1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Adrian Hunter 9 * Artem Bityutskiy (Битюцкий Артём) 10 */ 11 12 /* 13 * This file implements functions needed to recover from unclean un-mounts. 14 * When UBIFS is mounted, it checks a flag on the master node to determine if 15 * an un-mount was completed successfully. If not, the process of mounting 16 * incorporates additional checking and fixing of on-flash data structures. 17 * UBIFS always cleans away all remnants of an unclean un-mount, so that 18 * errors do not accumulate. However UBIFS defers recovery if it is mounted 19 * read-only, and the flash is not modified in that case. 20 * 21 * The general UBIFS approach to the recovery is that it recovers from 22 * corruptions which could be caused by power cuts, but it refuses to recover 23 * from corruption caused by other reasons. And UBIFS tries to distinguish 24 * between these 2 reasons of corruptions and silently recover in the former 25 * case and loudly complain in the latter case. 26 * 27 * UBIFS writes only to erased LEBs, so it writes only to the flash space 28 * containing only 0xFFs. UBIFS also always writes strictly from the beginning 29 * of the LEB to the end. And UBIFS assumes that the underlying flash media 30 * writes in @c->max_write_size bytes at a time. 31 * 32 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min. 33 * I/O unit corresponding to offset X to contain corrupted data, all the 34 * following min. I/O units have to contain empty space (all 0xFFs). If this is 35 * not true, the corruption cannot be the result of a power cut, and UBIFS 36 * refuses to mount. 37 */ 38 39 #ifndef __UBOOT__ 40 #include <linux/crc32.h> 41 #include <linux/slab.h> 42 #else 43 #include <linux/err.h> 44 #endif 45 #include "ubifs.h" 46 47 /** 48 * is_empty - determine whether a buffer is empty (contains all 0xff). 49 * @buf: buffer to clean 50 * @len: length of buffer 51 * 52 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise 53 * %0 is returned. 54 */ 55 static int is_empty(void *buf, int len) 56 { 57 uint8_t *p = buf; 58 int i; 59 60 for (i = 0; i < len; i++) 61 if (*p++ != 0xff) 62 return 0; 63 return 1; 64 } 65 66 /** 67 * first_non_ff - find offset of the first non-0xff byte. 68 * @buf: buffer to search in 69 * @len: length of buffer 70 * 71 * This function returns offset of the first non-0xff byte in @buf or %-1 if 72 * the buffer contains only 0xff bytes. 73 */ 74 static int first_non_ff(void *buf, int len) 75 { 76 uint8_t *p = buf; 77 int i; 78 79 for (i = 0; i < len; i++) 80 if (*p++ != 0xff) 81 return i; 82 return -1; 83 } 84 85 /** 86 * get_master_node - get the last valid master node allowing for corruption. 87 * @c: UBIFS file-system description object 88 * @lnum: LEB number 89 * @pbuf: buffer containing the LEB read, is returned here 90 * @mst: master node, if found, is returned here 91 * @cor: corruption, if found, is returned here 92 * 93 * This function allocates a buffer, reads the LEB into it, and finds and 94 * returns the last valid master node allowing for one area of corruption. 95 * The corrupt area, if there is one, must be consistent with the assumption 96 * that it is the result of an unclean unmount while the master node was being 97 * written. Under those circumstances, it is valid to use the previously written 98 * master node. 99 * 100 * This function returns %0 on success and a negative error code on failure. 101 */ 102 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, 103 struct ubifs_mst_node **mst, void **cor) 104 { 105 const int sz = c->mst_node_alsz; 106 int err, offs, len; 107 void *sbuf, *buf; 108 109 sbuf = vmalloc(c->leb_size); 110 if (!sbuf) 111 return -ENOMEM; 112 113 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0); 114 if (err && err != -EBADMSG) 115 goto out_free; 116 117 /* Find the first position that is definitely not a node */ 118 offs = 0; 119 buf = sbuf; 120 len = c->leb_size; 121 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { 122 struct ubifs_ch *ch = buf; 123 124 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 125 break; 126 offs += sz; 127 buf += sz; 128 len -= sz; 129 } 130 /* See if there was a valid master node before that */ 131 if (offs) { 132 int ret; 133 134 offs -= sz; 135 buf -= sz; 136 len += sz; 137 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 138 if (ret != SCANNED_A_NODE && offs) { 139 /* Could have been corruption so check one place back */ 140 offs -= sz; 141 buf -= sz; 142 len += sz; 143 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 144 if (ret != SCANNED_A_NODE) 145 /* 146 * We accept only one area of corruption because 147 * we are assuming that it was caused while 148 * trying to write a master node. 149 */ 150 goto out_err; 151 } 152 if (ret == SCANNED_A_NODE) { 153 struct ubifs_ch *ch = buf; 154 155 if (ch->node_type != UBIFS_MST_NODE) 156 goto out_err; 157 dbg_rcvry("found a master node at %d:%d", lnum, offs); 158 *mst = buf; 159 offs += sz; 160 buf += sz; 161 len -= sz; 162 } 163 } 164 /* Check for corruption */ 165 if (offs < c->leb_size) { 166 if (!is_empty(buf, min_t(int, len, sz))) { 167 *cor = buf; 168 dbg_rcvry("found corruption at %d:%d", lnum, offs); 169 } 170 offs += sz; 171 buf += sz; 172 len -= sz; 173 } 174 /* Check remaining empty space */ 175 if (offs < c->leb_size) 176 if (!is_empty(buf, len)) 177 goto out_err; 178 *pbuf = sbuf; 179 return 0; 180 181 out_err: 182 err = -EINVAL; 183 out_free: 184 vfree(sbuf); 185 *mst = NULL; 186 *cor = NULL; 187 return err; 188 } 189 190 /** 191 * write_rcvrd_mst_node - write recovered master node. 192 * @c: UBIFS file-system description object 193 * @mst: master node 194 * 195 * This function returns %0 on success and a negative error code on failure. 196 */ 197 static int write_rcvrd_mst_node(struct ubifs_info *c, 198 struct ubifs_mst_node *mst) 199 { 200 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; 201 __le32 save_flags; 202 203 dbg_rcvry("recovery"); 204 205 save_flags = mst->flags; 206 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); 207 208 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); 209 err = ubifs_leb_change(c, lnum, mst, sz); 210 if (err) 211 goto out; 212 err = ubifs_leb_change(c, lnum + 1, mst, sz); 213 if (err) 214 goto out; 215 out: 216 mst->flags = save_flags; 217 return err; 218 } 219 220 /** 221 * ubifs_recover_master_node - recover the master node. 222 * @c: UBIFS file-system description object 223 * 224 * This function recovers the master node from corruption that may occur due to 225 * an unclean unmount. 226 * 227 * This function returns %0 on success and a negative error code on failure. 228 */ 229 int ubifs_recover_master_node(struct ubifs_info *c) 230 { 231 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; 232 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; 233 const int sz = c->mst_node_alsz; 234 int err, offs1, offs2; 235 236 dbg_rcvry("recovery"); 237 238 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); 239 if (err) 240 goto out_free; 241 242 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); 243 if (err) 244 goto out_free; 245 246 if (mst1) { 247 offs1 = (void *)mst1 - buf1; 248 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && 249 (offs1 == 0 && !cor1)) { 250 /* 251 * mst1 was written by recovery at offset 0 with no 252 * corruption. 253 */ 254 dbg_rcvry("recovery recovery"); 255 mst = mst1; 256 } else if (mst2) { 257 offs2 = (void *)mst2 - buf2; 258 if (offs1 == offs2) { 259 /* Same offset, so must be the same */ 260 if (memcmp((void *)mst1 + UBIFS_CH_SZ, 261 (void *)mst2 + UBIFS_CH_SZ, 262 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) 263 goto out_err; 264 mst = mst1; 265 } else if (offs2 + sz == offs1) { 266 /* 1st LEB was written, 2nd was not */ 267 if (cor1) 268 goto out_err; 269 mst = mst1; 270 } else if (offs1 == 0 && 271 c->leb_size - offs2 - sz < sz) { 272 /* 1st LEB was unmapped and written, 2nd not */ 273 if (cor1) 274 goto out_err; 275 mst = mst1; 276 } else 277 goto out_err; 278 } else { 279 /* 280 * 2nd LEB was unmapped and about to be written, so 281 * there must be only one master node in the first LEB 282 * and no corruption. 283 */ 284 if (offs1 != 0 || cor1) 285 goto out_err; 286 mst = mst1; 287 } 288 } else { 289 if (!mst2) 290 goto out_err; 291 /* 292 * 1st LEB was unmapped and about to be written, so there must 293 * be no room left in 2nd LEB. 294 */ 295 offs2 = (void *)mst2 - buf2; 296 if (offs2 + sz + sz <= c->leb_size) 297 goto out_err; 298 mst = mst2; 299 } 300 301 ubifs_msg("recovered master node from LEB %d", 302 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); 303 304 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); 305 306 if (c->ro_mount) { 307 /* Read-only mode. Keep a copy for switching to rw mode */ 308 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); 309 if (!c->rcvrd_mst_node) { 310 err = -ENOMEM; 311 goto out_free; 312 } 313 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); 314 315 /* 316 * We had to recover the master node, which means there was an 317 * unclean reboot. However, it is possible that the master node 318 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set. 319 * E.g., consider the following chain of events: 320 * 321 * 1. UBIFS was cleanly unmounted, so the master node is clean 322 * 2. UBIFS is being mounted R/W and starts changing the master 323 * node in the first (%UBIFS_MST_LNUM). A power cut happens, 324 * so this LEB ends up with some amount of garbage at the 325 * end. 326 * 3. UBIFS is being mounted R/O. We reach this place and 327 * recover the master node from the second LEB 328 * (%UBIFS_MST_LNUM + 1). But we cannot update the media 329 * because we are being mounted R/O. We have to defer the 330 * operation. 331 * 4. However, this master node (@c->mst_node) is marked as 332 * clean (since the step 1). And if we just return, the 333 * mount code will be confused and won't recover the master 334 * node when it is re-mounter R/W later. 335 * 336 * Thus, to force the recovery by marking the master node as 337 * dirty. 338 */ 339 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 340 #ifndef __UBOOT__ 341 } else { 342 /* Write the recovered master node */ 343 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; 344 err = write_rcvrd_mst_node(c, c->mst_node); 345 if (err) 346 goto out_free; 347 #endif 348 } 349 350 vfree(buf2); 351 vfree(buf1); 352 353 return 0; 354 355 out_err: 356 err = -EINVAL; 357 out_free: 358 ubifs_err("failed to recover master node"); 359 if (mst1) { 360 ubifs_err("dumping first master node"); 361 ubifs_dump_node(c, mst1); 362 } 363 if (mst2) { 364 ubifs_err("dumping second master node"); 365 ubifs_dump_node(c, mst2); 366 } 367 vfree(buf2); 368 vfree(buf1); 369 return err; 370 } 371 372 /** 373 * ubifs_write_rcvrd_mst_node - write the recovered master node. 374 * @c: UBIFS file-system description object 375 * 376 * This function writes the master node that was recovered during mounting in 377 * read-only mode and must now be written because we are remounting rw. 378 * 379 * This function returns %0 on success and a negative error code on failure. 380 */ 381 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) 382 { 383 int err; 384 385 if (!c->rcvrd_mst_node) 386 return 0; 387 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 388 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 389 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); 390 if (err) 391 return err; 392 kfree(c->rcvrd_mst_node); 393 c->rcvrd_mst_node = NULL; 394 return 0; 395 } 396 397 /** 398 * is_last_write - determine if an offset was in the last write to a LEB. 399 * @c: UBIFS file-system description object 400 * @buf: buffer to check 401 * @offs: offset to check 402 * 403 * This function returns %1 if @offs was in the last write to the LEB whose data 404 * is in @buf, otherwise %0 is returned. The determination is made by checking 405 * for subsequent empty space starting from the next @c->max_write_size 406 * boundary. 407 */ 408 static int is_last_write(const struct ubifs_info *c, void *buf, int offs) 409 { 410 int empty_offs, check_len; 411 uint8_t *p; 412 413 /* 414 * Round up to the next @c->max_write_size boundary i.e. @offs is in 415 * the last wbuf written. After that should be empty space. 416 */ 417 empty_offs = ALIGN(offs + 1, c->max_write_size); 418 check_len = c->leb_size - empty_offs; 419 p = buf + empty_offs - offs; 420 return is_empty(p, check_len); 421 } 422 423 /** 424 * clean_buf - clean the data from an LEB sitting in a buffer. 425 * @c: UBIFS file-system description object 426 * @buf: buffer to clean 427 * @lnum: LEB number to clean 428 * @offs: offset from which to clean 429 * @len: length of buffer 430 * 431 * This function pads up to the next min_io_size boundary (if there is one) and 432 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next 433 * @c->min_io_size boundary. 434 */ 435 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, 436 int *offs, int *len) 437 { 438 int empty_offs, pad_len; 439 440 lnum = lnum; 441 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); 442 443 ubifs_assert(!(*offs & 7)); 444 empty_offs = ALIGN(*offs, c->min_io_size); 445 pad_len = empty_offs - *offs; 446 ubifs_pad(c, *buf, pad_len); 447 *offs += pad_len; 448 *buf += pad_len; 449 *len -= pad_len; 450 memset(*buf, 0xff, c->leb_size - empty_offs); 451 } 452 453 /** 454 * no_more_nodes - determine if there are no more nodes in a buffer. 455 * @c: UBIFS file-system description object 456 * @buf: buffer to check 457 * @len: length of buffer 458 * @lnum: LEB number of the LEB from which @buf was read 459 * @offs: offset from which @buf was read 460 * 461 * This function ensures that the corrupted node at @offs is the last thing 462 * written to a LEB. This function returns %1 if more data is not found and 463 * %0 if more data is found. 464 */ 465 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, 466 int lnum, int offs) 467 { 468 struct ubifs_ch *ch = buf; 469 int skip, dlen = le32_to_cpu(ch->len); 470 471 /* Check for empty space after the corrupt node's common header */ 472 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs; 473 if (is_empty(buf + skip, len - skip)) 474 return 1; 475 /* 476 * The area after the common header size is not empty, so the common 477 * header must be intact. Check it. 478 */ 479 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { 480 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); 481 return 0; 482 } 483 /* Now we know the corrupt node's length we can skip over it */ 484 skip = ALIGN(offs + dlen, c->max_write_size) - offs; 485 /* After which there should be empty space */ 486 if (is_empty(buf + skip, len - skip)) 487 return 1; 488 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); 489 return 0; 490 } 491 492 /** 493 * fix_unclean_leb - fix an unclean LEB. 494 * @c: UBIFS file-system description object 495 * @sleb: scanned LEB information 496 * @start: offset where scan started 497 */ 498 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 499 int start) 500 { 501 int lnum = sleb->lnum, endpt = start; 502 503 /* Get the end offset of the last node we are keeping */ 504 if (!list_empty(&sleb->nodes)) { 505 struct ubifs_scan_node *snod; 506 507 snod = list_entry(sleb->nodes.prev, 508 struct ubifs_scan_node, list); 509 endpt = snod->offs + snod->len; 510 } 511 512 if (c->ro_mount && !c->remounting_rw) { 513 /* Add to recovery list */ 514 struct ubifs_unclean_leb *ucleb; 515 516 dbg_rcvry("need to fix LEB %d start %d endpt %d", 517 lnum, start, sleb->endpt); 518 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); 519 if (!ucleb) 520 return -ENOMEM; 521 ucleb->lnum = lnum; 522 ucleb->endpt = endpt; 523 list_add_tail(&ucleb->list, &c->unclean_leb_list); 524 #ifndef __UBOOT__ 525 } else { 526 /* Write the fixed LEB back to flash */ 527 int err; 528 529 dbg_rcvry("fixing LEB %d start %d endpt %d", 530 lnum, start, sleb->endpt); 531 if (endpt == 0) { 532 err = ubifs_leb_unmap(c, lnum); 533 if (err) 534 return err; 535 } else { 536 int len = ALIGN(endpt, c->min_io_size); 537 538 if (start) { 539 err = ubifs_leb_read(c, lnum, sleb->buf, 0, 540 start, 1); 541 if (err) 542 return err; 543 } 544 /* Pad to min_io_size */ 545 if (len > endpt) { 546 int pad_len = len - ALIGN(endpt, 8); 547 548 if (pad_len > 0) { 549 void *buf = sleb->buf + len - pad_len; 550 551 ubifs_pad(c, buf, pad_len); 552 } 553 } 554 err = ubifs_leb_change(c, lnum, sleb->buf, len); 555 if (err) 556 return err; 557 } 558 #endif 559 } 560 return 0; 561 } 562 563 /** 564 * drop_last_group - drop the last group of nodes. 565 * @sleb: scanned LEB information 566 * @offs: offset of dropped nodes is returned here 567 * 568 * This is a helper function for 'ubifs_recover_leb()' which drops the last 569 * group of nodes of the scanned LEB. 570 */ 571 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs) 572 { 573 while (!list_empty(&sleb->nodes)) { 574 struct ubifs_scan_node *snod; 575 struct ubifs_ch *ch; 576 577 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 578 list); 579 ch = snod->node; 580 if (ch->group_type != UBIFS_IN_NODE_GROUP) 581 break; 582 583 dbg_rcvry("dropping grouped node at %d:%d", 584 sleb->lnum, snod->offs); 585 *offs = snod->offs; 586 list_del(&snod->list); 587 kfree(snod); 588 sleb->nodes_cnt -= 1; 589 } 590 } 591 592 /** 593 * drop_last_node - drop the last node. 594 * @sleb: scanned LEB information 595 * @offs: offset of dropped nodes is returned here 596 * @grouped: non-zero if whole group of nodes have to be dropped 597 * 598 * This is a helper function for 'ubifs_recover_leb()' which drops the last 599 * node of the scanned LEB. 600 */ 601 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs) 602 { 603 struct ubifs_scan_node *snod; 604 605 if (!list_empty(&sleb->nodes)) { 606 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 607 list); 608 609 dbg_rcvry("dropping last node at %d:%d", 610 sleb->lnum, snod->offs); 611 *offs = snod->offs; 612 list_del(&snod->list); 613 kfree(snod); 614 sleb->nodes_cnt -= 1; 615 } 616 } 617 618 /** 619 * ubifs_recover_leb - scan and recover a LEB. 620 * @c: UBIFS file-system description object 621 * @lnum: LEB number 622 * @offs: offset 623 * @sbuf: LEB-sized buffer to use 624 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not 625 * belong to any journal head) 626 * 627 * This function does a scan of a LEB, but caters for errors that might have 628 * been caused by the unclean unmount from which we are attempting to recover. 629 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is 630 * found, and a negative error code in case of failure. 631 */ 632 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, 633 int offs, void *sbuf, int jhead) 634 { 635 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; 636 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; 637 struct ubifs_scan_leb *sleb; 638 void *buf = sbuf + offs; 639 640 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); 641 642 sleb = ubifs_start_scan(c, lnum, offs, sbuf); 643 if (IS_ERR(sleb)) 644 return sleb; 645 646 ubifs_assert(len >= 8); 647 while (len >= 8) { 648 dbg_scan("look at LEB %d:%d (%d bytes left)", 649 lnum, offs, len); 650 651 cond_resched(); 652 653 /* 654 * Scan quietly until there is an error from which we cannot 655 * recover 656 */ 657 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 658 if (ret == SCANNED_A_NODE) { 659 /* A valid node, and not a padding node */ 660 struct ubifs_ch *ch = buf; 661 int node_len; 662 663 err = ubifs_add_snod(c, sleb, buf, offs); 664 if (err) 665 goto error; 666 node_len = ALIGN(le32_to_cpu(ch->len), 8); 667 offs += node_len; 668 buf += node_len; 669 len -= node_len; 670 } else if (ret > 0) { 671 /* Padding bytes or a valid padding node */ 672 offs += ret; 673 buf += ret; 674 len -= ret; 675 } else if (ret == SCANNED_EMPTY_SPACE || 676 ret == SCANNED_GARBAGE || 677 ret == SCANNED_A_BAD_PAD_NODE || 678 ret == SCANNED_A_CORRUPT_NODE) { 679 dbg_rcvry("found corruption (%d) at %d:%d", 680 ret, lnum, offs); 681 break; 682 } else { 683 ubifs_err("unexpected return value %d", ret); 684 err = -EINVAL; 685 goto error; 686 } 687 } 688 689 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { 690 if (!is_last_write(c, buf, offs)) 691 goto corrupted_rescan; 692 } else if (ret == SCANNED_A_CORRUPT_NODE) { 693 if (!no_more_nodes(c, buf, len, lnum, offs)) 694 goto corrupted_rescan; 695 } else if (!is_empty(buf, len)) { 696 if (!is_last_write(c, buf, offs)) { 697 int corruption = first_non_ff(buf, len); 698 699 /* 700 * See header comment for this file for more 701 * explanations about the reasons we have this check. 702 */ 703 ubifs_err("corrupt empty space LEB %d:%d, corruption starts at %d", 704 lnum, offs, corruption); 705 /* Make sure we dump interesting non-0xFF data */ 706 offs += corruption; 707 buf += corruption; 708 goto corrupted; 709 } 710 } 711 712 min_io_unit = round_down(offs, c->min_io_size); 713 if (grouped) 714 /* 715 * If nodes are grouped, always drop the incomplete group at 716 * the end. 717 */ 718 drop_last_group(sleb, &offs); 719 720 if (jhead == GCHD) { 721 /* 722 * If this LEB belongs to the GC head then while we are in the 723 * middle of the same min. I/O unit keep dropping nodes. So 724 * basically, what we want is to make sure that the last min. 725 * I/O unit where we saw the corruption is dropped completely 726 * with all the uncorrupted nodes which may possibly sit there. 727 * 728 * In other words, let's name the min. I/O unit where the 729 * corruption starts B, and the previous min. I/O unit A. The 730 * below code tries to deal with a situation when half of B 731 * contains valid nodes or the end of a valid node, and the 732 * second half of B contains corrupted data or garbage. This 733 * means that UBIFS had been writing to B just before the power 734 * cut happened. I do not know how realistic is this scenario 735 * that half of the min. I/O unit had been written successfully 736 * and the other half not, but this is possible in our 'failure 737 * mode emulation' infrastructure at least. 738 * 739 * So what is the problem, why we need to drop those nodes? Why 740 * can't we just clean-up the second half of B by putting a 741 * padding node there? We can, and this works fine with one 742 * exception which was reproduced with power cut emulation 743 * testing and happens extremely rarely. 744 * 745 * Imagine the file-system is full, we run GC which starts 746 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is 747 * the current GC head LEB). The @c->gc_lnum is -1, which means 748 * that GC will retain LEB X and will try to continue. Imagine 749 * that LEB X is currently the dirtiest LEB, and the amount of 750 * used space in LEB Y is exactly the same as amount of free 751 * space in LEB X. 752 * 753 * And a power cut happens when nodes are moved from LEB X to 754 * LEB Y. We are here trying to recover LEB Y which is the GC 755 * head LEB. We find the min. I/O unit B as described above. 756 * Then we clean-up LEB Y by padding min. I/O unit. And later 757 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot 758 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X 759 * does not match because the amount of valid nodes there does 760 * not fit the free space in LEB Y any more! And this is 761 * because of the padding node which we added to LEB Y. The 762 * user-visible effect of this which I once observed and 763 * analysed is that we cannot mount the file-system with 764 * -ENOSPC error. 765 * 766 * So obviously, to make sure that situation does not happen we 767 * should free min. I/O unit B in LEB Y completely and the last 768 * used min. I/O unit in LEB Y should be A. This is basically 769 * what the below code tries to do. 770 */ 771 while (offs > min_io_unit) 772 drop_last_node(sleb, &offs); 773 } 774 775 buf = sbuf + offs; 776 len = c->leb_size - offs; 777 778 clean_buf(c, &buf, lnum, &offs, &len); 779 ubifs_end_scan(c, sleb, lnum, offs); 780 781 err = fix_unclean_leb(c, sleb, start); 782 if (err) 783 goto error; 784 785 return sleb; 786 787 corrupted_rescan: 788 /* Re-scan the corrupted data with verbose messages */ 789 ubifs_err("corruption %d", ret); 790 ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 791 corrupted: 792 ubifs_scanned_corruption(c, lnum, offs, buf); 793 err = -EUCLEAN; 794 error: 795 ubifs_err("LEB %d scanning failed", lnum); 796 ubifs_scan_destroy(sleb); 797 return ERR_PTR(err); 798 } 799 800 /** 801 * get_cs_sqnum - get commit start sequence number. 802 * @c: UBIFS file-system description object 803 * @lnum: LEB number of commit start node 804 * @offs: offset of commit start node 805 * @cs_sqnum: commit start sequence number is returned here 806 * 807 * This function returns %0 on success and a negative error code on failure. 808 */ 809 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, 810 unsigned long long *cs_sqnum) 811 { 812 struct ubifs_cs_node *cs_node = NULL; 813 int err, ret; 814 815 dbg_rcvry("at %d:%d", lnum, offs); 816 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); 817 if (!cs_node) 818 return -ENOMEM; 819 if (c->leb_size - offs < UBIFS_CS_NODE_SZ) 820 goto out_err; 821 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs, 822 UBIFS_CS_NODE_SZ, 0); 823 if (err && err != -EBADMSG) 824 goto out_free; 825 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); 826 if (ret != SCANNED_A_NODE) { 827 ubifs_err("Not a valid node"); 828 goto out_err; 829 } 830 if (cs_node->ch.node_type != UBIFS_CS_NODE) { 831 ubifs_err("Node a CS node, type is %d", cs_node->ch.node_type); 832 goto out_err; 833 } 834 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { 835 ubifs_err("CS node cmt_no %llu != current cmt_no %llu", 836 (unsigned long long)le64_to_cpu(cs_node->cmt_no), 837 c->cmt_no); 838 goto out_err; 839 } 840 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); 841 dbg_rcvry("commit start sqnum %llu", *cs_sqnum); 842 kfree(cs_node); 843 return 0; 844 845 out_err: 846 err = -EINVAL; 847 out_free: 848 ubifs_err("failed to get CS sqnum"); 849 kfree(cs_node); 850 return err; 851 } 852 853 /** 854 * ubifs_recover_log_leb - scan and recover a log LEB. 855 * @c: UBIFS file-system description object 856 * @lnum: LEB number 857 * @offs: offset 858 * @sbuf: LEB-sized buffer to use 859 * 860 * This function does a scan of a LEB, but caters for errors that might have 861 * been caused by unclean reboots from which we are attempting to recover 862 * (assume that only the last log LEB can be corrupted by an unclean reboot). 863 * 864 * This function returns %0 on success and a negative error code on failure. 865 */ 866 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, 867 int offs, void *sbuf) 868 { 869 struct ubifs_scan_leb *sleb; 870 int next_lnum; 871 872 dbg_rcvry("LEB %d", lnum); 873 next_lnum = lnum + 1; 874 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) 875 next_lnum = UBIFS_LOG_LNUM; 876 if (next_lnum != c->ltail_lnum) { 877 /* 878 * We can only recover at the end of the log, so check that the 879 * next log LEB is empty or out of date. 880 */ 881 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); 882 if (IS_ERR(sleb)) 883 return sleb; 884 if (sleb->nodes_cnt) { 885 struct ubifs_scan_node *snod; 886 unsigned long long cs_sqnum = c->cs_sqnum; 887 888 snod = list_entry(sleb->nodes.next, 889 struct ubifs_scan_node, list); 890 if (cs_sqnum == 0) { 891 int err; 892 893 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); 894 if (err) { 895 ubifs_scan_destroy(sleb); 896 return ERR_PTR(err); 897 } 898 } 899 if (snod->sqnum > cs_sqnum) { 900 ubifs_err("unrecoverable log corruption in LEB %d", 901 lnum); 902 ubifs_scan_destroy(sleb); 903 return ERR_PTR(-EUCLEAN); 904 } 905 } 906 ubifs_scan_destroy(sleb); 907 } 908 return ubifs_recover_leb(c, lnum, offs, sbuf, -1); 909 } 910 911 /** 912 * recover_head - recover a head. 913 * @c: UBIFS file-system description object 914 * @lnum: LEB number of head to recover 915 * @offs: offset of head to recover 916 * @sbuf: LEB-sized buffer to use 917 * 918 * This function ensures that there is no data on the flash at a head location. 919 * 920 * This function returns %0 on success and a negative error code on failure. 921 */ 922 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf) 923 { 924 int len = c->max_write_size, err; 925 926 if (offs + len > c->leb_size) 927 len = c->leb_size - offs; 928 929 if (!len) 930 return 0; 931 932 /* Read at the head location and check it is empty flash */ 933 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1); 934 if (err || !is_empty(sbuf, len)) { 935 dbg_rcvry("cleaning head at %d:%d", lnum, offs); 936 if (offs == 0) 937 return ubifs_leb_unmap(c, lnum); 938 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1); 939 if (err) 940 return err; 941 return ubifs_leb_change(c, lnum, sbuf, offs); 942 } 943 944 return 0; 945 } 946 947 /** 948 * ubifs_recover_inl_heads - recover index and LPT heads. 949 * @c: UBIFS file-system description object 950 * @sbuf: LEB-sized buffer to use 951 * 952 * This function ensures that there is no data on the flash at the index and 953 * LPT head locations. 954 * 955 * This deals with the recovery of a half-completed journal commit. UBIFS is 956 * careful never to overwrite the last version of the index or the LPT. Because 957 * the index and LPT are wandering trees, data from a half-completed commit will 958 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are 959 * assumed to be empty and will be unmapped anyway before use, or in the index 960 * and LPT heads. 961 * 962 * This function returns %0 on success and a negative error code on failure. 963 */ 964 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf) 965 { 966 int err; 967 968 ubifs_assert(!c->ro_mount || c->remounting_rw); 969 970 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); 971 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); 972 if (err) 973 return err; 974 975 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); 976 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); 977 if (err) 978 return err; 979 980 return 0; 981 } 982 983 /** 984 * clean_an_unclean_leb - read and write a LEB to remove corruption. 985 * @c: UBIFS file-system description object 986 * @ucleb: unclean LEB information 987 * @sbuf: LEB-sized buffer to use 988 * 989 * This function reads a LEB up to a point pre-determined by the mount recovery, 990 * checks the nodes, and writes the result back to the flash, thereby cleaning 991 * off any following corruption, or non-fatal ECC errors. 992 * 993 * This function returns %0 on success and a negative error code on failure. 994 */ 995 static int clean_an_unclean_leb(struct ubifs_info *c, 996 struct ubifs_unclean_leb *ucleb, void *sbuf) 997 { 998 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; 999 void *buf = sbuf; 1000 1001 dbg_rcvry("LEB %d len %d", lnum, len); 1002 1003 if (len == 0) { 1004 /* Nothing to read, just unmap it */ 1005 err = ubifs_leb_unmap(c, lnum); 1006 if (err) 1007 return err; 1008 return 0; 1009 } 1010 1011 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 1012 if (err && err != -EBADMSG) 1013 return err; 1014 1015 while (len >= 8) { 1016 int ret; 1017 1018 cond_resched(); 1019 1020 /* Scan quietly until there is an error */ 1021 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 1022 1023 if (ret == SCANNED_A_NODE) { 1024 /* A valid node, and not a padding node */ 1025 struct ubifs_ch *ch = buf; 1026 int node_len; 1027 1028 node_len = ALIGN(le32_to_cpu(ch->len), 8); 1029 offs += node_len; 1030 buf += node_len; 1031 len -= node_len; 1032 continue; 1033 } 1034 1035 if (ret > 0) { 1036 /* Padding bytes or a valid padding node */ 1037 offs += ret; 1038 buf += ret; 1039 len -= ret; 1040 continue; 1041 } 1042 1043 if (ret == SCANNED_EMPTY_SPACE) { 1044 ubifs_err("unexpected empty space at %d:%d", 1045 lnum, offs); 1046 return -EUCLEAN; 1047 } 1048 1049 if (quiet) { 1050 /* Redo the last scan but noisily */ 1051 quiet = 0; 1052 continue; 1053 } 1054 1055 ubifs_scanned_corruption(c, lnum, offs, buf); 1056 return -EUCLEAN; 1057 } 1058 1059 /* Pad to min_io_size */ 1060 len = ALIGN(ucleb->endpt, c->min_io_size); 1061 if (len > ucleb->endpt) { 1062 int pad_len = len - ALIGN(ucleb->endpt, 8); 1063 1064 if (pad_len > 0) { 1065 buf = c->sbuf + len - pad_len; 1066 ubifs_pad(c, buf, pad_len); 1067 } 1068 } 1069 1070 /* Write back the LEB atomically */ 1071 err = ubifs_leb_change(c, lnum, sbuf, len); 1072 if (err) 1073 return err; 1074 1075 dbg_rcvry("cleaned LEB %d", lnum); 1076 1077 return 0; 1078 } 1079 1080 /** 1081 * ubifs_clean_lebs - clean LEBs recovered during read-only mount. 1082 * @c: UBIFS file-system description object 1083 * @sbuf: LEB-sized buffer to use 1084 * 1085 * This function cleans a LEB identified during recovery that needs to be 1086 * written but was not because UBIFS was mounted read-only. This happens when 1087 * remounting to read-write mode. 1088 * 1089 * This function returns %0 on success and a negative error code on failure. 1090 */ 1091 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf) 1092 { 1093 dbg_rcvry("recovery"); 1094 while (!list_empty(&c->unclean_leb_list)) { 1095 struct ubifs_unclean_leb *ucleb; 1096 int err; 1097 1098 ucleb = list_entry(c->unclean_leb_list.next, 1099 struct ubifs_unclean_leb, list); 1100 err = clean_an_unclean_leb(c, ucleb, sbuf); 1101 if (err) 1102 return err; 1103 list_del(&ucleb->list); 1104 kfree(ucleb); 1105 } 1106 return 0; 1107 } 1108 1109 #ifndef __UBOOT__ 1110 /** 1111 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit. 1112 * @c: UBIFS file-system description object 1113 * 1114 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty 1115 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns 1116 * zero in case of success and a negative error code in case of failure. 1117 */ 1118 static int grab_empty_leb(struct ubifs_info *c) 1119 { 1120 int lnum, err; 1121 1122 /* 1123 * Note, it is very important to first search for an empty LEB and then 1124 * run the commit, not vice-versa. The reason is that there might be 1125 * only one empty LEB at the moment, the one which has been the 1126 * @c->gc_lnum just before the power cut happened. During the regular 1127 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no 1128 * one but GC can grab it. But at this moment this single empty LEB is 1129 * not marked as taken, so if we run commit - what happens? Right, the 1130 * commit will grab it and write the index there. Remember that the 1131 * index always expands as long as there is free space, and it only 1132 * starts consolidating when we run out of space. 1133 * 1134 * IOW, if we run commit now, we might not be able to find a free LEB 1135 * after this. 1136 */ 1137 lnum = ubifs_find_free_leb_for_idx(c); 1138 if (lnum < 0) { 1139 ubifs_err("could not find an empty LEB"); 1140 ubifs_dump_lprops(c); 1141 ubifs_dump_budg(c, &c->bi); 1142 return lnum; 1143 } 1144 1145 /* Reset the index flag */ 1146 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 1147 LPROPS_INDEX, 0); 1148 if (err) 1149 return err; 1150 1151 c->gc_lnum = lnum; 1152 dbg_rcvry("found empty LEB %d, run commit", lnum); 1153 1154 return ubifs_run_commit(c); 1155 } 1156 1157 /** 1158 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. 1159 * @c: UBIFS file-system description object 1160 * 1161 * Out-of-place garbage collection requires always one empty LEB with which to 1162 * start garbage collection. The LEB number is recorded in c->gc_lnum and is 1163 * written to the master node on unmounting. In the case of an unclean unmount 1164 * the value of gc_lnum recorded in the master node is out of date and cannot 1165 * be used. Instead, recovery must allocate an empty LEB for this purpose. 1166 * However, there may not be enough empty space, in which case it must be 1167 * possible to GC the dirtiest LEB into the GC head LEB. 1168 * 1169 * This function also runs the commit which causes the TNC updates from 1170 * size-recovery and orphans to be written to the flash. That is important to 1171 * ensure correct replay order for subsequent mounts. 1172 * 1173 * This function returns %0 on success and a negative error code on failure. 1174 */ 1175 int ubifs_rcvry_gc_commit(struct ubifs_info *c) 1176 { 1177 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 1178 struct ubifs_lprops lp; 1179 int err; 1180 1181 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs); 1182 1183 c->gc_lnum = -1; 1184 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size) 1185 return grab_empty_leb(c); 1186 1187 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); 1188 if (err) { 1189 if (err != -ENOSPC) 1190 return err; 1191 1192 dbg_rcvry("could not find a dirty LEB"); 1193 return grab_empty_leb(c); 1194 } 1195 1196 ubifs_assert(!(lp.flags & LPROPS_INDEX)); 1197 ubifs_assert(lp.free + lp.dirty >= wbuf->offs); 1198 1199 /* 1200 * We run the commit before garbage collection otherwise subsequent 1201 * mounts will see the GC and orphan deletion in a different order. 1202 */ 1203 dbg_rcvry("committing"); 1204 err = ubifs_run_commit(c); 1205 if (err) 1206 return err; 1207 1208 dbg_rcvry("GC'ing LEB %d", lp.lnum); 1209 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1210 err = ubifs_garbage_collect_leb(c, &lp); 1211 if (err >= 0) { 1212 int err2 = ubifs_wbuf_sync_nolock(wbuf); 1213 1214 if (err2) 1215 err = err2; 1216 } 1217 mutex_unlock(&wbuf->io_mutex); 1218 if (err < 0) { 1219 ubifs_err("GC failed, error %d", err); 1220 if (err == -EAGAIN) 1221 err = -EINVAL; 1222 return err; 1223 } 1224 1225 ubifs_assert(err == LEB_RETAINED); 1226 if (err != LEB_RETAINED) 1227 return -EINVAL; 1228 1229 err = ubifs_leb_unmap(c, c->gc_lnum); 1230 if (err) 1231 return err; 1232 1233 dbg_rcvry("allocated LEB %d for GC", lp.lnum); 1234 return 0; 1235 } 1236 #else 1237 int ubifs_rcvry_gc_commit(struct ubifs_info *c) 1238 { 1239 return 0; 1240 } 1241 #endif 1242 1243 /** 1244 * struct size_entry - inode size information for recovery. 1245 * @rb: link in the RB-tree of sizes 1246 * @inum: inode number 1247 * @i_size: size on inode 1248 * @d_size: maximum size based on data nodes 1249 * @exists: indicates whether the inode exists 1250 * @inode: inode if pinned in memory awaiting rw mode to fix it 1251 */ 1252 struct size_entry { 1253 struct rb_node rb; 1254 ino_t inum; 1255 loff_t i_size; 1256 loff_t d_size; 1257 int exists; 1258 struct inode *inode; 1259 }; 1260 1261 /** 1262 * add_ino - add an entry to the size tree. 1263 * @c: UBIFS file-system description object 1264 * @inum: inode number 1265 * @i_size: size on inode 1266 * @d_size: maximum size based on data nodes 1267 * @exists: indicates whether the inode exists 1268 */ 1269 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, 1270 loff_t d_size, int exists) 1271 { 1272 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; 1273 struct size_entry *e; 1274 1275 while (*p) { 1276 parent = *p; 1277 e = rb_entry(parent, struct size_entry, rb); 1278 if (inum < e->inum) 1279 p = &(*p)->rb_left; 1280 else 1281 p = &(*p)->rb_right; 1282 } 1283 1284 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); 1285 if (!e) 1286 return -ENOMEM; 1287 1288 e->inum = inum; 1289 e->i_size = i_size; 1290 e->d_size = d_size; 1291 e->exists = exists; 1292 1293 rb_link_node(&e->rb, parent, p); 1294 rb_insert_color(&e->rb, &c->size_tree); 1295 1296 return 0; 1297 } 1298 1299 /** 1300 * find_ino - find an entry on the size tree. 1301 * @c: UBIFS file-system description object 1302 * @inum: inode number 1303 */ 1304 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) 1305 { 1306 struct rb_node *p = c->size_tree.rb_node; 1307 struct size_entry *e; 1308 1309 while (p) { 1310 e = rb_entry(p, struct size_entry, rb); 1311 if (inum < e->inum) 1312 p = p->rb_left; 1313 else if (inum > e->inum) 1314 p = p->rb_right; 1315 else 1316 return e; 1317 } 1318 return NULL; 1319 } 1320 1321 /** 1322 * remove_ino - remove an entry from the size tree. 1323 * @c: UBIFS file-system description object 1324 * @inum: inode number 1325 */ 1326 static void remove_ino(struct ubifs_info *c, ino_t inum) 1327 { 1328 struct size_entry *e = find_ino(c, inum); 1329 1330 if (!e) 1331 return; 1332 rb_erase(&e->rb, &c->size_tree); 1333 kfree(e); 1334 } 1335 1336 /** 1337 * ubifs_destroy_size_tree - free resources related to the size tree. 1338 * @c: UBIFS file-system description object 1339 */ 1340 void ubifs_destroy_size_tree(struct ubifs_info *c) 1341 { 1342 struct size_entry *e, *n; 1343 1344 rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) { 1345 if (e->inode) 1346 iput(e->inode); 1347 kfree(e); 1348 } 1349 1350 c->size_tree = RB_ROOT; 1351 } 1352 1353 /** 1354 * ubifs_recover_size_accum - accumulate inode sizes for recovery. 1355 * @c: UBIFS file-system description object 1356 * @key: node key 1357 * @deletion: node is for a deletion 1358 * @new_size: inode size 1359 * 1360 * This function has two purposes: 1361 * 1) to ensure there are no data nodes that fall outside the inode size 1362 * 2) to ensure there are no data nodes for inodes that do not exist 1363 * To accomplish those purposes, a rb-tree is constructed containing an entry 1364 * for each inode number in the journal that has not been deleted, and recording 1365 * the size from the inode node, the maximum size of any data node (also altered 1366 * by truncations) and a flag indicating a inode number for which no inode node 1367 * was present in the journal. 1368 * 1369 * Note that there is still the possibility that there are data nodes that have 1370 * been committed that are beyond the inode size, however the only way to find 1371 * them would be to scan the entire index. Alternatively, some provision could 1372 * be made to record the size of inodes at the start of commit, which would seem 1373 * very cumbersome for a scenario that is quite unlikely and the only negative 1374 * consequence of which is wasted space. 1375 * 1376 * This functions returns %0 on success and a negative error code on failure. 1377 */ 1378 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, 1379 int deletion, loff_t new_size) 1380 { 1381 ino_t inum = key_inum(c, key); 1382 struct size_entry *e; 1383 int err; 1384 1385 switch (key_type(c, key)) { 1386 case UBIFS_INO_KEY: 1387 if (deletion) 1388 remove_ino(c, inum); 1389 else { 1390 e = find_ino(c, inum); 1391 if (e) { 1392 e->i_size = new_size; 1393 e->exists = 1; 1394 } else { 1395 err = add_ino(c, inum, new_size, 0, 1); 1396 if (err) 1397 return err; 1398 } 1399 } 1400 break; 1401 case UBIFS_DATA_KEY: 1402 e = find_ino(c, inum); 1403 if (e) { 1404 if (new_size > e->d_size) 1405 e->d_size = new_size; 1406 } else { 1407 err = add_ino(c, inum, 0, new_size, 0); 1408 if (err) 1409 return err; 1410 } 1411 break; 1412 case UBIFS_TRUN_KEY: 1413 e = find_ino(c, inum); 1414 if (e) 1415 e->d_size = new_size; 1416 break; 1417 } 1418 return 0; 1419 } 1420 1421 #ifndef __UBOOT__ 1422 /** 1423 * fix_size_in_place - fix inode size in place on flash. 1424 * @c: UBIFS file-system description object 1425 * @e: inode size information for recovery 1426 */ 1427 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) 1428 { 1429 struct ubifs_ino_node *ino = c->sbuf; 1430 unsigned char *p; 1431 union ubifs_key key; 1432 int err, lnum, offs, len; 1433 loff_t i_size; 1434 uint32_t crc; 1435 1436 /* Locate the inode node LEB number and offset */ 1437 ino_key_init(c, &key, e->inum); 1438 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); 1439 if (err) 1440 goto out; 1441 /* 1442 * If the size recorded on the inode node is greater than the size that 1443 * was calculated from nodes in the journal then don't change the inode. 1444 */ 1445 i_size = le64_to_cpu(ino->size); 1446 if (i_size >= e->d_size) 1447 return 0; 1448 /* Read the LEB */ 1449 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1); 1450 if (err) 1451 goto out; 1452 /* Change the size field and recalculate the CRC */ 1453 ino = c->sbuf + offs; 1454 ino->size = cpu_to_le64(e->d_size); 1455 len = le32_to_cpu(ino->ch.len); 1456 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); 1457 ino->ch.crc = cpu_to_le32(crc); 1458 /* Work out where data in the LEB ends and free space begins */ 1459 p = c->sbuf; 1460 len = c->leb_size - 1; 1461 while (p[len] == 0xff) 1462 len -= 1; 1463 len = ALIGN(len + 1, c->min_io_size); 1464 /* Atomically write the fixed LEB back again */ 1465 err = ubifs_leb_change(c, lnum, c->sbuf, len); 1466 if (err) 1467 goto out; 1468 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld", 1469 (unsigned long)e->inum, lnum, offs, i_size, e->d_size); 1470 return 0; 1471 1472 out: 1473 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d", 1474 (unsigned long)e->inum, e->i_size, e->d_size, err); 1475 return err; 1476 } 1477 #endif 1478 1479 /** 1480 * ubifs_recover_size - recover inode size. 1481 * @c: UBIFS file-system description object 1482 * 1483 * This function attempts to fix inode size discrepancies identified by the 1484 * 'ubifs_recover_size_accum()' function. 1485 * 1486 * This functions returns %0 on success and a negative error code on failure. 1487 */ 1488 int ubifs_recover_size(struct ubifs_info *c) 1489 { 1490 struct rb_node *this = rb_first(&c->size_tree); 1491 1492 while (this) { 1493 struct size_entry *e; 1494 int err; 1495 1496 e = rb_entry(this, struct size_entry, rb); 1497 if (!e->exists) { 1498 union ubifs_key key; 1499 1500 ino_key_init(c, &key, e->inum); 1501 err = ubifs_tnc_lookup(c, &key, c->sbuf); 1502 if (err && err != -ENOENT) 1503 return err; 1504 if (err == -ENOENT) { 1505 /* Remove data nodes that have no inode */ 1506 dbg_rcvry("removing ino %lu", 1507 (unsigned long)e->inum); 1508 err = ubifs_tnc_remove_ino(c, e->inum); 1509 if (err) 1510 return err; 1511 } else { 1512 struct ubifs_ino_node *ino = c->sbuf; 1513 1514 e->exists = 1; 1515 e->i_size = le64_to_cpu(ino->size); 1516 } 1517 } 1518 1519 if (e->exists && e->i_size < e->d_size) { 1520 if (c->ro_mount) { 1521 /* Fix the inode size and pin it in memory */ 1522 struct inode *inode; 1523 struct ubifs_inode *ui; 1524 1525 ubifs_assert(!e->inode); 1526 1527 inode = ubifs_iget(c->vfs_sb, e->inum); 1528 if (IS_ERR(inode)) 1529 return PTR_ERR(inode); 1530 1531 ui = ubifs_inode(inode); 1532 if (inode->i_size < e->d_size) { 1533 dbg_rcvry("ino %lu size %lld -> %lld", 1534 (unsigned long)e->inum, 1535 inode->i_size, e->d_size); 1536 inode->i_size = e->d_size; 1537 ui->ui_size = e->d_size; 1538 ui->synced_i_size = e->d_size; 1539 e->inode = inode; 1540 this = rb_next(this); 1541 continue; 1542 } 1543 iput(inode); 1544 #ifndef __UBOOT__ 1545 } else { 1546 /* Fix the size in place */ 1547 err = fix_size_in_place(c, e); 1548 if (err) 1549 return err; 1550 if (e->inode) 1551 iput(e->inode); 1552 #endif 1553 } 1554 } 1555 1556 this = rb_next(this); 1557 rb_erase(&e->rb, &c->size_tree); 1558 kfree(e); 1559 } 1560 1561 return 0; 1562 } 1563