xref: /openbmc/u-boot/fs/ubifs/recovery.c (revision 47539e23)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Adrian Hunter
9  *          Artem Bityutskiy (Битюцкий Артём)
10  */
11 
12 /*
13  * This file implements functions needed to recover from unclean un-mounts.
14  * When UBIFS is mounted, it checks a flag on the master node to determine if
15  * an un-mount was completed successfully. If not, the process of mounting
16  * incorporates additional checking and fixing of on-flash data structures.
17  * UBIFS always cleans away all remnants of an unclean un-mount, so that
18  * errors do not accumulate. However UBIFS defers recovery if it is mounted
19  * read-only, and the flash is not modified in that case.
20  *
21  * The general UBIFS approach to the recovery is that it recovers from
22  * corruptions which could be caused by power cuts, but it refuses to recover
23  * from corruption caused by other reasons. And UBIFS tries to distinguish
24  * between these 2 reasons of corruptions and silently recover in the former
25  * case and loudly complain in the latter case.
26  *
27  * UBIFS writes only to erased LEBs, so it writes only to the flash space
28  * containing only 0xFFs. UBIFS also always writes strictly from the beginning
29  * of the LEB to the end. And UBIFS assumes that the underlying flash media
30  * writes in @c->max_write_size bytes at a time.
31  *
32  * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
33  * I/O unit corresponding to offset X to contain corrupted data, all the
34  * following min. I/O units have to contain empty space (all 0xFFs). If this is
35  * not true, the corruption cannot be the result of a power cut, and UBIFS
36  * refuses to mount.
37  */
38 
39 #define __UBOOT__
40 #ifndef __UBOOT__
41 #include <linux/crc32.h>
42 #include <linux/slab.h>
43 #else
44 #include <linux/err.h>
45 #endif
46 #include "ubifs.h"
47 
48 /**
49  * is_empty - determine whether a buffer is empty (contains all 0xff).
50  * @buf: buffer to clean
51  * @len: length of buffer
52  *
53  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
54  * %0 is returned.
55  */
56 static int is_empty(void *buf, int len)
57 {
58 	uint8_t *p = buf;
59 	int i;
60 
61 	for (i = 0; i < len; i++)
62 		if (*p++ != 0xff)
63 			return 0;
64 	return 1;
65 }
66 
67 /**
68  * first_non_ff - find offset of the first non-0xff byte.
69  * @buf: buffer to search in
70  * @len: length of buffer
71  *
72  * This function returns offset of the first non-0xff byte in @buf or %-1 if
73  * the buffer contains only 0xff bytes.
74  */
75 static int first_non_ff(void *buf, int len)
76 {
77 	uint8_t *p = buf;
78 	int i;
79 
80 	for (i = 0; i < len; i++)
81 		if (*p++ != 0xff)
82 			return i;
83 	return -1;
84 }
85 
86 /**
87  * get_master_node - get the last valid master node allowing for corruption.
88  * @c: UBIFS file-system description object
89  * @lnum: LEB number
90  * @pbuf: buffer containing the LEB read, is returned here
91  * @mst: master node, if found, is returned here
92  * @cor: corruption, if found, is returned here
93  *
94  * This function allocates a buffer, reads the LEB into it, and finds and
95  * returns the last valid master node allowing for one area of corruption.
96  * The corrupt area, if there is one, must be consistent with the assumption
97  * that it is the result of an unclean unmount while the master node was being
98  * written. Under those circumstances, it is valid to use the previously written
99  * master node.
100  *
101  * This function returns %0 on success and a negative error code on failure.
102  */
103 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
104 			   struct ubifs_mst_node **mst, void **cor)
105 {
106 	const int sz = c->mst_node_alsz;
107 	int err, offs, len;
108 	void *sbuf, *buf;
109 
110 	sbuf = vmalloc(c->leb_size);
111 	if (!sbuf)
112 		return -ENOMEM;
113 
114 	err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
115 	if (err && err != -EBADMSG)
116 		goto out_free;
117 
118 	/* Find the first position that is definitely not a node */
119 	offs = 0;
120 	buf = sbuf;
121 	len = c->leb_size;
122 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
123 		struct ubifs_ch *ch = buf;
124 
125 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
126 			break;
127 		offs += sz;
128 		buf  += sz;
129 		len  -= sz;
130 	}
131 	/* See if there was a valid master node before that */
132 	if (offs) {
133 		int ret;
134 
135 		offs -= sz;
136 		buf  -= sz;
137 		len  += sz;
138 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
139 		if (ret != SCANNED_A_NODE && offs) {
140 			/* Could have been corruption so check one place back */
141 			offs -= sz;
142 			buf  -= sz;
143 			len  += sz;
144 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
145 			if (ret != SCANNED_A_NODE)
146 				/*
147 				 * We accept only one area of corruption because
148 				 * we are assuming that it was caused while
149 				 * trying to write a master node.
150 				 */
151 				goto out_err;
152 		}
153 		if (ret == SCANNED_A_NODE) {
154 			struct ubifs_ch *ch = buf;
155 
156 			if (ch->node_type != UBIFS_MST_NODE)
157 				goto out_err;
158 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
159 			*mst = buf;
160 			offs += sz;
161 			buf  += sz;
162 			len  -= sz;
163 		}
164 	}
165 	/* Check for corruption */
166 	if (offs < c->leb_size) {
167 		if (!is_empty(buf, min_t(int, len, sz))) {
168 			*cor = buf;
169 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
170 		}
171 		offs += sz;
172 		buf  += sz;
173 		len  -= sz;
174 	}
175 	/* Check remaining empty space */
176 	if (offs < c->leb_size)
177 		if (!is_empty(buf, len))
178 			goto out_err;
179 	*pbuf = sbuf;
180 	return 0;
181 
182 out_err:
183 	err = -EINVAL;
184 out_free:
185 	vfree(sbuf);
186 	*mst = NULL;
187 	*cor = NULL;
188 	return err;
189 }
190 
191 /**
192  * write_rcvrd_mst_node - write recovered master node.
193  * @c: UBIFS file-system description object
194  * @mst: master node
195  *
196  * This function returns %0 on success and a negative error code on failure.
197  */
198 static int write_rcvrd_mst_node(struct ubifs_info *c,
199 				struct ubifs_mst_node *mst)
200 {
201 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
202 	__le32 save_flags;
203 
204 	dbg_rcvry("recovery");
205 
206 	save_flags = mst->flags;
207 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
208 
209 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
210 	err = ubifs_leb_change(c, lnum, mst, sz);
211 	if (err)
212 		goto out;
213 	err = ubifs_leb_change(c, lnum + 1, mst, sz);
214 	if (err)
215 		goto out;
216 out:
217 	mst->flags = save_flags;
218 	return err;
219 }
220 
221 /**
222  * ubifs_recover_master_node - recover the master node.
223  * @c: UBIFS file-system description object
224  *
225  * This function recovers the master node from corruption that may occur due to
226  * an unclean unmount.
227  *
228  * This function returns %0 on success and a negative error code on failure.
229  */
230 int ubifs_recover_master_node(struct ubifs_info *c)
231 {
232 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
233 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
234 	const int sz = c->mst_node_alsz;
235 	int err, offs1, offs2;
236 
237 	dbg_rcvry("recovery");
238 
239 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
240 	if (err)
241 		goto out_free;
242 
243 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
244 	if (err)
245 		goto out_free;
246 
247 	if (mst1) {
248 		offs1 = (void *)mst1 - buf1;
249 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
250 		    (offs1 == 0 && !cor1)) {
251 			/*
252 			 * mst1 was written by recovery at offset 0 with no
253 			 * corruption.
254 			 */
255 			dbg_rcvry("recovery recovery");
256 			mst = mst1;
257 		} else if (mst2) {
258 			offs2 = (void *)mst2 - buf2;
259 			if (offs1 == offs2) {
260 				/* Same offset, so must be the same */
261 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
262 					   (void *)mst2 + UBIFS_CH_SZ,
263 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
264 					goto out_err;
265 				mst = mst1;
266 			} else if (offs2 + sz == offs1) {
267 				/* 1st LEB was written, 2nd was not */
268 				if (cor1)
269 					goto out_err;
270 				mst = mst1;
271 			} else if (offs1 == 0 &&
272 				   c->leb_size - offs2 - sz < sz) {
273 				/* 1st LEB was unmapped and written, 2nd not */
274 				if (cor1)
275 					goto out_err;
276 				mst = mst1;
277 			} else
278 				goto out_err;
279 		} else {
280 			/*
281 			 * 2nd LEB was unmapped and about to be written, so
282 			 * there must be only one master node in the first LEB
283 			 * and no corruption.
284 			 */
285 			if (offs1 != 0 || cor1)
286 				goto out_err;
287 			mst = mst1;
288 		}
289 	} else {
290 		if (!mst2)
291 			goto out_err;
292 		/*
293 		 * 1st LEB was unmapped and about to be written, so there must
294 		 * be no room left in 2nd LEB.
295 		 */
296 		offs2 = (void *)mst2 - buf2;
297 		if (offs2 + sz + sz <= c->leb_size)
298 			goto out_err;
299 		mst = mst2;
300 	}
301 
302 	ubifs_msg("recovered master node from LEB %d",
303 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
304 
305 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
306 
307 	if (c->ro_mount) {
308 		/* Read-only mode. Keep a copy for switching to rw mode */
309 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
310 		if (!c->rcvrd_mst_node) {
311 			err = -ENOMEM;
312 			goto out_free;
313 		}
314 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
315 
316 		/*
317 		 * We had to recover the master node, which means there was an
318 		 * unclean reboot. However, it is possible that the master node
319 		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
320 		 * E.g., consider the following chain of events:
321 		 *
322 		 * 1. UBIFS was cleanly unmounted, so the master node is clean
323 		 * 2. UBIFS is being mounted R/W and starts changing the master
324 		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
325 		 *    so this LEB ends up with some amount of garbage at the
326 		 *    end.
327 		 * 3. UBIFS is being mounted R/O. We reach this place and
328 		 *    recover the master node from the second LEB
329 		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
330 		 *    because we are being mounted R/O. We have to defer the
331 		 *    operation.
332 		 * 4. However, this master node (@c->mst_node) is marked as
333 		 *    clean (since the step 1). And if we just return, the
334 		 *    mount code will be confused and won't recover the master
335 		 *    node when it is re-mounter R/W later.
336 		 *
337 		 *    Thus, to force the recovery by marking the master node as
338 		 *    dirty.
339 		 */
340 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
341 #ifndef __UBOOT__
342 	} else {
343 		/* Write the recovered master node */
344 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
345 		err = write_rcvrd_mst_node(c, c->mst_node);
346 		if (err)
347 			goto out_free;
348 #endif
349 	}
350 
351 	vfree(buf2);
352 	vfree(buf1);
353 
354 	return 0;
355 
356 out_err:
357 	err = -EINVAL;
358 out_free:
359 	ubifs_err("failed to recover master node");
360 	if (mst1) {
361 		ubifs_err("dumping first master node");
362 		ubifs_dump_node(c, mst1);
363 	}
364 	if (mst2) {
365 		ubifs_err("dumping second master node");
366 		ubifs_dump_node(c, mst2);
367 	}
368 	vfree(buf2);
369 	vfree(buf1);
370 	return err;
371 }
372 
373 /**
374  * ubifs_write_rcvrd_mst_node - write the recovered master node.
375  * @c: UBIFS file-system description object
376  *
377  * This function writes the master node that was recovered during mounting in
378  * read-only mode and must now be written because we are remounting rw.
379  *
380  * This function returns %0 on success and a negative error code on failure.
381  */
382 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
383 {
384 	int err;
385 
386 	if (!c->rcvrd_mst_node)
387 		return 0;
388 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
389 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
390 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
391 	if (err)
392 		return err;
393 	kfree(c->rcvrd_mst_node);
394 	c->rcvrd_mst_node = NULL;
395 	return 0;
396 }
397 
398 /**
399  * is_last_write - determine if an offset was in the last write to a LEB.
400  * @c: UBIFS file-system description object
401  * @buf: buffer to check
402  * @offs: offset to check
403  *
404  * This function returns %1 if @offs was in the last write to the LEB whose data
405  * is in @buf, otherwise %0 is returned. The determination is made by checking
406  * for subsequent empty space starting from the next @c->max_write_size
407  * boundary.
408  */
409 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
410 {
411 	int empty_offs, check_len;
412 	uint8_t *p;
413 
414 	/*
415 	 * Round up to the next @c->max_write_size boundary i.e. @offs is in
416 	 * the last wbuf written. After that should be empty space.
417 	 */
418 	empty_offs = ALIGN(offs + 1, c->max_write_size);
419 	check_len = c->leb_size - empty_offs;
420 	p = buf + empty_offs - offs;
421 	return is_empty(p, check_len);
422 }
423 
424 /**
425  * clean_buf - clean the data from an LEB sitting in a buffer.
426  * @c: UBIFS file-system description object
427  * @buf: buffer to clean
428  * @lnum: LEB number to clean
429  * @offs: offset from which to clean
430  * @len: length of buffer
431  *
432  * This function pads up to the next min_io_size boundary (if there is one) and
433  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
434  * @c->min_io_size boundary.
435  */
436 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
437 		      int *offs, int *len)
438 {
439 	int empty_offs, pad_len;
440 
441 	lnum = lnum;
442 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
443 
444 	ubifs_assert(!(*offs & 7));
445 	empty_offs = ALIGN(*offs, c->min_io_size);
446 	pad_len = empty_offs - *offs;
447 	ubifs_pad(c, *buf, pad_len);
448 	*offs += pad_len;
449 	*buf += pad_len;
450 	*len -= pad_len;
451 	memset(*buf, 0xff, c->leb_size - empty_offs);
452 }
453 
454 /**
455  * no_more_nodes - determine if there are no more nodes in a buffer.
456  * @c: UBIFS file-system description object
457  * @buf: buffer to check
458  * @len: length of buffer
459  * @lnum: LEB number of the LEB from which @buf was read
460  * @offs: offset from which @buf was read
461  *
462  * This function ensures that the corrupted node at @offs is the last thing
463  * written to a LEB. This function returns %1 if more data is not found and
464  * %0 if more data is found.
465  */
466 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
467 			int lnum, int offs)
468 {
469 	struct ubifs_ch *ch = buf;
470 	int skip, dlen = le32_to_cpu(ch->len);
471 
472 	/* Check for empty space after the corrupt node's common header */
473 	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
474 	if (is_empty(buf + skip, len - skip))
475 		return 1;
476 	/*
477 	 * The area after the common header size is not empty, so the common
478 	 * header must be intact. Check it.
479 	 */
480 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
481 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
482 		return 0;
483 	}
484 	/* Now we know the corrupt node's length we can skip over it */
485 	skip = ALIGN(offs + dlen, c->max_write_size) - offs;
486 	/* After which there should be empty space */
487 	if (is_empty(buf + skip, len - skip))
488 		return 1;
489 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
490 	return 0;
491 }
492 
493 /**
494  * fix_unclean_leb - fix an unclean LEB.
495  * @c: UBIFS file-system description object
496  * @sleb: scanned LEB information
497  * @start: offset where scan started
498  */
499 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
500 			   int start)
501 {
502 	int lnum = sleb->lnum, endpt = start;
503 
504 	/* Get the end offset of the last node we are keeping */
505 	if (!list_empty(&sleb->nodes)) {
506 		struct ubifs_scan_node *snod;
507 
508 		snod = list_entry(sleb->nodes.prev,
509 				  struct ubifs_scan_node, list);
510 		endpt = snod->offs + snod->len;
511 	}
512 
513 	if (c->ro_mount && !c->remounting_rw) {
514 		/* Add to recovery list */
515 		struct ubifs_unclean_leb *ucleb;
516 
517 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
518 			  lnum, start, sleb->endpt);
519 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
520 		if (!ucleb)
521 			return -ENOMEM;
522 		ucleb->lnum = lnum;
523 		ucleb->endpt = endpt;
524 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
525 #ifndef __UBOOT__
526 	} else {
527 		/* Write the fixed LEB back to flash */
528 		int err;
529 
530 		dbg_rcvry("fixing LEB %d start %d endpt %d",
531 			  lnum, start, sleb->endpt);
532 		if (endpt == 0) {
533 			err = ubifs_leb_unmap(c, lnum);
534 			if (err)
535 				return err;
536 		} else {
537 			int len = ALIGN(endpt, c->min_io_size);
538 
539 			if (start) {
540 				err = ubifs_leb_read(c, lnum, sleb->buf, 0,
541 						     start, 1);
542 				if (err)
543 					return err;
544 			}
545 			/* Pad to min_io_size */
546 			if (len > endpt) {
547 				int pad_len = len - ALIGN(endpt, 8);
548 
549 				if (pad_len > 0) {
550 					void *buf = sleb->buf + len - pad_len;
551 
552 					ubifs_pad(c, buf, pad_len);
553 				}
554 			}
555 			err = ubifs_leb_change(c, lnum, sleb->buf, len);
556 			if (err)
557 				return err;
558 		}
559 #endif
560 	}
561 	return 0;
562 }
563 
564 /**
565  * drop_last_group - drop the last group of nodes.
566  * @sleb: scanned LEB information
567  * @offs: offset of dropped nodes is returned here
568  *
569  * This is a helper function for 'ubifs_recover_leb()' which drops the last
570  * group of nodes of the scanned LEB.
571  */
572 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
573 {
574 	while (!list_empty(&sleb->nodes)) {
575 		struct ubifs_scan_node *snod;
576 		struct ubifs_ch *ch;
577 
578 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
579 				  list);
580 		ch = snod->node;
581 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
582 			break;
583 
584 		dbg_rcvry("dropping grouped node at %d:%d",
585 			  sleb->lnum, snod->offs);
586 		*offs = snod->offs;
587 		list_del(&snod->list);
588 		kfree(snod);
589 		sleb->nodes_cnt -= 1;
590 	}
591 }
592 
593 /**
594  * drop_last_node - drop the last node.
595  * @sleb: scanned LEB information
596  * @offs: offset of dropped nodes is returned here
597  * @grouped: non-zero if whole group of nodes have to be dropped
598  *
599  * This is a helper function for 'ubifs_recover_leb()' which drops the last
600  * node of the scanned LEB.
601  */
602 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
603 {
604 	struct ubifs_scan_node *snod;
605 
606 	if (!list_empty(&sleb->nodes)) {
607 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
608 				  list);
609 
610 		dbg_rcvry("dropping last node at %d:%d",
611 			  sleb->lnum, snod->offs);
612 		*offs = snod->offs;
613 		list_del(&snod->list);
614 		kfree(snod);
615 		sleb->nodes_cnt -= 1;
616 	}
617 }
618 
619 /**
620  * ubifs_recover_leb - scan and recover a LEB.
621  * @c: UBIFS file-system description object
622  * @lnum: LEB number
623  * @offs: offset
624  * @sbuf: LEB-sized buffer to use
625  * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
626  *         belong to any journal head)
627  *
628  * This function does a scan of a LEB, but caters for errors that might have
629  * been caused by the unclean unmount from which we are attempting to recover.
630  * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
631  * found, and a negative error code in case of failure.
632  */
633 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
634 					 int offs, void *sbuf, int jhead)
635 {
636 	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
637 	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
638 	struct ubifs_scan_leb *sleb;
639 	void *buf = sbuf + offs;
640 
641 	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
642 
643 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
644 	if (IS_ERR(sleb))
645 		return sleb;
646 
647 	ubifs_assert(len >= 8);
648 	while (len >= 8) {
649 		dbg_scan("look at LEB %d:%d (%d bytes left)",
650 			 lnum, offs, len);
651 
652 		cond_resched();
653 
654 		/*
655 		 * Scan quietly until there is an error from which we cannot
656 		 * recover
657 		 */
658 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
659 		if (ret == SCANNED_A_NODE) {
660 			/* A valid node, and not a padding node */
661 			struct ubifs_ch *ch = buf;
662 			int node_len;
663 
664 			err = ubifs_add_snod(c, sleb, buf, offs);
665 			if (err)
666 				goto error;
667 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
668 			offs += node_len;
669 			buf += node_len;
670 			len -= node_len;
671 		} else if (ret > 0) {
672 			/* Padding bytes or a valid padding node */
673 			offs += ret;
674 			buf += ret;
675 			len -= ret;
676 		} else if (ret == SCANNED_EMPTY_SPACE ||
677 			   ret == SCANNED_GARBAGE     ||
678 			   ret == SCANNED_A_BAD_PAD_NODE ||
679 			   ret == SCANNED_A_CORRUPT_NODE) {
680 			dbg_rcvry("found corruption (%d) at %d:%d",
681 				  ret, lnum, offs);
682 			break;
683 		} else {
684 			ubifs_err("unexpected return value %d", ret);
685 			err = -EINVAL;
686 			goto error;
687 		}
688 	}
689 
690 	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
691 		if (!is_last_write(c, buf, offs))
692 			goto corrupted_rescan;
693 	} else if (ret == SCANNED_A_CORRUPT_NODE) {
694 		if (!no_more_nodes(c, buf, len, lnum, offs))
695 			goto corrupted_rescan;
696 	} else if (!is_empty(buf, len)) {
697 		if (!is_last_write(c, buf, offs)) {
698 			int corruption = first_non_ff(buf, len);
699 
700 			/*
701 			 * See header comment for this file for more
702 			 * explanations about the reasons we have this check.
703 			 */
704 			ubifs_err("corrupt empty space LEB %d:%d, corruption starts at %d",
705 				  lnum, offs, corruption);
706 			/* Make sure we dump interesting non-0xFF data */
707 			offs += corruption;
708 			buf += corruption;
709 			goto corrupted;
710 		}
711 	}
712 
713 	min_io_unit = round_down(offs, c->min_io_size);
714 	if (grouped)
715 		/*
716 		 * If nodes are grouped, always drop the incomplete group at
717 		 * the end.
718 		 */
719 		drop_last_group(sleb, &offs);
720 
721 	if (jhead == GCHD) {
722 		/*
723 		 * If this LEB belongs to the GC head then while we are in the
724 		 * middle of the same min. I/O unit keep dropping nodes. So
725 		 * basically, what we want is to make sure that the last min.
726 		 * I/O unit where we saw the corruption is dropped completely
727 		 * with all the uncorrupted nodes which may possibly sit there.
728 		 *
729 		 * In other words, let's name the min. I/O unit where the
730 		 * corruption starts B, and the previous min. I/O unit A. The
731 		 * below code tries to deal with a situation when half of B
732 		 * contains valid nodes or the end of a valid node, and the
733 		 * second half of B contains corrupted data or garbage. This
734 		 * means that UBIFS had been writing to B just before the power
735 		 * cut happened. I do not know how realistic is this scenario
736 		 * that half of the min. I/O unit had been written successfully
737 		 * and the other half not, but this is possible in our 'failure
738 		 * mode emulation' infrastructure at least.
739 		 *
740 		 * So what is the problem, why we need to drop those nodes? Why
741 		 * can't we just clean-up the second half of B by putting a
742 		 * padding node there? We can, and this works fine with one
743 		 * exception which was reproduced with power cut emulation
744 		 * testing and happens extremely rarely.
745 		 *
746 		 * Imagine the file-system is full, we run GC which starts
747 		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
748 		 * the current GC head LEB). The @c->gc_lnum is -1, which means
749 		 * that GC will retain LEB X and will try to continue. Imagine
750 		 * that LEB X is currently the dirtiest LEB, and the amount of
751 		 * used space in LEB Y is exactly the same as amount of free
752 		 * space in LEB X.
753 		 *
754 		 * And a power cut happens when nodes are moved from LEB X to
755 		 * LEB Y. We are here trying to recover LEB Y which is the GC
756 		 * head LEB. We find the min. I/O unit B as described above.
757 		 * Then we clean-up LEB Y by padding min. I/O unit. And later
758 		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
759 		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
760 		 * does not match because the amount of valid nodes there does
761 		 * not fit the free space in LEB Y any more! And this is
762 		 * because of the padding node which we added to LEB Y. The
763 		 * user-visible effect of this which I once observed and
764 		 * analysed is that we cannot mount the file-system with
765 		 * -ENOSPC error.
766 		 *
767 		 * So obviously, to make sure that situation does not happen we
768 		 * should free min. I/O unit B in LEB Y completely and the last
769 		 * used min. I/O unit in LEB Y should be A. This is basically
770 		 * what the below code tries to do.
771 		 */
772 		while (offs > min_io_unit)
773 			drop_last_node(sleb, &offs);
774 	}
775 
776 	buf = sbuf + offs;
777 	len = c->leb_size - offs;
778 
779 	clean_buf(c, &buf, lnum, &offs, &len);
780 	ubifs_end_scan(c, sleb, lnum, offs);
781 
782 	err = fix_unclean_leb(c, sleb, start);
783 	if (err)
784 		goto error;
785 
786 	return sleb;
787 
788 corrupted_rescan:
789 	/* Re-scan the corrupted data with verbose messages */
790 	ubifs_err("corruption %d", ret);
791 	ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
792 corrupted:
793 	ubifs_scanned_corruption(c, lnum, offs, buf);
794 	err = -EUCLEAN;
795 error:
796 	ubifs_err("LEB %d scanning failed", lnum);
797 	ubifs_scan_destroy(sleb);
798 	return ERR_PTR(err);
799 }
800 
801 /**
802  * get_cs_sqnum - get commit start sequence number.
803  * @c: UBIFS file-system description object
804  * @lnum: LEB number of commit start node
805  * @offs: offset of commit start node
806  * @cs_sqnum: commit start sequence number is returned here
807  *
808  * This function returns %0 on success and a negative error code on failure.
809  */
810 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
811 			unsigned long long *cs_sqnum)
812 {
813 	struct ubifs_cs_node *cs_node = NULL;
814 	int err, ret;
815 
816 	dbg_rcvry("at %d:%d", lnum, offs);
817 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
818 	if (!cs_node)
819 		return -ENOMEM;
820 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
821 		goto out_err;
822 	err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
823 			     UBIFS_CS_NODE_SZ, 0);
824 	if (err && err != -EBADMSG)
825 		goto out_free;
826 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
827 	if (ret != SCANNED_A_NODE) {
828 		ubifs_err("Not a valid node");
829 		goto out_err;
830 	}
831 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
832 		ubifs_err("Node a CS node, type is %d", cs_node->ch.node_type);
833 		goto out_err;
834 	}
835 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
836 		ubifs_err("CS node cmt_no %llu != current cmt_no %llu",
837 			  (unsigned long long)le64_to_cpu(cs_node->cmt_no),
838 			  c->cmt_no);
839 		goto out_err;
840 	}
841 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
842 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
843 	kfree(cs_node);
844 	return 0;
845 
846 out_err:
847 	err = -EINVAL;
848 out_free:
849 	ubifs_err("failed to get CS sqnum");
850 	kfree(cs_node);
851 	return err;
852 }
853 
854 /**
855  * ubifs_recover_log_leb - scan and recover a log LEB.
856  * @c: UBIFS file-system description object
857  * @lnum: LEB number
858  * @offs: offset
859  * @sbuf: LEB-sized buffer to use
860  *
861  * This function does a scan of a LEB, but caters for errors that might have
862  * been caused by unclean reboots from which we are attempting to recover
863  * (assume that only the last log LEB can be corrupted by an unclean reboot).
864  *
865  * This function returns %0 on success and a negative error code on failure.
866  */
867 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
868 					     int offs, void *sbuf)
869 {
870 	struct ubifs_scan_leb *sleb;
871 	int next_lnum;
872 
873 	dbg_rcvry("LEB %d", lnum);
874 	next_lnum = lnum + 1;
875 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
876 		next_lnum = UBIFS_LOG_LNUM;
877 	if (next_lnum != c->ltail_lnum) {
878 		/*
879 		 * We can only recover at the end of the log, so check that the
880 		 * next log LEB is empty or out of date.
881 		 */
882 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
883 		if (IS_ERR(sleb))
884 			return sleb;
885 		if (sleb->nodes_cnt) {
886 			struct ubifs_scan_node *snod;
887 			unsigned long long cs_sqnum = c->cs_sqnum;
888 
889 			snod = list_entry(sleb->nodes.next,
890 					  struct ubifs_scan_node, list);
891 			if (cs_sqnum == 0) {
892 				int err;
893 
894 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
895 				if (err) {
896 					ubifs_scan_destroy(sleb);
897 					return ERR_PTR(err);
898 				}
899 			}
900 			if (snod->sqnum > cs_sqnum) {
901 				ubifs_err("unrecoverable log corruption in LEB %d",
902 					  lnum);
903 				ubifs_scan_destroy(sleb);
904 				return ERR_PTR(-EUCLEAN);
905 			}
906 		}
907 		ubifs_scan_destroy(sleb);
908 	}
909 	return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
910 }
911 
912 /**
913  * recover_head - recover a head.
914  * @c: UBIFS file-system description object
915  * @lnum: LEB number of head to recover
916  * @offs: offset of head to recover
917  * @sbuf: LEB-sized buffer to use
918  *
919  * This function ensures that there is no data on the flash at a head location.
920  *
921  * This function returns %0 on success and a negative error code on failure.
922  */
923 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
924 {
925 	int len = c->max_write_size, err;
926 
927 	if (offs + len > c->leb_size)
928 		len = c->leb_size - offs;
929 
930 	if (!len)
931 		return 0;
932 
933 	/* Read at the head location and check it is empty flash */
934 	err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
935 	if (err || !is_empty(sbuf, len)) {
936 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
937 		if (offs == 0)
938 			return ubifs_leb_unmap(c, lnum);
939 		err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
940 		if (err)
941 			return err;
942 		return ubifs_leb_change(c, lnum, sbuf, offs);
943 	}
944 
945 	return 0;
946 }
947 
948 /**
949  * ubifs_recover_inl_heads - recover index and LPT heads.
950  * @c: UBIFS file-system description object
951  * @sbuf: LEB-sized buffer to use
952  *
953  * This function ensures that there is no data on the flash at the index and
954  * LPT head locations.
955  *
956  * This deals with the recovery of a half-completed journal commit. UBIFS is
957  * careful never to overwrite the last version of the index or the LPT. Because
958  * the index and LPT are wandering trees, data from a half-completed commit will
959  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
960  * assumed to be empty and will be unmapped anyway before use, or in the index
961  * and LPT heads.
962  *
963  * This function returns %0 on success and a negative error code on failure.
964  */
965 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
966 {
967 	int err;
968 
969 	ubifs_assert(!c->ro_mount || c->remounting_rw);
970 
971 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
972 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
973 	if (err)
974 		return err;
975 
976 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
977 	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
978 	if (err)
979 		return err;
980 
981 	return 0;
982 }
983 
984 /**
985  * clean_an_unclean_leb - read and write a LEB to remove corruption.
986  * @c: UBIFS file-system description object
987  * @ucleb: unclean LEB information
988  * @sbuf: LEB-sized buffer to use
989  *
990  * This function reads a LEB up to a point pre-determined by the mount recovery,
991  * checks the nodes, and writes the result back to the flash, thereby cleaning
992  * off any following corruption, or non-fatal ECC errors.
993  *
994  * This function returns %0 on success and a negative error code on failure.
995  */
996 static int clean_an_unclean_leb(struct ubifs_info *c,
997 				struct ubifs_unclean_leb *ucleb, void *sbuf)
998 {
999 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
1000 	void *buf = sbuf;
1001 
1002 	dbg_rcvry("LEB %d len %d", lnum, len);
1003 
1004 	if (len == 0) {
1005 		/* Nothing to read, just unmap it */
1006 		err = ubifs_leb_unmap(c, lnum);
1007 		if (err)
1008 			return err;
1009 		return 0;
1010 	}
1011 
1012 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1013 	if (err && err != -EBADMSG)
1014 		return err;
1015 
1016 	while (len >= 8) {
1017 		int ret;
1018 
1019 		cond_resched();
1020 
1021 		/* Scan quietly until there is an error */
1022 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1023 
1024 		if (ret == SCANNED_A_NODE) {
1025 			/* A valid node, and not a padding node */
1026 			struct ubifs_ch *ch = buf;
1027 			int node_len;
1028 
1029 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
1030 			offs += node_len;
1031 			buf += node_len;
1032 			len -= node_len;
1033 			continue;
1034 		}
1035 
1036 		if (ret > 0) {
1037 			/* Padding bytes or a valid padding node */
1038 			offs += ret;
1039 			buf += ret;
1040 			len -= ret;
1041 			continue;
1042 		}
1043 
1044 		if (ret == SCANNED_EMPTY_SPACE) {
1045 			ubifs_err("unexpected empty space at %d:%d",
1046 				  lnum, offs);
1047 			return -EUCLEAN;
1048 		}
1049 
1050 		if (quiet) {
1051 			/* Redo the last scan but noisily */
1052 			quiet = 0;
1053 			continue;
1054 		}
1055 
1056 		ubifs_scanned_corruption(c, lnum, offs, buf);
1057 		return -EUCLEAN;
1058 	}
1059 
1060 	/* Pad to min_io_size */
1061 	len = ALIGN(ucleb->endpt, c->min_io_size);
1062 	if (len > ucleb->endpt) {
1063 		int pad_len = len - ALIGN(ucleb->endpt, 8);
1064 
1065 		if (pad_len > 0) {
1066 			buf = c->sbuf + len - pad_len;
1067 			ubifs_pad(c, buf, pad_len);
1068 		}
1069 	}
1070 
1071 	/* Write back the LEB atomically */
1072 	err = ubifs_leb_change(c, lnum, sbuf, len);
1073 	if (err)
1074 		return err;
1075 
1076 	dbg_rcvry("cleaned LEB %d", lnum);
1077 
1078 	return 0;
1079 }
1080 
1081 /**
1082  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1083  * @c: UBIFS file-system description object
1084  * @sbuf: LEB-sized buffer to use
1085  *
1086  * This function cleans a LEB identified during recovery that needs to be
1087  * written but was not because UBIFS was mounted read-only. This happens when
1088  * remounting to read-write mode.
1089  *
1090  * This function returns %0 on success and a negative error code on failure.
1091  */
1092 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1093 {
1094 	dbg_rcvry("recovery");
1095 	while (!list_empty(&c->unclean_leb_list)) {
1096 		struct ubifs_unclean_leb *ucleb;
1097 		int err;
1098 
1099 		ucleb = list_entry(c->unclean_leb_list.next,
1100 				   struct ubifs_unclean_leb, list);
1101 		err = clean_an_unclean_leb(c, ucleb, sbuf);
1102 		if (err)
1103 			return err;
1104 		list_del(&ucleb->list);
1105 		kfree(ucleb);
1106 	}
1107 	return 0;
1108 }
1109 
1110 #ifndef __UBOOT__
1111 /**
1112  * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1113  * @c: UBIFS file-system description object
1114  *
1115  * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1116  * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1117  * zero in case of success and a negative error code in case of failure.
1118  */
1119 static int grab_empty_leb(struct ubifs_info *c)
1120 {
1121 	int lnum, err;
1122 
1123 	/*
1124 	 * Note, it is very important to first search for an empty LEB and then
1125 	 * run the commit, not vice-versa. The reason is that there might be
1126 	 * only one empty LEB at the moment, the one which has been the
1127 	 * @c->gc_lnum just before the power cut happened. During the regular
1128 	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1129 	 * one but GC can grab it. But at this moment this single empty LEB is
1130 	 * not marked as taken, so if we run commit - what happens? Right, the
1131 	 * commit will grab it and write the index there. Remember that the
1132 	 * index always expands as long as there is free space, and it only
1133 	 * starts consolidating when we run out of space.
1134 	 *
1135 	 * IOW, if we run commit now, we might not be able to find a free LEB
1136 	 * after this.
1137 	 */
1138 	lnum = ubifs_find_free_leb_for_idx(c);
1139 	if (lnum < 0) {
1140 		ubifs_err("could not find an empty LEB");
1141 		ubifs_dump_lprops(c);
1142 		ubifs_dump_budg(c, &c->bi);
1143 		return lnum;
1144 	}
1145 
1146 	/* Reset the index flag */
1147 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1148 				  LPROPS_INDEX, 0);
1149 	if (err)
1150 		return err;
1151 
1152 	c->gc_lnum = lnum;
1153 	dbg_rcvry("found empty LEB %d, run commit", lnum);
1154 
1155 	return ubifs_run_commit(c);
1156 }
1157 
1158 /**
1159  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1160  * @c: UBIFS file-system description object
1161  *
1162  * Out-of-place garbage collection requires always one empty LEB with which to
1163  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1164  * written to the master node on unmounting. In the case of an unclean unmount
1165  * the value of gc_lnum recorded in the master node is out of date and cannot
1166  * be used. Instead, recovery must allocate an empty LEB for this purpose.
1167  * However, there may not be enough empty space, in which case it must be
1168  * possible to GC the dirtiest LEB into the GC head LEB.
1169  *
1170  * This function also runs the commit which causes the TNC updates from
1171  * size-recovery and orphans to be written to the flash. That is important to
1172  * ensure correct replay order for subsequent mounts.
1173  *
1174  * This function returns %0 on success and a negative error code on failure.
1175  */
1176 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1177 {
1178 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1179 	struct ubifs_lprops lp;
1180 	int err;
1181 
1182 	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1183 
1184 	c->gc_lnum = -1;
1185 	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1186 		return grab_empty_leb(c);
1187 
1188 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1189 	if (err) {
1190 		if (err != -ENOSPC)
1191 			return err;
1192 
1193 		dbg_rcvry("could not find a dirty LEB");
1194 		return grab_empty_leb(c);
1195 	}
1196 
1197 	ubifs_assert(!(lp.flags & LPROPS_INDEX));
1198 	ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1199 
1200 	/*
1201 	 * We run the commit before garbage collection otherwise subsequent
1202 	 * mounts will see the GC and orphan deletion in a different order.
1203 	 */
1204 	dbg_rcvry("committing");
1205 	err = ubifs_run_commit(c);
1206 	if (err)
1207 		return err;
1208 
1209 	dbg_rcvry("GC'ing LEB %d", lp.lnum);
1210 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1211 	err = ubifs_garbage_collect_leb(c, &lp);
1212 	if (err >= 0) {
1213 		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1214 
1215 		if (err2)
1216 			err = err2;
1217 	}
1218 	mutex_unlock(&wbuf->io_mutex);
1219 	if (err < 0) {
1220 		ubifs_err("GC failed, error %d", err);
1221 		if (err == -EAGAIN)
1222 			err = -EINVAL;
1223 		return err;
1224 	}
1225 
1226 	ubifs_assert(err == LEB_RETAINED);
1227 	if (err != LEB_RETAINED)
1228 		return -EINVAL;
1229 
1230 	err = ubifs_leb_unmap(c, c->gc_lnum);
1231 	if (err)
1232 		return err;
1233 
1234 	dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1235 	return 0;
1236 }
1237 #else
1238 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1239 {
1240 	return 0;
1241 }
1242 #endif
1243 
1244 /**
1245  * struct size_entry - inode size information for recovery.
1246  * @rb: link in the RB-tree of sizes
1247  * @inum: inode number
1248  * @i_size: size on inode
1249  * @d_size: maximum size based on data nodes
1250  * @exists: indicates whether the inode exists
1251  * @inode: inode if pinned in memory awaiting rw mode to fix it
1252  */
1253 struct size_entry {
1254 	struct rb_node rb;
1255 	ino_t inum;
1256 	loff_t i_size;
1257 	loff_t d_size;
1258 	int exists;
1259 	struct inode *inode;
1260 };
1261 
1262 /**
1263  * add_ino - add an entry to the size tree.
1264  * @c: UBIFS file-system description object
1265  * @inum: inode number
1266  * @i_size: size on inode
1267  * @d_size: maximum size based on data nodes
1268  * @exists: indicates whether the inode exists
1269  */
1270 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1271 		   loff_t d_size, int exists)
1272 {
1273 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1274 	struct size_entry *e;
1275 
1276 	while (*p) {
1277 		parent = *p;
1278 		e = rb_entry(parent, struct size_entry, rb);
1279 		if (inum < e->inum)
1280 			p = &(*p)->rb_left;
1281 		else
1282 			p = &(*p)->rb_right;
1283 	}
1284 
1285 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1286 	if (!e)
1287 		return -ENOMEM;
1288 
1289 	e->inum = inum;
1290 	e->i_size = i_size;
1291 	e->d_size = d_size;
1292 	e->exists = exists;
1293 
1294 	rb_link_node(&e->rb, parent, p);
1295 	rb_insert_color(&e->rb, &c->size_tree);
1296 
1297 	return 0;
1298 }
1299 
1300 /**
1301  * find_ino - find an entry on the size tree.
1302  * @c: UBIFS file-system description object
1303  * @inum: inode number
1304  */
1305 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1306 {
1307 	struct rb_node *p = c->size_tree.rb_node;
1308 	struct size_entry *e;
1309 
1310 	while (p) {
1311 		e = rb_entry(p, struct size_entry, rb);
1312 		if (inum < e->inum)
1313 			p = p->rb_left;
1314 		else if (inum > e->inum)
1315 			p = p->rb_right;
1316 		else
1317 			return e;
1318 	}
1319 	return NULL;
1320 }
1321 
1322 /**
1323  * remove_ino - remove an entry from the size tree.
1324  * @c: UBIFS file-system description object
1325  * @inum: inode number
1326  */
1327 static void remove_ino(struct ubifs_info *c, ino_t inum)
1328 {
1329 	struct size_entry *e = find_ino(c, inum);
1330 
1331 	if (!e)
1332 		return;
1333 	rb_erase(&e->rb, &c->size_tree);
1334 	kfree(e);
1335 }
1336 
1337 /**
1338  * ubifs_destroy_size_tree - free resources related to the size tree.
1339  * @c: UBIFS file-system description object
1340  */
1341 void ubifs_destroy_size_tree(struct ubifs_info *c)
1342 {
1343 	struct size_entry *e, *n;
1344 
1345 	rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1346 		if (e->inode)
1347 			iput(e->inode);
1348 		kfree(e);
1349 	}
1350 
1351 	c->size_tree = RB_ROOT;
1352 }
1353 
1354 /**
1355  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1356  * @c: UBIFS file-system description object
1357  * @key: node key
1358  * @deletion: node is for a deletion
1359  * @new_size: inode size
1360  *
1361  * This function has two purposes:
1362  *     1) to ensure there are no data nodes that fall outside the inode size
1363  *     2) to ensure there are no data nodes for inodes that do not exist
1364  * To accomplish those purposes, a rb-tree is constructed containing an entry
1365  * for each inode number in the journal that has not been deleted, and recording
1366  * the size from the inode node, the maximum size of any data node (also altered
1367  * by truncations) and a flag indicating a inode number for which no inode node
1368  * was present in the journal.
1369  *
1370  * Note that there is still the possibility that there are data nodes that have
1371  * been committed that are beyond the inode size, however the only way to find
1372  * them would be to scan the entire index. Alternatively, some provision could
1373  * be made to record the size of inodes at the start of commit, which would seem
1374  * very cumbersome for a scenario that is quite unlikely and the only negative
1375  * consequence of which is wasted space.
1376  *
1377  * This functions returns %0 on success and a negative error code on failure.
1378  */
1379 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1380 			     int deletion, loff_t new_size)
1381 {
1382 	ino_t inum = key_inum(c, key);
1383 	struct size_entry *e;
1384 	int err;
1385 
1386 	switch (key_type(c, key)) {
1387 	case UBIFS_INO_KEY:
1388 		if (deletion)
1389 			remove_ino(c, inum);
1390 		else {
1391 			e = find_ino(c, inum);
1392 			if (e) {
1393 				e->i_size = new_size;
1394 				e->exists = 1;
1395 			} else {
1396 				err = add_ino(c, inum, new_size, 0, 1);
1397 				if (err)
1398 					return err;
1399 			}
1400 		}
1401 		break;
1402 	case UBIFS_DATA_KEY:
1403 		e = find_ino(c, inum);
1404 		if (e) {
1405 			if (new_size > e->d_size)
1406 				e->d_size = new_size;
1407 		} else {
1408 			err = add_ino(c, inum, 0, new_size, 0);
1409 			if (err)
1410 				return err;
1411 		}
1412 		break;
1413 	case UBIFS_TRUN_KEY:
1414 		e = find_ino(c, inum);
1415 		if (e)
1416 			e->d_size = new_size;
1417 		break;
1418 	}
1419 	return 0;
1420 }
1421 
1422 #ifndef __UBOOT__
1423 /**
1424  * fix_size_in_place - fix inode size in place on flash.
1425  * @c: UBIFS file-system description object
1426  * @e: inode size information for recovery
1427  */
1428 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1429 {
1430 	struct ubifs_ino_node *ino = c->sbuf;
1431 	unsigned char *p;
1432 	union ubifs_key key;
1433 	int err, lnum, offs, len;
1434 	loff_t i_size;
1435 	uint32_t crc;
1436 
1437 	/* Locate the inode node LEB number and offset */
1438 	ino_key_init(c, &key, e->inum);
1439 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1440 	if (err)
1441 		goto out;
1442 	/*
1443 	 * If the size recorded on the inode node is greater than the size that
1444 	 * was calculated from nodes in the journal then don't change the inode.
1445 	 */
1446 	i_size = le64_to_cpu(ino->size);
1447 	if (i_size >= e->d_size)
1448 		return 0;
1449 	/* Read the LEB */
1450 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1451 	if (err)
1452 		goto out;
1453 	/* Change the size field and recalculate the CRC */
1454 	ino = c->sbuf + offs;
1455 	ino->size = cpu_to_le64(e->d_size);
1456 	len = le32_to_cpu(ino->ch.len);
1457 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1458 	ino->ch.crc = cpu_to_le32(crc);
1459 	/* Work out where data in the LEB ends and free space begins */
1460 	p = c->sbuf;
1461 	len = c->leb_size - 1;
1462 	while (p[len] == 0xff)
1463 		len -= 1;
1464 	len = ALIGN(len + 1, c->min_io_size);
1465 	/* Atomically write the fixed LEB back again */
1466 	err = ubifs_leb_change(c, lnum, c->sbuf, len);
1467 	if (err)
1468 		goto out;
1469 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1470 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1471 	return 0;
1472 
1473 out:
1474 	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1475 		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1476 	return err;
1477 }
1478 #endif
1479 
1480 /**
1481  * ubifs_recover_size - recover inode size.
1482  * @c: UBIFS file-system description object
1483  *
1484  * This function attempts to fix inode size discrepancies identified by the
1485  * 'ubifs_recover_size_accum()' function.
1486  *
1487  * This functions returns %0 on success and a negative error code on failure.
1488  */
1489 int ubifs_recover_size(struct ubifs_info *c)
1490 {
1491 	struct rb_node *this = rb_first(&c->size_tree);
1492 
1493 	while (this) {
1494 		struct size_entry *e;
1495 		int err;
1496 
1497 		e = rb_entry(this, struct size_entry, rb);
1498 		if (!e->exists) {
1499 			union ubifs_key key;
1500 
1501 			ino_key_init(c, &key, e->inum);
1502 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1503 			if (err && err != -ENOENT)
1504 				return err;
1505 			if (err == -ENOENT) {
1506 				/* Remove data nodes that have no inode */
1507 				dbg_rcvry("removing ino %lu",
1508 					  (unsigned long)e->inum);
1509 				err = ubifs_tnc_remove_ino(c, e->inum);
1510 				if (err)
1511 					return err;
1512 			} else {
1513 				struct ubifs_ino_node *ino = c->sbuf;
1514 
1515 				e->exists = 1;
1516 				e->i_size = le64_to_cpu(ino->size);
1517 			}
1518 		}
1519 
1520 		if (e->exists && e->i_size < e->d_size) {
1521 			if (c->ro_mount) {
1522 				/* Fix the inode size and pin it in memory */
1523 				struct inode *inode;
1524 				struct ubifs_inode *ui;
1525 
1526 				ubifs_assert(!e->inode);
1527 
1528 				inode = ubifs_iget(c->vfs_sb, e->inum);
1529 				if (IS_ERR(inode))
1530 					return PTR_ERR(inode);
1531 
1532 				ui = ubifs_inode(inode);
1533 				if (inode->i_size < e->d_size) {
1534 					dbg_rcvry("ino %lu size %lld -> %lld",
1535 						  (unsigned long)e->inum,
1536 						  inode->i_size, e->d_size);
1537 					inode->i_size = e->d_size;
1538 					ui->ui_size = e->d_size;
1539 					ui->synced_i_size = e->d_size;
1540 					e->inode = inode;
1541 					this = rb_next(this);
1542 					continue;
1543 				}
1544 				iput(inode);
1545 #ifndef __UBOOT__
1546 			} else {
1547 				/* Fix the size in place */
1548 				err = fix_size_in_place(c, e);
1549 				if (err)
1550 					return err;
1551 				if (e->inode)
1552 					iput(e->inode);
1553 #endif
1554 			}
1555 		}
1556 
1557 		this = rb_next(this);
1558 		rb_erase(&e->rb, &c->size_tree);
1559 		kfree(e);
1560 	}
1561 
1562 	return 0;
1563 }
1564