 		int err;
1200 
1201 		e = rb_entry(this, struct size_entry, rb);
1202 		if (!e->exists) {
1203 			union ubifs_key key;
1204 
1205 			ino_key_init(c, &key, e->inum);
1206 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1207 			if (err && err != -ENOENT)
1208 				return err;
1209 			if (err == -ENOENT) {
1210 				/* Remove data nodes that have no inode */
1211 				dbg_rcvry("removing ino %lu",
1212 					  (unsigned long)e->inum);
1213 				err = ubifs_tnc_remove_ino(c, e->inum);
1214 				if (err)
1215 					return err;
1216 			} else {
1217 				struct ubifs_ino_node *ino = c->sbuf;
1218 
1219 				e->exists = 1;
1220 				e->i_size = le64_to_cpu(ino->size);
1221 			}
1222 		}
1223 		if (e->exists && e->i_size < e->d_size) {
1224 			if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
1225 				/* Fix the inode size and pin it in memory */
1226 				struct inode *inode;
1227 
1228 				inode = ubifs_iget(c->vfs_sb, e->inum);
1229 				if (IS_ERR(inode))
1230 					return PTR_ERR(inode);
1231 				if (inode->i_size < e->d_size) {
1232 					dbg_rcvry("ino %lu size %lld -> %lld",
1233 						  (unsigned long)e->inum,
1234 						  e->d_size, inode->i_size);
1235 					inode->i_size = e->d_size;
1236 					ubifs_inode(inode)->ui_size = e->d_size;
1237 					e->inode = inode;
1238 					this = rb_next(this);
1239 					continue;
1240 				}
1241 				iput(inode);
1242 			}
1243 		}
1244 		this = rb_next(this);
1245 		rb_erase(&e->rb, &c->size_tree);
1246 		kfree(e);
1247 	}
1248 	return 0;
1249 }
1250